1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
|
/**
* Contains the internal GC interface.
*
* Copyright: Copyright Digital Mars 2016.
* License: $(HTTP www.boost.org/LICENSE_1_0.txt, Boost License 1.0).
* Authors: Walter Bright, Sean Kelly, Jeremy DeHaan
*/
/* Copyright Digital Mars 2016.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
module core.gc.gcinterface;
static import core.memory;
alias BlkAttr = core.memory.GC.BlkAttr;
alias BlkInfo = core.memory.GC.BlkInfo;
alias RootIterator = int delegate(scope int delegate(ref Root) nothrow dg);
alias RangeIterator = int delegate(scope int delegate(ref Range) nothrow dg);
struct Root
{
void* proot;
alias proot this;
}
struct Range
{
void* pbot;
void* ptop;
TypeInfo ti; // should be tail const, but doesn't exist for references
alias pbot this; // only consider pbot for relative ordering (opCmp)
bool opEquals(const scope Range rhs) nothrow const { return pbot == rhs.pbot; }
}
interface GC
{
/**
*
*/
void enable();
/**
*
*/
void disable();
/**
*
*/
void collect() nothrow;
/**
* minimize free space usage
*/
void minimize() nothrow;
/**
*
*/
uint getAttr(void* p) nothrow;
/**
*
*/
uint setAttr(void* p, uint mask) nothrow;
/**
*
*/
uint clrAttr(void* p, uint mask) nothrow;
/**
*
*/
void* malloc(size_t size, uint bits, const TypeInfo ti) nothrow;
/*
*
*/
BlkInfo qalloc(size_t size, uint bits, const scope TypeInfo ti) nothrow;
/*
*
*/
void* calloc(size_t size, uint bits, const TypeInfo ti) nothrow;
/*
*
*/
void* realloc(void* p, size_t size, uint bits, const TypeInfo ti) nothrow;
/**
* Attempt to in-place enlarge the memory block pointed to by p by at least
* minsize bytes, up to a maximum of maxsize additional bytes.
* This does not attempt to move the memory block (like realloc() does).
*
* Returns:
* 0 if could not extend p,
* total size of entire memory block if successful.
*/
size_t extend(void* p, size_t minsize, size_t maxsize, const TypeInfo ti) nothrow;
/**
*
*/
size_t reserve(size_t size) nothrow;
/**
*
*/
void free(void* p) nothrow @nogc;
/**
* Determine the base address of the block containing p. If p is not a gc
* allocated pointer, return null.
*/
void* addrOf(void* p) nothrow @nogc;
/**
* Determine the allocated size of pointer p. If p is an interior pointer
* or not a gc allocated pointer, return 0.
*/
size_t sizeOf(void* p) nothrow @nogc;
/**
* Determine the base address of the block containing p. If p is not a gc
* allocated pointer, return null.
*/
BlkInfo query(void* p) nothrow;
/**
* Retrieve statistics about garbage collection.
* Useful for debugging and tuning.
*/
core.memory.GC.Stats stats() @safe nothrow @nogc;
/**
* Retrieve profile statistics about garbage collection.
* Useful for debugging and tuning.
*/
core.memory.GC.ProfileStats profileStats() @safe nothrow @nogc;
/**
* add p to list of roots
*/
void addRoot(void* p) nothrow @nogc;
/**
* remove p from list of roots
*/
void removeRoot(void* p) nothrow @nogc;
/**
*
*/
@property RootIterator rootIter() @nogc;
/**
* add range to scan for roots
*/
void addRange(void* p, size_t sz, const TypeInfo ti) nothrow @nogc;
/**
* remove range
*/
void removeRange(void* p) nothrow @nogc;
/**
*
*/
@property RangeIterator rangeIter() @nogc;
/**
* run finalizers
*/
void runFinalizers(const scope void[] segment) nothrow;
/*
*
*/
bool inFinalizer() nothrow @nogc @safe;
/**
* Returns the number of bytes allocated for the current thread
* since program start. It is the same as
* GC.stats().allocatedInCurrentThread, but faster.
*/
ulong allocatedInCurrentThread() nothrow;
// ARRAY FUNCTIONS
/**
* Get the current used capacity of an array block.
*
* Note that this is only needed if you are about to change the array used
* size and need to deal with the memory that is about to go away. For
* appending or shrinking arrays that have no destructors, you probably
* don't need this function.
*
* Params:
* ptr = The pointer to check. This can be an interior pointer, but if it
* is beyond the end of the used space, the return value may not be
* valid.
* atomic = The value is fetched atomically (for shared arrays)
* Returns:
* Current array slice, or null if the pointer does not point to a valid
* appendable GC block.
*/
void[] getArrayUsed(void *ptr, bool atomic = false) nothrow;
/**
* Expand the array used size in place.
*
* Used for appending and expanding the length of the array slice. If the
* operation can be performed without reallocating, the function succeeds.
* Newly expanded data is not initialized. Slices that do not point at
* expandable GC blocks cannot be affected, and this function will always
* return false.
*
* Params:
* slice = the slice to attempt expanding in place.
* newUsed = the size that should be stored as used.
* atomic = if true, the array may be shared between threads, and this
* operation should be done atomically.
* Returns: true if successful.
*/
bool expandArrayUsed(void[] slice, size_t newUsed, bool atomic = false) nothrow @safe;
/**
* Expand the array capacity in place.
*
* Used for reserving space that can be used for appending. If the
* operation can be performed without reallocating, the function succeeds.
* The used size is not changed. Slices that do not point at expandable GC
* blocks cannot be affected, and this function will always return zero.
*
* Params:
* slice = the slice to attempt reserving capacity for.
* request = the requested size to expand to. Includes the existing data.
* Passing a value less than the current array size will result in no
* changes, but will return the current capacity.
* atomic = The array may be shared between threads, and this operation
* should be done atomically.
*
* Returns:
* Resulting capacity size or 0 if the operation could not be performed.
*/
size_t reserveArrayCapacity(void[] slice, size_t request, bool atomic = false) nothrow @safe;
/**
* Shrink used space of a slice in place.
*
* Unlike the other array functions, the array slice passed in is the
* target slice, and the existing used space is passed separately. This is
* to discourage code that ends up with a slice to dangling valid data.
*
* If slice.ptr[0 .. existingUsed] does not point to the end of a valid GC
* appendable slice, then the operation fails.
*
* Params:
* slice = The proposed valid slice data.
* existingUsed = The amount of data in the block (starting at slice.ptr)
* that is currently valid in the array. If this amount does not match
* the current used size, the operation fails.
* atomic = The slice may be shared between threads, and the operation
* should be atomic.
* Returns: true if successful.
*/
bool shrinkArrayUsed(void[] slice, size_t existingUsed, bool atomic = false) nothrow;
}
|