aboutsummaryrefslogtreecommitdiff
path: root/libjava/java/sql/Clob.java
blob: a256512550bb4cbc8f2d1dad6818d07f10113ef8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
/* Clob.java -- Access Character Large OBjects
   Copyright (C) 1999, 2000, 2002 Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
 
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */

package java.sql;

import java.io.InputStream;
import java.io.OutputStream;
import java.io.Reader;
import java.io.Writer;

/**
 * This interface contains methods for accessing a SQL CLOB (Character
 * Large OBject) type.
 *
 * @author Aaron M. Renn (arenn@urbanophile.com)
 */
public interface Clob 
{
 /**
  * This method returns the number of characters in the CLOB.
  *
  * @return The number of characters in the CLOB.
  * @exception SQLException If an error occurs.
  * @since 1.2
  */
  public long length() throws SQLException;

  /**
   * This method returns the specified portion of the CLOB as a 
   * <code>String</code>. 
   *
   * @param offset The index into the CLOB (index values start at 1) to 
   *        start returning characters from.
   * @param length The requested number of characters to return.
   * @return The requested CLOB section, as a <code>String</code>.
   * @exception SQLException If an error occurs.
   * @since 1.2
   */
  public String getSubString(long pos, int length) throws SQLException;

  /**
   * This method returns a character stream that reads the contents of the
   * CLOB.
   *
   * @return A character stream to read the CLOB's contents.
   * @exception SQLException If an error occurs.
   * @since 1.2
   */
  public Reader getCharacterStream() throws SQLException;

  /**
   * This method returns a byte stream that reads the contents of the
   * CLOB as a series of ASCII bytes.
   *
   * @return A stream to read the CLOB's contents.
   * @exception SQLException If an error occurs.
   * @since 1.2
   */
  public InputStream getAsciiStream() throws SQLException;

  /**
   * This method returns the index into the CLOB of the first occurrence of
   * the specified character pattern (supplied by the caller as a
   * <code>String</code>).  The search begins at the specified index.
   *
   * @param searchstr The character pattern to search for, passed as a
   *        <code>String</code>.
   * @param start.  The index into the CLOB to start search (indexes start
   *        at 1).
   * @return The index at which the pattern was found (indexes start at 1),
   *         or -1 if the pattern was not found.
   * @exception SQLException If an error occurs.
   * @since 1.2
   */
  public long position(String searchstr, long start) throws SQLException;

  /**
   * This method returns the index into the CLOB of the first occurrence of
   * the specified character pattern (supplied by the caller as a
   * <code>Clob</code>).  The search begins at the specified index.
   *
   * @param searchstr The character pattern to search for, passed as a
   *        <code>Clob</code>.
   * @param start.  The index into the CLOB to start search (indexes start
   *        at 1).
   * @return The index at which the pattern was found (indexes start at 1),
   *         or -1 if the pattern was not found.
   * @exception SQLException If an error occurs.
   * @since 1.2
   */
  public long position(Clob searchstr, long start) throws SQLException;

  /**
   * @since 1.4
   */
  public int setString(long pos, String str) throws SQLException;

  /**
   * @since 1.4
   */
  public int setString(long pos, String str, int offset, int len)
    throws SQLException;

  /**
   * @since 1.4
   */
  public OutputStream setAsciiStream(long pos) throws SQLException;

  /**
   * @since 1.4
   */
  public Writer setCharacterStream(long pos) throws SQLException;

  /**
   * @since 1.4
   */
  public void truncate(long len) throws SQLException;
}
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721

/***************************************************************************
 *   Copyright (C) 2005 by Dominic Rath                                    *
 *   Dominic.Rath@gmx.de                                                   *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
 ***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "arm920t.h"
#include <helper/time_support.h>
#include "target_type.h"
#include "register.h"
#include "arm_opcodes.h"

/*
 * For information about the ARM920T, see ARM DDI 0151C especially
 * Chapter 9 about debug support, which shows how to manipulate each
 * of the different scan chains:
 *
 *   0 ... ARM920 signals, e.g. to rest of SOC (unused here)
 *   1 ... debugging; watchpoint and breakpoint status, etc; also
 *	MMU and cache access in conjunction with scan chain 15
 *   2 ... EmbeddedICE
 *   3 ... external boundary scan (SoC-specific, unused here)
 *   4 ... access to cache tag RAM
 *   6 ... ETM9
 *   15 ... access coprocessor 15, "physical" or "interpreted" modes
 *	"interpreted" works with a few actual MRC/MCR instructions
 *	"physical" provides register-like behaviors.  Section 9.6.7
 *	covers these details.
 *
 * The ARM922T is similar, but with smaller caches (8K each, vs 16K).
 */

#if 0
#define _DEBUG_INSTRUCTION_EXECUTION_
#endif

/* Table 9-8 shows scan chain 15 format during physical access mode, using a
 * dedicated 6-bit address space (encoded in bits 33:38).  Writes use one
 * JTAG scan, while reads use two.
 *
 * Table 9-9 lists the thirteen registers which support physical access.
 * ARM920T_CP15_PHYS_ADDR() constructs the 6-bit reg_addr parameter passed
 * to arm920t_read_cp15_physical() and arm920t_write_cp15_physical().
 *
 *  x == bit[38]
 *  y == bits[37:34]
 *  z == bit[33]
 */
#define ARM920T_CP15_PHYS_ADDR(x, y, z) ((x << 5) | (y << 1) << (z))

/* Registers supporting physical Read access (from table 9-9) */
#define CP15PHYS_CACHETYPE      ARM920T_CP15_PHYS_ADDR(0, 0x0, 1)
#define CP15PHYS_ICACHE_IDX     ARM920T_CP15_PHYS_ADDR(1, 0xd, 1)
#define CP15PHYS_DCACHE_IDX     ARM920T_CP15_PHYS_ADDR(1, 0xe, 1)
/* NOTE: several more registers support only physical read access */

/* Registers supporting physical Read/Write access (from table 9-9) */
#define CP15PHYS_CTRL           ARM920T_CP15_PHYS_ADDR(0, 0x1, 0)
#define CP15PHYS_PID            ARM920T_CP15_PHYS_ADDR(0, 0xd, 0)
#define CP15PHYS_TESTSTATE      ARM920T_CP15_PHYS_ADDR(0, 0xf, 0)
#define CP15PHYS_ICACHE         ARM920T_CP15_PHYS_ADDR(1, 0x1, 1)
#define CP15PHYS_DCACHE         ARM920T_CP15_PHYS_ADDR(1, 0x2, 1)

static int arm920t_read_cp15_physical(struct target *target,
	int reg_addr, uint32_t *value)
{
	struct arm920t_common *arm920t = target_to_arm920(target);
	struct arm_jtag *jtag_info;
	struct scan_field fields[4];
	uint8_t access_type_buf = 1;
	uint8_t reg_addr_buf = reg_addr & 0x3f;
	uint8_t nr_w_buf = 0;
	int retval;

	jtag_info = &arm920t->arm7_9_common.jtag_info;

	retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
	if (retval != ERROR_OK)
		return retval;
	retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
	if (retval != ERROR_OK)
		return retval;

	fields[0].num_bits = 1;
	fields[0].out_value = &access_type_buf;
	fields[0].in_value = NULL;

	fields[1].num_bits = 32;
	fields[1].out_value = NULL;
	fields[1].in_value = NULL;

	fields[2].num_bits = 6;
	fields[2].out_value = &reg_addr_buf;
	fields[2].in_value = NULL;

	fields[3].num_bits = 1;
	fields[3].out_value = &nr_w_buf;
	fields[3].in_value = NULL;

	jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);

	fields[1].in_value = (uint8_t *)value;

	jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);

	jtag_add_callback(arm_le_to_h_u32, (jtag_callback_data_t)value);

#ifdef _DEBUG_INSTRUCTION_EXECUTION_
	jtag_execute_queue();
	LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, *value);
#endif

	return ERROR_OK;
}

static int arm920t_write_cp15_physical(struct target *target,
	int reg_addr, uint32_t value)
{
	struct arm920t_common *arm920t = target_to_arm920(target);
	struct arm_jtag *jtag_info;
	struct scan_field fields[4];
	uint8_t access_type_buf = 1;
	uint8_t reg_addr_buf = reg_addr & 0x3f;
	uint8_t nr_w_buf = 1;
	uint8_t value_buf[4];
	int retval;

	jtag_info = &arm920t->arm7_9_common.jtag_info;

	buf_set_u32(value_buf, 0, 32, value);

	retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
	if (retval != ERROR_OK)
		return retval;
	retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
	if (retval != ERROR_OK)
		return retval;

	fields[0].num_bits = 1;
	fields[0].out_value = &access_type_buf;
	fields[0].in_value = NULL;

	fields[1].num_bits = 32;
	fields[1].out_value = value_buf;
	fields[1].in_value = NULL;

	fields[2].num_bits = 6;
	fields[2].out_value = &reg_addr_buf;
	fields[2].in_value = NULL;

	fields[3].num_bits = 1;
	fields[3].out_value = &nr_w_buf;
	fields[3].in_value = NULL;

	jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);

#ifdef _DEBUG_INSTRUCTION_EXECUTION_
	LOG_DEBUG("addr: 0x%x value: %8.8x", reg_addr, value);
#endif

	return ERROR_OK;
}

/* See table 9-10 for scan chain 15 format during interpreted access mode.
 * If the TESTSTATE register is set for interpreted access, certain CP15
 * MRC and MCR instructions may be executed through scan chain 15.
 *
 * Tables 9-11, 9-12, and 9-13 show which MRC and MCR instructions can be
 * executed using scan chain 15 interpreted mode.
 */
static int arm920t_execute_cp15(struct target *target, uint32_t cp15_opcode,
	uint32_t arm_opcode)
{
	int retval;
	struct arm920t_common *arm920t = target_to_arm920(target);
	struct arm_jtag *jtag_info;
	struct scan_field fields[4];
	uint8_t access_type_buf = 0;		/* interpreted access */
	uint8_t reg_addr_buf = 0x0;
	uint8_t nr_w_buf = 0;
	uint8_t cp15_opcode_buf[4];

	jtag_info = &arm920t->arm7_9_common.jtag_info;

	retval = arm_jtag_scann(jtag_info, 0xf, TAP_IDLE);
	if (retval != ERROR_OK)
		return retval;
	retval = arm_jtag_set_instr(jtag_info->tap, jtag_info->intest_instr, NULL, TAP_IDLE);
	if (retval != ERROR_OK)
		return retval;

	buf_set_u32(cp15_opcode_buf, 0, 32, cp15_opcode);

	fields[0].num_bits = 1;
	fields[0].out_value = &access_type_buf;
	fields[0].in_value = NULL;

	fields[1].num_bits = 32;
	fields[1].out_value = cp15_opcode_buf;
	fields[1].in_value = NULL;

	fields[2].num_bits = 6;
	fields[2].out_value = &reg_addr_buf;
	fields[2].in_value = NULL;

	fields[3].num_bits = 1;
	fields[3].out_value = &nr_w_buf;
	fields[3].in_value = NULL;

	jtag_add_dr_scan(jtag_info->tap, 4, fields, TAP_IDLE);

	arm9tdmi_clock_out(jtag_info, arm_opcode, 0, NULL, 0);
	arm9tdmi_clock_out(jtag_info, ARMV4_5_NOP, 0, NULL, 1);
	retval = arm7_9_execute_sys_speed(target);
	if (retval != ERROR_OK)
		return retval;

	retval = jtag_execute_queue();
	if (retval != ERROR_OK) {
		LOG_ERROR("failed executing JTAG queue");
		return retval;
	}

	return ERROR_OK;
}

static int arm920t_read_cp15_interpreted(struct target *target,
	uint32_t cp15_opcode, uint32_t address, uint32_t *value)
{
	struct arm *arm = target_to_arm(target);
	uint32_t *regs_p[1];
	uint32_t regs[2];
	uint32_t cp15c15 = 0x0;
	struct reg *r = arm->core_cache->reg_list;

	/* load address into R1 */
	regs[1] = address;
	arm9tdmi_write_core_regs(target, 0x2, regs);

	/* read-modify-write CP15 test state register
	* to enable interpreted access mode */
	arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
	jtag_execute_queue();
	cp15c15 |= 1;	/* set interpret mode */
	arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);

	/* execute CP15 instruction and ARM load (reading from coprocessor) */
	arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_LDR(0, 1));

	/* disable interpreted access mode */
	cp15c15 &= ~1U;	/* clear interpret mode */
	arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);

	/* retrieve value from R0 */
	regs_p[0] = value;
	arm9tdmi_read_core_regs(target, 0x1, regs_p);
	jtag_execute_queue();

#ifdef _DEBUG_INSTRUCTION_EXECUTION_
	LOG_DEBUG("cp15_opcode: %8.8x, address: %8.8x, value: %8.8x",
		cp15_opcode, address, *value);
#endif

	if (!is_arm_mode(arm->core_mode)) {
		LOG_ERROR("not a valid arm core mode - communication failure?");
		return ERROR_FAIL;
	}

	r[0].dirty = true;
	r[1].dirty = true;

	return ERROR_OK;
}

static
int arm920t_write_cp15_interpreted(struct target *target,
	uint32_t cp15_opcode, uint32_t value, uint32_t address)
{
	uint32_t cp15c15 = 0x0;
	struct arm *arm = target_to_arm(target);
	uint32_t regs[2];
	struct reg *r = arm->core_cache->reg_list;

	/* load value, address into R0, R1 */
	regs[0] = value;
	regs[1] = address;
	arm9tdmi_write_core_regs(target, 0x3, regs);

	/* read-modify-write CP15 test state register
	* to enable interpreted access mode */
	arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
	jtag_execute_queue();
	cp15c15 |= 1;	/* set interpret mode */
	arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);

	/* execute CP15 instruction and ARM store (writing to coprocessor) */
	arm920t_execute_cp15(target, cp15_opcode, ARMV4_5_STR(0, 1));

	/* disable interpreted access mode */
	cp15c15 &= ~1U;	/* set interpret mode */
	arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);

#ifdef _DEBUG_INSTRUCTION_EXECUTION_
	LOG_DEBUG("cp15_opcode: %8.8x, value: %8.8x, address: %8.8x",
		cp15_opcode, value, address);
#endif

	if (!is_arm_mode(arm->core_mode)) {
		LOG_ERROR("not a valid arm core mode - communication failure?");
		return ERROR_FAIL;
	}

	r[0].dirty = true;
	r[1].dirty = true;

	return ERROR_OK;
}

/* EXPORTED to FA256 */
int arm920t_get_ttb(struct target *target, uint32_t *result)
{
	int retval;
	uint32_t ttb = 0x0;

	retval = arm920t_read_cp15_interpreted(target,
			/* FIXME use opcode macro */
			0xeebf0f51, 0x0, &ttb);
	if (retval != ERROR_OK)
		return retval;

	*result = ttb;
	return ERROR_OK;
}

/* EXPORTED to FA256 */
int arm920t_disable_mmu_caches(struct target *target, int mmu,
	int d_u_cache, int i_cache)
{
	uint32_t cp15_control;
	int retval;

	/* read cp15 control register */
	retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
	if (retval != ERROR_OK)
		return retval;
	retval = jtag_execute_queue();
	if (retval != ERROR_OK)
		return retval;

	if (mmu)
		cp15_control &= ~0x1U;

	if (d_u_cache)
		cp15_control &= ~0x4U;

	if (i_cache)
		cp15_control &= ~0x1000U;

	retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
	return retval;
}

/* EXPORTED to FA256 */
int arm920t_enable_mmu_caches(struct target *target, int mmu,
	int d_u_cache, int i_cache)
{
	uint32_t cp15_control;
	int retval;

	/* read cp15 control register */
	retval = arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_control);
	if (retval != ERROR_OK)
		return retval;
	retval = jtag_execute_queue();
	if (retval != ERROR_OK)
		return retval;

	if (mmu)
		cp15_control |= 0x1U;

	if (d_u_cache)
		cp15_control |= 0x4U;

	if (i_cache)
		cp15_control |= 0x1000U;

	retval = arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_control);
	return retval;
}

/* EXPORTED to FA256 */
int arm920t_post_debug_entry(struct target *target)
{
	uint32_t cp15c15;
	struct arm920t_common *arm920t = target_to_arm920(target);
	int retval;

	/* examine cp15 control reg */
	retval = arm920t_read_cp15_physical(target,
			CP15PHYS_CTRL, &arm920t->cp15_control_reg);
	if (retval != ERROR_OK)
		return retval;
	retval = jtag_execute_queue();
	if (retval != ERROR_OK)
		return retval;
	LOG_DEBUG("cp15_control_reg: %8.8" PRIx32, arm920t->cp15_control_reg);

	if (arm920t->armv4_5_mmu.armv4_5_cache.ctype == -1) {
		uint32_t cache_type_reg;
		/* identify caches */
		retval = arm920t_read_cp15_physical(target,
				CP15PHYS_CACHETYPE, &cache_type_reg);
		if (retval != ERROR_OK)
			return retval;
		retval = jtag_execute_queue();
		if (retval != ERROR_OK)
			return retval;
		armv4_5_identify_cache(cache_type_reg,
			&arm920t->armv4_5_mmu.armv4_5_cache);
	}

	arm920t->armv4_5_mmu.mmu_enabled =
		(arm920t->cp15_control_reg & 0x1U) ? 1 : 0;
	arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled =
		(arm920t->cp15_control_reg & 0x4U) ? 1 : 0;
	arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled =
		(arm920t->cp15_control_reg & 0x1000U) ? 1 : 0;

	/* save i/d fault status and address register
	 * FIXME use opcode macros */
	retval = arm920t_read_cp15_interpreted(target, 0xee150f10, 0x0, &arm920t->d_fsr);
	if (retval != ERROR_OK)
		return retval;
	retval = arm920t_read_cp15_interpreted(target, 0xee150f30, 0x0, &arm920t->i_fsr);
	if (retval != ERROR_OK)
		return retval;
	retval = arm920t_read_cp15_interpreted(target, 0xee160f10, 0x0, &arm920t->d_far);
	if (retval != ERROR_OK)
		return retval;
	retval = arm920t_read_cp15_interpreted(target, 0xee160f30, 0x0, &arm920t->i_far);
	if (retval != ERROR_OK)
		return retval;

	LOG_DEBUG("D FSR: 0x%8.8" PRIx32 ", D FAR: 0x%8.8" PRIx32
		", I FSR: 0x%8.8" PRIx32 ", I FAR: 0x%8.8" PRIx32,
		arm920t->d_fsr, arm920t->d_far, arm920t->i_fsr, arm920t->i_far);

	if (arm920t->preserve_cache) {
		/* read-modify-write CP15 test state register
		 * to disable I/D-cache linefills */
		retval = arm920t_read_cp15_physical(target,
				CP15PHYS_TESTSTATE, &cp15c15);
		if (retval != ERROR_OK)
			return retval;
		retval = jtag_execute_queue();
		if (retval != ERROR_OK)
			return retval;
		cp15c15 |= 0x600;
		retval = arm920t_write_cp15_physical(target,
				CP15PHYS_TESTSTATE, cp15c15);
		if (retval != ERROR_OK)
			return retval;
	}
	return ERROR_OK;
}

/* EXPORTED to FA256 */
void arm920t_pre_restore_context(struct target *target)
{
	uint32_t cp15c15;
	struct arm920t_common *arm920t = target_to_arm920(target);

	/* restore i/d fault status and address register */
	arm920t_write_cp15_interpreted(target, 0xee050f10, arm920t->d_fsr, 0x0);
	arm920t_write_cp15_interpreted(target, 0xee050f30, arm920t->i_fsr, 0x0);
	arm920t_write_cp15_interpreted(target, 0xee060f10, arm920t->d_far, 0x0);
	arm920t_write_cp15_interpreted(target, 0xee060f30, arm920t->i_far, 0x0);

	/* read-modify-write CP15 test state register
	* to reenable I/D-cache linefills */
	if (arm920t->preserve_cache) {
		arm920t_read_cp15_physical(target,
			CP15PHYS_TESTSTATE, &cp15c15);
		jtag_execute_queue();
		cp15c15 &= ~0x600U;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);
	}
}

static const char arm920_not[] = "target is not an ARM920";

static int arm920t_verify_pointer(struct command_context *cmd_ctx,
	struct arm920t_common *arm920t)
{
	if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
		command_print(cmd_ctx, arm920_not);
		return ERROR_TARGET_INVALID;
	}

	return ERROR_OK;
}

/** Logs summary of ARM920 state for a halted target. */
int arm920t_arch_state(struct target *target)
{
	static const char *state[] = {
		"disabled", "enabled"
	};

	struct arm920t_common *arm920t = target_to_arm920(target);

	if (arm920t->common_magic != ARM920T_COMMON_MAGIC) {
		LOG_ERROR("BUG: %s", arm920_not);
		return ERROR_TARGET_INVALID;
	}

	arm_arch_state(target);
	LOG_USER("MMU: %s, D-Cache: %s, I-Cache: %s",
		state[arm920t->armv4_5_mmu.mmu_enabled],
		state[arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled],
		state[arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled]);

	return ERROR_OK;
}

static int arm920_mmu(struct target *target, int *enabled)
{
	if (target->state != TARGET_HALTED) {
		LOG_ERROR("%s: target not halted", __func__);
		return ERROR_TARGET_INVALID;
	}

	*enabled = target_to_arm920(target)->armv4_5_mmu.mmu_enabled;
	return ERROR_OK;
}

static int arm920_virt2phys(struct target *target,
	target_addr_t virt, target_addr_t *phys)
{
	uint32_t cb;
	struct arm920t_common *arm920t = target_to_arm920(target);

	uint32_t ret;
	int retval = armv4_5_mmu_translate_va(target,
			&arm920t->armv4_5_mmu, virt, &cb, &ret);
	if (retval != ERROR_OK)
		return retval;
	*phys = ret;
	return ERROR_OK;
}

/** Reads a buffer, in the specified word size, with current MMU settings. */
int arm920t_read_memory(struct target *target, target_addr_t address,
	uint32_t size, uint32_t count, uint8_t *buffer)
{
	int retval;

	retval = arm7_9_read_memory(target, address, size, count, buffer);

	return retval;
}


static int arm920t_read_phys_memory(struct target *target,
	target_addr_t address, uint32_t size,
	uint32_t count, uint8_t *buffer)
{
	struct arm920t_common *arm920t = target_to_arm920(target);

	return armv4_5_mmu_read_physical(target, &arm920t->armv4_5_mmu,
		address, size, count, buffer);
}

static int arm920t_write_phys_memory(struct target *target,
	target_addr_t address, uint32_t size,
	uint32_t count, const uint8_t *buffer)
{
	struct arm920t_common *arm920t = target_to_arm920(target);

	return armv4_5_mmu_write_physical(target, &arm920t->armv4_5_mmu,
		address, size, count, buffer);
}

/** Writes a buffer, in the specified word size, with current MMU settings. */
int arm920t_write_memory(struct target *target, target_addr_t address,
	uint32_t size, uint32_t count, const uint8_t *buffer)
{
	int retval;
	const uint32_t cache_mask = ~0x1f;	/* cache line size : 32 byte */
	struct arm920t_common *arm920t = target_to_arm920(target);

	/* FIX!!!! this should be cleaned up and made much more general. The
	 * plan is to write up and test on arm920t specifically and
	 * then generalize and clean up afterwards.
	 *
	 * Also it should be moved to the callbacks that handle breakpoints
	 * specifically and not the generic memory write fn's. See XScale code.
	 */
	if (arm920t->armv4_5_mmu.mmu_enabled && (count == 1) &&
			((size == 2) || (size == 4))) {
		/* special case the handling of single word writes to
		 * bypass MMU, to allow implementation of breakpoints
		 * in memory marked read only
		 * by MMU
		 */
		uint32_t cb;
		uint32_t pa;

		/*
		 * We need physical address and cb
		 */
		retval = armv4_5_mmu_translate_va(target, &arm920t->armv4_5_mmu,
				address, &cb, &pa);
		if (retval != ERROR_OK)
			return retval;

		if (arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled) {
			if (cb & 0x1) {
				LOG_DEBUG("D-Cache buffered, "
					"drain write buffer");
				/*
				 * Buffered ?
				 * Drain write buffer - MCR p15,0,Rd,c7,c10,4
				 */

				retval = arm920t_write_cp15_interpreted(target,
						ARMV4_5_MCR(15, 0, 0, 7, 10, 4),
						0x0, 0);
				if (retval != ERROR_OK)
					return retval;
			}

			if (cb == 0x3) {
				/*
				 * Write back memory ? -> clean cache
				 *
				 * There is no way to clean cache lines using
				 * cp15 scan chain, so copy the full cache
				 * line from cache to physical memory.
				 */
				uint8_t data[32];

				LOG_DEBUG("D-Cache in 'write back' mode, "
					"flush cache line");

				retval = target_read_memory(target,
						address & cache_mask, 1,
						sizeof(data), &data[0]);
				if (retval != ERROR_OK)
					return retval;

				retval = armv4_5_mmu_write_physical(target,
						&arm920t->armv4_5_mmu,
						pa & cache_mask, 1,
						sizeof(data), &data[0]);
				if (retval != ERROR_OK)
					return retval;
			}

			/* Cached ? */
			if (cb & 0x2) {
				/*
				 * Cached ? -> Invalidate data cache using MVA
				 *
				 * MCR p15,0,Rd,c7,c6,1
				 */
				LOG_DEBUG("D-Cache enabled, "
					"invalidate cache line");

				retval = arm920t_write_cp15_interpreted(target,
						ARMV4_5_MCR(15, 0, 0, 7, 6, 1), 0x0,
						address & cache_mask);
				if (retval != ERROR_OK)
					return retval;
			}
		}

		/* write directly to physical memory,
		 * bypassing any read only MMU bits, etc.
		 */
		retval = armv4_5_mmu_write_physical(target,
				&arm920t->armv4_5_mmu, pa, size,
				count, buffer);
		if (retval != ERROR_OK)
			return retval;
	} else {
		retval = arm7_9_write_memory(target, address, size, count, buffer);
		if (retval != ERROR_OK)
			return retval;
	}

	/* If ICache is enabled, we have to invalidate affected ICache lines
	 * the DCache is forced to write-through,
	 * so we don't have to clean it here
	 */
	if (arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled) {
		if (count <= 1) {
			/* invalidate ICache single entry with MVA
			 *   mcr	15, 0, r0, cr7, cr5, {1}
			 */
			LOG_DEBUG("I-Cache enabled, "
				"invalidating affected I-Cache line");
			retval = arm920t_write_cp15_interpreted(target,
					ARMV4_5_MCR(15, 0, 0, 7, 5, 1),
					0x0, address & cache_mask);
			if (retval != ERROR_OK)
				return retval;
		} else {
			/* invalidate ICache
			 *  mcr	15, 0, r0, cr7, cr5, {0}
			 */
			retval = arm920t_write_cp15_interpreted(target,
					ARMV4_5_MCR(15, 0, 0, 7, 5, 0),
					0x0, 0x0);
			if (retval != ERROR_OK)
				return retval;
		}
	}

	return ERROR_OK;
}

/* EXPORTED to FA256 */
int arm920t_soft_reset_halt(struct target *target)
{
	int retval = ERROR_OK;
	struct arm920t_common *arm920t = target_to_arm920(target);
	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
	struct arm *arm = &arm7_9->arm;
	struct reg *dbg_stat = &arm7_9->eice_cache->reg_list[EICE_DBG_STAT];

	retval = target_halt(target);
	if (retval != ERROR_OK)
		return retval;

	int64_t then = timeval_ms();
	bool timeout;
	while (!(timeout = ((timeval_ms()-then) > 1000))) {
		if (buf_get_u32(dbg_stat->value, EICE_DBG_STATUS_DBGACK, 1) == 0) {
			embeddedice_read_reg(dbg_stat);
			retval = jtag_execute_queue();
			if (retval != ERROR_OK)
				return retval;
		} else
			break;
		if (debug_level >= 3) {
			/* do not eat all CPU, time out after 1 se*/
			alive_sleep(100);
		} else
			keep_alive();
	}
	if (timeout) {
		LOG_ERROR("Failed to halt CPU after 1 sec");
		return ERROR_TARGET_TIMEOUT;
	}

	target->state = TARGET_HALTED;

	/* SVC, ARM state, IRQ and FIQ disabled */
	uint32_t cpsr;

	cpsr = buf_get_u32(arm->cpsr->value, 0, 32);
	cpsr &= ~0xff;
	cpsr |= 0xd3;
	arm_set_cpsr(arm, cpsr);
	arm->cpsr->dirty = true;

	/* start fetching from 0x0 */
	buf_set_u32(arm->pc->value, 0, 32, 0x0);
	arm->pc->dirty = true;
	arm->pc->valid = true;

	arm920t_disable_mmu_caches(target, 1, 1, 1);
	arm920t->armv4_5_mmu.mmu_enabled = 0;
	arm920t->armv4_5_mmu.armv4_5_cache.d_u_cache_enabled = 0;
	arm920t->armv4_5_mmu.armv4_5_cache.i_cache_enabled = 0;

	return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
}

/* FIXME remove forward decls */
static int arm920t_mrc(struct target *target, int cpnum,
		uint32_t op1, uint32_t op2,
		uint32_t CRn, uint32_t CRm,
		uint32_t *value);
static int arm920t_mcr(struct target *target, int cpnum,
		uint32_t op1, uint32_t op2,
		uint32_t CRn, uint32_t CRm,
		uint32_t value);

static int arm920t_init_arch_info(struct target *target,
	struct arm920t_common *arm920t, struct jtag_tap *tap)
{
	struct arm7_9_common *arm7_9 = &arm920t->arm7_9_common;

	arm7_9->arm.mrc = arm920t_mrc;
	arm7_9->arm.mcr = arm920t_mcr;

	/* initialize arm7/arm9 specific info (including armv4_5) */
	arm9tdmi_init_arch_info(target, arm7_9, tap);

	arm920t->common_magic = ARM920T_COMMON_MAGIC;

	arm7_9->post_debug_entry = arm920t_post_debug_entry;
	arm7_9->pre_restore_context = arm920t_pre_restore_context;
	arm7_9->write_memory = arm920t_write_memory;

	arm920t->armv4_5_mmu.armv4_5_cache.ctype = -1;
	arm920t->armv4_5_mmu.get_ttb = arm920t_get_ttb;
	arm920t->armv4_5_mmu.read_memory = arm7_9_read_memory;
	arm920t->armv4_5_mmu.write_memory = arm7_9_write_memory;
	arm920t->armv4_5_mmu.disable_mmu_caches = arm920t_disable_mmu_caches;
	arm920t->armv4_5_mmu.enable_mmu_caches = arm920t_enable_mmu_caches;
	arm920t->armv4_5_mmu.has_tiny_pages = 1;
	arm920t->armv4_5_mmu.mmu_enabled = 0;

	/* disabling linefills leads to lockups, so keep them enabled for now
	 * this doesn't affect correctness, but might affect timing issues, if
	 * important data is evicted from the cache during the debug session
	 * */
	arm920t->preserve_cache = 0;

	/* override hw single-step capability from ARM9TDMI */
	arm7_9->has_single_step = 1;

	return ERROR_OK;
}

static int arm920t_target_create(struct target *target, Jim_Interp *interp)
{
	struct arm920t_common *arm920t;

	arm920t = calloc(1, sizeof(struct arm920t_common));
	return arm920t_init_arch_info(target, arm920t, target->tap);
}

COMMAND_HANDLER(arm920t_handle_read_cache_command)
{
	int retval = ERROR_OK;
	struct target *target = get_current_target(CMD_CTX);
	struct arm920t_common *arm920t = target_to_arm920(target);
	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
	struct arm *arm = &arm7_9->arm;
	uint32_t cp15c15;
	uint32_t cp15_ctrl, cp15_ctrl_saved;
	uint32_t regs[16];
	uint32_t *regs_p[16];
	uint32_t C15_C_D_Ind, C15_C_I_Ind;
	int i;
	FILE *output;
	int segment, index_t;
	struct reg *r;

	retval = arm920t_verify_pointer(CMD_CTX, arm920t);
	if (retval != ERROR_OK)
		return retval;

	if (CMD_ARGC != 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	output = fopen(CMD_ARGV[0], "w");
	if (output == NULL) {
		LOG_DEBUG("error opening cache content file");
		return ERROR_OK;
	}

	for (i = 0; i < 16; i++)
		regs_p[i] = &regs[i];

	/* disable MMU and Caches */
	arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
	retval = jtag_execute_queue();
	if (retval != ERROR_OK)
		return retval;
	cp15_ctrl_saved = cp15_ctrl;
	cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
			| ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
	arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);

	/* read CP15 test state register */
	arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
	jtag_execute_queue();

	/* read DCache content */
	fprintf(output, "DCache:\n");

	/* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
	for (segment = 0;
			segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
			segment++) {
		fprintf(output, "\nsegment: %i\n----------", segment);

		/* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
		regs[0] = 0x0 | (segment << 5);
		arm9tdmi_write_core_regs(target, 0x1, regs);

		/* set interpret mode */
		cp15c15 |= 0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* D CAM Read, loads current victim into C15.C.D.Ind */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 2, 0, 15, 6, 2), ARMV4_5_LDR(1, 0));

		/* read current victim */
		arm920t_read_cp15_physical(target,
			CP15PHYS_DCACHE_IDX, &C15_C_D_Ind);

		/* clear interpret mode */
		cp15c15 &= ~0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		for (index_t = 0; index_t < 64; index_t++) {
			/* Ra:
			 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
			 */
			regs[0] = 0x0 | (segment << 5) | (index_t << 26);
			arm9tdmi_write_core_regs(target, 0x1, regs);

			/* set interpret mode */
			cp15c15 |= 0x1;
			arm920t_write_cp15_physical(target,
				CP15PHYS_TESTSTATE, cp15c15);

			/* Write DCache victim */
			arm920t_execute_cp15(target,
				ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));

			/* Read D RAM */
			arm920t_execute_cp15(target,
				ARMV4_5_MCR(15, 2, 0, 15, 10, 2),
				ARMV4_5_LDMIA(0, 0x1fe, 0, 0));

			/* Read D CAM */
			arm920t_execute_cp15(target,
				ARMV4_5_MCR(15, 2, 0, 15, 6, 2),
				ARMV4_5_LDR(9, 0));

			/* clear interpret mode */
			cp15c15 &= ~0x1;
			arm920t_write_cp15_physical(target,
				CP15PHYS_TESTSTATE, cp15c15);

			/* read D RAM and CAM content */
			arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
			retval = jtag_execute_queue();
			if (retval != ERROR_OK)
				return retval;

			/* mask LFSR[6] */
			regs[9] &= 0xfffffffe;
			fprintf(output, "\nsegment: %i, index: %i, CAM: 0x%8.8"
				PRIx32 ", content (%s):\n",
				segment, index_t, regs[9],
				(regs[9] & 0x10) ? "valid" : "invalid");

			for (i = 1; i < 9; i++) {
				fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
					i-1, regs[i]);
			}

		}

		/* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
		regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
		arm9tdmi_write_core_regs(target, 0x1, regs);

		/* set interpret mode */
		cp15c15 |= 0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* Write DCache victim */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 0, 0, 9, 1, 0), ARMV4_5_LDR(1, 0));

		/* clear interpret mode */
		cp15c15 &= ~0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);
	}

	/* read ICache content */
	fprintf(output, "ICache:\n");

	/* go through segments 0 to nsets (8 on ARM920T, 4 on ARM922T) */
	for (segment = 0;
			segment < arm920t->armv4_5_mmu.armv4_5_cache.d_u_size.nsets;
			segment++) {
		fprintf(output, "segment: %i\n----------", segment);

		/* Ra: r0 = SBZ(31:8):segment(7:5):SBZ(4:0) */
		regs[0] = 0x0 | (segment << 5);
		arm9tdmi_write_core_regs(target, 0x1, regs);

		/* set interpret mode */
		cp15c15 |= 0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* I CAM Read, loads current victim into C15.C.I.Ind */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 2, 0, 15, 5, 2), ARMV4_5_LDR(1, 0));

		/* read current victim */
		arm920t_read_cp15_physical(target, CP15PHYS_ICACHE_IDX,
			&C15_C_I_Ind);

		/* clear interpret mode */
		cp15c15 &= ~0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		for (index_t = 0; index_t < 64; index_t++) {
			/* Ra:
			 * r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0)
			 */
			regs[0] = 0x0 | (segment << 5) | (index_t << 26);
			arm9tdmi_write_core_regs(target, 0x1, regs);

			/* set interpret mode */
			cp15c15 |= 0x1;
			arm920t_write_cp15_physical(target,
				CP15PHYS_TESTSTATE, cp15c15);

			/* Write ICache victim */
			arm920t_execute_cp15(target,
				ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));

			/* Read I RAM */
			arm920t_execute_cp15(target,
				ARMV4_5_MCR(15, 2, 0, 15, 9, 2),
				ARMV4_5_LDMIA(0, 0x1fe, 0, 0));

			/* Read I CAM */
			arm920t_execute_cp15(target,
				ARMV4_5_MCR(15, 2, 0, 15, 5, 2),
				ARMV4_5_LDR(9, 0));

			/* clear interpret mode */
			cp15c15 &= ~0x1;
			arm920t_write_cp15_physical(target,
				CP15PHYS_TESTSTATE, cp15c15);

			/* read I RAM and CAM content */
			arm9tdmi_read_core_regs(target, 0x3fe, regs_p);
			retval = jtag_execute_queue();
			if (retval != ERROR_OK)
				return retval;

			/* mask LFSR[6] */
			regs[9] &= 0xfffffffe;
			fprintf(output, "\nsegment: %i, index: %i, "
				"CAM: 0x%8.8" PRIx32 ", content (%s):\n",
				segment, index_t, regs[9],
				(regs[9] & 0x10) ? "valid" : "invalid");

			for (i = 1; i < 9; i++) {
				fprintf(output, "%i: 0x%8.8" PRIx32 "\n",
					i-1, regs[i]);
			}
		}

		/* Ra: r0 = index(31:26):SBZ(25:8):segment(7:5):SBZ(4:0) */
		regs[0] = 0x0 | (segment << 5) | (C15_C_D_Ind << 26);
		arm9tdmi_write_core_regs(target, 0x1, regs);

		/* set interpret mode */
		cp15c15 |= 0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* Write ICache victim */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 0, 0, 9, 1, 1), ARMV4_5_LDR(1, 0));

		/* clear interpret mode */
		cp15c15 &= ~0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);
	}

	/* restore CP15 MMU and Cache settings */
	arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);

	command_print(CMD_CTX, "cache content successfully output to %s",
		CMD_ARGV[0]);

	fclose(output);

	if (!is_arm_mode(arm->core_mode)) {
		LOG_ERROR("not a valid arm core mode - communication failure?");
		return ERROR_FAIL;
	}

	/* force writeback of the valid data */
	r = arm->core_cache->reg_list;
	r[0].dirty = r[0].valid;
	r[1].dirty = r[1].valid;
	r[2].dirty = r[2].valid;
	r[3].dirty = r[3].valid;
	r[4].dirty = r[4].valid;
	r[5].dirty = r[5].valid;
	r[6].dirty = r[6].valid;
	r[7].dirty = r[7].valid;

	r = arm_reg_current(arm, 8);
	r->dirty = r->valid;

	r = arm_reg_current(arm, 9);
	r->dirty = r->valid;

	return ERROR_OK;
}

COMMAND_HANDLER(arm920t_handle_read_mmu_command)
{
	int retval = ERROR_OK;
	struct target *target = get_current_target(CMD_CTX);
	struct arm920t_common *arm920t = target_to_arm920(target);
	struct arm7_9_common *arm7_9 = target_to_arm7_9(target);
	struct arm *arm = &arm7_9->arm;
	uint32_t cp15c15;
	uint32_t cp15_ctrl, cp15_ctrl_saved;
	uint32_t regs[16];
	uint32_t *regs_p[16];
	int i;
	FILE *output;
	uint32_t Dlockdown, Ilockdown;
	struct arm920t_tlb_entry d_tlb[64], i_tlb[64];
	int victim;
	struct reg *r;

	retval = arm920t_verify_pointer(CMD_CTX, arm920t);
	if (retval != ERROR_OK)
		return retval;

	if (CMD_ARGC != 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	output = fopen(CMD_ARGV[0], "w");
	if (output == NULL) {
		LOG_DEBUG("error opening mmu content file");
		return ERROR_OK;
	}

	for (i = 0; i < 16; i++)
		regs_p[i] = &regs[i];

	/* disable MMU and Caches */
	arm920t_read_cp15_physical(target, CP15PHYS_CTRL, &cp15_ctrl);
	retval = jtag_execute_queue();
	if (retval != ERROR_OK)
		return retval;
	cp15_ctrl_saved = cp15_ctrl;
	cp15_ctrl &= ~(ARMV4_5_MMU_ENABLED
			| ARMV4_5_D_U_CACHE_ENABLED | ARMV4_5_I_CACHE_ENABLED);
	arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl);

	/* read CP15 test state register */
	arm920t_read_cp15_physical(target, CP15PHYS_TESTSTATE, &cp15c15);
	retval = jtag_execute_queue();
	if (retval != ERROR_OK)
		return retval;

	/* prepare reading D TLB content
	 * */

	/* set interpret mode */
	cp15c15 |= 0x1;
	arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);

	/* Read D TLB lockdown */
	arm920t_execute_cp15(target,
		ARMV4_5_MRC(15, 0, 0, 10, 0, 0), ARMV4_5_LDR(1, 0));

	/* clear interpret mode */
	cp15c15 &= ~0x1;
	arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);

	/* read D TLB lockdown stored to r1 */
	arm9tdmi_read_core_regs(target, 0x2, regs_p);
	retval = jtag_execute_queue();
	if (retval != ERROR_OK)
		return retval;
	Dlockdown = regs[1];

	for (victim = 0; victim < 64; victim += 8) {
		/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
		 * base remains unchanged, victim goes through entries 0 to 63
		 */
		regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
		arm9tdmi_write_core_regs(target, 0x2, regs);

		/* set interpret mode */
		cp15c15 |= 0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* Write D TLB lockdown */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 0, 0, 10, 0, 0),
			ARMV4_5_STR(1, 0));

		/* Read D TLB CAM */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 4, 0, 15, 6, 4),
			ARMV4_5_LDMIA(0, 0x3fc, 0, 0));

		/* clear interpret mode */
		cp15c15 &= ~0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* read D TLB CAM content stored to r2-r9 */
		arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
		retval = jtag_execute_queue();
		if (retval != ERROR_OK)
			return retval;

		for (i = 0; i < 8; i++)
			d_tlb[victim + i].cam = regs[i + 2];
	}

	for (victim = 0; victim < 64; victim++) {
		/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
		 * base remains unchanged, victim goes through entries 0 to 63
		 */
		regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
		arm9tdmi_write_core_regs(target, 0x2, regs);

		/* set interpret mode */
		cp15c15 |= 0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* Write D TLB lockdown */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));

		/* Read D TLB RAM1 */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 4, 0, 15, 10, 4), ARMV4_5_LDR(2, 0));

		/* Read D TLB RAM2 */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 4, 0, 15, 2, 5), ARMV4_5_LDR(3, 0));

		/* clear interpret mode */
		cp15c15 &= ~0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* read D TLB RAM content stored to r2 and r3 */
		arm9tdmi_read_core_regs(target, 0xc, regs_p);
		retval = jtag_execute_queue();
		if (retval != ERROR_OK)
			return retval;

		d_tlb[victim].ram1 = regs[2];
		d_tlb[victim].ram2 = regs[3];
	}

	/* restore D TLB lockdown */
	regs[1] = Dlockdown;
	arm9tdmi_write_core_regs(target, 0x2, regs);

	/* Write D TLB lockdown */
	arm920t_execute_cp15(target,
		ARMV4_5_MCR(15, 0, 0, 10, 0, 0), ARMV4_5_STR(1, 0));

	/* prepare reading I TLB content
	 * */

	/* set interpret mode */
	cp15c15 |= 0x1;
	arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);

	/* Read I TLB lockdown */
	arm920t_execute_cp15(target,
		ARMV4_5_MRC(15, 0, 0, 10, 0, 1), ARMV4_5_LDR(1, 0));

	/* clear interpret mode */
	cp15c15 &= ~0x1;
	arm920t_write_cp15_physical(target, CP15PHYS_TESTSTATE, cp15c15);

	/* read I TLB lockdown stored to r1 */
	arm9tdmi_read_core_regs(target, 0x2, regs_p);
	retval = jtag_execute_queue();
	if (retval != ERROR_OK)
		return retval;
	Ilockdown = regs[1];

	for (victim = 0; victim < 64; victim += 8) {
		/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
		 * base remains unchanged, victim goes through entries 0 to 63
		 */
		regs[1] = (Ilockdown & 0xfc000000) | (victim << 20);
		arm9tdmi_write_core_regs(target, 0x2, regs);

		/* set interpret mode */
		cp15c15 |= 0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* Write I TLB lockdown */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 0, 0, 10, 0, 1),
			ARMV4_5_STR(1, 0));

		/* Read I TLB CAM */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 4, 0, 15, 5, 4),
			ARMV4_5_LDMIA(0, 0x3fc, 0, 0));

		/* clear interpret mode */
		cp15c15 &= ~0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* read I TLB CAM content stored to r2-r9 */
		arm9tdmi_read_core_regs(target, 0x3fc, regs_p);
		retval = jtag_execute_queue();
		if (retval != ERROR_OK)
			return retval;

		for (i = 0; i < 8; i++)
			i_tlb[i + victim].cam = regs[i + 2];
	}

	for (victim = 0; victim < 64; victim++) {
		/* new lockdown value: base[31:26]:victim[25:20]:SBZ[19:1]:p[0]
		 * base remains unchanged, victim goes through entries 0 to 63
		 */
		regs[1] = (Dlockdown & 0xfc000000) | (victim << 20);
		arm9tdmi_write_core_regs(target, 0x2, regs);

		/* set interpret mode */
		cp15c15 |= 0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* Write I TLB lockdown */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));

		/* Read I TLB RAM1 */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 4, 0, 15, 9, 4), ARMV4_5_LDR(2, 0));

		/* Read I TLB RAM2 */
		arm920t_execute_cp15(target,
			ARMV4_5_MCR(15, 4, 0, 15, 1, 5), ARMV4_5_LDR(3, 0));

		/* clear interpret mode */
		cp15c15 &= ~0x1;
		arm920t_write_cp15_physical(target,
			CP15PHYS_TESTSTATE, cp15c15);

		/* read I TLB RAM content stored to r2 and r3 */
		arm9tdmi_read_core_regs(target, 0xc, regs_p);
		retval = jtag_execute_queue();
		if (retval != ERROR_OK)
			return retval;

		i_tlb[victim].ram1 = regs[2];
		i_tlb[victim].ram2 = regs[3];
	}

	/* restore I TLB lockdown */
	regs[1] = Ilockdown;
	arm9tdmi_write_core_regs(target, 0x2, regs);

	/* Write I TLB lockdown */
	arm920t_execute_cp15(target,
		ARMV4_5_MCR(15, 0, 0, 10, 0, 1), ARMV4_5_STR(1, 0));

	/* restore CP15 MMU and Cache settings */
	arm920t_write_cp15_physical(target, CP15PHYS_CTRL, cp15_ctrl_saved);

	/* output data to file */
	fprintf(output, "D TLB content:\n");
	for (i = 0; i < 64; i++) {
		fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
			" 0x%8.8" PRIx32 " %s\n",
			i, d_tlb[i].cam, d_tlb[i].ram1, d_tlb[i].ram2,
			(d_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
	}

	fprintf(output, "\n\nI TLB content:\n");
	for (i = 0; i < 64; i++) {
		fprintf(output, "%i: 0x%8.8" PRIx32 " 0x%8.8" PRIx32
			" 0x%8.8" PRIx32 " %s\n",
			i, i_tlb[i].cam, i_tlb[i].ram1, i_tlb[i].ram2,
			(i_tlb[i].cam & 0x20) ? "(valid)" : "(invalid)");
	}

	command_print(CMD_CTX, "mmu content successfully output to %s",
		CMD_ARGV[0]);

	fclose(output);

	if (!is_arm_mode(arm->core_mode)) {
		LOG_ERROR("not a valid arm core mode - communication failure?");
		return ERROR_FAIL;
	}

	/* force writeback of the valid data */
	r = arm->core_cache->reg_list;
	r[0].dirty = r[0].valid;
	r[1].dirty = r[1].valid;
	r[2].dirty = r[2].valid;
	r[3].dirty = r[3].valid;
	r[4].dirty = r[4].valid;
	r[5].dirty = r[5].valid;
	r[6].dirty = r[6].valid;
	r[7].dirty = r[7].valid;

	r = arm_reg_current(arm, 8);
	r->dirty = r->valid;

	r = arm_reg_current(arm, 9);
	r->dirty = r->valid;

	return ERROR_OK;
}

COMMAND_HANDLER(arm920t_handle_cp15_command)
{
	int retval;
	struct target *target = get_current_target(CMD_CTX);
	struct arm920t_common *arm920t = target_to_arm920(target);

	retval = arm920t_verify_pointer(CMD_CTX, arm920t);
	if (retval != ERROR_OK)
		return retval;

	if (target->state != TARGET_HALTED) {
		command_print(CMD_CTX, "target must be stopped for "
			"\"%s\" command", CMD_NAME);
		return ERROR_OK;
	}

	/* one argument, read a register.
	 * two arguments, write it.
	 */
	if (CMD_ARGC >= 1) {
		int address;
		COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], address);

		if (CMD_ARGC == 1) {
			uint32_t value;
			retval = arm920t_read_cp15_physical(target, address, &value);
			if (retval != ERROR_OK) {
				command_print(CMD_CTX,
					"couldn't access reg %i", address);
				return ERROR_OK;
			}
			retval = jtag_execute_queue();
			if (retval != ERROR_OK)
				return retval;

			command_print(CMD_CTX, "%i: %8.8" PRIx32,
				address, value);
		} else if (CMD_ARGC == 2)   {
			uint32_t value;
			COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
			retval = arm920t_write_cp15_physical(target,
					address, value);
			if (retval != ERROR_OK) {
				command_print(CMD_CTX,
					"couldn't access reg %i", address);
				/* REVISIT why lie? "return retval"? */
				return ERROR_OK;
			}
			command_print(CMD_CTX, "%i: %8.8" PRIx32,
				address, value);
		}
	}

	return ERROR_OK;
}

COMMAND_HANDLER(arm920t_handle_cp15i_command)
{
	int retval;
	struct target *target = get_current_target(CMD_CTX);
	struct arm920t_common *arm920t = target_to_arm920(target);

	retval = arm920t_verify_pointer(CMD_CTX, arm920t);
	if (retval != ERROR_OK)
		return retval;


	if (target->state != TARGET_HALTED) {
		command_print(CMD_CTX, "target must be stopped for "
			"\"%s\" command", CMD_NAME);
		return ERROR_OK;
	}

	/* one argument, read a register.
	 * two arguments, write it.
	 */
	if (CMD_ARGC >= 1) {
		uint32_t opcode;
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], opcode);

		if (CMD_ARGC == 1) {
			uint32_t value;
			retval = arm920t_read_cp15_interpreted(target,
					opcode, 0x0, &value);
			if (retval != ERROR_OK) {
				command_print(CMD_CTX,
					"couldn't execute %8.8" PRIx32,
					opcode);
				/* REVISIT why lie? "return retval"? */
				return ERROR_OK;
			}

			command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
				opcode, value);
		} else if (CMD_ARGC == 2) {
			uint32_t value;
			COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
			retval = arm920t_write_cp15_interpreted(target,
					opcode, value, 0);
			if (retval != ERROR_OK) {
				command_print(CMD_CTX,
					"couldn't execute %8.8" PRIx32,
					opcode);
				/* REVISIT why lie? "return retval"? */
				return ERROR_OK;
			}
			command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32,
				opcode, value);
		} else if (CMD_ARGC == 3) {
			uint32_t value;
			COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
			uint32_t address;
			COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], address);
			retval = arm920t_write_cp15_interpreted(target,
					opcode, value, address);
			if (retval != ERROR_OK) {
				command_print(CMD_CTX,
					"couldn't execute %8.8" PRIx32, opcode);
				/* REVISIT why lie? "return retval"? */
				return ERROR_OK;
			}
			command_print(CMD_CTX, "%8.8" PRIx32 ": %8.8" PRIx32
				" %8.8" PRIx32, opcode, value, address);
		}
	} else
		return ERROR_COMMAND_SYNTAX_ERROR;

	return ERROR_OK;
}

COMMAND_HANDLER(arm920t_handle_cache_info_command)
{
	int retval;
	struct target *target = get_current_target(CMD_CTX);
	struct arm920t_common *arm920t = target_to_arm920(target);

	retval = arm920t_verify_pointer(CMD_CTX, arm920t);
	if (retval != ERROR_OK)
		return retval;

	return armv4_5_handle_cache_info_command(CMD_CTX,
		&arm920t->armv4_5_mmu.armv4_5_cache);
}


static int arm920t_mrc(struct target *target, int cpnum,
	uint32_t op1, uint32_t op2,
	uint32_t CRn, uint32_t CRm,
	uint32_t *value)
{
	if (cpnum != 15) {
		LOG_ERROR("Only cp15 is supported");
		return ERROR_FAIL;
	}

	/* read "to" r0 */
	return arm920t_read_cp15_interpreted(target,
		ARMV4_5_MRC(cpnum, op1, 0, CRn, CRm, op2),
		0, value);
}

static int arm920t_mcr(struct target *target, int cpnum,
	uint32_t op1, uint32_t op2,
	uint32_t CRn, uint32_t CRm,
	uint32_t value)
{
	if (cpnum != 15) {
		LOG_ERROR("Only cp15 is supported");
		return ERROR_FAIL;
	}

	/* write "from" r0 */
	return arm920t_write_cp15_interpreted(target,
		ARMV4_5_MCR(cpnum, op1, 0, CRn, CRm, op2),
		0, value);
}

static const struct command_registration arm920t_exec_command_handlers[] = {
	{
		.name = "cp15",
		.handler = arm920t_handle_cp15_command,
		.mode = COMMAND_EXEC,
		.help = "display/modify cp15 register",
		.usage = "regnum [value]",
	},
	{
		.name = "cp15i",
		.handler = arm920t_handle_cp15i_command,
		.mode = COMMAND_EXEC,
		/* prefer using less error-prone "arm mcr" or "arm mrc" */
		.help = "display/modify cp15 register using ARM opcode"
			" (DEPRECATED)",
		.usage = "instruction [value [address]]",
	},
	{
		.name = "cache_info",
		.handler = arm920t_handle_cache_info_command,
		.mode = COMMAND_EXEC,
		.usage = "",
		.help = "display information about target caches",
	},
	{
		.name = "read_cache",
		.handler = arm920t_handle_read_cache_command,
		.mode = COMMAND_EXEC,
		.help = "dump I/D cache content to file",
		.usage = "filename",
	},
	{
		.name = "read_mmu",
		.handler = arm920t_handle_read_mmu_command,
		.mode = COMMAND_EXEC,
		.help = "dump I/D mmu content to file",
		.usage = "filename",
	},
	COMMAND_REGISTRATION_DONE
};
const struct command_registration arm920t_command_handlers[] = {
	{
		.chain = arm9tdmi_command_handlers,
	},
	{
		.name = "arm920t",
		.mode = COMMAND_ANY,
		.help = "arm920t command group",
		.usage = "",
		.chain = arm920t_exec_command_handlers,
	},
	COMMAND_REGISTRATION_DONE
};

/** Holds methods for ARM920 targets. */
struct target_type arm920t_target = {
	.name = "arm920t",

	.poll = arm7_9_poll,
	.arch_state = arm920t_arch_state,

	.target_request_data = arm7_9_target_request_data,

	.halt = arm7_9_halt,
	.resume = arm7_9_resume,
	.step = arm7_9_step,

	.assert_reset = arm7_9_assert_reset,
	.deassert_reset = arm7_9_deassert_reset,
	.soft_reset_halt = arm920t_soft_reset_halt,

	.get_gdb_arch = arm_get_gdb_arch,
	.get_gdb_reg_list = arm_get_gdb_reg_list,

	.read_memory = arm920t_read_memory,
	.write_memory = arm7_9_write_memory_opt,
	.read_phys_memory = arm920t_read_phys_memory,
	.write_phys_memory = arm920t_write_phys_memory,
	.mmu = arm920_mmu,
	.virt2phys = arm920_virt2phys,

	.checksum_memory = arm_checksum_memory,
	.blank_check_memory = arm_blank_check_memory,

	.run_algorithm = armv4_5_run_algorithm,

	.add_breakpoint = arm7_9_add_breakpoint,
	.remove_breakpoint = arm7_9_remove_breakpoint,
	.add_watchpoint = arm7_9_add_watchpoint,
	.remove_watchpoint = arm7_9_remove_watchpoint,

	.commands = arm920t_command_handlers,
	.target_create = arm920t_target_create,
	.init_target = arm9tdmi_init_target,
	.examine = arm7_9_examine,
	.check_reset = arm7_9_check_reset,
};