1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
/* @(#)w_pow.c 5.2 93/10/01 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
FUNCTION
<<pow>>, <<powf>>---x to the power y
INDEX
pow
INDEX
powf
ANSI_SYNOPSIS
#include <math.h>
double pow(double <[x]>, double <[y]>);
float pow(float <[x]>, float <[y]>);
TRAD_SYNOPSIS
#include <math.h>
double pow(<[x]>, <[y]>);
double <[x]>, <[y]>;
float pow(<[x]>, <[y]>);
float <[x]>, <[y]>;
DESCRIPTION
<<pow>> and <<powf>> calculate <[x]> raised to the exp1.0nt <[y]>.
@tex
(That is, $x^y$.)
@end tex
RETURNS
On success, <<pow>> and <<powf>> return the value calculated.
When the argument values would produce overflow, <<pow>>
returns <<HUGE_VAL>> and set <<errno>> to <<ERANGE>>. If the
argument <[x]> passed to <<pow>> or <<powf>> is a negative
noninteger, and <[y]> is also not an integer, then <<errno>>
is set to <<EDOM>>. If <[x]> and <[y]> are both 0, then
<<pow>> and <<powf>> return <<1>>.
You can modify error handling for these functions using <<matherr>>.
PORTABILITY
<<pow>> is ANSI C. <<powf>> is an extension. */
/*
* wrapper pow(x,y) return x**y
*/
#include "fdlibm.h"
#include <errno.h>
#ifndef _DOUBLE_IS_32BITS
#ifdef __STDC__
double pow(double x, double y) /* wrapper pow */
#else
double pow(x,y) /* wrapper pow */
double x,y;
#endif
{
#ifdef _IEEE_LIBM
return __ieee754_pow(x,y);
#else
double z;
#ifndef HUGE_VAL
#define HUGE_VAL inf
double inf = 0.0;
SET_HIGH_WORD(inf,0x7ff00000); /* set inf to infinite */
#endif
struct exception exc;
z=__ieee754_pow(x,y);
if(_LIB_VERSION == _IEEE_|| isnan(y)) return z;
if(isnan(x)) {
if(y==0.0) {
/* pow(NaN,0.0) */
/* error only if _LIB_VERSION == _SVID_ & _XOPEN_ */
exc.type = DOMAIN;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
exc.retval = x;
if (_LIB_VERSION == _IEEE_ ||
_LIB_VERSION == _POSIX_) exc.retval = 1.0;
else if (!matherr(&exc)) {
errno = EDOM;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
} else
return z;
}
if(x==0.0){
if(y==0.0) {
/* pow(0.0,0.0) */
/* error only if _LIB_VERSION == _SVID_ */
exc.type = DOMAIN;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
exc.retval = 0.0;
if (_LIB_VERSION != _SVID_) exc.retval = 1.0;
else if (!matherr(&exc)) {
errno = EDOM;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
}
if(finite(y)&&y<0.0) {
/* 0**neg */
exc.type = DOMAIN;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
if (_LIB_VERSION == _SVID_)
exc.retval = 0.0;
else
exc.retval = -HUGE_VAL;
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!matherr(&exc)) {
errno = EDOM;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
}
return z;
}
if(!finite(z)) {
if(finite(x)&&finite(y)) {
if(isnan(z)) {
/* neg**non-integral */
exc.type = DOMAIN;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
if (_LIB_VERSION == _SVID_)
exc.retval = 0.0;
else
exc.retval = 0.0/0.0; /* X/Open allow NaN */
if (_LIB_VERSION == _POSIX_)
errno = EDOM;
else if (!matherr(&exc)) {
errno = EDOM;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
} else {
/* pow(x,y) overflow */
exc.type = OVERFLOW;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
if (_LIB_VERSION == _SVID_) {
exc.retval = HUGE;
y *= 0.5;
if(x<0.0&&rint(y)!=y) exc.retval = -HUGE;
} else {
exc.retval = HUGE_VAL;
y *= 0.5;
if(x<0.0&&rint(y)!=y) exc.retval = -HUGE_VAL;
}
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!matherr(&exc)) {
errno = ERANGE;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
}
}
}
if(z==0.0&&finite(x)&&finite(y)) {
/* pow(x,y) underflow */
exc.type = UNDERFLOW;
exc.name = "pow";
exc.err = 0;
exc.arg1 = x;
exc.arg2 = y;
exc.retval = 0.0;
if (_LIB_VERSION == _POSIX_)
errno = ERANGE;
else if (!matherr(&exc)) {
errno = ERANGE;
}
if (exc.err != 0)
errno = exc.err;
return exc.retval;
}
return z;
#endif
}
#endif /* defined(_DOUBLE_IS_32BITS) */
|