1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
|
// Written in the D programming language.
/**
This is a submodule of $(MREF std, math).
It contains several functions for work with floating point numbers.
Copyright: Copyright The D Language Foundation 2000 - 2011.
License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
Authors: $(HTTP digitalmars.com, Walter Bright), Don Clugston,
Conversion of CEPHES math library to D by Iain Buclaw and David Nadlinger
Source: $(PHOBOSSRC std/math/operations.d)
Macros:
TABLE_SV = <table border="1" cellpadding="4" cellspacing="0">
<caption>Special Values</caption>
$0</table>
SVH = $(TR $(TH $1) $(TH $2))
SV = $(TR $(TD $1) $(TD $2))
NAN = $(RED NAN)
PLUSMN = ±
INFIN = ∞
LT = <
GT = >
*/
module std.math.operations;
import std.traits : CommonType, isFloatingPoint, isIntegral, Unqual;
// Functions for NaN payloads
/*
* A 'payload' can be stored in the significand of a $(NAN). One bit is required
* to distinguish between a quiet and a signalling $(NAN). This leaves 22 bits
* of payload for a float; 51 bits for a double; 62 bits for an 80-bit real;
* and 111 bits for a 128-bit quad.
*/
/**
* Create a quiet $(NAN), storing an integer inside the payload.
*
* For floats, the largest possible payload is 0x3F_FFFF.
* For doubles, it is 0x3_FFFF_FFFF_FFFF.
* For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF.
*/
real NaN(ulong payload) @trusted pure nothrow @nogc
{
import std.math : floatTraits, RealFormat;
alias F = floatTraits!(real);
static if (F.realFormat == RealFormat.ieeeExtended ||
F.realFormat == RealFormat.ieeeExtended53)
{
// real80 (in x86 real format, the implied bit is actually
// not implied but a real bit which is stored in the real)
ulong v = 3; // implied bit = 1, quiet bit = 1
}
else
{
ulong v = 1; // no implied bit. quiet bit = 1
}
if (__ctfe)
{
v = 1; // We use a double in CTFE.
assert(payload >>> 51 == 0,
"Cannot set more than 51 bits of NaN payload in CTFE.");
}
ulong a = payload;
// 22 Float bits
ulong w = a & 0x3F_FFFF;
a -= w;
v <<=22;
v |= w;
a >>=22;
// 29 Double bits
v <<=29;
w = a & 0xFFF_FFFF;
v |= w;
a -= w;
a >>=29;
if (__ctfe)
{
v |= 0x7FF0_0000_0000_0000;
return *cast(double*) &v;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
v |= 0x7FF0_0000_0000_0000;
real x;
* cast(ulong *)(&x) = v;
return x;
}
else
{
v <<=11;
a &= 0x7FF;
v |= a;
real x = real.nan;
// Extended real bits
static if (F.realFormat == RealFormat.ieeeQuadruple)
{
v <<= 1; // there's no implicit bit
version (LittleEndian)
{
*cast(ulong*)(6+cast(ubyte*)(&x)) = v;
}
else
{
*cast(ulong*)(2+cast(ubyte*)(&x)) = v;
}
}
else
{
*cast(ulong *)(&x) = v;
}
return x;
}
}
///
@safe @nogc pure nothrow unittest
{
import std.math.traits : isNaN;
real a = NaN(1_000_000);
assert(isNaN(a));
assert(getNaNPayload(a) == 1_000_000);
}
@system pure nothrow @nogc unittest // not @safe because taking address of local.
{
import std.math : floatTraits, RealFormat;
static if (floatTraits!(real).realFormat == RealFormat.ieeeDouble)
{
auto x = NaN(1);
auto xl = *cast(ulong*)&x;
assert(xl & 0x8_0000_0000_0000UL); //non-signaling bit, bit 52
assert((xl & 0x7FF0_0000_0000_0000UL) == 0x7FF0_0000_0000_0000UL); //all exp bits set
}
}
/**
* Extract an integral payload from a $(NAN).
*
* Returns:
* the integer payload as a ulong.
*
* For floats, the largest possible payload is 0x3F_FFFF.
* For doubles, it is 0x3_FFFF_FFFF_FFFF.
* For 80-bit or 128-bit reals, it is 0x3FFF_FFFF_FFFF_FFFF.
*/
ulong getNaNPayload(real x) @trusted pure nothrow @nogc
{
import std.math : floatTraits, RealFormat;
// assert(isNaN(x));
alias F = floatTraits!(real);
ulong m = void;
if (__ctfe)
{
double y = x;
m = *cast(ulong*) &y;
// Make it look like an 80-bit significand.
// Skip exponent, and quiet bit
m &= 0x0007_FFFF_FFFF_FFFF;
m <<= 11;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
m = *cast(ulong*)(&x);
// Make it look like an 80-bit significand.
// Skip exponent, and quiet bit
m &= 0x0007_FFFF_FFFF_FFFF;
m <<= 11;
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
version (LittleEndian)
{
m = *cast(ulong*)(6+cast(ubyte*)(&x));
}
else
{
m = *cast(ulong*)(2+cast(ubyte*)(&x));
}
m >>= 1; // there's no implicit bit
}
else
{
m = *cast(ulong*)(&x);
}
// ignore implicit bit and quiet bit
const ulong f = m & 0x3FFF_FF00_0000_0000L;
ulong w = f >>> 40;
w |= (m & 0x00FF_FFFF_F800L) << (22 - 11);
w |= (m & 0x7FF) << 51;
return w;
}
///
@safe @nogc pure nothrow unittest
{
import std.math.traits : isNaN;
real a = NaN(1_000_000);
assert(isNaN(a));
assert(getNaNPayload(a) == 1_000_000);
}
@safe @nogc pure nothrow unittest
{
import std.math.traits : isIdentical, isNaN;
enum real a = NaN(1_000_000);
static assert(isNaN(a));
static assert(getNaNPayload(a) == 1_000_000);
real b = NaN(1_000_000);
assert(isIdentical(b, a));
// The CTFE version of getNaNPayload relies on it being impossible
// for a CTFE-constructed NaN to have more than 51 bits of payload.
enum nanNaN = NaN(getNaNPayload(real.nan));
assert(isIdentical(real.nan, nanNaN));
static if (real.init != real.init)
{
enum initNaN = NaN(getNaNPayload(real.init));
assert(isIdentical(real.init, initNaN));
}
}
debug(UnitTest)
{
@safe pure nothrow @nogc unittest
{
real nan4 = NaN(0x789_ABCD_EF12_3456);
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended
|| floatTraits!(real).realFormat == RealFormat.ieeeQuadruple)
{
assert(getNaNPayload(nan4) == 0x789_ABCD_EF12_3456);
}
else
{
assert(getNaNPayload(nan4) == 0x1_ABCD_EF12_3456);
}
double nan5 = nan4;
assert(getNaNPayload(nan5) == 0x1_ABCD_EF12_3456);
float nan6 = nan4;
assert(getNaNPayload(nan6) == 0x12_3456);
nan4 = NaN(0xFABCD);
assert(getNaNPayload(nan4) == 0xFABCD);
nan6 = nan4;
assert(getNaNPayload(nan6) == 0xFABCD);
nan5 = NaN(0x100_0000_0000_3456);
assert(getNaNPayload(nan5) == 0x0000_0000_3456);
}
}
/**
* Calculate the next largest floating point value after x.
*
* Return the least number greater than x that is representable as a real;
* thus, it gives the next point on the IEEE number line.
*
* $(TABLE_SV
* $(SVH x, nextUp(x) )
* $(SV -$(INFIN), -real.max )
* $(SV $(PLUSMN)0.0, real.min_normal*real.epsilon )
* $(SV real.max, $(INFIN) )
* $(SV $(INFIN), $(INFIN) )
* $(SV $(NAN), $(NAN) )
* )
*/
real nextUp(real x) @trusted pure nothrow @nogc
{
import std.math : floatTraits, RealFormat, MANTISSA_MSB, MANTISSA_LSB;
alias F = floatTraits!(real);
static if (F.realFormat != RealFormat.ieeeDouble)
{
if (__ctfe)
{
if (x == -real.infinity)
return -real.max;
if (!(x < real.infinity)) // Infinity or NaN.
return x;
real delta;
// Start with a decent estimate of delta.
if (x <= 0x1.ffffffffffffep+1023 && x >= -double.max)
{
const double d = cast(double) x;
delta = (cast(real) nextUp(d) - cast(real) d) * 0x1p-11L;
while (x + (delta * 0x1p-100L) > x)
delta *= 0x1p-100L;
}
else
{
delta = 0x1p960L;
while (!(x + delta > x) && delta < real.max * 0x1p-100L)
delta *= 0x1p100L;
}
if (x + delta > x)
{
while (x + (delta / 2) > x)
delta /= 2;
}
else
{
do { delta += delta; } while (!(x + delta > x));
}
if (x < 0 && x + delta == 0)
return -0.0L;
return x + delta;
}
}
static if (F.realFormat == RealFormat.ieeeDouble)
{
return nextUp(cast(double) x);
}
else static if (F.realFormat == RealFormat.ieeeQuadruple)
{
ushort e = F.EXPMASK & (cast(ushort *)&x)[F.EXPPOS_SHORT];
if (e == F.EXPMASK)
{
// NaN or Infinity
if (x == -real.infinity) return -real.max;
return x; // +Inf and NaN are unchanged.
}
auto ps = cast(ulong *)&x;
if (ps[MANTISSA_MSB] & 0x8000_0000_0000_0000)
{
// Negative number
if (ps[MANTISSA_LSB] == 0 && ps[MANTISSA_MSB] == 0x8000_0000_0000_0000)
{
// it was negative zero, change to smallest subnormal
ps[MANTISSA_LSB] = 1;
ps[MANTISSA_MSB] = 0;
return x;
}
if (ps[MANTISSA_LSB] == 0) --ps[MANTISSA_MSB];
--ps[MANTISSA_LSB];
}
else
{
// Positive number
++ps[MANTISSA_LSB];
if (ps[MANTISSA_LSB] == 0) ++ps[MANTISSA_MSB];
}
return x;
}
else static if (F.realFormat == RealFormat.ieeeExtended ||
F.realFormat == RealFormat.ieeeExtended53)
{
// For 80-bit reals, the "implied bit" is a nuisance...
ushort *pe = cast(ushort *)&x;
ulong *ps = cast(ulong *)&x;
// EPSILON is 1 for 64-bit, and 2048 for 53-bit precision reals.
enum ulong EPSILON = 2UL ^^ (64 - real.mant_dig);
if ((pe[F.EXPPOS_SHORT] & F.EXPMASK) == F.EXPMASK)
{
// First, deal with NANs and infinity
if (x == -real.infinity) return -real.max;
return x; // +Inf and NaN are unchanged.
}
if (pe[F.EXPPOS_SHORT] & 0x8000)
{
// Negative number -- need to decrease the significand
*ps -= EPSILON;
// Need to mask with 0x7FFF... so subnormals are treated correctly.
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0x7FFF_FFFF_FFFF_FFFF)
{
if (pe[F.EXPPOS_SHORT] == 0x8000) // it was negative zero
{
*ps = 1;
pe[F.EXPPOS_SHORT] = 0; // smallest subnormal.
return x;
}
--pe[F.EXPPOS_SHORT];
if (pe[F.EXPPOS_SHORT] == 0x8000)
return x; // it's become a subnormal, implied bit stays low.
*ps = 0xFFFF_FFFF_FFFF_FFFF; // set the implied bit
return x;
}
return x;
}
else
{
// Positive number -- need to increase the significand.
// Works automatically for positive zero.
*ps += EPSILON;
if ((*ps & 0x7FFF_FFFF_FFFF_FFFF) == 0)
{
// change in exponent
++pe[F.EXPPOS_SHORT];
*ps = 0x8000_0000_0000_0000; // set the high bit
}
}
return x;
}
else // static if (F.realFormat == RealFormat.ibmExtended)
{
assert(0, "nextUp not implemented");
}
}
/** ditto */
double nextUp(double x) @trusted pure nothrow @nogc
{
ulong s = *cast(ulong *)&x;
if ((s & 0x7FF0_0000_0000_0000) == 0x7FF0_0000_0000_0000)
{
// First, deal with NANs and infinity
if (x == -x.infinity) return -x.max;
return x; // +INF and NAN are unchanged.
}
if (s & 0x8000_0000_0000_0000) // Negative number
{
if (s == 0x8000_0000_0000_0000) // it was negative zero
{
s = 0x0000_0000_0000_0001; // change to smallest subnormal
return *cast(double*) &s;
}
--s;
}
else
{ // Positive number
++s;
}
return *cast(double*) &s;
}
/** ditto */
float nextUp(float x) @trusted pure nothrow @nogc
{
uint s = *cast(uint *)&x;
if ((s & 0x7F80_0000) == 0x7F80_0000)
{
// First, deal with NANs and infinity
if (x == -x.infinity) return -x.max;
return x; // +INF and NAN are unchanged.
}
if (s & 0x8000_0000) // Negative number
{
if (s == 0x8000_0000) // it was negative zero
{
s = 0x0000_0001; // change to smallest subnormal
return *cast(float*) &s;
}
--s;
}
else
{
// Positive number
++s;
}
return *cast(float*) &s;
}
///
@safe @nogc pure nothrow unittest
{
assert(nextUp(1.0 - 1.0e-6).feqrel(0.999999) > 16);
assert(nextUp(1.0 - real.epsilon).feqrel(1.0) > 16);
}
/**
* Calculate the next smallest floating point value before x.
*
* Return the greatest number less than x that is representable as a real;
* thus, it gives the previous point on the IEEE number line.
*
* $(TABLE_SV
* $(SVH x, nextDown(x) )
* $(SV $(INFIN), real.max )
* $(SV $(PLUSMN)0.0, -real.min_normal*real.epsilon )
* $(SV -real.max, -$(INFIN) )
* $(SV -$(INFIN), -$(INFIN) )
* $(SV $(NAN), $(NAN) )
* )
*/
real nextDown(real x) @safe pure nothrow @nogc
{
return -nextUp(-x);
}
/** ditto */
double nextDown(double x) @safe pure nothrow @nogc
{
return -nextUp(-x);
}
/** ditto */
float nextDown(float x) @safe pure nothrow @nogc
{
return -nextUp(-x);
}
///
@safe pure nothrow @nogc unittest
{
assert( nextDown(1.0 + real.epsilon) == 1.0);
}
@safe pure nothrow @nogc unittest
{
import std.math : floatTraits, RealFormat;
import std.math.traits : isIdentical;
static if (floatTraits!(real).realFormat == RealFormat.ieeeExtended ||
floatTraits!(real).realFormat == RealFormat.ieeeDouble ||
floatTraits!(real).realFormat == RealFormat.ieeeExtended53 ||
floatTraits!(real).realFormat == RealFormat.ieeeQuadruple)
{
// Tests for reals
assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC)));
//static assert(isIdentical(nextUp(NaN(0xABC)), NaN(0xABC)));
// negative numbers
assert( nextUp(-real.infinity) == -real.max );
assert( nextUp(-1.0L-real.epsilon) == -1.0 );
assert( nextUp(-2.0L) == -2.0 + real.epsilon);
static assert( nextUp(-real.infinity) == -real.max );
static assert( nextUp(-1.0L-real.epsilon) == -1.0 );
static assert( nextUp(-2.0L) == -2.0 + real.epsilon);
// subnormals and zero
assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) );
assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) );
assert( isIdentical(-0.0L, nextUp(-real.min_normal*real.epsilon)) );
assert( nextUp(-0.0L) == real.min_normal*real.epsilon );
assert( nextUp(0.0L) == real.min_normal*real.epsilon );
assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal );
assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) );
static assert( nextUp(-real.min_normal) == -real.min_normal*(1-real.epsilon) );
static assert( nextUp(-real.min_normal*(1-real.epsilon)) == -real.min_normal*(1-2*real.epsilon) );
static assert( -0.0L is nextUp(-real.min_normal*real.epsilon) );
static assert( nextUp(-0.0L) == real.min_normal*real.epsilon );
static assert( nextUp(0.0L) == real.min_normal*real.epsilon );
static assert( nextUp(real.min_normal*(1-real.epsilon)) == real.min_normal );
static assert( nextUp(real.min_normal) == real.min_normal*(1+real.epsilon) );
// positive numbers
assert( nextUp(1.0L) == 1.0 + real.epsilon );
assert( nextUp(2.0L-real.epsilon) == 2.0 );
assert( nextUp(real.max) == real.infinity );
assert( nextUp(real.infinity)==real.infinity );
static assert( nextUp(1.0L) == 1.0 + real.epsilon );
static assert( nextUp(2.0L-real.epsilon) == 2.0 );
static assert( nextUp(real.max) == real.infinity );
static assert( nextUp(real.infinity)==real.infinity );
// ctfe near double.max boundary
static assert(nextUp(nextDown(cast(real) double.max)) == cast(real) double.max);
}
double n = NaN(0xABC);
assert(isIdentical(nextUp(n), n));
// negative numbers
assert( nextUp(-double.infinity) == -double.max );
assert( nextUp(-1-double.epsilon) == -1.0 );
assert( nextUp(-2.0) == -2.0 + double.epsilon);
// subnormals and zero
assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) );
assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) );
assert( isIdentical(-0.0, nextUp(-double.min_normal*double.epsilon)) );
assert( nextUp(0.0) == double.min_normal*double.epsilon );
assert( nextUp(-0.0) == double.min_normal*double.epsilon );
assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal );
assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) );
// positive numbers
assert( nextUp(1.0) == 1.0 + double.epsilon );
assert( nextUp(2.0-double.epsilon) == 2.0 );
assert( nextUp(double.max) == double.infinity );
float fn = NaN(0xABC);
assert(isIdentical(nextUp(fn), fn));
float f = -float.min_normal*(1-float.epsilon);
float f1 = -float.min_normal;
assert( nextUp(f1) == f);
f = 1.0f+float.epsilon;
f1 = 1.0f;
assert( nextUp(f1) == f );
f1 = -0.0f;
assert( nextUp(f1) == float.min_normal*float.epsilon);
assert( nextUp(float.infinity)==float.infinity );
assert(nextDown(1.0L+real.epsilon)==1.0);
assert(nextDown(1.0+double.epsilon)==1.0);
f = 1.0f+float.epsilon;
assert(nextDown(f)==1.0);
assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0);
// CTFE
enum double ctfe_n = NaN(0xABC);
//static assert(isIdentical(nextUp(ctfe_n), ctfe_n)); // FIXME: https://issues.dlang.org/show_bug.cgi?id=20197
static assert(nextUp(double.nan) is double.nan);
// negative numbers
static assert( nextUp(-double.infinity) == -double.max );
static assert( nextUp(-1-double.epsilon) == -1.0 );
static assert( nextUp(-2.0) == -2.0 + double.epsilon);
// subnormals and zero
static assert( nextUp(-double.min_normal) == -double.min_normal*(1-double.epsilon) );
static assert( nextUp(-double.min_normal*(1-double.epsilon)) == -double.min_normal*(1-2*double.epsilon) );
static assert( -0.0 is nextUp(-double.min_normal*double.epsilon) );
static assert( nextUp(0.0) == double.min_normal*double.epsilon );
static assert( nextUp(-0.0) == double.min_normal*double.epsilon );
static assert( nextUp(double.min_normal*(1-double.epsilon)) == double.min_normal );
static assert( nextUp(double.min_normal) == double.min_normal*(1+double.epsilon) );
// positive numbers
static assert( nextUp(1.0) == 1.0 + double.epsilon );
static assert( nextUp(2.0-double.epsilon) == 2.0 );
static assert( nextUp(double.max) == double.infinity );
enum float ctfe_fn = NaN(0xABC);
//static assert(isIdentical(nextUp(ctfe_fn), ctfe_fn)); // FIXME: https://issues.dlang.org/show_bug.cgi?id=20197
static assert(nextUp(float.nan) is float.nan);
static assert(nextUp(-float.min_normal) == -float.min_normal*(1-float.epsilon));
static assert(nextUp(1.0f) == 1.0f+float.epsilon);
static assert(nextUp(-0.0f) == float.min_normal*float.epsilon);
static assert(nextUp(float.infinity)==float.infinity);
static assert(nextDown(1.0L+real.epsilon)==1.0);
static assert(nextDown(1.0+double.epsilon)==1.0);
static assert(nextDown(1.0f+float.epsilon)==1.0);
static assert(nextafter(1.0+real.epsilon, -real.infinity)==1.0);
}
/******************************************
* Calculates the next representable value after x in the direction of y.
*
* If y > x, the result will be the next largest floating-point value;
* if y < x, the result will be the next smallest value.
* If x == y, the result is y.
* If x or y is a NaN, the result is a NaN.
*
* Remarks:
* This function is not generally very useful; it's almost always better to use
* the faster functions nextUp() or nextDown() instead.
*
* The FE_INEXACT and FE_OVERFLOW exceptions will be raised if x is finite and
* the function result is infinite. The FE_INEXACT and FE_UNDERFLOW
* exceptions will be raised if the function value is subnormal, and x is
* not equal to y.
*/
T nextafter(T)(const T x, const T y) @safe pure nothrow @nogc
{
import std.math.traits : isNaN;
if (x == y || isNaN(y))
{
return y;
}
if (isNaN(x))
{
return x;
}
return ((y>x) ? nextUp(x) : nextDown(x));
}
///
@safe pure nothrow @nogc unittest
{
import std.math.traits : isNaN;
float a = 1;
assert(is(typeof(nextafter(a, a)) == float));
assert(nextafter(a, a.infinity) > a);
assert(isNaN(nextafter(a, a.nan)));
assert(isNaN(nextafter(a.nan, a)));
double b = 2;
assert(is(typeof(nextafter(b, b)) == double));
assert(nextafter(b, b.infinity) > b);
assert(isNaN(nextafter(b, b.nan)));
assert(isNaN(nextafter(b.nan, b)));
real c = 3;
assert(is(typeof(nextafter(c, c)) == real));
assert(nextafter(c, c.infinity) > c);
assert(isNaN(nextafter(c, c.nan)));
assert(isNaN(nextafter(c.nan, c)));
}
@safe pure nothrow @nogc unittest
{
import std.math.traits : isNaN, signbit;
// CTFE
enum float a = 1;
static assert(is(typeof(nextafter(a, a)) == float));
static assert(nextafter(a, a.infinity) > a);
static assert(isNaN(nextafter(a, a.nan)));
static assert(isNaN(nextafter(a.nan, a)));
enum double b = 2;
static assert(is(typeof(nextafter(b, b)) == double));
static assert(nextafter(b, b.infinity) > b);
static assert(isNaN(nextafter(b, b.nan)));
static assert(isNaN(nextafter(b.nan, b)));
enum real c = 3;
static assert(is(typeof(nextafter(c, c)) == real));
static assert(nextafter(c, c.infinity) > c);
static assert(isNaN(nextafter(c, c.nan)));
static assert(isNaN(nextafter(c.nan, c)));
enum real negZero = nextafter(+0.0L, -0.0L);
static assert(negZero == -0.0L);
static assert(signbit(negZero));
static assert(nextafter(c, c) == c);
}
//real nexttoward(real x, real y) { return core.stdc.math.nexttowardl(x, y); }
/**
* Returns the positive difference between x and y.
*
* Equivalent to `fmax(x-y, 0)`.
*
* Returns:
* $(TABLE_SV
* $(TR $(TH x, y) $(TH fdim(x, y)))
* $(TR $(TD x $(GT) y) $(TD x - y))
* $(TR $(TD x $(LT)= y) $(TD +0.0))
* )
*/
real fdim(real x, real y) @safe pure nothrow @nogc
{
return (x < y) ? +0.0 : x - y;
}
///
@safe pure nothrow @nogc unittest
{
import std.math.traits : isNaN;
assert(fdim(2.0, 0.0) == 2.0);
assert(fdim(-2.0, 0.0) == 0.0);
assert(fdim(real.infinity, 2.0) == real.infinity);
assert(isNaN(fdim(real.nan, 2.0)));
assert(isNaN(fdim(2.0, real.nan)));
assert(isNaN(fdim(real.nan, real.nan)));
}
/**
* Returns the larger of `x` and `y`.
*
* If one of the arguments is a `NaN`, the other is returned.
*
* See_Also: $(REF max, std,algorithm,comparison) is faster because it does not perform the `isNaN` test.
*/
F fmax(F)(const F x, const F y) @safe pure nothrow @nogc
if (__traits(isFloating, F))
{
import std.math.traits : isNaN;
// Do the more predictable test first. Generates 0 branches with ldc and 1 branch with gdc.
// See https://godbolt.org/z/erxrW9
if (isNaN(x)) return y;
return y > x ? y : x;
}
///
@safe pure nothrow @nogc unittest
{
import std.meta : AliasSeq;
static foreach (F; AliasSeq!(float, double, real))
{
assert(fmax(F(0.0), F(2.0)) == 2.0);
assert(fmax(F(-2.0), 0.0) == F(0.0));
assert(fmax(F.infinity, F(2.0)) == F.infinity);
assert(fmax(F.nan, F(2.0)) == F(2.0));
assert(fmax(F(2.0), F.nan) == F(2.0));
}
}
/**
* Returns the smaller of `x` and `y`.
*
* If one of the arguments is a `NaN`, the other is returned.
*
* See_Also: $(REF min, std,algorithm,comparison) is faster because it does not perform the `isNaN` test.
*/
F fmin(F)(const F x, const F y) @safe pure nothrow @nogc
if (__traits(isFloating, F))
{
import std.math.traits : isNaN;
// Do the more predictable test first. Generates 0 branches with ldc and 1 branch with gdc.
// See https://godbolt.org/z/erxrW9
if (isNaN(x)) return y;
return y < x ? y : x;
}
///
@safe pure nothrow @nogc unittest
{
import std.meta : AliasSeq;
static foreach (F; AliasSeq!(float, double, real))
{
assert(fmin(F(0.0), F(2.0)) == 0.0);
assert(fmin(F(-2.0), F(0.0)) == -2.0);
assert(fmin(F.infinity, F(2.0)) == 2.0);
assert(fmin(F.nan, F(2.0)) == 2.0);
assert(fmin(F(2.0), F.nan) == 2.0);
}
}
/**************************************
* Returns (x * y) + z, rounding only once according to the
* current rounding mode.
*
* BUGS: Not currently implemented - rounds twice.
*/
pragma(inline, true)
real fma(real x, real y, real z) @safe pure nothrow @nogc { return (x * y) + z; }
///
@safe pure nothrow @nogc unittest
{
assert(fma(0.0, 2.0, 2.0) == 2.0);
assert(fma(2.0, 2.0, 2.0) == 6.0);
assert(fma(real.infinity, 2.0, 2.0) == real.infinity);
assert(fma(real.nan, 2.0, 2.0) is real.nan);
assert(fma(2.0, 2.0, real.nan) is real.nan);
}
/**************************************
* To what precision is x equal to y?
*
* Returns: the number of mantissa bits which are equal in x and y.
* eg, 0x1.F8p+60 and 0x1.F1p+60 are equal to 5 bits of precision.
*
* $(TABLE_SV
* $(TR $(TH x) $(TH y) $(TH feqrel(x, y)))
* $(TR $(TD x) $(TD x) $(TD real.mant_dig))
* $(TR $(TD x) $(TD $(GT)= 2*x) $(TD 0))
* $(TR $(TD x) $(TD $(LT)= x/2) $(TD 0))
* $(TR $(TD $(NAN)) $(TD any) $(TD 0))
* $(TR $(TD any) $(TD $(NAN)) $(TD 0))
* )
*/
int feqrel(X)(const X x, const X y) @trusted pure nothrow @nogc
if (isFloatingPoint!(X))
{
import std.math : floatTraits, RealFormat;
import core.math : fabs;
/* Public Domain. Author: Don Clugston, 18 Aug 2005.
*/
alias F = floatTraits!(X);
static if (F.realFormat == RealFormat.ieeeSingle
|| F.realFormat == RealFormat.ieeeDouble
|| F.realFormat == RealFormat.ieeeExtended
|| F.realFormat == RealFormat.ieeeExtended53
|| F.realFormat == RealFormat.ieeeQuadruple)
{
if (x == y)
return X.mant_dig; // ensure diff != 0, cope with INF.
Unqual!X diff = fabs(x - y);
ushort *pa = cast(ushort *)(&x);
ushort *pb = cast(ushort *)(&y);
ushort *pd = cast(ushort *)(&diff);
// The difference in abs(exponent) between x or y and abs(x-y)
// is equal to the number of significand bits of x which are
// equal to y. If negative, x and y have different exponents.
// If positive, x and y are equal to 'bitsdiff' bits.
// AND with 0x7FFF to form the absolute value.
// To avoid out-by-1 errors, we subtract 1 so it rounds down
// if the exponents were different. This means 'bitsdiff' is
// always 1 lower than we want, except that if bitsdiff == 0,
// they could have 0 or 1 bits in common.
int bitsdiff = ((( (pa[F.EXPPOS_SHORT] & F.EXPMASK)
+ (pb[F.EXPPOS_SHORT] & F.EXPMASK)
- (1 << F.EXPSHIFT)) >> 1)
- (pd[F.EXPPOS_SHORT] & F.EXPMASK)) >> F.EXPSHIFT;
if ( (pd[F.EXPPOS_SHORT] & F.EXPMASK) == 0)
{ // Difference is subnormal
// For subnormals, we need to add the number of zeros that
// lie at the start of diff's significand.
// We do this by multiplying by 2^^real.mant_dig
diff *= F.RECIP_EPSILON;
return bitsdiff + X.mant_dig - ((pd[F.EXPPOS_SHORT] & F.EXPMASK) >> F.EXPSHIFT);
}
if (bitsdiff > 0)
return bitsdiff + 1; // add the 1 we subtracted before
// Avoid out-by-1 errors when factor is almost 2.
if (bitsdiff == 0
&& ((pa[F.EXPPOS_SHORT] ^ pb[F.EXPPOS_SHORT]) & F.EXPMASK) == 0)
{
return 1;
} else return 0;
}
else
{
static assert(false, "Not implemented for this architecture");
}
}
///
@safe pure unittest
{
assert(feqrel(2.0, 2.0) == 53);
assert(feqrel(2.0f, 2.0f) == 24);
assert(feqrel(2.0, double.nan) == 0);
// Test that numbers are within n digits of each
// other by testing if feqrel > n * log2(10)
// five digits
assert(feqrel(2.0, 2.00001) > 16);
// ten digits
assert(feqrel(2.0, 2.00000000001) > 33);
}
@safe pure nothrow @nogc unittest
{
void testFeqrel(F)()
{
// Exact equality
assert(feqrel(F.max, F.max) == F.mant_dig);
assert(feqrel!(F)(0.0, 0.0) == F.mant_dig);
assert(feqrel(F.infinity, F.infinity) == F.mant_dig);
// a few bits away from exact equality
F w=1;
for (int i = 1; i < F.mant_dig - 1; ++i)
{
assert(feqrel!(F)(1.0 + w * F.epsilon, 1.0) == F.mant_dig-i);
assert(feqrel!(F)(1.0 - w * F.epsilon, 1.0) == F.mant_dig-i);
assert(feqrel!(F)(1.0, 1 + (w-1) * F.epsilon) == F.mant_dig - i + 1);
w*=2;
}
assert(feqrel!(F)(1.5+F.epsilon, 1.5) == F.mant_dig-1);
assert(feqrel!(F)(1.5-F.epsilon, 1.5) == F.mant_dig-1);
assert(feqrel!(F)(1.5-F.epsilon, 1.5+F.epsilon) == F.mant_dig-2);
// Numbers that are close
assert(feqrel!(F)(0x1.Bp+84, 0x1.B8p+84) == 5);
assert(feqrel!(F)(0x1.8p+10, 0x1.Cp+10) == 2);
assert(feqrel!(F)(1.5 * (1 - F.epsilon), 1.0L) == 2);
assert(feqrel!(F)(1.5, 1.0) == 1);
assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1);
// Factors of 2
assert(feqrel(F.max, F.infinity) == 0);
assert(feqrel!(F)(2 * (1 - F.epsilon), 1.0L) == 1);
assert(feqrel!(F)(1.0, 2.0) == 0);
assert(feqrel!(F)(4.0, 1.0) == 0);
// Extreme inequality
assert(feqrel(F.nan, F.nan) == 0);
assert(feqrel!(F)(0.0L, -F.nan) == 0);
assert(feqrel(F.nan, F.infinity) == 0);
assert(feqrel(F.infinity, -F.infinity) == 0);
assert(feqrel(F.max, -F.max) == 0);
assert(feqrel(F.min_normal / 8, F.min_normal / 17) == 3);
const F Const = 2;
immutable F Immutable = 2;
auto Compiles = feqrel(Const, Immutable);
}
assert(feqrel(7.1824L, 7.1824L) == real.mant_dig);
testFeqrel!(real)();
testFeqrel!(double)();
testFeqrel!(float)();
}
/**
Computes whether a values is approximately equal to a reference value,
admitting a maximum relative difference, and a maximum absolute difference.
Warning:
This template is considered out-dated. It will be removed from
Phobos in 2.106.0. Please use $(LREF isClose) instead. To achieve
a similar behaviour to `approxEqual(a, b)` use
`isClose(a, b, 1e-2, 1e-5)`. In case of comparing to 0.0,
`isClose(a, b, 0.0, eps)` should be used, where `eps`
represents the accepted deviation from 0.0."
Params:
value = Value to compare.
reference = Reference value.
maxRelDiff = Maximum allowable difference relative to `reference`.
Setting to 0.0 disables this check. Defaults to `1e-2`.
maxAbsDiff = Maximum absolute difference. This is mainly usefull
for comparing values to zero. Setting to 0.0 disables this check.
Defaults to `1e-5`.
Returns:
`true` if `value` is approximately equal to `reference` under
either criterium. It is sufficient, when `value ` satisfies
one of the two criteria.
If one item is a range, and the other is a single value, then
the result is the logical and-ing of calling `approxEqual` on
each element of the ranged item against the single item. If
both items are ranges, then `approxEqual` returns `true` if
and only if the ranges have the same number of elements and if
`approxEqual` evaluates to `true` for each pair of elements.
See_Also:
Use $(LREF feqrel) to get the number of equal bits in the mantissa.
*/
deprecated("approxEqual will be removed in 2.106.0. Please use isClose instead.")
bool approxEqual(T, U, V)(T value, U reference, V maxRelDiff = 1e-2, V maxAbsDiff = 1e-5)
{
import core.math : fabs;
import std.range.primitives : empty, front, isInputRange, popFront;
static if (isInputRange!T)
{
static if (isInputRange!U)
{
// Two ranges
for (;; value.popFront(), reference.popFront())
{
if (value.empty) return reference.empty;
if (reference.empty) return value.empty;
if (!approxEqual(value.front, reference.front, maxRelDiff, maxAbsDiff))
return false;
}
}
else static if (isIntegral!U)
{
// convert reference to real
return approxEqual(value, real(reference), maxRelDiff, maxAbsDiff);
}
else
{
// value is range, reference is number
for (; !value.empty; value.popFront())
{
if (!approxEqual(value.front, reference, maxRelDiff, maxAbsDiff))
return false;
}
return true;
}
}
else
{
static if (isInputRange!U)
{
// value is number, reference is range
for (; !reference.empty; reference.popFront())
{
if (!approxEqual(value, reference.front, maxRelDiff, maxAbsDiff))
return false;
}
return true;
}
else static if (isIntegral!T || isIntegral!U)
{
// convert both value and reference to real
return approxEqual(real(value), real(reference), maxRelDiff, maxAbsDiff);
}
else
{
// two numbers
//static assert(is(T : real) && is(U : real));
if (reference == 0)
{
return fabs(value) <= maxAbsDiff;
}
static if (is(typeof(value.infinity)) && is(typeof(reference.infinity)))
{
if (value == value.infinity && reference == reference.infinity ||
value == -value.infinity && reference == -reference.infinity) return true;
}
return fabs((value - reference) / reference) <= maxRelDiff
|| maxAbsDiff != 0 && fabs(value - reference) <= maxAbsDiff;
}
}
}
deprecated @safe pure nothrow unittest
{
assert(approxEqual(1.0, 1.0099));
assert(!approxEqual(1.0, 1.011));
assert(approxEqual(0.00001, 0.0));
assert(!approxEqual(0.00002, 0.0));
assert(approxEqual(3.0, [3, 3.01, 2.99])); // several reference values is strange
assert(approxEqual([3, 3.01, 2.99], 3.0)); // better
float[] arr1 = [ 1.0, 2.0, 3.0 ];
double[] arr2 = [ 1.001, 1.999, 3 ];
assert(approxEqual(arr1, arr2));
}
deprecated @safe pure nothrow unittest
{
// relative comparison depends on reference, make sure proper
// side is used when comparing range to single value. Based on
// https://issues.dlang.org/show_bug.cgi?id=15763
auto a = [2e-3 - 1e-5];
auto b = 2e-3 + 1e-5;
assert(a[0].approxEqual(b));
assert(!b.approxEqual(a[0]));
assert(a.approxEqual(b));
assert(!b.approxEqual(a));
}
deprecated @safe pure nothrow @nogc unittest
{
assert(!approxEqual(0.0,1e-15,1e-9,0.0));
assert(approxEqual(0.0,1e-15,1e-9,1e-9));
assert(!approxEqual(1.0,3.0,0.0,1.0));
assert(approxEqual(1.00000000099,1.0,1e-9,0.0));
assert(!approxEqual(1.0000000011,1.0,1e-9,0.0));
}
deprecated @safe pure nothrow @nogc unittest
{
// maybe unintuitive behavior
assert(approxEqual(1000.0,1010.0));
assert(approxEqual(9_090_000_000.0,9_000_000_000.0));
assert(approxEqual(0.0,1e30,1.0));
assert(approxEqual(0.00001,1e-30));
assert(!approxEqual(-1e-30,1e-30,1e-2,0.0));
}
deprecated @safe pure nothrow @nogc unittest
{
int a = 10;
assert(approxEqual(10, a));
assert(!approxEqual(3, 0));
assert(approxEqual(3, 3));
assert(approxEqual(3.0, 3));
assert(approxEqual(3, 3.0));
assert(approxEqual(0.0,0.0));
assert(approxEqual(-0.0,0.0));
assert(approxEqual(0.0f,0.0));
}
deprecated @safe pure nothrow @nogc unittest
{
real num = real.infinity;
assert(num == real.infinity);
assert(approxEqual(num, real.infinity));
num = -real.infinity;
assert(num == -real.infinity);
assert(approxEqual(num, -real.infinity));
assert(!approxEqual(1,real.nan));
assert(!approxEqual(real.nan,real.max));
assert(!approxEqual(real.nan,real.nan));
}
deprecated @safe pure nothrow unittest
{
assert(!approxEqual([1.0,2.0,3.0],[1.0,2.0]));
assert(!approxEqual([1.0,2.0],[1.0,2.0,3.0]));
assert(approxEqual!(real[],real[])([],[]));
assert(approxEqual(cast(real[])[],cast(real[])[]));
}
/**
Computes whether two values are approximately equal, admitting a maximum
relative difference, and a maximum absolute difference.
Params:
lhs = First item to compare.
rhs = Second item to compare.
maxRelDiff = Maximum allowable relative difference.
Setting to 0.0 disables this check. Default depends on the type of
`lhs` and `rhs`: It is approximately half the number of decimal digits of
precision of the smaller type.
maxAbsDiff = Maximum absolute difference. This is mainly usefull
for comparing values to zero. Setting to 0.0 disables this check.
Defaults to `0.0`.
Returns:
`true` if the two items are approximately equal under either criterium.
It is sufficient, when `value ` satisfies one of the two criteria.
If one item is a range, and the other is a single value, then
the result is the logical and-ing of calling `isClose` on
each element of the ranged item against the single item. If
both items are ranges, then `isClose` returns `true` if
and only if the ranges have the same number of elements and if
`isClose` evaluates to `true` for each pair of elements.
See_Also:
Use $(LREF feqrel) to get the number of equal bits in the mantissa.
*/
bool isClose(T, U, V = CommonType!(FloatingPointBaseType!T,FloatingPointBaseType!U))
(T lhs, U rhs, V maxRelDiff = CommonDefaultFor!(T,U), V maxAbsDiff = 0.0)
{
import std.range.primitives : empty, front, isInputRange, popFront;
import std.complex : Complex;
static if (isInputRange!T)
{
static if (isInputRange!U)
{
// Two ranges
for (;; lhs.popFront(), rhs.popFront())
{
if (lhs.empty) return rhs.empty;
if (rhs.empty) return lhs.empty;
if (!isClose(lhs.front, rhs.front, maxRelDiff, maxAbsDiff))
return false;
}
}
else
{
// lhs is range, rhs is number
for (; !lhs.empty; lhs.popFront())
{
if (!isClose(lhs.front, rhs, maxRelDiff, maxAbsDiff))
return false;
}
return true;
}
}
else static if (isInputRange!U)
{
// lhs is number, rhs is range
for (; !rhs.empty; rhs.popFront())
{
if (!isClose(lhs, rhs.front, maxRelDiff, maxAbsDiff))
return false;
}
return true;
}
else static if (is(T TE == Complex!TE))
{
static if (is(U UE == Complex!UE))
{
// Two complex numbers
return isClose(lhs.re, rhs.re, maxRelDiff, maxAbsDiff)
&& isClose(lhs.im, rhs.im, maxRelDiff, maxAbsDiff);
}
else
{
// lhs is complex, rhs is number
return isClose(lhs.re, rhs, maxRelDiff, maxAbsDiff)
&& isClose(lhs.im, 0.0, maxRelDiff, maxAbsDiff);
}
}
else static if (is(U UE == Complex!UE))
{
// lhs is number, rhs is complex
return isClose(lhs, rhs.re, maxRelDiff, maxAbsDiff)
&& isClose(0.0, rhs.im, maxRelDiff, maxAbsDiff);
}
else
{
// two numbers
if (lhs == rhs) return true;
static if (is(typeof(lhs.infinity)) && is(typeof(rhs.infinity)))
{
if (lhs == lhs.infinity || rhs == rhs.infinity ||
lhs == -lhs.infinity || rhs == -rhs.infinity) return false;
}
import std.math.algebraic : abs;
auto diff = abs(lhs - rhs);
return diff <= maxRelDiff*abs(lhs)
|| diff <= maxRelDiff*abs(rhs)
|| diff <= maxAbsDiff;
}
}
///
@safe pure nothrow @nogc unittest
{
assert(isClose(1.0,0.999_999_999));
assert(isClose(0.001, 0.000_999_999_999));
assert(isClose(1_000_000_000.0,999_999_999.0));
assert(isClose(17.123_456_789, 17.123_456_78));
assert(!isClose(17.123_456_789, 17.123_45));
// use explicit 3rd parameter for less (or more) accuracy
assert(isClose(17.123_456_789, 17.123_45, 1e-6));
assert(!isClose(17.123_456_789, 17.123_45, 1e-7));
// use 4th parameter when comparing close to zero
assert(!isClose(1e-100, 0.0));
assert(isClose(1e-100, 0.0, 0.0, 1e-90));
assert(!isClose(1e-10, -1e-10));
assert(isClose(1e-10, -1e-10, 0.0, 1e-9));
assert(!isClose(1e-300, 1e-298));
assert(isClose(1e-300, 1e-298, 0.0, 1e-200));
// different default limits for different floating point types
assert(isClose(1.0f, 0.999_99f));
assert(!isClose(1.0, 0.999_99));
static if (real.sizeof > double.sizeof)
assert(!isClose(1.0L, 0.999_999_999L));
}
///
@safe pure nothrow unittest
{
assert(isClose([1.0, 2.0, 3.0], [0.999_999_999, 2.000_000_001, 3.0]));
assert(!isClose([1.0, 2.0], [0.999_999_999, 2.000_000_001, 3.0]));
assert(!isClose([1.0, 2.0, 3.0], [0.999_999_999, 2.000_000_001]));
assert(isClose([2.0, 1.999_999_999, 2.000_000_001], 2.0));
assert(isClose(2.0, [2.0, 1.999_999_999, 2.000_000_001]));
}
@safe pure nothrow unittest
{
assert(!isClose([1.0, 2.0, 3.0], [0.999_999_999, 3.0, 3.0]));
assert(!isClose([2.0, 1.999_999, 2.000_000_001], 2.0));
assert(!isClose(2.0, [2.0, 1.999_999_999, 2.000_000_999]));
}
@safe pure nothrow @nogc unittest
{
immutable a = 1.00001f;
const b = 1.000019;
assert(isClose(a,b));
assert(isClose(1.00001f,1.000019f));
assert(isClose(1.00001f,1.000019));
assert(isClose(1.00001,1.000019f));
assert(!isClose(1.00001,1.000019));
real a1 = 1e-300L;
real a2 = a1.nextUp;
assert(isClose(a1,a2));
}
@safe pure nothrow unittest
{
float[] arr1 = [ 1.0, 2.0, 3.0 ];
double[] arr2 = [ 1.00001, 1.99999, 3 ];
assert(isClose(arr1, arr2));
}
@safe pure nothrow @nogc unittest
{
assert(!isClose(1000.0,1010.0));
assert(!isClose(9_090_000_000.0,9_000_000_000.0));
assert(isClose(0.0,1e30,1.0));
assert(!isClose(0.00001,1e-30));
assert(!isClose(-1e-30,1e-30,1e-2,0.0));
}
@safe pure nothrow @nogc unittest
{
assert(!isClose(3, 0));
assert(isClose(3, 3));
assert(isClose(3.0, 3));
assert(isClose(3, 3.0));
assert(isClose(0.0,0.0));
assert(isClose(-0.0,0.0));
assert(isClose(0.0f,0.0));
}
@safe pure nothrow @nogc unittest
{
real num = real.infinity;
assert(num == real.infinity);
assert(isClose(num, real.infinity));
num = -real.infinity;
assert(num == -real.infinity);
assert(isClose(num, -real.infinity));
assert(!isClose(1,real.nan));
assert(!isClose(real.nan,real.max));
assert(!isClose(real.nan,real.nan));
}
@safe pure nothrow @nogc unittest
{
assert(isClose!(real[],real[],real)([],[]));
assert(isClose(cast(real[])[],cast(real[])[]));
}
@safe pure nothrow @nogc unittest
{
import std.conv : to;
float f = 31.79f;
double d = 31.79;
double f2d = f.to!double;
assert(isClose(f,f2d));
assert(!isClose(d,f2d));
}
@safe pure nothrow @nogc unittest
{
import std.conv : to;
double d = 31.79;
float f = d.to!float;
double f2d = f.to!double;
assert(isClose(f,f2d));
assert(!isClose(d,f2d));
assert(isClose(d,f2d,1e-4));
}
package(std.math) template CommonDefaultFor(T,U)
{
import std.algorithm.comparison : min;
alias baseT = FloatingPointBaseType!T;
alias baseU = FloatingPointBaseType!U;
enum CommonType!(baseT, baseU) CommonDefaultFor = 10.0L ^^ -((min(baseT.dig, baseU.dig) + 1) / 2 + 1);
}
private template FloatingPointBaseType(T)
{
import std.range.primitives : ElementType;
static if (isFloatingPoint!T)
{
alias FloatingPointBaseType = Unqual!T;
}
else static if (isFloatingPoint!(ElementType!(Unqual!T)))
{
alias FloatingPointBaseType = Unqual!(ElementType!(Unqual!T));
}
else
{
alias FloatingPointBaseType = real;
}
}
/***********************************
* Defines a total order on all floating-point numbers.
*
* The order is defined as follows:
* $(UL
* $(LI All numbers in [-$(INFIN), +$(INFIN)] are ordered
* the same way as by built-in comparison, with the exception of
* -0.0, which is less than +0.0;)
* $(LI If the sign bit is set (that is, it's 'negative'), $(NAN) is less
* than any number; if the sign bit is not set (it is 'positive'),
* $(NAN) is greater than any number;)
* $(LI $(NAN)s of the same sign are ordered by the payload ('negative'
* ones - in reverse order).)
* )
*
* Returns:
* negative value if `x` precedes `y` in the order specified above;
* 0 if `x` and `y` are identical, and positive value otherwise.
*
* See_Also:
* $(MYREF isIdentical)
* Standards: Conforms to IEEE 754-2008
*/
int cmp(T)(const(T) x, const(T) y) @nogc @trusted pure nothrow
if (isFloatingPoint!T)
{
import std.math : floatTraits, RealFormat;
alias F = floatTraits!T;
static if (F.realFormat == RealFormat.ieeeSingle
|| F.realFormat == RealFormat.ieeeDouble)
{
static if (T.sizeof == 4)
alias UInt = uint;
else
alias UInt = ulong;
union Repainter
{
T number;
UInt bits;
}
enum msb = ~(UInt.max >>> 1);
import std.typecons : Tuple;
Tuple!(Repainter, Repainter) vars = void;
vars[0].number = x;
vars[1].number = y;
foreach (ref var; vars)
if (var.bits & msb)
var.bits = ~var.bits;
else
var.bits |= msb;
if (vars[0].bits < vars[1].bits)
return -1;
else if (vars[0].bits > vars[1].bits)
return 1;
else
return 0;
}
else static if (F.realFormat == RealFormat.ieeeExtended53
|| F.realFormat == RealFormat.ieeeExtended
|| F.realFormat == RealFormat.ieeeQuadruple)
{
static if (F.realFormat == RealFormat.ieeeQuadruple)
alias RemT = ulong;
else
alias RemT = ushort;
struct Bits
{
ulong bulk;
RemT rem;
}
union Repainter
{
T number;
Bits bits;
ubyte[T.sizeof] bytes;
}
import std.typecons : Tuple;
Tuple!(Repainter, Repainter) vars = void;
vars[0].number = x;
vars[1].number = y;
foreach (ref var; vars)
if (var.bytes[F.SIGNPOS_BYTE] & 0x80)
{
var.bits.bulk = ~var.bits.bulk;
var.bits.rem = cast(typeof(var.bits.rem))(-1 - var.bits.rem); // ~var.bits.rem
}
else
{
var.bytes[F.SIGNPOS_BYTE] |= 0x80;
}
version (LittleEndian)
{
if (vars[0].bits.rem < vars[1].bits.rem)
return -1;
else if (vars[0].bits.rem > vars[1].bits.rem)
return 1;
else if (vars[0].bits.bulk < vars[1].bits.bulk)
return -1;
else if (vars[0].bits.bulk > vars[1].bits.bulk)
return 1;
else
return 0;
}
else
{
if (vars[0].bits.bulk < vars[1].bits.bulk)
return -1;
else if (vars[0].bits.bulk > vars[1].bits.bulk)
return 1;
else if (vars[0].bits.rem < vars[1].bits.rem)
return -1;
else if (vars[0].bits.rem > vars[1].bits.rem)
return 1;
else
return 0;
}
}
else
{
// IBM Extended doubledouble does not follow the general
// sign-exponent-significand layout, so has to be handled generically
import std.math.traits : signbit, isNaN;
const int xSign = signbit(x),
ySign = signbit(y);
if (xSign == 1 && ySign == 1)
return cmp(-y, -x);
else if (xSign == 1)
return -1;
else if (ySign == 1)
return 1;
else if (x < y)
return -1;
else if (x == y)
return 0;
else if (x > y)
return 1;
else if (isNaN(x) && !isNaN(y))
return 1;
else if (isNaN(y) && !isNaN(x))
return -1;
else if (getNaNPayload(x) < getNaNPayload(y))
return -1;
else if (getNaNPayload(x) > getNaNPayload(y))
return 1;
else
return 0;
}
}
/// Most numbers are ordered naturally.
@safe unittest
{
assert(cmp(-double.infinity, -double.max) < 0);
assert(cmp(-double.max, -100.0) < 0);
assert(cmp(-100.0, -0.5) < 0);
assert(cmp(-0.5, 0.0) < 0);
assert(cmp(0.0, 0.5) < 0);
assert(cmp(0.5, 100.0) < 0);
assert(cmp(100.0, double.max) < 0);
assert(cmp(double.max, double.infinity) < 0);
assert(cmp(1.0, 1.0) == 0);
}
/// Positive and negative zeroes are distinct.
@safe unittest
{
assert(cmp(-0.0, +0.0) < 0);
assert(cmp(+0.0, -0.0) > 0);
}
/// Depending on the sign, $(NAN)s go to either end of the spectrum.
@safe unittest
{
assert(cmp(-double.nan, -double.infinity) < 0);
assert(cmp(double.infinity, double.nan) < 0);
assert(cmp(-double.nan, double.nan) < 0);
}
/// $(NAN)s of the same sign are ordered by the payload.
@safe unittest
{
assert(cmp(NaN(10), NaN(20)) < 0);
assert(cmp(-NaN(20), -NaN(10)) < 0);
}
@safe unittest
{
import std.meta : AliasSeq;
static foreach (T; AliasSeq!(float, double, real))
{{
T[] values = [-cast(T) NaN(20), -cast(T) NaN(10), -T.nan, -T.infinity,
-T.max, -T.max / 2, T(-16.0), T(-1.0).nextDown,
T(-1.0), T(-1.0).nextUp,
T(-0.5), -T.min_normal, (-T.min_normal).nextUp,
-2 * T.min_normal * T.epsilon,
-T.min_normal * T.epsilon,
T(-0.0), T(0.0),
T.min_normal * T.epsilon,
2 * T.min_normal * T.epsilon,
T.min_normal.nextDown, T.min_normal, T(0.5),
T(1.0).nextDown, T(1.0),
T(1.0).nextUp, T(16.0), T.max / 2, T.max,
T.infinity, T.nan, cast(T) NaN(10), cast(T) NaN(20)];
foreach (i, x; values)
{
foreach (y; values[i + 1 .. $])
{
assert(cmp(x, y) < 0);
assert(cmp(y, x) > 0);
}
assert(cmp(x, x) == 0);
}
}}
}
package(std): // not yet public
struct FloatingPointBitpattern(T)
if (isFloatingPoint!T)
{
static if (T.mant_dig <= 64)
{
ulong mantissa;
}
else
{
ulong mantissa_lsb;
ulong mantissa_msb;
}
int exponent;
bool negative;
}
FloatingPointBitpattern!T extractBitpattern(T)(const(T) value) @trusted
if (isFloatingPoint!T)
{
import std.math : floatTraits, RealFormat;
T val = value;
FloatingPointBitpattern!T ret;
alias F = floatTraits!T;
static if (F.realFormat == RealFormat.ieeeExtended)
{
if (__ctfe)
{
import core.math : fabs, ldexp;
import std.math.rounding : floor;
import std.math.traits : isInfinity, isNaN, signbit;
import std.math.exponential : log2;
if (isNaN(val) || isInfinity(val))
ret.exponent = 32767;
else if (fabs(val) < real.min_normal)
ret.exponent = 0;
else if (fabs(val) >= nextUp(real.max / 2))
ret.exponent = 32766;
else
ret.exponent = cast(int) (val.fabs.log2.floor() + 16383);
if (ret.exponent == 32767)
{
// NaN or infinity
ret.mantissa = isNaN(val) ? ((1L << 63) - 1) : 0;
}
else
{
auto delta = 16382 + 64 // bias + bits of ulong
- (ret.exponent == 0 ? 1 : ret.exponent); // -1 in case of subnormals
val = ldexp(val, delta); // val *= 2^^delta
ulong tmp = cast(ulong) fabs(val);
if (ret.exponent != 32767 && ret.exponent > 0 && tmp <= ulong.max / 2)
{
// correction, due to log2(val) being rounded up:
ret.exponent--;
val *= 2;
tmp = cast(ulong) fabs(val);
}
ret.mantissa = tmp & long.max;
}
ret.negative = (signbit(val) == 1);
}
else
{
ushort* vs = cast(ushort*) &val;
ret.mantissa = (cast(ulong*) vs)[0] & long.max;
ret.exponent = vs[4] & short.max;
ret.negative = (vs[4] >> 15) & 1;
}
}
else
{
static if (F.realFormat == RealFormat.ieeeSingle)
{
ulong ival = *cast(uint*) &val;
}
else static if (F.realFormat == RealFormat.ieeeDouble)
{
ulong ival = *cast(ulong*) &val;
}
else
{
static assert(false, "Floating point type `" ~ F.realFormat ~ "` not supported.");
}
import std.math.exponential : log2;
enum log2_max_exp = cast(int) log2(T.max_exp);
ret.mantissa = ival & ((1L << (T.mant_dig - 1)) - 1);
ret.exponent = (ival >> (T.mant_dig - 1)) & ((1L << (log2_max_exp + 1)) - 1);
ret.negative = (ival >> (T.mant_dig + log2_max_exp)) & 1;
}
// add leading 1 for normalized values and correct exponent for denormalied values
if (ret.exponent != 0 && ret.exponent != 2 * T.max_exp - 1)
ret.mantissa |= 1L << (T.mant_dig - 1);
else if (ret.exponent == 0)
ret.exponent = 1;
ret.exponent -= T.max_exp - 1;
return ret;
}
@safe pure unittest
{
float f = 1.0f;
auto bp = extractBitpattern(f);
assert(bp.mantissa == 0x80_0000);
assert(bp.exponent == 0);
assert(bp.negative == false);
f = float.max;
bp = extractBitpattern(f);
assert(bp.mantissa == 0xff_ffff);
assert(bp.exponent == 127);
assert(bp.negative == false);
f = -1.5432e-17f;
bp = extractBitpattern(f);
assert(bp.mantissa == 0x8e_55c8);
assert(bp.exponent == -56);
assert(bp.negative == true);
// using double literal due to https://issues.dlang.org/show_bug.cgi?id=20361
f = 2.3822073893521890206e-44;
bp = extractBitpattern(f);
assert(bp.mantissa == 0x00_0011);
assert(bp.exponent == -126);
assert(bp.negative == false);
f = -float.infinity;
bp = extractBitpattern(f);
assert(bp.mantissa == 0);
assert(bp.exponent == 128);
assert(bp.negative == true);
f = float.nan;
bp = extractBitpattern(f);
assert(bp.mantissa != 0); // we don't guarantee payloads
assert(bp.exponent == 128);
assert(bp.negative == false);
}
@safe pure unittest
{
double d = 1.0;
auto bp = extractBitpattern(d);
assert(bp.mantissa == 0x10_0000_0000_0000L);
assert(bp.exponent == 0);
assert(bp.negative == false);
d = double.max;
bp = extractBitpattern(d);
assert(bp.mantissa == 0x1f_ffff_ffff_ffffL);
assert(bp.exponent == 1023);
assert(bp.negative == false);
d = -1.5432e-222;
bp = extractBitpattern(d);
assert(bp.mantissa == 0x11_d9b6_a401_3b04L);
assert(bp.exponent == -737);
assert(bp.negative == true);
d = 0.0.nextUp;
bp = extractBitpattern(d);
assert(bp.mantissa == 0x00_0000_0000_0001L);
assert(bp.exponent == -1022);
assert(bp.negative == false);
d = -double.infinity;
bp = extractBitpattern(d);
assert(bp.mantissa == 0);
assert(bp.exponent == 1024);
assert(bp.negative == true);
d = double.nan;
bp = extractBitpattern(d);
assert(bp.mantissa != 0); // we don't guarantee payloads
assert(bp.exponent == 1024);
assert(bp.negative == false);
}
@safe pure unittest
{
import std.math : floatTraits, RealFormat;
alias F = floatTraits!real;
static if (F.realFormat == RealFormat.ieeeExtended)
{
real r = 1.0L;
auto bp = extractBitpattern(r);
assert(bp.mantissa == 0x8000_0000_0000_0000L);
assert(bp.exponent == 0);
assert(bp.negative == false);
r = real.max;
bp = extractBitpattern(r);
assert(bp.mantissa == 0xffff_ffff_ffff_ffffL);
assert(bp.exponent == 16383);
assert(bp.negative == false);
r = -1.5432e-3333L;
bp = extractBitpattern(r);
assert(bp.mantissa == 0xc768_a2c7_a616_cc22L);
assert(bp.exponent == -11072);
assert(bp.negative == true);
r = 0.0L.nextUp;
bp = extractBitpattern(r);
assert(bp.mantissa == 0x0000_0000_0000_0001L);
assert(bp.exponent == -16382);
assert(bp.negative == false);
r = -float.infinity;
bp = extractBitpattern(r);
assert(bp.mantissa == 0);
assert(bp.exponent == 16384);
assert(bp.negative == true);
r = float.nan;
bp = extractBitpattern(r);
assert(bp.mantissa != 0); // we don't guarantee payloads
assert(bp.exponent == 16384);
assert(bp.negative == false);
r = nextDown(0x1p+16383L);
bp = extractBitpattern(r);
assert(bp.mantissa == 0xffff_ffff_ffff_ffffL);
assert(bp.exponent == 16382);
assert(bp.negative == false);
}
}
@safe pure unittest
{
import std.math : floatTraits, RealFormat;
import std.math.exponential : log2;
alias F = floatTraits!real;
// log2 is broken for x87-reals on some computers in CTFE
// the following test excludes these computers from the test
// (issue 21757)
enum test = cast(int) log2(3.05e2312L);
static if (F.realFormat == RealFormat.ieeeExtended && test == 7681)
{
enum r1 = 1.0L;
enum bp1 = extractBitpattern(r1);
static assert(bp1.mantissa == 0x8000_0000_0000_0000L);
static assert(bp1.exponent == 0);
static assert(bp1.negative == false);
enum r2 = real.max;
enum bp2 = extractBitpattern(r2);
static assert(bp2.mantissa == 0xffff_ffff_ffff_ffffL);
static assert(bp2.exponent == 16383);
static assert(bp2.negative == false);
enum r3 = -1.5432e-3333L;
enum bp3 = extractBitpattern(r3);
static assert(bp3.mantissa == 0xc768_a2c7_a616_cc22L);
static assert(bp3.exponent == -11072);
static assert(bp3.negative == true);
enum r4 = 0.0L.nextUp;
enum bp4 = extractBitpattern(r4);
static assert(bp4.mantissa == 0x0000_0000_0000_0001L);
static assert(bp4.exponent == -16382);
static assert(bp4.negative == false);
enum r5 = -real.infinity;
enum bp5 = extractBitpattern(r5);
static assert(bp5.mantissa == 0);
static assert(bp5.exponent == 16384);
static assert(bp5.negative == true);
enum r6 = real.nan;
enum bp6 = extractBitpattern(r6);
static assert(bp6.mantissa != 0); // we don't guarantee payloads
static assert(bp6.exponent == 16384);
static assert(bp6.negative == false);
enum r7 = nextDown(0x1p+16383L);
enum bp7 = extractBitpattern(r7);
static assert(bp7.mantissa == 0xffff_ffff_ffff_ffffL);
static assert(bp7.exponent == 16382);
static assert(bp7.negative == false);
}
}
|