aboutsummaryrefslogtreecommitdiff
path: root/libjava/java/util/Hashtable.java
blob: 92fa48f1958ce246b04b003c7279db6ff8a82f39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
/* Hashtable.java -- a class providing a basic hashtable data structure,
   mapping Object --> Object
   Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
 
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */

package java.util;

import java.io.IOException;
import java.io.Serializable;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;

// NOTE: This implementation is very similar to that of HashMap. If you fix
// a bug in here, chances are you should make a similar change to the HashMap
// code.

/**
 * a class which implements a Hashtable data structure
 *
 * This implementation of Hashtable uses a hash-bucket approach. That is:
 * linear probing and rehashing is avoided; instead, each hashed value maps
 * to a simple linked-list which, in the best case, only has one node.
 * Assuming a large enough table, low enough load factor, and / or well
 * implemented hashCode() methods, Hashtable should provide O(1) 
 * insertion, deletion, and searching of keys.  Hashtable is O(n) in
 * the worst case for all of these (if all keys has to the same bucket).
 *
 * This is a JDK-1.2 compliant implementation of Hashtable.  As such, it 
 * belongs, partially, to the Collections framework (in that it implements
 * Map).  For backwards compatibility, it inherits from the obsolete and 
 * utterly useless Dictionary class.
 *
 * Being a hybrid of old and new, Hashtable has methods which provide redundant
 * capability, but with subtle and even crucial differences.
 * For example, one can iterate over various aspects of a Hashtable with
 * either an Iterator (which is the JDK-1.2 way of doing things) or with an
 * Enumeration.  The latter can end up in an undefined state if the Hashtable
 * changes while the Enumeration is open.
 *
 * Unlike HashMap, Hashtable does not accept `null' as a key value.
 *
 * @author      Jon Zeppieri
 * @author	Warren Levy
 * @author      Bryce McKinlay
 * @version     $Revision: 1.6 $
 * @modified    $Id: Hashtable.java,v 1.6 2000/08/19 18:19:42 green Exp $
 */
public class Hashtable extends Dictionary 
  implements Map, Cloneable, Serializable
{
  /** Default number of buckets. This is the value the JDK 1.3 uses. Some 
    * early documentation specified this value as 101. That is incorrect. */
  private static final int DEFAULT_CAPACITY = 11;  
  /** The defaulty load factor; this is explicitly specified by Sun */
  private static final float DEFAULT_LOAD_FACTOR = 0.75f;

  private static final long serialVersionUID = 1421746759512286392L;

  /** 
   * The rounded product of the capacity and the load factor; when the number 
   * of elements exceeds the threshold, the Hashtable calls <pre>rehash()</pre>.
   * @serial
   */
  int threshold;

  /** Load factor of this Hashtable:  used in computing the threshold.
   * @serial
   */
  float loadFactor = DEFAULT_LOAD_FACTOR;

  /** 
   * Array containing the actual key-value mappings
   */
  transient HashMap.Entry[] buckets;

  /** 
   * counts the number of modifications this Hashtable has undergone, used 
   * by Iterators to know when to throw ConcurrentModificationExceptions. 
   */
  transient int modCount;

  /** the size of this Hashtable:  denotes the number of key-value pairs */
  transient int size;

  /**
   * Class to represent an entry in the hash table. Holds a single key-value
   * pair. A Hashtable Entry is identical to a HashMap Entry, except that
   * `null' is not allowed for keys and values. 
   */
  static class Entry extends HashMap.Entry
  {
    Entry(Object key, Object value)
    {
      super(key, value);
    }

    public Object setValue(Object newVal)
    {
      if (newVal == null)
        throw new NullPointerException();
      return super.setValue(newVal);
    }
  }

  /**
   * construct a new Hashtable with the default capacity (11) and the default
   * load factor (0.75).
   */
  public Hashtable()
  {
    this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
  }

  /**
   * construct a new Hashtable from the given Map
   * 
   * every element in Map t will be put into this new Hashtable
   *
   * @param     t        a Map whose key / value pairs will be put into
   *                     the new Hashtable.  <b>NOTE: key / value pairs
   *                     are not cloned in this constructor</b>
   */
  public Hashtable(Map m)
  {
    int size = Math.max(m.size() * 2, DEFAULT_CAPACITY);
    buckets = new Entry[size];
    threshold = (int) (size * loadFactor);
    putAll(m);
  }

  /**
   * construct a new Hashtable with a specific inital capacity 
   *
   * @param   initialCapacity     the initial capacity of this Hashtable (>=0)
   *
   * @throws   IllegalArgumentException    if (initialCapacity < 0)
   */
  public Hashtable(int initialCapacity) throws IllegalArgumentException
  {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
  }

  /**
   * construct a new Hashtable with a specific inital capacity and load factor
   *
   * @param   initialCapacity  the initial capacity (>=0)
   * @param   loadFactor       the load factor
   * 
   * @throws   IllegalArgumentException    if (initialCapacity < 0) ||
   *                                          (initialLoadFactor > 1.0) ||
   *                                          (initialLoadFactor <= 0.0)
   */
  public Hashtable(int initialCapacity, float loadFactor)
    throws IllegalArgumentException
  {
    if (initialCapacity < 0 || loadFactor <= 0 || loadFactor > 1)
      throw new IllegalArgumentException();
    
    buckets = new Entry[initialCapacity];
    this.loadFactor = loadFactor;
    this.threshold = (int) (initialCapacity * loadFactor);
  }

  /** Returns the number of key-value mappings currently in this Map */
  public int size()
  {
    return size;
  }

  /** returns true if there are no key-value mappings currently in this Map */
  public boolean isEmpty()
  {
    return size == 0;
  }

  /** */
  public synchronized Enumeration keys()
  {
    return new Enumerator(Enumerator.KEYS);
  }
  
  public synchronized Enumeration elements()
  {
    return new Enumerator(Enumerator.VALUES);
  }

  /**
   * returns true if this Hashtable contains a value <pre>o</pre>,
   * such that <pre>o.equals(value)</pre>.
   *
   * Note: this is one of the <i>old</i> Hashtable methods which does
   * not like null values; it throws NullPointerException if the
   * supplied parameter is null.
   *
   * @param     value        the value to search for in this Hashtable
   *
   * @throws NullPointerException if <pre>value</pre> is null 
   */
  public synchronized boolean contains(Object value)
  {
    for (int i = 0; i < buckets.length; i++)
      {
	HashMap.Entry e = buckets[i];
	while (e != null)
	  {
	    if (value.equals(e.value))
	      return true;
	    e = e.next;
	  }
      }
    return false;
  }

  /**
   * returns true if this Hashtable contains a value <pre>o</pre>, such that
   * <pre>o.equals(value)</pre>.
   *
   * @param      value       the value to search for in this Hashtable
   *
   * @throws NullPointerException if <pre>value</pre> is null 
   */
  public boolean containsValue(Object value)
  {
    return contains(value);
  }

  /** 
   * returns true if the supplied object equals (<pre>equals()</pre>) a key
   * in this Hashtable 
   *
   * @param       key        the key to search for in this Hashtable
   */
  public synchronized boolean containsKey(Object key)
  {
    int idx = hash(key);
    HashMap.Entry e = buckets[idx];
    while (e != null)
      {
        if (key.equals(e.key))
	  return true;
	e = e.next;
      }
    return false;
  }

  /**
   * return the value in this Hashtable associated with the supplied key, or <pre>null</pre>
   * if the key maps to nothing
   *
   * @param     key      the key for which to fetch an associated value
   */
  public synchronized Object get(Object key)
  {
    int idx = hash(key);
    HashMap.Entry e = buckets[idx];
    while (e != null)
      {
        if (key.equals(e.key))
	  return e.value;
	e = e.next;
      }
    return null;
  }

  /**
   * puts the supplied value into the Map, mapped by the supplied key
   *
   * @param       key        the key used to locate the value
   * @param       value      the value to be stored in the table
   */
  public synchronized Object put(Object key, Object value)
  {
    modCount++;
    int idx = hash(key);
    HashMap.Entry e = buckets[idx];
    HashMap.Entry last = e; // Final entry in bucket's linked list, if any.
    
    // Hashtable does not accept null values. This method doesn't dereference 
    // `value' anywhere, so check for it explicitly.
    if (value == null)
      throw new NullPointerException();

    while (e != null)
      {
        if (key.equals(e.key))
	  {
	    Object r = e.value;
	    e.value = value;
	    return r;
	  }
	else
	  {
	    last = e;
	    e = e.next;
	  }
      }
    
    // At this point, we know we need to add a new entry.
    if (++size > threshold)
      {
	rehash();
	// Need a new hash value to suit the bigger table.
	idx = hash(key);
      }

    e = new Entry(key, value);
    
    if (last != null)
      last.next = e;
    else
      buckets[idx] = e;
    
    return null;
  }

  /**
   * removes from the table and returns the value which is mapped by the 
   * supplied key; if the key maps to nothing, then the table remains 
   * unchanged, and <pre>null</pre> is returned
   *
   * @param    key     the key used to locate the value to remove
   */
  public synchronized Object remove(Object key)
  {
    modCount++;
    int idx = hash(key);
    HashMap.Entry e = buckets[idx];
    HashMap.Entry last = null;

    while (e != null)
      {
        if (key.equals(e.key))
	  {
	    if (last == null)
	      buckets[idx] = e.next;
	    else
	      last.next = e.next;
	    size--;
	    return e.value;
	  }
	last = e;
	e = e.next;
      }
    return null;
  }

  public synchronized void putAll(Map m)
  {
    int msize = m.size();
    Iterator itr = m.entrySet().iterator();
    
    for (int i=0; i < msize; i++)
      {
        Map.Entry e = (Map.Entry) itr.next();
	// Optimize in case the Entry is one of our own.
	if (e instanceof Entry)
	  {
	    Entry entry = (Entry) e;
	    put(entry.key, entry.value);
	  }
	else
	  {
            put(e.getKey(), e.getValue());
	  }
      }
  }
  
  public synchronized void clear()
  {
    modCount++;
    for (int i=0; i < buckets.length; i++)
      {
        buckets[i] = null;
      }
    size = 0;
  }

  /** 
   * returns a shallow clone of this Hashtable (i.e. the Map itself is cloned, 
   * but its contents are not)
   */
  public synchronized Object clone()
  {
    Hashtable copy = null;
    try
      {
        copy = (Hashtable) super.clone();
      }
    catch (CloneNotSupportedException x)
      {
      }
    copy.buckets = new Entry[buckets.length];
    
    for (int i=0; i < buckets.length; i++)
      {
        HashMap.Entry e = buckets[i];
	HashMap.Entry last = null;
	
	while (e != null)
	  {
	    if (last == null)
	      {
		copy.buckets[i] = new Entry(e.key, e.value);
		last = copy.buckets[i];
              }
	    else		
              {
	        last.next = new Entry(e.key, e.value);
		last = last.next;
	      }
	    e = e.next;
	  }
      }
    return copy;
  }
  
  public synchronized String toString()
  {
    Iterator entries = entrySet().iterator();
    StringBuffer r = new StringBuffer("{");
    for (int pos = 0; pos < size; pos++)
      {
        r.append(entries.next());
	if (pos < size - 1)
	  r.append(", ");
      }
    r.append("}");
    return r.toString();    
  }

  /** returns a "set view" of this Hashtable's keys */
  public Set keySet()
  {
    // Create a synchronized AbstractSet with custom implementations of those 
    // methods that can be overriden easily and efficiently.
    Set r = new AbstractSet()
    {
      public int size()
      {
        return size;
      }
      
      public Iterator iterator()
      {
        return new HashIterator(HashIterator.KEYS);
      }
            
      public void clear()
      {
        Hashtable.this.clear();
      }

      public boolean contains(Object o)
      {
        return Hashtable.this.containsKey(o);
      }
      
      public boolean remove(Object o)
      {
        return (Hashtable.this.remove(o) != null);
      }
    };

    return Collections.synchronizedSet(r);
  }
  
  /** Returns a "collection view" (or "bag view") of this Hashtable's values. 
    */
  public Collection values()
  {
    // We don't bother overriding many of the optional methods, as doing so
    // wouldn't provide any significant performance advantage.
    Collection r = new AbstractCollection()
    {
      public int size()
      {
        return size;
      }
      
      public Iterator iterator()
      {
        return new HashIterator(HashIterator.VALUES);
      }
      
      public void clear()
      {
        Hashtable.this.clear();
      }
    };
    
    return Collections.synchronizedCollection(r);
  }

  /** Returns a "set view" of this Hashtable's entries. */
  public Set entrySet()
  {
    // Create an AbstractSet with custom implementations of those methods that 
    // can be overriden easily and efficiently.
    Set r = new AbstractSet()
    {
      public int size()
      {
        return size;
      }
      
      public Iterator iterator()
      {
        return new HashIterator(HashIterator.ENTRIES);
      }
            
      public void clear()
      {
        Hashtable.this.clear();
      }

      public boolean contains(Object o)
      {
        if (!(o instanceof Map.Entry))
	  return false;
	Map.Entry me = (Map.Entry) o;
	HashMap.Entry e = getEntry(me);
	return (e != null);
      }
      
      public boolean remove(Object o)
      {
        if (!(o instanceof Map.Entry))
	  return false;
	Map.Entry me = (Map.Entry) o;
	HashMap.Entry e = getEntry(me);
	if (e != null)
	  {
	    Hashtable.this.remove(e.key);
	    return true;
	  }
	return false;
      }
    };
    
    return Collections.synchronizedSet(r);
  }
  
  /** returns true if this Hashtable equals the supplied Object <pre>o</pre>;
   * that is:
   * <pre>
   * if (o instanceof Map)
   * and
   * o.keySet().equals(keySet())
   * and
   * for each key in o.keySet(), o.get(key).equals(get(key))
   *</pre>
   */
  public boolean equals(Object o)
  {
    if (o == this)
      return true;
    if (!(o instanceof Map))
      return false;

    Map m = (Map) o;
    Set s = m.entrySet();
    Iterator itr = entrySet().iterator();

    if (m.size() != size)
      return false;

    for (int pos = 0; pos < size; pos++)
      {
	if (!s.contains(itr.next()))
	  return false;
      }
    return true;    
  }
  
  /** a Map's hashCode is the sum of the hashCodes of all of its
      Map.Entry objects */
  public int hashCode()
  {
    int hashcode = 0;
    Iterator itr = entrySet().iterator();
    for (int pos = 0; pos < size; pos++)
      {
	hashcode += itr.next().hashCode();
      }
    return hashcode;  
  }
  
  /** Return an index in the buckets array for `key' based on its hashCode() */
  private int hash(Object key)
  {
    return Math.abs(key.hashCode() % buckets.length);
  }

  private HashMap.Entry getEntry(Map.Entry me)
  {
    int idx = hash(me.getKey());
    HashMap.Entry e = buckets[idx];
    while (e != null)
      {
        if (e.equals(me))
	  return e;
	e = e.next;
      }
    return null;
  }
  
  /** 
   * increases the size of the Hashtable and rehashes all keys to new array 
   * indices; this is called when the addition of a new value would cause 
   * size() > threshold. Note that the existing Entry objects are reused in 
   * the new hash table.
   */
  protected void rehash()
  {
    HashMap.Entry[] oldBuckets = buckets;
    
    int newcapacity = (buckets.length * 2) + 1;
    threshold = (int) (newcapacity * loadFactor);
    buckets = new Entry[newcapacity];
    
    for (int i = 0; i < oldBuckets.length; i++)
      {
	HashMap.Entry e = oldBuckets[i];
        while (e != null)
	  {
	    int idx = hash(e.key);
	    HashMap.Entry dest = buckets[idx];

	    if (dest != null)
	      {
		while (dest.next != null)
        	  dest = dest.next;
		dest.next = e;
	      }
	    else
	      {
        	buckets[idx] = e;
	      }

	    HashMap.Entry next = e.next;
	    e.next = null;
	    e = next;
	  }
      }
  }

  /**
   * Serializes this object to the given stream.
   * @serialdata the <i>capacity</i>(int) that is the length of the
   * bucket array, the <i>size</i>(int) of the hash map are emitted
   * first.  They are followed by size entries, each consisting of
   * a key (Object) and a value (Object).
   */
  private void writeObject(ObjectOutputStream s) throws IOException
  {
    // the threshold and loadFactor fields
    s.defaultWriteObject();

    s.writeInt(buckets.length);
    s.writeInt(size);
    Iterator it = entrySet().iterator();
    while (it.hasNext())
      {
	Map.Entry entry = (Map.Entry) it.next();
	s.writeObject(entry.getKey());
	s.writeObject(entry.getValue());
      }
  }

  /**
   * Deserializes this object from the given stream.
   * @serialdata the <i>capacity</i>(int) that is the length of the
   * bucket array, the <i>size</i>(int) of the hash map are emitted
   * first.  They are followed by size entries, each consisting of
   * a key (Object) and a value (Object).
   */
  private void readObject(ObjectInputStream s)
    throws IOException, ClassNotFoundException
  {
    // the threshold and loadFactor fields
    s.defaultReadObject();

    int capacity = s.readInt();
    int len = s.readInt();
    size = 0;
    modCount = 0;
    buckets = new Entry[capacity];

    for (int i = 0; i < len; i++)
      {
	Object key = s.readObject();
	Object value = s.readObject();
	put(key, value);
      }
  }

  /**
   * a class which implements the Iterator interface and is used for
   * iterating over Hashtables;
   * this implementation is parameterized to give a sequential view of
   * keys, values, or entries; it also allows the removal of elements, 
   * as per the Javasoft spec.
   *
   * @author       Jon Zeppieri
   * @version      $Revision: 1.8 $
   * @modified     $Id: HashMap.java,v 1.8 2000/10/26 10:19:00 bryce Exp $
   */
  class HashIterator implements Iterator
  {
    static final int KEYS = 0,
                     VALUES = 1,
		     ENTRIES = 2;
		    
    // The type of this Iterator: KEYS, VALUES, or ENTRIES.
    int type;
    // The number of modifications to the backing Hashtable that we know about.
    int knownMod;
    // The total number of elements returned by next(). Used to determine if
    // there are more elements remaining.
    int count;
    // Current index in the physical hash table.
    int idx;
    // The last Entry returned by a next() call.
    HashMap.Entry last;
    // The next entry that should be returned by next(). It is set to something
    // if we're iterating through a bucket that contains multiple linked 
    // entries. It is null if next() needs to find a new bucket.
    HashMap.Entry next;

    /* Construct a new HashIterator with the supplied type: 
       KEYS, VALUES, or ENTRIES */
    HashIterator(int type)
    {
      this.type = type;
      knownMod = Hashtable.this.modCount;
      count = 0;
      idx = buckets.length;
    }

    /** returns true if the Iterator has more elements */
    public boolean hasNext()
    {
      if (knownMod != Hashtable.this.modCount)
	throw new ConcurrentModificationException();
      return count < size;
    }

    /** Returns the next element in the Iterator's sequential view. */
    public Object next()
    {
      if (knownMod != Hashtable.this.modCount)
	throw new ConcurrentModificationException();
      if (count == size)
        throw new NoSuchElementException();
      count++;
      HashMap.Entry e = null;
      if (next != null)
        e = next;

      while (e == null)
        {
	  e = buckets[--idx];
	}

      next = e.next;
      last = e;
      if (type == VALUES)
        return e.value;
      else if (type == KEYS)
        return e.key;
      return e;
    }

    /** 
     * Removes from the backing Hashtable the last element which was fetched 
     * with the <pre>next()</pre> method.
     */
    public void remove()
    {
      if (knownMod != Hashtable.this.modCount)
	throw new ConcurrentModificationException();
      if (last == null)
	{
	  throw new IllegalStateException();
	}
      else
	{
	  Hashtable.this.remove(last.key);
	  knownMod++;
	  count--;
	  last = null;
	}
    }
  }


  /**
   * Enumeration view of this Hashtable, providing sequential access to its 
   * elements; this implementation is parameterized to provide access either 
   * to the keys or to the values in the Hashtable.
   *
   * <b>NOTE: Enumeration is not safe if new elements are put in the table as
   * this could cause a rehash and we'd completely lose our place.  Even
   * without a rehash, it is undetermined if a new element added would
   * appear in the enumeration.  The spec says nothing about this, but
   * the "Java Class Libraries" book infers that modifications to the
   * hashtable during enumeration causes indeterminate results.  Don't do it!
   *
   * @author       Jon Zeppieri
   * @version      $Revision: 1.6 $
   * @modified $Id: Hashtable.java,v 1.6 2000/08/19 18:19:42 green Exp $ */
  class Enumerator implements Enumeration
  {
    static final int KEYS = 0;
    static final int VALUES = 1;
    
    int type;
    // The total number of elements returned by nextElement(). Used to 
    // determine if there are more elements remaining.
    int count;
    // current index in the physical hash table.
    int idx;
    // the last Entry returned.
    HashMap.Entry last;
    
    Enumerator(int type)
    {
      this.type = type;
      this.count = 0;
      this.idx = buckets.length;
    }

    public boolean hasMoreElements()
    {
      return count < Hashtable.this.size;    
    }

    public Object nextElement()
    {
      if (count >= size)
        throw new NoSuchElementException();
      count++;
      HashMap.Entry e;
      if (last != null)
        e = last.next;

      while (e == null)
        {
	  e = buckets[--idx];
	}

      last = e;
      if (type == VALUES)
        return e.value;
      return e.key;
    }
  }  
}