1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
|
/* TreeMap.java -- a class providing a basic Red-Black Tree data structure,
mapping Object --> Object
Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */
package java.util;
import java.io.Serializable;
import java.io.ObjectOutputStream;
import java.io.ObjectInputStream;
import java.io.IOException;
/**
* This class provides a red-black tree implementation of the SortedMap
* interface. Elements in the Map will be sorted by either a user-provided
* Comparator object, or by the natural ordering of the keys.
*
* The algorithms are adopted from Corman, Leiserson,
* and Rivest's <i>Introduction to Algorithms.</i> In other words,
* I cribbed from the same pseudocode as Sun. <em>Any similarity
* between my code and Sun's (if there is any -- I have never looked
* at Sun's) is a result of this fact.</em>
*
* TreeMap guarantees O(log n) insertion and deletion of elements. That
* being said, there is a large enough constant coefficient in front of
* that "log n" (overhead involved in keeping the tree
* balanced), that TreeMap may not be the best choice for small
* collections.
*
* TreeMap is a part of the JDK1.2 Collections API. Null keys are allowed
* only if a Comparator is used which can deal with them. Null values are
* always allowed.
*
* @author Jon Zeppieri
* @author Bryce McKinlay
*/
public class TreeMap extends AbstractMap
implements SortedMap, Cloneable, Serializable
{
private static final int RED = -1,
BLACK = 1;
/** Sentinal node, used to avoid null checks for corner cases and make the
delete rebalance code simpler. Note that this must not be static, due
to thread-safety concerns. */
transient Node nil = new Node(null, null);
/** The root node of this TreeMap */
transient Node root = nil;
/** The size of this TreeMap */
transient int size = 0;
/** Number of modifications */
transient int modCount = 0;
/** This TreeMap's comparator, if any. */
Comparator comparator = null;
static final long serialVersionUID = 919286545866124006L;
private static class Node extends BasicMapEntry implements Map.Entry
{
int color;
Node left;
Node right;
Node parent;
Node(Object key, Object value)
{
super(key, value);
this.color = BLACK;
}
}
/**
* Instantiate a new TreeMap with no elements, using the keys'
* natural ordering to sort.
*
* @see java.lang.Comparable
*/
public TreeMap()
{
}
/**
* Instantiate a new TreeMap with no elements, using the provided
* comparator to sort.
*
* @param oComparator a Comparator object, used to sort
* the keys of this SortedMap
*/
public TreeMap(Comparator c)
{
comparator = c;
}
/**
* Instantiate a new TreeMap, initializing it with all of the
* elements in the provided Map. The elements will be sorted
* using the natural ordering of the keys.
*
* @param map a Map, whose keys will be put into
* this TreeMap
*
* @throws ClassCastException if the keys in the provided
* Map do not implement
* Comparable
*
* @see java.lang.Comparable
*/
public TreeMap(Map map)
{
putAll(map);
}
/**
* Instantiate a new TreeMap, initializing it with all of the
* elements in the provided SortedMap. The elements will be sorted
* using the same method as in the provided SortedMap.
*/
public TreeMap(SortedMap sm)
{
this(sm.comparator());
int sm_size = sm.size();
Iterator itr = sm.entrySet().iterator();
fabricateTree(sm_size);
Node node = firstNode();
for (int i = 0; i < sm_size; i++)
{
Map.Entry me = (Map.Entry) itr.next();
node.key = me.getKey();
node.value = me.getValue();
node = successor(node);
}
}
public int size()
{
return size;
}
public void clear()
{
modCount++;
root = nil;
// nil node could have a residual parent reference, clear it for GC.
nil.parent = null;
size = 0;
}
public Object clone()
{
TreeMap copy = null;
try
{
copy = (TreeMap) super.clone();
}
catch (CloneNotSupportedException x)
{
}
// Each instance must have a unique sentinal.
copy.nil = new Node(null, null);
copy.fabricateTree(size);
Node node = firstNode();
Node cnode = copy.firstNode();
while (node != nil)
{
cnode.key = node.key;
cnode.value = node.value;
node = successor(node);
cnode = copy.successor(cnode);
}
return copy;
}
public Comparator comparator()
{
return comparator;
}
public boolean containsKey(Object key)
{
return getNode(key) != nil;
}
public boolean containsValue(Object value)
{
Node node = firstNode();
Object currentVal;
while (node != nil)
{
currentVal = node.getValue();
if (value == null ? currentVal == null : value.equals (currentVal))
return true;
node = successor(node);
}
return false;
}
public Set entrySet()
{
// Create an AbstractSet with custom implementations of those methods that
// can be overriden easily and efficiently.
return new AbstractSet()
{
public int size()
{
return size;
}
public Iterator iterator()
{
return new TreeIterator(TreeIterator.ENTRIES);
}
public void clear()
{
TreeMap.this.clear();
}
public boolean contains(Object o)
{
if (!(o instanceof Map.Entry))
return false;
Map.Entry me = (Map.Entry) o;
Node n = getNode(me.getKey());
return (n != nil && me.getValue().equals(n.value));
}
public boolean remove(Object o)
{
if (!(o instanceof Map.Entry))
return false;
Map.Entry me = (Map.Entry) o;
Node n = getNode(me.getKey());
if (n != nil && me.getValue().equals(n.value))
{
removeNode(n);
return true;
}
return false;
}
};
}
public Object firstKey()
{
if (root == nil)
throw new NoSuchElementException("empty");
return firstNode().getKey();
}
private Node firstNode()
{
if (root == nil)
return nil;
Node node = root;
while (node.left != nil)
node = node.left;
return node;
}
public Object lastKey()
{
if (root == nil)
throw new NoSuchElementException("empty");
return lastNode().getKey();
}
private Node lastNode()
{
if (root == nil)
return nil;
Node node = root;
while (node.right != nil)
node = node.right;
return node;
}
public Object get(Object key)
{
return getNode(key).value;
}
/** Return the TreeMap.Node associated with KEY, or the nil node if no such
node exists in the tree. */
private Node getNode(Object key)
{
int comparison;
Node current = root;
while (current != nil)
{
comparison = compare(key, current.key);
if (comparison > 0)
current = current.right;
else if (comparison < 0)
current = current.left;
else
return current;
}
return current;
}
public Set keySet()
{
// Create an AbstractSet with custom implementations of those methods that
// can be overriden easily and efficiently.
return new AbstractSet()
{
public int size()
{
return size;
}
public Iterator iterator()
{
return new TreeIterator(TreeIterator.KEYS);
}
public void clear()
{
TreeMap.this.clear();
}
public boolean contains(Object o)
{
return TreeMap.this.containsKey(o);
}
public boolean remove(Object key)
{
Node n = getNode(key);
if (n == nil)
return false;
TreeMap.this.removeNode(n);
return true;
}
};
}
public Object put(Object key, Object value)
{
modCount++;
Node current = root;
Node parent = nil;
int comparison = 0;
// Find new node's parent.
while (current != nil)
{
parent = current;
comparison = compare(key, current.key);
if (comparison > 0)
current = current.right;
else if (comparison < 0)
current = current.left;
else
{
// Key already in tree.
Object r = current.value;
current.value = value;
return r;
}
}
// Set up new node.
Node n = new Node(key, value);
n.color = RED;
n.parent = parent;
n.left = nil;
n.right = nil;
// Insert node in tree.
size++;
if (parent == nil)
{
// Special case: inserting into an empty tree.
root = n;
n.color = BLACK;
return null;
}
else if (comparison > 0)
parent.right = n;
else
parent.left = n;
// Rebalance after insert.
insertFixup(n);
//verifyTree();
return null;
}
/** Maintain red-black balance after inserting a new node. */
private void insertFixup(Node n)
{
// Only need to rebalance when parent is a RED node, and while at least
// 2 levels deep into the tree (ie: node has a grandparent).
while (n != root && n.parent.parent != nil && n.parent.color == RED)
{
if (n.parent == n.parent.parent.left)
{
Node uncle = n.parent.parent.right;
if (uncle != nil && uncle.color == RED)
{
n.parent.color = BLACK;
uncle.color = BLACK;
n.parent.parent.color = RED;
n = n.parent.parent;
}
else // Uncle is BLACK.
{
if (n == n.parent.right)
{
// Make n a left child.
n = n.parent;
rotateLeft(n);
}
// Recolor and rotate.
n.parent.color = BLACK;
n.parent.parent.color = RED;
rotateRight(n.parent.parent);
}
}
else
{
// Mirror image of above code.
Node uncle = n.parent.parent.left;
if (uncle != nil && uncle.color == RED)
{
n.parent.color = BLACK;
uncle.color = BLACK;
n.parent.parent.color = RED;
n = n.parent.parent;
}
else
{
if (n == n.parent.left)
{
n = n.parent;
rotateRight(n);
}
n.parent.color = BLACK;
n.parent.parent.color = RED;
rotateLeft(n.parent.parent);
}
}
}
root.color = BLACK;
}
public void putAll(Map m)
{
Iterator itr = m.entrySet().iterator();
int msize = m.size();
Map.Entry e;
for (int i = 0; i < msize; i++)
{
e = (Map.Entry) itr.next();
put(e.getKey(), e.getValue());
}
}
public Object remove(Object key)
{
Node n = getNode(key);
if (n != nil)
{
removeNode(n);
return n.value;
}
return null;
}
// Remove node from tree. This will increment modCount and decrement size.
// Node must exist in the tree.
private void removeNode(Node node) // z
{
Node splice; // y
Node child; // x
modCount++;
size--;
// Find splice, the node at the position to actually remove from the tree.
if (node.left == nil || node.right == nil)
{
// Node to be deleted has 0 or 1 children.
splice = node;
if (node.left == nil)
child = node.right;
else
child = node.left;
}
else
{
// Node has 2 children. Splice is node's successor, and will be
// swapped with node since we can't remove node directly.
splice = node.right;
while (splice.left != nil)
splice = splice.left;
child = splice.right;
}
// Unlink splice from the tree.
Node parent = splice.parent;
child.parent = parent;
if (parent != nil)
{
if (splice == parent.left)
parent.left = child;
else
parent.right = child;
}
else
root = child;
// Keep track of splice's color in case it gets changed in the swap.
int spliceColor = splice.color;
/*
if (splice != node)
{
node.key = splice.key;
node.value = splice.value;
}
*/
if (splice != node)
{
// Swap SPLICE for NODE. Some implementations optimize here by simply
// swapping the values, but we can't do that: if an iterator was
// referencing a node in its "next" field, and that node got swapped,
// things would get confused.
if (node == root)
{
root = splice;
}
else
{
if (node.parent.left == node)
node.parent.left = splice;
else
node.parent.right = splice;
}
splice.parent = node.parent;
splice.left = node.left;
splice.right = node.right;
splice.left.parent = splice;
splice.right.parent = splice;
splice.color = node.color;
}
if (spliceColor == BLACK)
deleteFixup (child);
//verifyTree();
}
/** Maintain red-black balance after deleting a node. */
private void deleteFixup (Node node)
{
// A black node has been removed, so we need to rebalance to avoid
// violating the "same number of black nodes on any path" rule. If
// node is red, we can simply recolor it black and all is well.
while (node != root && node.color == BLACK)
{
if (node == node.parent.left)
{
// Rebalance left side.
Node sibling = node.parent.right;
if (sibling.color == RED)
{
sibling.color = BLACK;
node.parent.color = RED;
rotateLeft(node.parent);
sibling = node.parent.right;
}
if (sibling.left.color == BLACK && sibling.right.color == BLACK)
{
// Case 2: Sibling has no red children.
sibling.color = RED;
// Black height has been decreased, so move up the tree and
// repeat.
node = node.parent;
}
else
{
if (sibling.right.color == BLACK)
{
// Case 3: Sibling has red left child.
sibling.left.color = BLACK;
sibling.color = RED;
rotateRight(sibling);
sibling = node.parent.right;
}
// Case 4: Sibling has red right child.
sibling.color = sibling.parent.color;
sibling.parent.color = BLACK;
sibling.right.color = BLACK;
rotateLeft(node.parent);
node = root; // Finished.
}
}
else
{
// Symmetric "mirror" of left-side case.
Node sibling = node.parent.left;
if (sibling.color == RED)
{
sibling.color = BLACK;
node.parent.color = RED;
rotateRight(node.parent);
sibling = node.parent.left;
}
if (sibling.left.color == BLACK && sibling.right.color == BLACK)
{
sibling.color = RED;
node = node.parent;
}
else
{
if (sibling.left.color == BLACK)
{
sibling.right.color = BLACK;
sibling.color = RED;
rotateLeft(sibling);
sibling = node.parent.left;
}
sibling.color = sibling.parent.color;
sibling.parent.color = BLACK;
sibling.left.color = BLACK;
rotateRight(node.parent);
node = root;
}
}
}
node.color = BLACK;
}
public SortedMap subMap(Object fromKey, Object toKey)
{
if (compare(fromKey, toKey) <= 0)
return new SubMap(fromKey, toKey);
else
throw new IllegalArgumentException("fromKey > toKey");
}
public SortedMap headMap(Object toKey)
{
return new SubMap(nil, toKey);
}
public SortedMap tailMap(Object fromKey)
{
return new SubMap(fromKey, nil);
}
/** Returns a "collection view" (or "bag view") of this TreeMap's values. */
public Collection values()
{
// We don't bother overriding many of the optional methods, as doing so
// wouldn't provide any significant performance advantage.
return new AbstractCollection()
{
public int size()
{
return size;
}
public Iterator iterator()
{
return new TreeIterator(TreeIterator.VALUES);
}
public void clear()
{
TreeMap.this.clear();
}
};
}
// Find the "highest" node which is < key. If key is nil, return last node.
// Note that highestLessThan is exclusive (it won't return a key which is
// equal to "key"), while lowestGreaterThan is inclusive, in order to be
// consistent with the semantics of subMap().
private Node highestLessThan(Object key)
{
if (key == nil)
return lastNode();
Node last = nil;
Node current = root;
int comparison = 0;
while (current != nil)
{
last = current;
comparison = compare(key, current.key);
if (comparison > 0)
current = current.right;
else if (comparison < 0)
current = current.left;
else /* Exact match. */
return predecessor(last);
}
if (comparison <= 0)
return predecessor(last);
else
return last;
}
// Find the "lowest" node which is >= key. If key is nil, return first node.
private Node lowestGreaterThan(Object key)
{
if (key == nil)
return firstNode();
Node last = nil;
Node current = root;
int comparison = 0;
while (current != nil)
{
last = current;
comparison = compare(key, current.key);
if (comparison > 0)
current = current.right;
else if (comparison < 0)
current = current.left;
else
return current;
}
if (comparison > 0)
return successor(last);
else
return last;
}
private void writeObject(ObjectOutputStream out) throws IOException
{
out.defaultWriteObject();
Node node = firstNode();
out.writeInt(size);
while (node != nil)
{
out.writeObject(node.key);
out.writeObject(node.value);
node = successor(node);
}
}
private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException
{
in.defaultReadObject();
int size = in.readInt();
putFromObjStream(in, size, true);
}
private int compare(Object o1, Object o2)
{
if (comparator == null)
return ((Comparable) o1).compareTo(o2);
else
return comparator.compare(o1, o2);
}
/* Return the node following Node, or nil if there isn't one. */
private Node successor(Node node)
{
if (node.right != nil)
{
node = node.right;
while (node.left != nil)
node = node.left;
return node;
}
Node parent = node.parent;
while (parent != nil && node == parent.right)
{
node = parent;
parent = parent.parent;
}
return parent;
}
/* Return the node preceeding Node, or nil if there isn't one. */
private Node predecessor(Node node)
{
if (node.left != nil)
{
node = node.left;
while (node.right != nil)
node = node.right;
return node;
}
Node parent = node.parent;
while (parent != nil && node == parent.left)
{
node = parent;
parent = parent.parent;
}
return parent;
}
/** Rotate node n to the left. */
private void rotateLeft(Node node)
{
Node child = node.right;
// Establish node.right link.
node.right = child.left;
if (child.left != nil)
child.left.parent = node;
// Establish child->parent link.
child.parent = node.parent;
if (node.parent != nil)
{
if (node == node.parent.left)
node.parent.left = child;
else
node.parent.right = child;
}
else
root = child;
// Link n and child.
child.left = node;
if (node != nil)
node.parent = child;
}
/** Rotate node n to the right. */
private void rotateRight(Node node)
{
Node child = node.left;
// Establish node.left link.
node.left = child.right;
if (child.right != nil)
child.right.parent = node;
// Establish child->parent link.
child.parent = node.parent;
if (node.parent != nil)
{
if (node == node.parent.right)
node.parent.right = child;
else
node.parent.left = child;
}
else
root = child;
// Link n and child.
child.right = node;
if (node != nil)
node.parent = child;
}
/* Construct a tree from sorted keys in linear time. This is used to
implement TreeSet's SortedSet constructor. */
void putKeysLinear(Iterator keys, int count)
{
fabricateTree(count);
Node node = firstNode();
for (int i = 0; i < count; i++)
{
node.key = keys.next();
node.value = Boolean.TRUE;
node = successor(node);
}
}
/* As above, but load keys from an ObjectInputStream. Used by readObject()
methods. If "readValues" is set, entry values will also be read from the
stream. If not, only keys will be read. */
void putFromObjStream(ObjectInputStream in, int count, boolean readValues)
throws IOException, ClassNotFoundException
{
fabricateTree(count);
Node node = firstNode();
for (int i = 0; i < count; i++)
{
node.key = in.readObject();
if (readValues)
node.value = in.readObject();
else
node.value = Boolean.TRUE;
node = successor(node);
}
}
/* Construct a perfectly balanced tree consisting of n "blank" nodes.
This permits a tree to be generated from pre-sorted input in linear
time. */
private void fabricateTree(int count)
{
if (count == 0)
return;
// Calculate the (maximum) depth of the perfectly balanced tree.
double ddepth = (Math.log (count + 1) / Math.log (2));
int maxdepth = (int) Math.ceil (ddepth);
// The number of nodes which can fit in a perfectly-balanced tree of
// height "depth - 1".
int max = (int) Math.pow (2, maxdepth - 1) - 1;
// Number of nodes which spill over into the deepest row of the tree.
int overflow = (int) count - max;
size = count;
// Make the root node.
root = new Node(null, null);
root.parent = nil;
root.left = nil;
root.right = nil;
Node row = root;
for (int depth = 2; depth <= maxdepth; depth++) // each row
{
// Number of nodes at this depth
int rowcap = (int) Math.pow (2, depth - 1);
Node parent = row;
Node last = null;
// Actual number of nodes to create in this row
int rowsize;
if (depth == maxdepth)
rowsize = overflow;
else
rowsize = rowcap;
// The bottom most row of nodes is coloured red, as is every second row
// going up, except the root node (row 1). I'm not sure if this is the
// optimal configuration for the tree, but it seems logical enough.
// We just need to honour the black-height and red-parent rules here.
boolean colorRowRed = (depth % 2 == maxdepth % 2);
int i;
for (i = 1; i <= rowsize; i++) // each node in row
{
Node node = new Node(null, null);
node.parent = parent;
if (i % 2 == 1)
parent.left = node;
else
{
Node nextparent = parent.right;
parent.right = node;
parent = nextparent;
}
// We use the "right" link to maintain a chain of nodes in
// each row until the parent->child links are established.
if (last != null)
last.right = node;
last = node;
if (colorRowRed)
node.color = RED;
if (i == 1)
row = node;
}
// Set nil child pointers on leaf nodes.
if (depth == maxdepth)
{
// leaf nodes at maxdepth-1.
if (parent != null)
{
if (i % 2 == 0)
{
// Current "parent" has "left" set already.
Node next = parent.right;
parent.right = nil;
parent = next;
}
while (parent != null)
{
parent.left = nil;
Node next = parent.right;
parent.right = nil;
parent = next;
}
}
// leaf nodes at maxdepth.
Node node = row;
Node next;
while (node != null)
{
node.left = nil;
next = node.right;
node.right = nil;
node = next;
}
}
}
}
private class VerifyResult
{
int count; // Total number of nodes.
int black; // Black height/depth.
int maxdepth; // Maximum depth of branch.
}
/* Check that red-black properties are consistent for the tree. */
private void verifyTree()
{
if (root == nil)
{
System.err.println ("Verify: empty tree");
if (size != 0)
verifyError (this, "no root node but size=" + size);
return;
}
VerifyResult vr = verifySub (root);
if (vr.count != size)
{
verifyError (this, "Tree size not consistent with actual nodes counted. "
+ "counted " + vr.count + ", size=" + size);
System.exit(1);
}
System.err.println ("Verify: " + vr.count + " nodes, black height=" + vr.black
+ ", maxdepth=" + vr.maxdepth);
}
/* Recursive call to check that rbtree rules hold. Returns total node count
and black height of the given branch. */
private VerifyResult verifySub(Node n)
{
VerifyResult vr1 = null;
VerifyResult vr2 = null;
if (n.left == nil && n.right == nil)
{
// leaf node
VerifyResult r = new VerifyResult();
r.black = (n.color == BLACK ? 1 : 0);
r.count = 1;
r.maxdepth = 1;
return r;
}
if (n.left != nil)
{
if (n.left.parent != n)
verifyError(n.left, "Node's parent link does not point to " + n);
if (n.color == RED && n.left.color == RED)
verifyError(n, "Red node has red left child");
vr1 = verifySub (n.left);
if (n.right == nil)
{
if (n.color == BLACK)
vr1.black++;
vr1.count++;
vr1.maxdepth++;
return vr1;
}
}
if (n.right != nil)
{
if (n.right.parent != n)
verifyError(n.right, "Node's parent link does not point to " + n);
if (n.color == RED && n.right.color == RED)
verifyError(n, "Red node has red right child");
vr2 = verifySub (n.right);
if (n.left == nil)
{
if (n.color == BLACK)
vr2.black++;
vr2.count++;
vr2.maxdepth++;
return vr2;
}
}
if (vr1.black != vr2.black)
verifyError (n, "Black heights: " + vr1.black + "," + vr2.black + " don't match.");
vr1.count += vr2.count + 1;
vr1.maxdepth = Math.max(vr1.maxdepth, vr2.maxdepth) + 1;
if (n.color == BLACK)
vr1.black++;
return vr1;
}
private void verifyError (Object obj, String msg)
{
System.err.print ("Verify error: ");
try
{
System.err.print (obj);
}
catch (Exception x)
{
System.err.print ("(error printing obj): " + x);
}
System.err.println();
System.err.println (msg);
Thread.dumpStack();
System.exit(1);
}
/**
* Iterate over HashMap's entries.
* This implementation is parameterized to give a sequential view of
* keys, values, or entries.
*/
class TreeIterator implements Iterator
{
static final int ENTRIES = 0,
KEYS = 1,
VALUES = 2;
// the type of this Iterator: KEYS, VALUES, or ENTRIES.
int type;
// the number of modifications to the backing Map that we know about.
int knownMod = TreeMap.this.modCount;
// The last Entry returned by a next() call.
Node last;
// The next entry that should be returned by next().
Node next;
// The last node visible to this iterator. This is used when iterating
// on a SubMap.
Node max;
/* Create Iterator with the supplied type: KEYS, VALUES, or ENTRIES */
TreeIterator(int type)
{
this.type = type;
this.next = firstNode();
}
/* Construct an interator for a SubMap. Iteration will begin at node
"first", and stop when "max" is reached. */
TreeIterator(int type, Node first, Node max)
{
this.type = type;
this.next = first;
this.max = max;
}
public boolean hasNext()
{
if (knownMod != TreeMap.this.modCount)
throw new ConcurrentModificationException();
return (next != nil);
}
public Object next()
{
if (next == nil)
throw new NoSuchElementException();
if (knownMod != TreeMap.this.modCount)
throw new ConcurrentModificationException();
Node n = next;
// Check limit in case we are iterating through a submap.
if (n != max)
next = successor(n);
else
next = nil;
last = n;
if (type == VALUES)
return n.value;
else if (type == KEYS)
return n.key;
return n;
}
public void remove()
{
if (last == null)
throw new IllegalStateException();
if (knownMod != TreeMap.this.modCount)
throw new ConcurrentModificationException();
/*
Object key = null;
if (next != nil)
key = next.key;
*/
TreeMap.this.removeNode(last);
knownMod++;
/*
if (key != null)
next = getNode(key);
*/
last = null;
}
}
class SubMap extends AbstractMap implements SortedMap
{
Object minKey;
Object maxKey;
/* Create a SubMap representing the elements between minKey and maxKey
(inclusive). If minKey is nil, SubMap has no lower bound (headMap).
If maxKey is nil, the SubMap has no upper bound (tailMap). */
SubMap(Object minKey, Object maxKey)
{
this.minKey = minKey;
this.maxKey = maxKey;
}
public void clear()
{
Node current;
Node next = lowestGreaterThan(minKey);
Node max = highestLessThan(maxKey);
if (compare(next.key, max.key) > 0)
// Nothing to delete.
return;
do
{
current = next;
next = successor(current);
remove(current);
}
while (current != max);
}
/* Check if "key" is in within the range bounds for this SubMap.
The lower ("from") SubMap range is inclusive, and the upper (to) bound
is exclusive. */
private boolean keyInRange(Object key)
{
return ((minKey == nil || compare(key, minKey) >= 0)
&& (maxKey == nil || compare(key, maxKey) < 0));
}
public boolean containsKey(Object key)
{
return (keyInRange(key) && TreeMap.this.containsKey(key));
}
public boolean containsValue(Object value)
{
Node node = lowestGreaterThan(minKey);
Node max = highestLessThan(maxKey);
Object currentVal;
if (node == nil || max == nil || compare(node.key, max.key) > 0)
// Nothing to search.
return false;
while (true)
{
currentVal = node.getValue();
if (value == null ? currentVal == null : value.equals (currentVal))
return true;
if (node == max)
return false;
node = successor(node);
}
}
public Object get(Object key)
{
if (keyInRange(key))
return TreeMap.this.get(key);
return null;
}
public Object put(Object key, Object value)
{
if (keyInRange(key))
return TreeMap.this.put(key, value);
else
throw new IllegalArgumentException("Key outside range");
}
public Object remove(Object key)
{
if (keyInRange(key))
return TreeMap.this.remove(key);
else
return null;
}
public int size()
{
Node node = lowestGreaterThan(minKey);
Node max = highestLessThan(maxKey);
if (node == nil || max == nil || compare(node.key, max.key) > 0)
return 0; // Empty.
int count = 1;
while (node != max)
{
count++;
node = successor(node);
}
return count;
}
public Set entrySet()
{
// Create an AbstractSet with custom implementations of those methods that
// can be overriden easily and efficiently.
return new AbstractSet()
{
public int size()
{
return SubMap.this.size();
}
public Iterator iterator()
{
Node first = lowestGreaterThan(minKey);
Node max = highestLessThan(maxKey);
return new TreeIterator(TreeIterator.ENTRIES, first, max);
}
public void clear()
{
this.clear();
}
public boolean contains(Object o)
{
if (!(o instanceof Map.Entry))
return false;
Map.Entry me = (Map.Entry) o;
Object key = me.getKey();
if (!keyInRange(key))
return false;
Node n = getNode(key);
return (n != nil && me.getValue().equals(n.value));
}
public boolean remove(Object o)
{
if (!(o instanceof Map.Entry))
return false;
Map.Entry me = (Map.Entry) o;
Object key = me.getKey();
if (!keyInRange(key))
return false;
Node n = getNode(key);
if (n != nil && me.getValue().equals(n.value))
{
removeNode(n);
return true;
}
return false;
}
};
}
public Comparator comparator()
{
return comparator;
}
public Object firstKey()
{
Node node = lowestGreaterThan(minKey);
if (node == nil || !keyInRange(node.key))
throw new NoSuchElementException ("empty");
return node.key;
}
public Object lastKey()
{
Node node = highestLessThan(maxKey);
if (node == nil || !keyInRange(node.key))
throw new NoSuchElementException ("empty");
return node.key;
}
public SortedMap subMap(Object fromKey, Object toKey)
{
if (!keyInRange(fromKey) || !keyInRange(toKey))
throw new IllegalArgumentException("key outside range");
return TreeMap.this.subMap(fromKey, toKey);
}
public SortedMap headMap(Object toKey)
{
if (!keyInRange(toKey))
throw new IllegalArgumentException("key outside range");
return TreeMap.this.subMap(minKey, toKey);
}
public SortedMap tailMap(Object fromKey)
{
if (!keyInRange(fromKey))
throw new IllegalArgumentException("key outside range");
return TreeMap.this.subMap(fromKey, maxKey);
}
}
}
|