1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
|
// Written in the D programming language.
/**
This module defines generic containers.
Construction:
To implement the different containers both struct and class based
approaches have been used. $(REF make, std,_container,util) allows for
uniform construction with either approach.
---
import std.container;
// Construct a red-black tree and an array both containing the values 1, 2, 3.
// RedBlackTree should typically be allocated using `new`
RedBlackTree!int rbTree = new RedBlackTree!int(1, 2, 3);
// But `new` should not be used with Array
Array!int array = Array!int(1, 2, 3);
// `make` hides the differences
RedBlackTree!int rbTree2 = make!(RedBlackTree!int)(1, 2, 3);
Array!int array2 = make!(Array!int)(1, 2, 3);
---
Note that $(D make) can infer the element type from the given arguments.
---
import std.container;
auto rbTree = make!RedBlackTree(1, 2, 3); // RedBlackTree!int
auto array = make!Array("1", "2", "3"); // Array!string
---
Reference_semantics:
All containers have reference semantics, which means that after
assignment both variables refer to the same underlying data.
To make a copy of a _container, use the $(D c._dup) _container primitive.
---
import std.container, std.range;
Array!int originalArray = make!(Array!int)(1, 2, 3);
Array!int secondArray = originalArray;
assert(equal(originalArray[], secondArray[]));
// changing one instance changes the other one as well!
originalArray[0] = 12;
assert(secondArray[0] == 12);
// secondArray now refers to an independent copy of originalArray
secondArray = originalArray.dup;
secondArray[0] = 1;
// assert that originalArray has not been affected
assert(originalArray[0] == 12);
---
$(B Attention:) If the _container is implemented as a class, using an
uninitialized instance can cause a null pointer dereference.
---
import std.container;
RedBlackTree!int rbTree;
rbTree.insert(5); // null pointer dereference
---
Using an uninitialized struct-based _container will work, because the struct
intializes itself upon use; however, up to this point the _container will not
have an identity and assignment does not create two references to the same
data.
---
import std.container;
// create an uninitialized array
Array!int array1;
// array2 does _not_ refer to array1
Array!int array2 = array1;
array2.insertBack(42);
// thus array1 will not be affected
assert(array1.empty);
// after initialization reference semantics work as expected
array1 = array2;
// now affects array2 as well
array1.removeBack();
assert(array2.empty);
---
It is therefore recommended to always construct containers using
$(REF make, std,_container,util).
This is in fact necessary to put containers into another _container.
For example, to construct an $(D Array) of ten empty $(D Array)s, use
the following that calls $(D make) ten times.
---
import std.container, std.range;
auto arrOfArrs = make!Array(generate!(() => make!(Array!int)).take(10));
---
Submodules:
This module consists of the following submodules:
$(UL
$(LI
The $(MREF std, _container, array) module provides
an array type with deterministic control of memory, not reliant on
the GC unlike built-in arrays.
)
$(LI
The $(MREF std, _container, binaryheap) module
provides a binary heap implementation that can be applied to any
user-provided random-access range.
)
$(LI
The $(MREF std, _container, dlist) module provides
a doubly-linked list implementation.
)
$(LI
The $(MREF std, _container, rbtree) module
implements red-black trees.
)
$(LI
The $(MREF std, _container, slist) module
implements singly-linked lists.
)
$(LI
The $(MREF std, _container, util) module contains
some generic tools commonly used by _container implementations.
)
)
The_primary_range_of_a_container:
While some _containers offer direct access to their elements e.g. via
$(D opIndex), $(D c.front) or $(D c.back), access
and modification of a _container's contents is generally done through
its primary $(MREF_ALTTEXT range, std, range) type,
which is aliased as $(D C.Range). For example, the primary range type of
$(D Array!int) is $(D Array!int.Range).
If the documentation of a member function of a _container takes
a parameter of type $(D Range), then it refers to the primary range type of
this _container. Oftentimes $(D Take!Range) will be used, in which case
the range refers to a span of the elements in the _container. Arguments to
these parameters $(B must) be obtained from the same _container instance
as the one being worked with. It is important to note that many generic range
algorithms return the same range type as their input range.
---
import std.algorithm.comparison : equal;
import std.algorithm.iteration : find;
import std.container;
import std.range : take;
auto array = make!Array(1, 2, 3);
// `find` returns an Array!int.Range advanced to the element "2"
array.linearRemove(array[].find(2));
assert(array[].equal([1]));
array = make!Array(1, 2, 3);
// the range given to `linearRemove` is a Take!(Array!int.Range)
// spanning just the element "2"
array.linearRemove(array[].find(2).take(1));
assert(array[].equal([1, 3]));
---
When any $(MREF_ALTTEXT range, std, range) can be passed as an argument to
a member function, the documention usually refers to the parameter's templated
type as $(D Stuff).
---
import std.algorithm.comparison : equal;
import std.container;
import std.range : iota;
auto array = make!Array(1, 2);
// the range type returned by `iota` is completely unrelated to Array,
// which is fine for Array.insertBack:
array.insertBack(iota(3, 10));
assert(array[].equal([1, 2, 3, 4, 5, 6, 7, 8, 9]));
---
Container_primitives:
Containers do not form a class hierarchy, instead they implement a
common set of primitives (see table below). These primitives each guarantee
a specific worst case complexity and thus allow generic code to be written
independently of the _container implementation.
For example the primitives $(D c.remove(r)) and $(D c.linearRemove(r)) both
remove the sequence of elements in range $(D r) from the _container $(D c).
The primitive $(D c.remove(r)) guarantees
$(BIGOH n$(SUBSCRIPT r) log n$(SUBSCRIPT c)) complexity in the worst case and
$(D c.linearRemove(r)) relaxes this guarantee to $(BIGOH n$(SUBSCRIPT c)).
Since a sequence of elements can be removed from a $(MREF_ALTTEXT doubly linked list,std,_container,dlist)
in constant time, $(D DList) provides the primitive $(D c.remove(r))
as well as $(D c.linearRemove(r)). On the other hand
$(MREF_ALTTEXT Array, std,_container, array) only offers $(D c.linearRemove(r)).
The following table describes the common set of primitives that containers
implement. A _container need not implement all primitives, but if a
primitive is implemented, it must support the syntax described in the $(B
syntax) column with the semantics described in the $(B description) column, and
it must not have a worst-case complexity worse than denoted in big-O notation in
the $(BIGOH ·) column. Below, $(D C) means a _container type, $(D c) is
a value of _container type, $(D n$(SUBSCRIPT x)) represents the effective length of
value $(D x), which could be a single element (in which case $(D n$(SUBSCRIPT x)) is
$(D 1)), a _container, or a range.
$(BOOKTABLE Container primitives,
$(TR
$(TH Syntax)
$(TH $(BIGOH ·))
$(TH Description)
)
$(TR
$(TDNW $(D C(x)))
$(TDNW $(D n$(SUBSCRIPT x)))
$(TD Creates a _container of type $(D C) from either another _container or a range.
The created _container must not be a null reference even if x is empty.)
)
$(TR
$(TDNW $(D c.dup))
$(TDNW $(D n$(SUBSCRIPT c)))
$(TD Returns a duplicate of the _container.)
)
$(TR
$(TDNW $(D c ~ x))
$(TDNW $(D n$(SUBSCRIPT c) + n$(SUBSCRIPT x)))
$(TD Returns the concatenation of $(D c) and $(D r). $(D x) may be a single
element or an input range.)
)
$(TR
$(TDNW $(D x ~ c))
$(TDNW $(D n$(SUBSCRIPT c) + n$(SUBSCRIPT x)))
$(TD Returns the concatenation of $(D x) and $(D c). $(D x) may be a
single element or an input range type.)
)
$(LEADINGROWN 3, Iteration
)
$(TR
$(TD $(D c.Range))
$(TD)
$(TD The primary range type associated with the _container.)
)
$(TR
$(TD $(D c[]))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Returns a range
iterating over the entire _container, in a _container-defined order.)
)
$(TR
$(TDNW $(D c[a .. b]))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Fetches a portion of the _container from key $(D a) to key $(D b).)
)
$(LEADINGROWN 3, Capacity
)
$(TR
$(TD $(D c.empty))
$(TD $(D 1))
$(TD Returns $(D true) if the _container has no elements, $(D false) otherwise.)
)
$(TR
$(TD $(D c.length))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Returns the number of elements in the _container.)
)
$(TR
$(TDNW $(D c.length = n))
$(TDNW $(D n$(SUBSCRIPT c) + n))
$(TD Forces the number of elements in the _container to $(D n).
If the _container ends up growing, the added elements are initialized
in a _container-dependent manner (usually with $(D T.init)).)
)
$(TR
$(TD $(D c.capacity))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Returns the maximum number of elements that can be stored in the
_container without triggering a reallocation.)
)
$(TR
$(TD $(D c.reserve(x)))
$(TD $(D n$(SUBSCRIPT c)))
$(TD Forces $(D capacity) to at least $(D x) without reducing it.)
)
$(LEADINGROWN 3, Access
)
$(TR
$(TDNW $(D c.front))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Returns the first element of the _container, in a _container-defined order.)
)
$(TR
$(TDNW $(D c.moveFront))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Destructively reads and returns the first element of the
_container. The slot is not removed from the _container; it is left
initialized with $(D T.init). This routine need not be defined if $(D
front) returns a $(D ref).)
)
$(TR
$(TDNW $(D c.front = v))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Assigns $(D v) to the first element of the _container.)
)
$(TR
$(TDNW $(D c.back))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Returns the last element of the _container, in a _container-defined order.)
)
$(TR
$(TDNW $(D c.moveBack))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Destructively reads and returns the last element of the
_container. The slot is not removed from the _container; it is left
initialized with $(D T.init). This routine need not be defined if $(D
front) returns a $(D ref).)
)
$(TR
$(TDNW $(D c.back = v))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Assigns $(D v) to the last element of the _container.)
)
$(TR
$(TDNW $(D c[x]))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Provides indexed access into the _container. The index type is
_container-defined. A _container may define several index types (and
consequently overloaded indexing).)
)
$(TR
$(TDNW $(D c.moveAt(x)))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Destructively reads and returns the value at position $(D x). The slot
is not removed from the _container; it is left initialized with $(D
T.init).)
)
$(TR
$(TDNW $(D c[x] = v))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Sets element at specified index into the _container.)
)
$(TR
$(TDNW $(D c[x] $(I op)= v))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Performs read-modify-write operation at specified index into the
_container.)
)
$(LEADINGROWN 3, Operations
)
$(TR
$(TDNW $(D e in c))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Returns nonzero if e is found in $(D c).)
)
$(TR
$(TDNW $(D c.lowerBound(v)))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Returns a range of all elements strictly less than $(D v).)
)
$(TR
$(TDNW $(D c.upperBound(v)))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Returns a range of all elements strictly greater than $(D v).)
)
$(TR
$(TDNW $(D c.equalRange(v)))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Returns a range of all elements in $(D c) that are equal to $(D v).)
)
$(LEADINGROWN 3, Modifiers
)
$(TR
$(TDNW $(D c ~= x))
$(TDNW $(D n$(SUBSCRIPT c) + n$(SUBSCRIPT x)))
$(TD Appends $(D x) to $(D c). $(D x) may be a single element or an input range type.)
)
$(TR
$(TDNW $(D c.clear()))
$(TDNW $(D n$(SUBSCRIPT c)))
$(TD Removes all elements in $(D c).)
)
$(TR
$(TDNW $(D c.insert(x)))
$(TDNW $(D n$(SUBSCRIPT x) * log n$(SUBSCRIPT c)))
$(TD Inserts $(D x) in $(D c) at a position (or positions) chosen by $(D c).)
)
$(TR
$(TDNW $(D c.stableInsert(x)))
$(TDNW $(D n$(SUBSCRIPT x) * log n$(SUBSCRIPT c)))
$(TD Same as $(D c.insert(x)), but is guaranteed to not invalidate any ranges.)
)
$(TR
$(TDNW $(D c.linearInsert(v)))
$(TDNW $(D n$(SUBSCRIPT c)))
$(TD Same as $(D c.insert(v)) but relaxes complexity to linear.)
)
$(TR
$(TDNW $(D c.stableLinearInsert(v)))
$(TDNW $(D n$(SUBSCRIPT c)))
$(TD Same as $(D c.stableInsert(v)) but relaxes complexity to linear.)
)
$(TR
$(TDNW $(D c.removeAny()))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Removes some element from $(D c) and returns it.)
)
$(TR
$(TDNW $(D c.stableRemoveAny()))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Same as $(D c.removeAny()), but is guaranteed to not invalidate any
iterators.)
)
$(TR
$(TDNW $(D c.insertFront(v)))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Inserts $(D v) at the front of $(D c).)
)
$(TR
$(TDNW $(D c.stableInsertFront(v)))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Same as $(D c.insertFront(v)), but guarantees no ranges will be
invalidated.)
)
$(TR
$(TDNW $(D c.insertBack(v)))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Inserts $(D v) at the back of $(D c).)
)
$(TR
$(TDNW $(D c.stableInsertBack(v)))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Same as $(D c.insertBack(v)), but guarantees no ranges will be
invalidated.)
)
$(TR
$(TDNW $(D c.removeFront()))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Removes the element at the front of $(D c).)
)
$(TR
$(TDNW $(D c.stableRemoveFront()))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Same as $(D c.removeFront()), but guarantees no ranges will be
invalidated.)
)
$(TR
$(TDNW $(D c.removeBack()))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Removes the value at the back of $(D c).)
)
$(TR
$(TDNW $(D c.stableRemoveBack()))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Same as $(D c.removeBack()), but guarantees no ranges will be
invalidated.)
)
$(TR
$(TDNW $(D c.remove(r)))
$(TDNW $(D n$(SUBSCRIPT r) * log n$(SUBSCRIPT c)))
$(TD Removes range $(D r) from $(D c).)
)
$(TR
$(TDNW $(D c.stableRemove(r)))
$(TDNW $(D n$(SUBSCRIPT r) * log n$(SUBSCRIPT c)))
$(TD Same as $(D c.remove(r)), but guarantees iterators are not
invalidated.)
)
$(TR
$(TDNW $(D c.linearRemove(r)))
$(TDNW $(D n$(SUBSCRIPT c)))
$(TD Removes range $(D r) from $(D c).)
)
$(TR
$(TDNW $(D c.stableLinearRemove(r)))
$(TDNW $(D n$(SUBSCRIPT c)))
$(TD Same as $(D c.linearRemove(r)), but guarantees iterators are not
invalidated.)
)
$(TR
$(TDNW $(D c.removeKey(k)))
$(TDNW $(D log n$(SUBSCRIPT c)))
$(TD Removes an element from $(D c) by using its key $(D k).
The key's type is defined by the _container.)
)
$(TR
$(TDNW $(D ))
$(TDNW $(D ))
$(TD )
)
)
Source: $(PHOBOSSRC std/_container/package.d)
Copyright: Red-black tree code copyright (C) 2008- by Steven Schveighoffer. Other code
copyright 2010- Andrei Alexandrescu. All rights reserved by the respective holders.
License: Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or copy at $(HTTP
boost.org/LICENSE_1_0.txt)).
Authors: Steven Schveighoffer, $(HTTP erdani.com, Andrei Alexandrescu)
*/
module std.container;
public import std.container.array;
public import std.container.binaryheap;
public import std.container.dlist;
public import std.container.rbtree;
public import std.container.slist;
import std.meta;
/* The following documentation and type $(D TotalContainer) are
intended for developers only.
$(D TotalContainer) is an unimplemented container that illustrates a
host of primitives that a container may define. It is to some extent
the bottom of the conceptual container hierarchy. A given container
most often will choose to only implement a subset of these primitives,
and define its own additional ones. Adhering to the standard primitive
names below allows generic code to work independently of containers.
Things to remember: any container must be a reference type, whether
implemented as a $(D class) or $(D struct). No primitive below
requires the container to escape addresses of elements, which means
that compliant containers can be defined to use reference counting or
other deterministic memory management techniques.
A container may choose to define additional specific operations. The
only requirement is that those operations bear different names than
the ones below, lest user code gets confused.
Complexity of operations should be interpreted as "at least as good
as". If an operation is required to have $(BIGOH n) complexity, it
could have anything lower than that, e.g. $(BIGOH log(n)). Unless
specified otherwise, $(D n) inside a $(BIGOH) expression stands for
the number of elements in the container.
*/
struct TotalContainer(T)
{
/**
If the container has a notion of key-value mapping, $(D KeyType)
defines the type of the key of the container.
*/
alias KeyType = T;
/**
If the container has a notion of multikey-value mapping, $(D
KeyTypes[k]), where $(D k) is a zero-based unsigned number, defines
the type of the $(D k)th key of the container.
A container may define both $(D KeyType) and $(D KeyTypes), e.g. in
the case it has the notion of primary/preferred key.
*/
alias KeyTypes = AliasSeq!T;
/**
If the container has a notion of key-value mapping, $(D ValueType)
defines the type of the value of the container. Typically, a map-style
container mapping values of type $(D K) to values of type $(D V)
defines $(D KeyType) to be $(D K) and $(D ValueType) to be $(D V).
*/
alias ValueType = T;
/**
Defines the container's primary range, which embodies one of the
ranges defined in $(MREF std,range).
Generally a container may define several types of ranges.
*/
struct Range
{
/++
Range primitives.
+/
@property bool empty()
{
assert(0);
}
/// Ditto
@property ref T front() //ref return optional
{
assert(0);
}
/// Ditto
@property void front(T value) //Only when front does not return by ref
{
assert(0);
}
/// Ditto
T moveFront()
{
assert(0);
}
/// Ditto
void popFront()
{
assert(0);
}
/// Ditto
@property ref T back() //ref return optional
{
assert(0);
}
/// Ditto
@property void back(T value) //Only when front does not return by ref
{
assert(0);
}
/// Ditto
T moveBack()
{
assert(0);
}
/// Ditto
void popBack()
{
assert(0);
}
/// Ditto
T opIndex(size_t i) //ref return optional
{
assert(0);
}
/// Ditto
void opIndexAssign(size_t i, T value) //Only when front does not return by ref
{
assert(0);
}
/// Ditto
T opIndexUnary(string op)(size_t i) //Only when front does not return by ref
{
assert(0);
}
/// Ditto
void opIndexOpAssign(string op)(size_t i, T value) //Only when front does not return by ref
{
assert(0);
}
/// Ditto
T moveAt(size_t i)
{
assert(0);
}
/// Ditto
@property size_t length()
{
assert(0);
}
}
/**
Property returning $(D true) if and only if the container has no
elements.
Complexity: $(BIGOH 1)
*/
@property bool empty()
{
assert(0);
}
/**
Returns a duplicate of the container. The elements themselves are not
transitively duplicated.
Complexity: $(BIGOH n).
*/
@property TotalContainer dup()
{
assert(0);
}
/**
Returns the number of elements in the container.
Complexity: $(BIGOH log(n)).
*/
@property size_t length()
{
assert(0);
}
/**
Returns the maximum number of elements the container can store without
(a) allocating memory, (b) invalidating iterators upon insertion.
Complexity: $(BIGOH log(n)).
*/
@property size_t capacity()
{
assert(0);
}
/**
Ensures sufficient capacity to accommodate $(D n) elements.
Postcondition: $(D capacity >= n)
Complexity: $(BIGOH log(e - capacity)) if $(D e > capacity), otherwise
$(BIGOH 1).
*/
void reserve(size_t e)
{
assert(0);
}
/**
Returns a range that iterates over all elements of the container, in a
container-defined order. The container should choose the most
convenient and fast method of iteration for $(D opSlice()).
Complexity: $(BIGOH log(n))
*/
Range opSlice()
{
assert(0);
}
/**
Returns a range that iterates the container between two
specified positions.
Complexity: $(BIGOH log(n))
*/
Range opSlice(size_t a, size_t b)
{
assert(0);
}
/**
Forward to $(D opSlice().front) and $(D opSlice().back), respectively.
Complexity: $(BIGOH log(n))
*/
@property ref T front() //ref return optional
{
assert(0);
}
/// Ditto
@property void front(T value) //Only when front does not return by ref
{
assert(0);
}
/// Ditto
T moveFront()
{
assert(0);
}
/// Ditto
@property ref T back() //ref return optional
{
assert(0);
}
/// Ditto
@property void back(T value) //Only when front does not return by ref
{
assert(0);
}
/// Ditto
T moveBack()
{
assert(0);
}
/**
Indexing operators yield or modify the value at a specified index.
*/
ref T opIndex(KeyType) //ref return optional
{
assert(0);
}
/// ditto
void opIndexAssign(KeyType i, T value) //Only when front does not return by ref
{
assert(0);
}
/// ditto
T opIndexUnary(string op)(KeyType i) //Only when front does not return by ref
{
assert(0);
}
/// ditto
void opIndexOpAssign(string op)(KeyType i, T value) //Only when front does not return by ref
{
assert(0);
}
/// ditto
T moveAt(KeyType i)
{
assert(0);
}
/**
$(D k in container) returns true if the given key is in the container.
*/
bool opBinaryRight(string op)(KeyType k) if (op == "in")
{
assert(0);
}
/**
Returns a range of all elements containing $(D k) (could be empty or a
singleton range).
*/
Range equalRange(KeyType k)
{
assert(0);
}
/**
Returns a range of all elements with keys less than $(D k) (could be
empty or a singleton range). Only defined by containers that store
data sorted at all times.
*/
Range lowerBound(KeyType k)
{
assert(0);
}
/**
Returns a range of all elements with keys larger than $(D k) (could be
empty or a singleton range). Only defined by containers that store
data sorted at all times.
*/
Range upperBound(KeyType k)
{
assert(0);
}
/**
Returns a new container that's the concatenation of $(D this) and its
argument. $(D opBinaryRight) is only defined if $(D Stuff) does not
define $(D opBinary).
Complexity: $(BIGOH n + m), where m is the number of elements in $(D
stuff)
*/
TotalContainer opBinary(string op)(Stuff rhs) if (op == "~")
{
assert(0);
}
/// ditto
TotalContainer opBinaryRight(string op)(Stuff lhs) if (op == "~")
{
assert(0);
}
/**
Forwards to $(D insertAfter(this[], stuff)).
*/
void opOpAssign(string op)(Stuff stuff) if (op == "~")
{
assert(0);
}
/**
Removes all contents from the container. The container decides how $(D
capacity) is affected.
Postcondition: $(D empty)
Complexity: $(BIGOH n)
*/
void clear()
{
assert(0);
}
/**
Sets the number of elements in the container to $(D newSize). If $(D
newSize) is greater than $(D length), the added elements are added to
unspecified positions in the container and initialized with $(D
.init).
Complexity: $(BIGOH abs(n - newLength))
Postcondition: $(D _length == newLength)
*/
@property void length(size_t newLength)
{
assert(0);
}
/**
Inserts $(D stuff) in an unspecified position in the
container. Implementations should choose whichever insertion means is
the most advantageous for the container, but document the exact
behavior. $(D stuff) can be a value convertible to the element type of
the container, or a range of values convertible to it.
The $(D stable) version guarantees that ranges iterating over the
container are never invalidated. Client code that counts on
non-invalidating insertion should use $(D stableInsert). Such code would
not compile against containers that don't support it.
Returns: The number of elements added.
Complexity: $(BIGOH m * log(n)), where $(D m) is the number of
elements in $(D stuff)
*/
size_t insert(Stuff)(Stuff stuff)
{
assert(0);
}
///ditto
size_t stableInsert(Stuff)(Stuff stuff)
{
assert(0);
}
/**
Same as $(D insert(stuff)) and $(D stableInsert(stuff)) respectively,
but relax the complexity constraint to linear.
*/
size_t linearInsert(Stuff)(Stuff stuff)
{
assert(0);
}
///ditto
size_t stableLinearInsert(Stuff)(Stuff stuff)
{
assert(0);
}
/**
Picks one value in an unspecified position in the container, removes
it from the container, and returns it. Implementations should pick the
value that's the most advantageous for the container. The stable version
behaves the same, but guarantees that ranges iterating over the container
are never invalidated.
Precondition: $(D !empty)
Returns: The element removed.
Complexity: $(BIGOH log(n)).
*/
T removeAny()
{
assert(0);
}
/// ditto
T stableRemoveAny()
{
assert(0);
}
/**
Inserts $(D value) to the front or back of the container. $(D stuff)
can be a value convertible to the container's element type or a range
of values convertible to it. The stable version behaves the same, but
guarantees that ranges iterating over the container are never
invalidated.
Returns: The number of elements inserted
Complexity: $(BIGOH log(n)).
*/
size_t insertFront(Stuff)(Stuff stuff)
{
assert(0);
}
/// ditto
size_t stableInsertFront(Stuff)(Stuff stuff)
{
assert(0);
}
/// ditto
size_t insertBack(Stuff)(Stuff stuff)
{
assert(0);
}
/// ditto
size_t stableInsertBack(T value)
{
assert(0);
}
/**
Removes the value at the front or back of the container. The stable
version behaves the same, but guarantees that ranges iterating over
the container are never invalidated. The optional parameter $(D
howMany) instructs removal of that many elements. If $(D howMany > n),
all elements are removed and no exception is thrown.
Precondition: $(D !empty)
Complexity: $(BIGOH log(n)).
*/
void removeFront()
{
assert(0);
}
/// ditto
void stableRemoveFront()
{
assert(0);
}
/// ditto
void removeBack()
{
assert(0);
}
/// ditto
void stableRemoveBack()
{
assert(0);
}
/**
Removes $(D howMany) values at the front or back of the
container. Unlike the unparameterized versions above, these functions
do not throw if they could not remove $(D howMany) elements. Instead,
if $(D howMany > n), all elements are removed. The returned value is
the effective number of elements removed. The stable version behaves
the same, but guarantees that ranges iterating over the container are
never invalidated.
Returns: The number of elements removed
Complexity: $(BIGOH howMany * log(n)).
*/
size_t removeFront(size_t howMany)
{
assert(0);
}
/// ditto
size_t stableRemoveFront(size_t howMany)
{
assert(0);
}
/// ditto
size_t removeBack(size_t howMany)
{
assert(0);
}
/// ditto
size_t stableRemoveBack(size_t howMany)
{
assert(0);
}
/**
Removes all values corresponding to key $(D k).
Complexity: $(BIGOH m * log(n)), where $(D m) is the number of
elements with the same key.
Returns: The number of elements removed.
*/
size_t removeKey(KeyType k)
{
assert(0);
}
/**
Inserts $(D stuff) before, after, or instead range $(D r), which must
be a valid range previously extracted from this container. $(D stuff)
can be a value convertible to the container's element type or a range
of objects convertible to it. The stable version behaves the same, but
guarantees that ranges iterating over the container are never
invalidated.
Returns: The number of values inserted.
Complexity: $(BIGOH n + m), where $(D m) is the length of $(D stuff)
*/
size_t insertBefore(Stuff)(Range r, Stuff stuff)
{
assert(0);
}
/// ditto
size_t stableInsertBefore(Stuff)(Range r, Stuff stuff)
{
assert(0);
}
/// ditto
size_t insertAfter(Stuff)(Range r, Stuff stuff)
{
assert(0);
}
/// ditto
size_t stableInsertAfter(Stuff)(Range r, Stuff stuff)
{
assert(0);
}
/// ditto
size_t replace(Stuff)(Range r, Stuff stuff)
{
assert(0);
}
/// ditto
size_t stableReplace(Stuff)(Range r, Stuff stuff)
{
assert(0);
}
/**
Removes all elements belonging to $(D r), which must be a range
obtained originally from this container. The stable version behaves the
same, but guarantees that ranges iterating over the container are
never invalidated.
Returns: A range spanning the remaining elements in the container that
initially were right after $(D r).
Complexity: $(BIGOH m * log(n)), where $(D m) is the number of
elements in $(D r)
*/
Range remove(Range r)
{
assert(0);
}
/// ditto
Range stableRemove(Range r)
{
assert(0);
}
/**
Same as $(D remove) above, but has complexity relaxed to linear.
Returns: A range spanning the remaining elements in the container that
initially were right after $(D r).
Complexity: $(BIGOH n)
*/
Range linearRemove(Range r)
{
assert(0);
}
/// ditto
Range stableLinearRemove(Range r)
{
assert(0);
}
}
@safe unittest
{
TotalContainer!int test;
}
|