1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
|
/**
* This module describes the _digest APIs used in Phobos. All digests follow
* these APIs. Additionally, this module contains useful helper methods which
* can be used with every _digest type.
*
$(SCRIPT inhibitQuickIndex = 1;)
$(DIVC quickindex,
$(BOOKTABLE ,
$(TR $(TH Category) $(TH Functions)
)
$(TR $(TDNW Template API) $(TD $(MYREF isDigest) $(MYREF DigestType) $(MYREF hasPeek)
$(MYREF hasBlockSize)
$(MYREF ExampleDigest) $(MYREF _digest) $(MYREF hexDigest) $(MYREF makeDigest)
)
)
$(TR $(TDNW OOP API) $(TD $(MYREF Digest)
)
)
$(TR $(TDNW Helper functions) $(TD $(MYREF toHexString))
)
$(TR $(TDNW Implementation helpers) $(TD $(MYREF digestLength) $(MYREF WrapperDigest))
)
)
)
* APIs:
* There are two APIs for digests: The template API and the OOP API. The template API uses structs
* and template helpers like $(LREF isDigest). The OOP API implements digests as classes inheriting
* the $(LREF Digest) interface. All digests are named so that the template API struct is called "$(B x)"
* and the OOP API class is called "$(B x)Digest". For example we have $(D MD5) <--> $(D MD5Digest),
* $(D CRC32) <--> $(D CRC32Digest), etc.
*
* The template API is slightly more efficient. It does not have to allocate memory dynamically,
* all memory is allocated on the stack. The OOP API has to allocate in the finish method if no
* buffer was provided. If you provide a buffer to the OOP APIs finish function, it doesn't allocate,
* but the $(LREF Digest) classes still have to be created using $(D new) which allocates them using the GC.
*
* The OOP API is useful to change the _digest function and/or _digest backend at 'runtime'. The benefit here
* is that switching e.g. Phobos MD5Digest and an OpenSSLMD5Digest implementation is ABI compatible.
*
* If just one specific _digest type and backend is needed, the template API is usually a good fit.
* In this simplest case, the template API can even be used without templates: Just use the "$(B x)" structs
* directly.
*
* License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
* Authors:
* Johannes Pfau
*
* Source: $(PHOBOSSRC std/_digest/_package.d)
*
* CTFE:
* Digests do not work in CTFE
*
* TODO:
* Digesting single bits (as opposed to bytes) is not implemented. This will be done as another
* template constraint helper (hasBitDigesting!T) and an additional interface (BitDigest)
*/
/* Copyright Johannes Pfau 2012.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
module std.digest;
public import std.ascii : LetterCase;
import std.meta : allSatisfy;
import std.range.primitives;
import std.traits;
///
@system unittest
{
import std.digest.crc;
//Simple example
char[8] hexHash = hexDigest!CRC32("The quick brown fox jumps over the lazy dog");
assert(hexHash == "39A34F41");
//Simple example, using the API manually
CRC32 context = makeDigest!CRC32();
context.put(cast(ubyte[])"The quick brown fox jumps over the lazy dog");
ubyte[4] hash = context.finish();
assert(toHexString(hash) == "39A34F41");
}
///
@system unittest
{
//Generating the hashes of a file, idiomatic D way
import std.digest.crc, std.digest.md, std.digest.sha;
import std.stdio;
// Digests a file and prints the result.
void digestFile(Hash)(string filename)
if (isDigest!Hash)
{
auto file = File(filename);
auto result = digest!Hash(file.byChunk(4096 * 1024));
writefln("%s (%s) = %s", Hash.stringof, filename, toHexString(result));
}
void main(string[] args)
{
foreach (name; args[1 .. $])
{
digestFile!MD5(name);
digestFile!SHA1(name);
digestFile!CRC32(name);
}
}
}
///
@system unittest
{
//Generating the hashes of a file using the template API
import std.digest.crc, std.digest.md, std.digest.sha;
import std.stdio;
// Digests a file and prints the result.
void digestFile(Hash)(ref Hash hash, string filename)
if (isDigest!Hash)
{
File file = File(filename);
//As digests imlement OutputRange, we could use std.algorithm.copy
//Let's do it manually for now
foreach (buffer; file.byChunk(4096 * 1024))
hash.put(buffer);
auto result = hash.finish();
writefln("%s (%s) = %s", Hash.stringof, filename, toHexString(result));
}
void uMain(string[] args)
{
MD5 md5;
SHA1 sha1;
CRC32 crc32;
md5.start();
sha1.start();
crc32.start();
foreach (arg; args[1 .. $])
{
digestFile(md5, arg);
digestFile(sha1, arg);
digestFile(crc32, arg);
}
}
}
///
@system unittest
{
import std.digest.crc, std.digest.md, std.digest.sha;
import std.stdio;
// Digests a file and prints the result.
void digestFile(Digest hash, string filename)
{
File file = File(filename);
//As digests implement OutputRange, we could use std.algorithm.copy
//Let's do it manually for now
foreach (buffer; file.byChunk(4096 * 1024))
hash.put(buffer);
ubyte[] result = hash.finish();
writefln("%s (%s) = %s", typeid(hash).toString(), filename, toHexString(result));
}
void umain(string[] args)
{
auto md5 = new MD5Digest();
auto sha1 = new SHA1Digest();
auto crc32 = new CRC32Digest();
foreach (arg; args[1 .. $])
{
digestFile(md5, arg);
digestFile(sha1, arg);
digestFile(crc32, arg);
}
}
}
version (StdDdoc)
version = ExampleDigest;
version (ExampleDigest)
{
/**
* This documents the general structure of a Digest in the template API.
* All digest implementations should implement the following members and therefore pass
* the $(LREF isDigest) test.
*
* Note:
* $(UL
* $(LI A digest must be a struct (value type) to pass the $(LREF isDigest) test.)
* $(LI A digest passing the $(LREF isDigest) test is always an $(D OutputRange))
* )
*/
struct ExampleDigest
{
public:
/**
* Use this to feed the digest with data.
* Also implements the $(REF isOutputRange, std,range,primitives)
* interface for $(D ubyte) and $(D const(ubyte)[]).
* The following usages of $(D put) must work for any type which
* passes $(LREF isDigest):
* Example:
* ----
* ExampleDigest dig;
* dig.put(cast(ubyte) 0); //single ubyte
* dig.put(cast(ubyte) 0, cast(ubyte) 0); //variadic
* ubyte[10] buf;
* dig.put(buf); //buffer
* ----
*/
@trusted void put(scope const(ubyte)[] data...)
{
}
/**
* This function is used to (re)initialize the digest.
* It must be called before using the digest and it also works as a 'reset' function
* if the digest has already processed data.
*/
@trusted void start()
{
}
/**
* The finish function returns the final hash sum and resets the Digest.
*
* Note:
* The actual type returned by finish depends on the digest implementation.
* $(D ubyte[16]) is just used as an example. It is guaranteed that the type is a
* static array of ubytes.
*
* $(UL
* $(LI Use $(LREF DigestType) to obtain the actual return type.)
* $(LI Use $(LREF digestLength) to obtain the length of the ubyte array.)
* )
*/
@trusted ubyte[16] finish()
{
return (ubyte[16]).init;
}
}
}
///
@system unittest
{
//Using the OutputRange feature
import std.algorithm.mutation : copy;
import std.digest.md;
import std.range : repeat;
auto oneMillionRange = repeat!ubyte(cast(ubyte)'a', 1000000);
auto ctx = makeDigest!MD5();
copy(oneMillionRange, &ctx); //Note: You must pass a pointer to copy!
assert(ctx.finish().toHexString() == "7707D6AE4E027C70EEA2A935C2296F21");
}
/**
* Use this to check if a type is a digest. See $(LREF ExampleDigest) to see what
* a type must provide to pass this check.
*
* Note:
* This is very useful as a template constraint (see examples)
*
* BUGS:
* $(UL
* $(LI Does not yet verify that put takes scope parameters.)
* $(LI Should check that finish() returns a ubyte[num] array)
* )
*/
template isDigest(T)
{
import std.range : isOutputRange;
enum bool isDigest = isOutputRange!(T, const(ubyte)[]) && isOutputRange!(T, ubyte) &&
is(T == struct) &&
is(typeof(
{
T dig = void; //Can define
dig.put(cast(ubyte) 0, cast(ubyte) 0); //varags
dig.start(); //has start
auto value = dig.finish(); //has finish
}));
}
///
@system unittest
{
import std.digest.crc;
static assert(isDigest!CRC32);
}
///
@system unittest
{
import std.digest.crc;
void myFunction(T)()
if (isDigest!T)
{
T dig;
dig.start();
auto result = dig.finish();
}
myFunction!CRC32();
}
/**
* Use this template to get the type which is returned by a digest's $(LREF finish) method.
*/
template DigestType(T)
{
static if (isDigest!T)
{
alias DigestType =
ReturnType!(typeof(
{
T dig = void;
return dig.finish();
}));
}
else
static assert(false, T.stringof ~ " is not a digest! (fails isDigest!T)");
}
///
@system unittest
{
import std.digest.crc;
assert(is(DigestType!(CRC32) == ubyte[4]));
}
///
@system unittest
{
import std.digest.crc;
CRC32 dig;
dig.start();
DigestType!CRC32 result = dig.finish();
}
/**
* Used to check if a digest supports the $(D peek) method.
* Peek has exactly the same function signatures as finish, but it doesn't reset
* the digest's internal state.
*
* Note:
* $(UL
* $(LI This is very useful as a template constraint (see examples))
* $(LI This also checks if T passes $(LREF isDigest))
* )
*/
template hasPeek(T)
{
enum bool hasPeek = isDigest!T &&
is(typeof(
{
T dig = void; //Can define
DigestType!T val = dig.peek();
}));
}
///
@system unittest
{
import std.digest.crc, std.digest.md;
assert(!hasPeek!(MD5));
assert(hasPeek!CRC32);
}
///
@system unittest
{
import std.digest.crc;
void myFunction(T)()
if (hasPeek!T)
{
T dig;
dig.start();
auto result = dig.peek();
}
myFunction!CRC32();
}
/**
* Checks whether the digest has a $(D blockSize) member, which contains the
* digest's internal block size in bits. It is primarily used by $(REF HMAC, std,digest,hmac).
*/
template hasBlockSize(T)
if (isDigest!T)
{
enum bool hasBlockSize = __traits(compiles, { size_t blockSize = T.blockSize; });
}
///
@system unittest
{
import std.digest.hmac, std.digest.md;
static assert(hasBlockSize!MD5 && MD5.blockSize == 512);
static assert(hasBlockSize!(HMAC!MD5) && HMAC!MD5.blockSize == 512);
}
package template isDigestibleRange(Range)
{
import std.digest.md;
import std.range : isInputRange, ElementType;
enum bool isDigestibleRange = isInputRange!Range && is(typeof(
{
MD5 ha; //Could use any conformant hash
ElementType!Range val;
ha.put(val);
}));
}
/**
* This is a convenience function to calculate a hash using the template API.
* Every digest passing the $(LREF isDigest) test can be used with this function.
*
* Params:
* range= an $(D InputRange) with $(D ElementType) $(D ubyte), $(D ubyte[]) or $(D ubyte[num])
*/
DigestType!Hash digest(Hash, Range)(auto ref Range range)
if (!isArray!Range
&& isDigestibleRange!Range)
{
import std.algorithm.mutation : copy;
Hash hash;
hash.start();
copy(range, &hash);
return hash.finish();
}
///
@system unittest
{
import std.digest.md;
import std.range : repeat;
auto testRange = repeat!ubyte(cast(ubyte)'a', 100);
auto md5 = digest!MD5(testRange);
}
/**
* This overload of the digest function handles arrays.
*
* Params:
* data= one or more arrays of any type
*/
DigestType!Hash digest(Hash, T...)(scope const T data)
if (allSatisfy!(isArray, typeof(data)))
{
Hash hash;
hash.start();
foreach (datum; data)
hash.put(cast(const(ubyte[]))datum);
return hash.finish();
}
///
@system unittest
{
import std.digest.crc, std.digest.md, std.digest.sha;
auto md5 = digest!MD5( "The quick brown fox jumps over the lazy dog");
auto sha1 = digest!SHA1( "The quick brown fox jumps over the lazy dog");
auto crc32 = digest!CRC32("The quick brown fox jumps over the lazy dog");
assert(toHexString(crc32) == "39A34F41");
}
///
@system unittest
{
import std.digest.crc;
auto crc32 = digest!CRC32("The quick ", "brown ", "fox jumps over the lazy dog");
assert(toHexString(crc32) == "39A34F41");
}
/**
* This is a convenience function similar to $(LREF digest), but it returns the string
* representation of the hash. Every digest passing the $(LREF isDigest) test can be used with this
* function.
*
* Params:
* order= the order in which the bytes are processed (see $(LREF toHexString))
* range= an $(D InputRange) with $(D ElementType) $(D ubyte), $(D ubyte[]) or $(D ubyte[num])
*/
char[digestLength!(Hash)*2] hexDigest(Hash, Order order = Order.increasing, Range)(ref Range range)
if (!isArray!Range && isDigestibleRange!Range)
{
return toHexString!order(digest!Hash(range));
}
///
@system unittest
{
import std.digest.md;
import std.range : repeat;
auto testRange = repeat!ubyte(cast(ubyte)'a', 100);
assert(hexDigest!MD5(testRange) == "36A92CC94A9E0FA21F625F8BFB007ADF");
}
/**
* This overload of the hexDigest function handles arrays.
*
* Params:
* order= the order in which the bytes are processed (see $(LREF toHexString))
* data= one or more arrays of any type
*/
char[digestLength!(Hash)*2] hexDigest(Hash, Order order = Order.increasing, T...)(scope const T data)
if (allSatisfy!(isArray, typeof(data)))
{
return toHexString!order(digest!Hash(data));
}
///
@system unittest
{
import std.digest.crc;
assert(hexDigest!(CRC32, Order.decreasing)("The quick brown fox jumps over the lazy dog") == "414FA339");
}
///
@system unittest
{
import std.digest.crc;
assert(hexDigest!(CRC32, Order.decreasing)("The quick ", "brown ", "fox jumps over the lazy dog") == "414FA339");
}
/**
* This is a convenience function which returns an initialized digest, so it's not necessary to call
* start manually.
*/
Hash makeDigest(Hash)()
{
Hash hash;
hash.start();
return hash;
}
///
@system unittest
{
import std.digest.md;
auto md5 = makeDigest!MD5();
md5.put(0);
assert(toHexString(md5.finish()) == "93B885ADFE0DA089CDF634904FD59F71");
}
/*+*************************** End of template part, welcome to OOP land **************************/
/**
* This describes the OOP API. To understand when to use the template API and when to use the OOP API,
* see the module documentation at the top of this page.
*
* The Digest interface is the base interface which is implemented by all digests.
*
* Note:
* A Digest implementation is always an $(D OutputRange)
*/
interface Digest
{
public:
/**
* Use this to feed the digest with data.
* Also implements the $(REF isOutputRange, std,range,primitives)
* interface for $(D ubyte) and $(D const(ubyte)[]).
*
* Example:
* ----
* void test(Digest dig)
* {
* dig.put(cast(ubyte) 0); //single ubyte
* dig.put(cast(ubyte) 0, cast(ubyte) 0); //variadic
* ubyte[10] buf;
* dig.put(buf); //buffer
* }
* ----
*/
@trusted nothrow void put(scope const(ubyte)[] data...);
/**
* Resets the internal state of the digest.
* Note:
* $(LREF finish) calls this internally, so it's not necessary to call
* $(D reset) manually after a call to $(LREF finish).
*/
@trusted nothrow void reset();
/**
* This is the length in bytes of the hash value which is returned by $(LREF finish).
* It's also the required size of a buffer passed to $(LREF finish).
*/
@trusted nothrow @property size_t length() const;
/**
* The finish function returns the hash value. It takes an optional buffer to copy the data
* into. If a buffer is passed, it must be at least $(LREF length) bytes big.
*/
@trusted nothrow ubyte[] finish();
///ditto
nothrow ubyte[] finish(ubyte[] buf);
//@@@BUG@@@ http://d.puremagic.com/issues/show_bug.cgi?id=6549
/*in
{
assert(buf.length >= this.length);
}*/
/**
* This is a convenience function to calculate the hash of a value using the OOP API.
*/
final @trusted nothrow ubyte[] digest(scope const(void[])[] data...)
{
this.reset();
foreach (datum; data)
this.put(cast(ubyte[]) datum);
return this.finish();
}
}
///
@system unittest
{
//Using the OutputRange feature
import std.algorithm.mutation : copy;
import std.digest.md;
import std.range : repeat;
auto oneMillionRange = repeat!ubyte(cast(ubyte)'a', 1000000);
auto ctx = new MD5Digest();
copy(oneMillionRange, ctx);
assert(ctx.finish().toHexString() == "7707D6AE4E027C70EEA2A935C2296F21");
}
///
@system unittest
{
import std.digest.crc, std.digest.md, std.digest.sha;
ubyte[] md5 = (new MD5Digest()).digest("The quick brown fox jumps over the lazy dog");
ubyte[] sha1 = (new SHA1Digest()).digest("The quick brown fox jumps over the lazy dog");
ubyte[] crc32 = (new CRC32Digest()).digest("The quick brown fox jumps over the lazy dog");
assert(crcHexString(crc32) == "414FA339");
}
///
@system unittest
{
import std.digest.crc;
ubyte[] crc32 = (new CRC32Digest()).digest("The quick ", "brown ", "fox jumps over the lazy dog");
assert(crcHexString(crc32) == "414FA339");
}
@system unittest
{
import std.range : isOutputRange;
assert(!isDigest!(Digest));
assert(isOutputRange!(Digest, ubyte));
}
///
@system unittest
{
void test(Digest dig)
{
dig.put(cast(ubyte) 0); //single ubyte
dig.put(cast(ubyte) 0, cast(ubyte) 0); //variadic
ubyte[10] buf;
dig.put(buf); //buffer
}
}
/*+*************************** End of OOP part, helper functions follow ***************************/
/**
* See $(LREF toHexString)
*/
enum Order : bool
{
increasing, ///
decreasing ///
}
/**
* Used to convert a hash value (a static or dynamic array of ubytes) to a string.
* Can be used with the OOP and with the template API.
*
* The additional order parameter can be used to specify the order of the input data.
* By default the data is processed in increasing order, starting at index 0. To process it in the
* opposite order, pass Order.decreasing as a parameter.
*
* The additional letterCase parameter can be used to specify the case of the output data.
* By default the output is in upper case. To change it to the lower case
* pass LetterCase.lower as a parameter.
*
* Note:
* The function overloads returning a string allocate their return values
* using the GC. The versions returning static arrays use pass-by-value for
* the return value, effectively avoiding dynamic allocation.
*/
char[num*2] toHexString(Order order = Order.increasing, size_t num, LetterCase letterCase = LetterCase.upper)
(in ubyte[num] digest)
{
static if (letterCase == LetterCase.upper)
{
import std.ascii : hexDigits = hexDigits;
}
else
{
import std.ascii : hexDigits = lowerHexDigits;
}
char[num*2] result;
size_t i;
static if (order == Order.increasing)
{
foreach (u; digest)
{
result[i++] = hexDigits[u >> 4];
result[i++] = hexDigits[u & 15];
}
}
else
{
size_t j = num - 1;
while (i < num*2)
{
result[i++] = hexDigits[digest[j] >> 4];
result[i++] = hexDigits[digest[j] & 15];
j--;
}
}
return result;
}
///ditto
char[num*2] toHexString(LetterCase letterCase, Order order = Order.increasing, size_t num)(in ubyte[num] digest)
{
return toHexString!(order, num, letterCase)(digest);
}
///ditto
string toHexString(Order order = Order.increasing, LetterCase letterCase = LetterCase.upper)
(in ubyte[] digest)
{
static if (letterCase == LetterCase.upper)
{
import std.ascii : hexDigits = hexDigits;
}
else
{
import std.ascii : hexDigits = lowerHexDigits;
}
auto result = new char[digest.length*2];
size_t i;
static if (order == Order.increasing)
{
foreach (u; digest)
{
result[i++] = hexDigits[u >> 4];
result[i++] = hexDigits[u & 15];
}
}
else
{
import std.range : retro;
foreach (u; retro(digest))
{
result[i++] = hexDigits[u >> 4];
result[i++] = hexDigits[u & 15];
}
}
import std.exception : assumeUnique;
// memory was just created, so casting to immutable is safe
return () @trusted { return assumeUnique(result); }();
}
///ditto
string toHexString(LetterCase letterCase, Order order = Order.increasing)(in ubyte[] digest)
{
return toHexString!(order, letterCase)(digest);
}
//For more example unittests, see Digest.digest, digest
///
@safe unittest
{
import std.digest.crc;
//Test with template API:
auto crc32 = digest!CRC32("The quick ", "brown ", "fox jumps over the lazy dog");
//Lower case variant:
assert(toHexString!(LetterCase.lower)(crc32) == "39a34f41");
//Usually CRCs are printed in this order, though:
assert(toHexString!(Order.decreasing)(crc32) == "414FA339");
assert(toHexString!(LetterCase.lower, Order.decreasing)(crc32) == "414fa339");
}
///
@safe unittest
{
import std.digest.crc;
// With OOP API
auto crc32 = (new CRC32Digest()).digest("The quick ", "brown ", "fox jumps over the lazy dog");
//Usually CRCs are printed in this order, though:
assert(toHexString!(Order.decreasing)(crc32) == "414FA339");
}
@safe unittest
{
ubyte[16] data;
assert(toHexString(data) == "00000000000000000000000000000000");
assert(toHexString(cast(ubyte[4])[42, 43, 44, 45]) == "2A2B2C2D");
assert(toHexString(cast(ubyte[])[42, 43, 44, 45]) == "2A2B2C2D");
assert(toHexString!(Order.decreasing)(cast(ubyte[4])[42, 43, 44, 45]) == "2D2C2B2A");
assert(toHexString!(Order.decreasing, LetterCase.lower)(cast(ubyte[4])[42, 43, 44, 45]) == "2d2c2b2a");
assert(toHexString!(Order.decreasing)(cast(ubyte[])[42, 43, 44, 45]) == "2D2C2B2A");
}
/*+*********************** End of public helper part, private helpers follow ***********************/
/*
* Used to convert from a ubyte[] slice to a ref ubyte[N].
* This helper is used internally in the WrapperDigest template to wrap the template API's
* finish function.
*/
ref T[N] asArray(size_t N, T)(ref T[] source, string errorMsg = "")
{
assert(source.length >= N, errorMsg);
return *cast(T[N]*) source.ptr;
}
/*
* Returns the length (in bytes) of the hash value produced by T.
*/
template digestLength(T)
if (isDigest!T)
{
enum size_t digestLength = (ReturnType!(T.finish)).length;
}
@safe pure nothrow @nogc
unittest
{
import std.digest.md : MD5;
import std.digest.sha : SHA1, SHA256, SHA512;
assert(digestLength!MD5 == 16);
assert(digestLength!SHA1 == 20);
assert(digestLength!SHA256 == 32);
assert(digestLength!SHA512 == 64);
}
/**
* Wraps a template API hash struct into a Digest interface.
* Modules providing digest implementations will usually provide
* an alias for this template (e.g. MD5Digest, SHA1Digest, ...).
*/
class WrapperDigest(T)
if (isDigest!T) : Digest
{
protected:
T _digest;
public final:
/**
* Initializes the digest.
*/
this()
{
_digest.start();
}
/**
* Use this to feed the digest with data.
* Also implements the $(REF isOutputRange, std,range,primitives)
* interface for $(D ubyte) and $(D const(ubyte)[]).
*/
@trusted nothrow void put(scope const(ubyte)[] data...)
{
_digest.put(data);
}
/**
* Resets the internal state of the digest.
* Note:
* $(LREF finish) calls this internally, so it's not necessary to call
* $(D reset) manually after a call to $(LREF finish).
*/
@trusted nothrow void reset()
{
_digest.start();
}
/**
* This is the length in bytes of the hash value which is returned by $(LREF finish).
* It's also the required size of a buffer passed to $(LREF finish).
*/
@trusted nothrow @property size_t length() const pure
{
return digestLength!T;
}
/**
* The finish function returns the hash value. It takes an optional buffer to copy the data
* into. If a buffer is passed, it must have a length at least $(LREF length) bytes.
*
* Example:
* --------
*
* import std.digest.md;
* ubyte[16] buf;
* auto hash = new WrapperDigest!MD5();
* hash.put(cast(ubyte) 0);
* auto result = hash.finish(buf[]);
* //The result is now in result (and in buf). If you pass a buffer which is bigger than
* //necessary, result will have the correct length, but buf will still have it's original
* //length
* --------
*/
nothrow ubyte[] finish(ubyte[] buf)
in
{
assert(buf.length >= this.length);
}
body
{
enum string msg = "Buffer needs to be at least " ~ digestLength!(T).stringof ~ " bytes " ~
"big, check " ~ typeof(this).stringof ~ ".length!";
asArray!(digestLength!T)(buf, msg) = _digest.finish();
return buf[0 .. digestLength!T];
}
///ditto
@trusted nothrow ubyte[] finish()
{
enum len = digestLength!T;
auto buf = new ubyte[len];
asArray!(digestLength!T)(buf) = _digest.finish();
return buf;
}
version (StdDdoc)
{
/**
* Works like $(D finish) but does not reset the internal state, so it's possible
* to continue putting data into this WrapperDigest after a call to peek.
*
* These functions are only available if $(D hasPeek!T) is true.
*/
@trusted ubyte[] peek(ubyte[] buf) const;
///ditto
@trusted ubyte[] peek() const;
}
else static if (hasPeek!T)
{
@trusted ubyte[] peek(ubyte[] buf) const
in
{
assert(buf.length >= this.length);
}
body
{
enum string msg = "Buffer needs to be at least " ~ digestLength!(T).stringof ~ " bytes " ~
"big, check " ~ typeof(this).stringof ~ ".length!";
asArray!(digestLength!T)(buf, msg) = _digest.peek();
return buf[0 .. digestLength!T];
}
@trusted ubyte[] peek() const
{
enum len = digestLength!T;
auto buf = new ubyte[len];
asArray!(digestLength!T)(buf) = _digest.peek();
return buf;
}
}
}
///
@system unittest
{
import std.digest.md;
//Simple example
auto hash = new WrapperDigest!MD5();
hash.put(cast(ubyte) 0);
auto result = hash.finish();
}
///
@system unittest
{
//using a supplied buffer
import std.digest.md;
ubyte[16] buf;
auto hash = new WrapperDigest!MD5();
hash.put(cast(ubyte) 0);
auto result = hash.finish(buf[]);
//The result is now in result (and in buf). If you pass a buffer which is bigger than
//necessary, result will have the correct length, but buf will still have it's original
//length
}
@safe unittest
{
// Test peek & length
import std.digest.crc;
auto hash = new WrapperDigest!CRC32();
assert(hash.length == 4);
hash.put(cast(const(ubyte[]))"The quick brown fox jumps over the lazy dog");
assert(hash.peek().toHexString() == "39A34F41");
ubyte[5] buf;
assert(hash.peek(buf).toHexString() == "39A34F41");
}
/**
* Securely compares two digest representations while protecting against timing
* attacks. Do not use `==` to compare digest representations.
*
* The attack happens as follows:
*
* $(OL
* $(LI An attacker wants to send harmful data to your server, which
* requires a integrity HMAC SHA1 token signed with a secret.)
* $(LI The length of the token is known to be 40 characters long due to its format,
* so the attacker first sends `"0000000000000000000000000000000000000000"`,
* then `"1000000000000000000000000000000000000000"`, and so on.)
* $(LI The given HMAC token is compared with the expected token using the
* `==` string comparison, which returns `false` as soon as the first wrong
* element is found. If a wrong element is found, then a rejection is sent
* back to the sender.)
* $(LI Eventually, the attacker is able to determine the first character in
* the correct token because the sever takes slightly longer to return a
* rejection. This is due to the comparison moving on to second item in
* the two arrays, seeing they are different, and then sending the rejection.)
* $(LI It may seem like too small of a difference in time for the attacker
* to notice, but security researchers have shown that differences as
* small as $(LINK2 http://www.cs.rice.edu/~dwallach/pub/crosby-timing2009.pdf,
* 20µs can be reliably distinguished) even with network inconsistencies.)
* $(LI Repeat the process for each character until the attacker has the whole
* correct token and the server accepts the harmful data. This can be done
* in a week with the attacker pacing the attack to 10 requests per second
* with only one client.)
* )
*
* This function defends against this attack by always comparing every single
* item in the array if the two arrays are the same length. Therefore, this
* function is always $(BIGOH n) for ranges of the same length.
*
* This attack can also be mitigated via rate limiting and banning IPs which have too
* many rejected requests. However, this does not completely solve the problem,
* as the attacker could be in control of a bot net. To fully defend against
* the timing attack, rate limiting, banning IPs, and using this function
* should be used together.
*
* Params:
* r1 = A digest representation
* r2 = A digest representation
* Returns:
* `true` if both representations are equal, `false` otherwise
* See_Also:
* $(LINK2 https://en.wikipedia.org/wiki/Timing_attack, The Wikipedia article
* on timing attacks).
*/
bool secureEqual(R1, R2)(R1 r1, R2 r2)
if (isInputRange!R1 && isInputRange!R2 && !isInfinite!R1 && !isInfinite!R2 &&
(isIntegral!(ElementEncodingType!R1) || isSomeChar!(ElementEncodingType!R1)) &&
!is(CommonType!(ElementEncodingType!R1, ElementEncodingType!R2) == void))
{
static if (hasLength!R1 && hasLength!R2)
if (r1.length != r2.length)
return false;
int result;
static if (isRandomAccessRange!R1 && isRandomAccessRange!R2 &&
hasLength!R1 && hasLength!R2)
{
foreach (i; 0 .. r1.length)
result |= r1[i] ^ r2[i];
}
else static if (hasLength!R1 && hasLength!R2)
{
// Lengths are the same so we can squeeze out a bit of performance
// by not checking if r2 is empty
for (; !r1.empty; r1.popFront(), r2.popFront())
{
result |= r1.front ^ r2.front;
}
}
else
{
// Generic case, walk both ranges
for (; !r1.empty; r1.popFront(), r2.popFront())
{
if (r2.empty) return false;
result |= r1.front ^ r2.front;
}
if (!r2.empty) return false;
}
return result == 0;
}
///
@system pure unittest
{
import std.digest.hmac : hmac;
import std.digest.sha : SHA1;
import std.string : representation;
// a typical HMAC data integrity verification
auto secret = "A7GZIP6TAQA6OHM7KZ42KB9303CEY0MOV5DD6NTV".representation;
auto data = "data".representation;
string hex1 = data.hmac!SHA1(secret).toHexString;
string hex2 = data.hmac!SHA1(secret).toHexString;
string hex3 = "data1".representation.hmac!SHA1(secret).toHexString;
assert( secureEqual(hex1, hex2));
assert(!secureEqual(hex1, hex3));
}
@system pure unittest
{
import std.internal.test.dummyrange : ReferenceInputRange;
import std.range : takeExactly;
import std.string : representation;
import std.utf : byWchar, byDchar;
{
auto hex1 = "02CA3484C375EDD3C0F08D3F50D119E61077".representation;
auto hex2 = "02CA3484C375EDD3C0F08D3F50D119E610779018".representation;
assert(!secureEqual(hex1, hex2));
}
{
auto hex1 = "02CA3484C375EDD3C0F08D3F50D119E610779018"w.representation;
auto hex2 = "02CA3484C375EDD3C0F08D3F50D119E610779018"d.representation;
assert(secureEqual(hex1, hex2));
}
{
auto hex1 = "02CA3484C375EDD3C0F08D3F50D119E610779018".byWchar;
auto hex2 = "02CA3484C375EDD3C0F08D3F50D119E610779018".byDchar;
assert(secureEqual(hex1, hex2));
}
{
auto hex1 = "02CA3484C375EDD3C0F08D3F50D119E61077".byWchar;
auto hex2 = "02CA3484C375EDD3C0F08D3F50D119E610779018".byDchar;
assert(!secureEqual(hex1, hex2));
}
{
auto hex1 = new ReferenceInputRange!int([0, 1, 2, 3, 4, 5, 6, 7, 8]).takeExactly(9);
auto hex2 = new ReferenceInputRange!int([0, 1, 2, 3, 4, 5, 6, 7, 8]).takeExactly(9);
assert(secureEqual(hex1, hex2));
}
{
auto hex1 = new ReferenceInputRange!int([0, 1, 2, 3, 4, 5, 6, 7, 8]).takeExactly(9);
auto hex2 = new ReferenceInputRange!int([0, 1, 2, 3, 4, 5, 6, 7, 9]).takeExactly(9);
assert(!secureEqual(hex1, hex2));
}
}
|