1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
|
/* Compute a product of 1 + (T/X), 1 + (T/(X+1)), ....
Copyright (C) 2015-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include "quadmath-imp.h"
/* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS +
1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that
all the values X + 1, ..., X + N - 1 are exactly representable, and
X_EPS / X is small enough that factors quadratic in it can be
neglected. */
__float128
__quadmath_lgamma_productq (__float128 t, __float128 x, __float128 x_eps, int n)
{
__float128 ret = 0, ret_eps = 0;
for (int i = 0; i < n; i++)
{
__float128 xi = x + i;
__float128 quot = t / xi;
__float128 mhi, mlo;
mul_splitq (&mhi, &mlo, quot, xi);
__float128 quot_lo = (t - mhi - mlo) / xi - t * x_eps / (xi * xi);
/* We want (1 + RET + RET_EPS) * (1 + QUOT + QUOT_LO) - 1. */
__float128 rhi, rlo;
mul_splitq (&rhi, &rlo, ret, quot);
__float128 rpq = ret + quot;
__float128 rpq_eps = (ret - rpq) + quot;
__float128 nret = rpq + rhi;
__float128 nret_eps = (rpq - nret) + rhi;
ret_eps += (rpq_eps + nret_eps + rlo + ret_eps * quot
+ quot_lo + quot_lo * (ret + ret_eps));
ret = nret;
}
return ret + ret_eps;
}
|