1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
@safe unittest
{
import std.numeric;
import std.math.trigonometry : sin, cos;
// Define a 16-bit floating point values
CustomFloat!16 x; // Using the number of bits
CustomFloat!(10, 5) y; // Using the precision and exponent width
CustomFloat!(10, 5,CustomFloatFlags.ieee) z; // Using the precision, exponent width and format flags
CustomFloat!(10, 5,CustomFloatFlags.ieee, 15) w; // Using the precision, exponent width, format flags and exponent offset bias
// Use the 16-bit floats mostly like normal numbers
w = x*y - 1;
// Functions calls require conversion
z = sin(+x) + cos(+y); // Use unary plus to concisely convert to a real
z = sin(x.get!float) + cos(y.get!float); // Or use get!T
z = sin(cast(float) x) + cos(cast(float) y); // Or use cast(T) to explicitly convert
// Define a 8-bit custom float for storing probabilities
alias Probability = CustomFloat!(4, 4, CustomFloatFlags.ieee^CustomFloatFlags.probability^CustomFloatFlags.signed );
auto p = Probability(0.5);
}
@safe unittest
{
import std.numeric;
import std.math.operations : isClose;
// Average numbers in an array
double avg(in double[] a)
{
if (a.length == 0) return 0;
FPTemporary!double result = 0;
foreach (e; a) result += e;
return result / a.length;
}
auto a = [1.0, 2.0, 3.0];
assert(isClose(avg(a), 2));
}
@safe unittest
{
import std.numeric;
import std.math.operations : isClose;
import std.math.trigonometry : cos;
float f(float x)
{
return cos(x) - x*x*x;
}
auto x = secantMethod!(f)(0f, 1f);
assert(isClose(x, 0.865474));
}
@safe unittest
{
import std.numeric;
import std.math.operations : isClose;
auto ret = findLocalMin((double x) => (x-4)^^2, -1e7, 1e7);
assert(ret.x.isClose(4.0));
assert(ret.y.isClose(0.0, 0.0, 1e-10));
}
@safe unittest
{
import std.numeric;
double[] a = [];
assert(!normalize(a));
a = [ 1.0, 3.0 ];
assert(normalize(a));
assert(a == [ 0.25, 0.75 ]);
assert(normalize!(typeof(a))(a, 50)); // a = [12.5, 37.5]
a = [ 0.0, 0.0 ];
assert(!normalize(a));
assert(a == [ 0.5, 0.5 ]);
}
@safe unittest
{
import std.numeric;
import std.math.traits : isNaN;
assert(sumOfLog2s(new double[0]) == 0);
assert(sumOfLog2s([0.0L]) == -real.infinity);
assert(sumOfLog2s([-0.0L]) == -real.infinity);
assert(sumOfLog2s([2.0L]) == 1);
assert(sumOfLog2s([-2.0L]).isNaN());
assert(sumOfLog2s([real.nan]).isNaN());
assert(sumOfLog2s([-real.nan]).isNaN());
assert(sumOfLog2s([real.infinity]) == real.infinity);
assert(sumOfLog2s([-real.infinity]).isNaN());
assert(sumOfLog2s([ 0.25, 0.25, 0.25, 0.125 ]) == -9);
}
@safe unittest
{
import std.numeric;
import std.math.operations : isClose;
double[] p = [ 0.0, 0, 0, 1 ];
assert(kullbackLeiblerDivergence(p, p) == 0);
double[] p1 = [ 0.25, 0.25, 0.25, 0.25 ];
assert(kullbackLeiblerDivergence(p1, p1) == 0);
assert(kullbackLeiblerDivergence(p, p1) == 2);
assert(kullbackLeiblerDivergence(p1, p) == double.infinity);
double[] p2 = [ 0.2, 0.2, 0.2, 0.4 ];
assert(isClose(kullbackLeiblerDivergence(p1, p2), 0.0719281, 1e-5));
assert(isClose(kullbackLeiblerDivergence(p2, p1), 0.0780719, 1e-5));
}
@safe unittest
{
import std.numeric;
import std.math.operations : isClose;
double[] p = [ 0.0, 0, 0, 1 ];
assert(jensenShannonDivergence(p, p) == 0);
double[] p1 = [ 0.25, 0.25, 0.25, 0.25 ];
assert(jensenShannonDivergence(p1, p1) == 0);
assert(isClose(jensenShannonDivergence(p1, p), 0.548795, 1e-5));
double[] p2 = [ 0.2, 0.2, 0.2, 0.4 ];
assert(isClose(jensenShannonDivergence(p1, p2), 0.0186218, 1e-5));
assert(isClose(jensenShannonDivergence(p2, p1), 0.0186218, 1e-5));
assert(isClose(jensenShannonDivergence(p2, p1, 0.005), 0.00602366, 1e-5));
}
@system unittest
{
import std.numeric;
import std.math.operations : isClose;
import std.math.algebraic : sqrt;
string[] s = ["Hello", "brave", "new", "world"];
string[] t = ["Hello", "new", "world"];
assert(gapWeightedSimilarity(s, s, 1) == 15);
assert(gapWeightedSimilarity(t, t, 1) == 7);
assert(gapWeightedSimilarity(s, t, 1) == 7);
assert(isClose(gapWeightedSimilarityNormalized(s, t, 1),
7.0 / sqrt(15.0 * 7), 0.01));
}
@system unittest
{
import std.numeric;
string[] s = ["Hello", "brave", "new", "world"];
string[] t = ["Hello", "new", "world"];
auto simIter = gapWeightedSimilarityIncremental(s, t, 1.0);
assert(simIter.front == 3); // three 1-length matches
simIter.popFront();
assert(simIter.front == 3); // three 2-length matches
simIter.popFront();
assert(simIter.front == 1); // one 3-length match
simIter.popFront();
assert(simIter.empty); // no more match
}
@safe unittest
{
import std.numeric;
assert(gcd(2 * 5 * 7 * 7, 5 * 7 * 11) == 5 * 7);
const int a = 5 * 13 * 23 * 23, b = 13 * 59;
assert(gcd(a, b) == 13);
}
@safe unittest
{
import std.numeric;
assert(lcm(1, 2) == 2);
assert(lcm(3, 4) == 12);
assert(lcm(5, 6) == 30);
}
@safe pure @nogc unittest
{
import std.numeric;
ubyte[21] fac;
size_t idx = decimalToFactorial(2982, fac);
assert(fac[0] == 4);
assert(fac[1] == 0);
assert(fac[2] == 4);
assert(fac[3] == 1);
assert(fac[4] == 0);
assert(fac[5] == 0);
assert(fac[6] == 0);
}
|