aboutsummaryrefslogtreecommitdiff
path: root/libjava/include/java-interp.h
blob: 12bc21f24360869b708ec17bde6462fbb60eacb7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
// java-interp.h - Header file for the bytecode interpreter.  -*- c++ -*-

/* Copyright (C) 1999, 2000, 2001, 2002, 2003  Free Software Foundation

   This file is part of libgcj.

This software is copyrighted work licensed under the terms of the
Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
details.  */

#ifndef __JAVA_INTERP_H__
#define __JAVA_INTERP_H__

#include <jvm.h>
#include <java-cpool.h>
#include <gnu/gcj/runtime/NameFinder.h>

#ifdef INTERPRETER

#pragma interface

#include <java/lang/Class.h>
#include <java/lang/ClassLoader.h>
#include <java/lang/reflect/Modifier.h>

extern "C" {
#include <ffi.h>
}

extern inline jboolean
_Jv_IsInterpretedClass (jclass c)
{
  return (c->accflags & java::lang::reflect::Modifier::INTERPRETED) != 0;
}

struct _Jv_ResolvedMethod;

void _Jv_InitInterpreter ();
void _Jv_DefineClass (jclass, jbyteArray, jint, jint);

void _Jv_InitField (jobject, jclass, int);
void * _Jv_AllocMethodInvocation (jsize size);
int  _Jv_count_arguments (_Jv_Utf8Const *signature,
			  jboolean staticp = true);
void _Jv_VerifyMethod (_Jv_InterpMethod *method);

/* FIXME: this should really be defined in some more generic place */
#define ROUND(V, A) (((((unsigned) (V))-1) | ((A)-1))+1)

/* the interpreter is written in C++, primarily because it makes it easy for
 * the entire thing to be "friend" with class Class. */

class _Jv_InterpClass;
class _Jv_InterpMethod;

// Before a method is "compiled" we store values as the bytecode PC,
// an int.  Afterwards we store them as pointers into the prepared
// code itself.
union _Jv_InterpPC
{
  int i;
  void *p;
};

class _Jv_InterpException
{
  _Jv_InterpPC start_pc;
  _Jv_InterpPC end_pc;
  _Jv_InterpPC handler_pc;
  _Jv_InterpPC handler_type;

  friend class _Jv_ClassReader;
  friend class _Jv_InterpMethod;
  friend class _Jv_BytecodeVerifier;
};

// Base class for method representations.  Subclasses are interpreted
// and JNI methods.
class _Jv_MethodBase
{
protected:
  // The class which defined this method.
  jclass defining_class;

  // The method description.
  _Jv_Method *self;

  // Size of raw arguments.
  _Jv_ushort args_raw_size;

  // Chain of addresses to fill in.  See _Jv_Defer_Resolution.
  void *deferred;

  friend void _Jv_Defer_Resolution (void *cl, _Jv_Method *meth, void **);
  friend void _Jv_PrepareClass(jclass);

public:
  _Jv_Method *get_method ()
  {
    return self;
  }
};

class _Jv_InterpMethod : public _Jv_MethodBase
{
  _Jv_ushort       max_stack;
  _Jv_ushort       max_locals;
  int              code_length;

  _Jv_ushort       exc_count;

  void *prepared;

  unsigned char* bytecode () 
  {
    return 
      ((unsigned char*)this) 
      + ROUND((sizeof (_Jv_InterpMethod)
	       + exc_count*sizeof (_Jv_InterpException)), 4);
  }

  _Jv_InterpException * exceptions ()
  {
    return (_Jv_InterpException*) (this+1);
  }

  static size_t size (int exc_count, int code_length)
  {
    return 
      ROUND ((sizeof (_Jv_InterpMethod) 
	      + (exc_count * sizeof (_Jv_InterpException))), 4)
      + code_length;
  }

  // return the method's invocation pointer (a stub).
  void *ncode ();
  void compile (const void * const *);

  static void run_normal (ffi_cif*, void*, ffi_raw*, void*);
  static void run_synch_object (ffi_cif*, void*, ffi_raw*, void*);
  static void run_class (ffi_cif*, void*, ffi_raw*, void*);
  static void run_synch_class (ffi_cif*, void*, ffi_raw*, void*);

  void run (void*, ffi_raw *);

 public:
  static void dump_object(jobject o);

  friend class _Jv_ClassReader;
  friend class _Jv_BytecodeVerifier;
  friend class gnu::gcj::runtime::NameFinder;
  friend class gnu::gcj::runtime::StackTrace;
  

  friend void _Jv_PrepareClass(jclass);

#ifdef JV_MARKOBJ_DECL
  friend JV_MARKOBJ_DECL;
#endif
};

class _Jv_InterpClass
{
  _Jv_MethodBase **interpreted_methods;
  _Jv_ushort        *field_initializers;

  friend class _Jv_ClassReader;
  friend class _Jv_InterpMethod;
  friend void  _Jv_PrepareClass(jclass);
  friend void  _Jv_PrepareMissingMethods (jclass base2, jclass iface_class);
  friend void  _Jv_InitField (jobject, jclass, int);
#ifdef JV_MARKOBJ_DECL
  friend JV_MARKOBJ_DECL;
#endif

  friend _Jv_MethodBase ** _Jv_GetFirstMethod (_Jv_InterpClass *klass);
  friend void _Jv_Defer_Resolution (void *cl, _Jv_Method *meth, void **);
};

// We have an interpreted class CL and we're trying to find the
// address of the ncode of a method METH.  That interpreted class
// hasn't yet been prepared, so we defer fixups until they are ready.
// To do this, we create a chain of fixups that will be resolved by
// _Jv_PrepareClass.
extern inline void 
_Jv_Defer_Resolution (void *cl, _Jv_Method *meth, void **address)
{
  int i;
  jclass self = (jclass) cl;
  _Jv_InterpClass *interp_cl = (_Jv_InterpClass*) self->aux_info;

  for (i = 0; i < self->method_count; i++)
    {
      _Jv_Method *m = &self->methods[i];
      if (m == meth)
	{
	  _Jv_MethodBase *imeth = interp_cl->interpreted_methods[i];
	  *address = imeth->deferred;
	  imeth->deferred = address;
	  return;
	}
    }
  return;
}    

extern inline _Jv_MethodBase **
_Jv_GetFirstMethod (_Jv_InterpClass *klass)
{
  return klass->interpreted_methods;
}

struct _Jv_ResolvedMethod {
  jint            stack_item_count;	
  jint            vtable_index;	
  jclass          klass;
  _Jv_Method*     method;

  // a resolved method holds the cif in-line, so that _Jv_MarkObj just needs
  // to mark the resolved method to hold on to the cif.  Some memory could be
  // saved by keeping a cache of cif's, since many will be the same.
  ffi_cif         cif;
  ffi_type *      arg_types[0];
};

class _Jv_JNIMethod : public _Jv_MethodBase
{
  // The underlying function.  If NULL we have to look for the
  // function.
  void *function;

  // This is the CIF used by the JNI function.
  ffi_cif jni_cif;

  // These are the argument types used by the JNI function.
  ffi_type **jni_arg_types;

  // This function is used when making a JNI call from the interpreter.
  static void call (ffi_cif *, void *, ffi_raw *, void *);

  void *ncode ();

  friend class _Jv_ClassReader;
  friend void _Jv_PrepareClass(jclass);

public:
  // FIXME: this is ugly.
  void set_function (void *f)
  {
    function = f;
  }
};

// A structure of this type is used to link together interpreter
// invocations on the stack.
struct _Jv_MethodChain
{
  const _Jv_InterpMethod *self;
  _Jv_MethodChain **ptr;
  _Jv_MethodChain *next;

  _Jv_MethodChain (const _Jv_InterpMethod *s, _Jv_MethodChain **n)
  {
    self = s;
    ptr = n;
    next = *n;
    *n = this;
  }

  ~_Jv_MethodChain ()
  {
    *ptr = next;
  }
};

#endif /* INTERPRETER */

#endif /* __JAVA_INTERP_H__ */