aboutsummaryrefslogtreecommitdiff
path: root/libjava/gnu/xml/transform/KeyFunction.h
blob: 7da94b1d5978ba95598970419d65d99b53644ac8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

// DO NOT EDIT THIS FILE - it is machine generated -*- c++ -*-

#ifndef __gnu_xml_transform_KeyFunction__
#define __gnu_xml_transform_KeyFunction__

#pragma interface

#include <gnu/xml/xpath/Pattern.h>
extern "Java"
{
  namespace gnu
  {
    namespace xml
    {
      namespace transform
      {
          class KeyFunction;
          class Stylesheet;
      }
      namespace xpath
      {
          class Expr;
      }
    }
  }
  namespace javax
  {
    namespace xml
    {
      namespace namespace$
      {
          class QName;
      }
    }
  }
  namespace org
  {
    namespace w3c
    {
      namespace dom
      {
          class Node;
      }
    }
  }
}

class gnu::xml::transform::KeyFunction : public ::gnu::xml::xpath::Pattern
{

public: // actually package-private
  KeyFunction(::gnu::xml::transform::Stylesheet *);
public:
  ::java::lang::Object * evaluate(::java::util::List *);
  void setArguments(::java::util::List *);
  jboolean matches(::org::w3c::dom::Node *);
  ::java::lang::Object * evaluate(::org::w3c::dom::Node *, jint, jint);
public: // actually package-private
  void addKeyNodes(::org::w3c::dom::Node *, ::java::util::Collection *, ::java::lang::String *, ::java::util::Collection *);
  void addKeyNodeIfMatch(::org::w3c::dom::Node *, ::java::util::Collection *, ::java::lang::String *, ::java::util::Collection *);
public:
  ::gnu::xml::xpath::Expr * clone(::java::lang::Object *);
  jboolean references(::javax::xml::namespace$::QName *);
public: // actually package-private
  ::gnu::xml::transform::Stylesheet * __attribute__((aligned(__alignof__( ::gnu::xml::xpath::Pattern)))) stylesheet;
  ::java::util::List * args;
public:
  static ::java::lang::Class class$;
};

#endif // __gnu_xml_transform_KeyFunction__
0 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028
/****************************************************************************
 *                                                                          *
 *                         GNAT COMPILER COMPONENTS                         *
 *                                                                          *
 *                               U T I L S 2                                *
 *                                                                          *
 *                          C Implementation File                           *
 *                                                                          *
 *          Copyright (C) 1992-2017, Free Software Foundation, Inc.         *
 *                                                                          *
 * GNAT is free software;  you can  redistribute it  and/or modify it under *
 * terms of the  GNU General Public License as published  by the Free Soft- *
 * ware  Foundation;  either version 3,  or (at your option) any later ver- *
 * sion.  GNAT is distributed in the hope that it will be useful, but WITH- *
 * OUT ANY WARRANTY;  without even the  implied warranty of MERCHANTABILITY *
 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License *
 * for  more details.  You should have received a copy of the GNU General   *
 * Public License along with GCC; see the file COPYING3.  If not see        *
 * <http://www.gnu.org/licenses/>.                                          *
 *                                                                          *
 * GNAT was originally developed  by the GNAT team at  New York University. *
 * Extensive contributions were provided by Ada Core Technologies Inc.      *
 *                                                                          *
 ****************************************************************************/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "memmodel.h"
#include "tm.h"
#include "vec.h"
#include "alias.h"
#include "tree.h"
#include "inchash.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "stringpool.h"
#include "varasm.h"
#include "flags.h"
#include "toplev.h"
#include "ggc.h"
#include "tree-inline.h"

#include "ada.h"
#include "types.h"
#include "atree.h"
#include "elists.h"
#include "namet.h"
#include "nlists.h"
#include "snames.h"
#include "stringt.h"
#include "uintp.h"
#include "fe.h"
#include "sinfo.h"
#include "einfo.h"
#include "ada-tree.h"
#include "gigi.h"

/* Return the base type of TYPE.  */

tree
get_base_type (tree type)
{
  if (TREE_CODE (type) == RECORD_TYPE
      && TYPE_JUSTIFIED_MODULAR_P (type))
    type = TREE_TYPE (TYPE_FIELDS (type));

  while (TREE_TYPE (type)
	 && (TREE_CODE (type) == INTEGER_TYPE
	     || TREE_CODE (type) == REAL_TYPE))
    type = TREE_TYPE (type);

  return type;
}

/* EXP is a GCC tree representing an address.  See if we can find how strictly
   the object at this address is aligned and, if so, return the alignment of
   the object in bits.  Otherwise return 0.  */

unsigned int
known_alignment (tree exp)
{
  unsigned int this_alignment;
  unsigned int lhs, rhs;

  switch (TREE_CODE (exp))
    {
    CASE_CONVERT:
    case VIEW_CONVERT_EXPR:
    case NON_LVALUE_EXPR:
      /* Conversions between pointers and integers don't change the alignment
	 of the underlying object.  */
      this_alignment = known_alignment (TREE_OPERAND (exp, 0));
      break;

    case COMPOUND_EXPR:
      /* The value of a COMPOUND_EXPR is that of its second operand.  */
      this_alignment = known_alignment (TREE_OPERAND (exp, 1));
      break;

    case PLUS_EXPR:
    case MINUS_EXPR:
      /* If two addresses are added, the alignment of the result is the
	 minimum of the two alignments.  */
      lhs = known_alignment (TREE_OPERAND (exp, 0));
      rhs = known_alignment (TREE_OPERAND (exp, 1));
      this_alignment = MIN (lhs, rhs);
      break;

    case POINTER_PLUS_EXPR:
      /* If this is the pattern built for aligning types, decode it.  */
      if (TREE_CODE (TREE_OPERAND (exp, 1)) == BIT_AND_EXPR
	  && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)) == NEGATE_EXPR)
	{
	  tree op = TREE_OPERAND (TREE_OPERAND (exp, 1), 1);
	  return
	    known_alignment (fold_build1 (BIT_NOT_EXPR, TREE_TYPE (op), op));
	}

      /* If we don't know the alignment of the offset, we assume that
	 of the base.  */
      lhs = known_alignment (TREE_OPERAND (exp, 0));
      rhs = known_alignment (TREE_OPERAND (exp, 1));

      if (rhs == 0)
	this_alignment = lhs;
      else
	this_alignment = MIN (lhs, rhs);
      break;

    case COND_EXPR:
      /* If there is a choice between two values, use the smaller one.  */
      lhs = known_alignment (TREE_OPERAND (exp, 1));
      rhs = known_alignment (TREE_OPERAND (exp, 2));
      this_alignment = MIN (lhs, rhs);
      break;

    case INTEGER_CST:
      {
	unsigned HOST_WIDE_INT c = TREE_INT_CST_LOW (exp);
	/* The first part of this represents the lowest bit in the constant,
	   but it is originally in bytes, not bits.  */
	this_alignment = (c & -c) * BITS_PER_UNIT;
      }
      break;

    case MULT_EXPR:
      /* If we know the alignment of just one side, use it.  Otherwise,
	 use the product of the alignments.  */
      lhs = known_alignment (TREE_OPERAND (exp, 0));
      rhs = known_alignment (TREE_OPERAND (exp, 1));

      if (lhs == 0)
	this_alignment = rhs;
      else if (rhs == 0)
	this_alignment = lhs;
      else
	this_alignment = MIN (lhs * rhs, BIGGEST_ALIGNMENT);
      break;

    case BIT_AND_EXPR:
      /* A bit-and expression is as aligned as the maximum alignment of the
	 operands.  We typically get here for a complex lhs and a constant
	 negative power of two on the rhs to force an explicit alignment, so
	 don't bother looking at the lhs.  */
      this_alignment = known_alignment (TREE_OPERAND (exp, 1));
      break;

    case ADDR_EXPR:
      this_alignment = expr_align (TREE_OPERAND (exp, 0));
      break;

    case CALL_EXPR:
      {
	tree fndecl = get_callee_fndecl (exp);
	if (fndecl == malloc_decl || fndecl == realloc_decl)
	  return get_target_system_allocator_alignment () * BITS_PER_UNIT;

	tree t = maybe_inline_call_in_expr (exp);
	if (t)
	  return known_alignment (t);
      }

      /* ... fall through ... */

    default:
      /* For other pointer expressions, we assume that the pointed-to object
	 is at least as aligned as the pointed-to type.  Beware that we can
	 have a dummy type here (e.g. a Taft Amendment type), for which the
	 alignment is meaningless and should be ignored.  */
      if (POINTER_TYPE_P (TREE_TYPE (exp))
	  && !TYPE_IS_DUMMY_P (TREE_TYPE (TREE_TYPE (exp)))
	  && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (exp))))
	this_alignment = TYPE_ALIGN (TREE_TYPE (TREE_TYPE (exp)));
      else
	this_alignment = 0;
      break;
    }

  return this_alignment;
}

/* We have a comparison or assignment operation on two types, T1 and T2, which
   are either both array types or both record types.  T1 is assumed to be for
   the left hand side operand, and T2 for the right hand side.  Return the
   type that both operands should be converted to for the operation, if any.
   Otherwise return zero.  */

static tree
find_common_type (tree t1, tree t2)
{
  /* ??? As of today, various constructs lead to here with types of different
     sizes even when both constants (e.g. tagged types, packable vs regular
     component types, padded vs unpadded types, ...).  While some of these
     would better be handled upstream (types should be made consistent before
     calling into build_binary_op), some others are really expected and we
     have to be careful.  */

  const bool variable_record_on_lhs
    = (TREE_CODE (t1) == RECORD_TYPE
       && TREE_CODE (t2) == RECORD_TYPE
       && get_variant_part (t1)
       && !get_variant_part (t2));

  const bool variable_array_on_lhs
    = (TREE_CODE (t1) == ARRAY_TYPE
       && TREE_CODE (t2) == ARRAY_TYPE
       && !TREE_CONSTANT (TYPE_MIN_VALUE (TYPE_DOMAIN (t1)))
       && TREE_CONSTANT (TYPE_MIN_VALUE (TYPE_DOMAIN (t2))));

  /* We must avoid writing more than what the target can hold if this is for
     an assignment and the case of tagged types is handled in build_binary_op
     so we use the lhs type if it is known to be smaller or of constant size
     and the rhs type is not, whatever the modes.  We also force t1 in case of
     constant size equality to minimize occurrences of view conversions on the
     lhs of an assignment, except for the case of types with a variable part
     on the lhs but not on the rhs to make the conversion simpler.  */
  if (TREE_CONSTANT (TYPE_SIZE (t1))
      && (!TREE_CONSTANT (TYPE_SIZE (t2))
	  || tree_int_cst_lt (TYPE_SIZE (t1), TYPE_SIZE (t2))
	  || (TYPE_SIZE (t1) == TYPE_SIZE (t2)
	      && !variable_record_on_lhs
	      && !variable_array_on_lhs)))
    return t1;

  /* Otherwise, if the lhs type is non-BLKmode, use it, except for the case of
     a non-BLKmode rhs and array types with a variable part on the lhs but not
     on the rhs to make sure the conversion is preserved during gimplification.
     Note that we know that we will not have any alignment problems since, if
     we did, the non-BLKmode type could not have been used.  */
  if (TYPE_MODE (t1) != BLKmode
      && (TYPE_MODE (t2) == BLKmode || !variable_array_on_lhs))
    return t1;

  /* If the rhs type is of constant size, use it whatever the modes.  At
     this point it is known to be smaller, or of constant size and the
     lhs type is not.  */
  if (TREE_CONSTANT (TYPE_SIZE (t2)))
    return t2;

  /* Otherwise, if the rhs type is non-BLKmode, use it.  */
  if (TYPE_MODE (t2) != BLKmode)
    return t2;

  /* In this case, both types have variable size and BLKmode.  It's
     probably best to leave the "type mismatch" because changing it
     could cause a bad self-referential reference.  */
  return NULL_TREE;
}

/* Return an expression tree representing an equality comparison of A1 and A2,
   two objects of type ARRAY_TYPE.  The result should be of type RESULT_TYPE.

   Two arrays are equal in one of two ways: (1) if both have zero length in
   some dimension (not necessarily the same dimension) or (2) if the lengths
   in each dimension are equal and the data is equal.  We perform the length
   tests in as efficient a manner as possible.  */

static tree
compare_arrays (location_t loc, tree result_type, tree a1, tree a2)
{
  tree result = convert (result_type, boolean_true_node);
  tree a1_is_null = convert (result_type, boolean_false_node);
  tree a2_is_null = convert (result_type, boolean_false_node);
  tree t1 = TREE_TYPE (a1);
  tree t2 = TREE_TYPE (a2);
  bool a1_side_effects_p = TREE_SIDE_EFFECTS (a1);
  bool a2_side_effects_p = TREE_SIDE_EFFECTS (a2);
  bool length_zero_p = false;

  /* If the operands have side-effects, they need to be evaluated only once
     in spite of the multiple references in the comparison.  */
  if (a1_side_effects_p)
    a1 = gnat_protect_expr (a1);

  if (a2_side_effects_p)
    a2 = gnat_protect_expr (a2);

  /* Process each dimension separately and compare the lengths.  If any
     dimension has a length known to be zero, set LENGTH_ZERO_P to true
     in order to suppress the comparison of the data at the end.  */
  while (TREE_CODE (t1) == ARRAY_TYPE && TREE_CODE (t2) == ARRAY_TYPE)
    {
      tree lb1 = TYPE_MIN_VALUE (TYPE_DOMAIN (t1));
      tree ub1 = TYPE_MAX_VALUE (TYPE_DOMAIN (t1));
      tree lb2 = TYPE_MIN_VALUE (TYPE_DOMAIN (t2));
      tree ub2 = TYPE_MAX_VALUE (TYPE_DOMAIN (t2));
      tree length1 = size_binop (PLUS_EXPR, size_binop (MINUS_EXPR, ub1, lb1),
				 size_one_node);
      tree length2 = size_binop (PLUS_EXPR, size_binop (MINUS_EXPR, ub2, lb2),
				 size_one_node);
      tree comparison, this_a1_is_null, this_a2_is_null;

      /* If the length of the first array is a constant, swap our operands
	 unless the length of the second array is the constant zero.  */
      if (TREE_CODE (length1) == INTEGER_CST && !integer_zerop (length2))
	{
	  tree tem;
	  bool btem;

	  tem = a1, a1 = a2, a2 = tem;
	  tem = t1, t1 = t2, t2 = tem;
	  tem = lb1, lb1 = lb2, lb2 = tem;
	  tem = ub1, ub1 = ub2, ub2 = tem;
	  tem = length1, length1 = length2, length2 = tem;
	  tem = a1_is_null, a1_is_null = a2_is_null, a2_is_null = tem;
	  btem = a1_side_effects_p, a1_side_effects_p = a2_side_effects_p,
	  a2_side_effects_p = btem;
	}

      /* If the length of the second array is the constant zero, we can just
	 use the original stored bounds for the first array and see whether
	 last < first holds.  */
      if (integer_zerop (length2))
	{
	  tree b = get_base_type (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));

	  length_zero_p = true;

	  ub1
	    = convert (b, TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1))));
	  lb1
	    = convert (b, TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1))));

	  comparison = fold_build2_loc (loc, LT_EXPR, result_type, ub1, lb1);
	  comparison = SUBSTITUTE_PLACEHOLDER_IN_EXPR (comparison, a1);
	  if (EXPR_P (comparison))
	    SET_EXPR_LOCATION (comparison, loc);

	  this_a1_is_null = comparison;
	  this_a2_is_null = convert (result_type, boolean_true_node);
	}

      /* Otherwise, if the length is some other constant value, we know that
	 this dimension in the second array cannot be superflat, so we can
	 just use its length computed from the actual stored bounds.  */
      else if (TREE_CODE (length2) == INTEGER_CST)
	{
	  tree b = get_base_type (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1)));

	  ub1
	    = convert (b, TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1))));
	  lb1
	    = convert (b, TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t1))));
	  /* Note that we know that UB2 and LB2 are constant and hence
	     cannot contain a PLACEHOLDER_EXPR.  */
	  ub2
	    = convert (b, TYPE_MAX_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t2))));
	  lb2
	    = convert (b, TYPE_MIN_VALUE (TYPE_INDEX_TYPE (TYPE_DOMAIN (t2))));

	  comparison
	    = fold_build2_loc (loc, EQ_EXPR, result_type,
			       build_binary_op (MINUS_EXPR, b, ub1, lb1),
			       build_binary_op (MINUS_EXPR, b, ub2, lb2));
	  comparison = SUBSTITUTE_PLACEHOLDER_IN_EXPR (comparison, a1);
	  if (EXPR_P (comparison))
	    SET_EXPR_LOCATION (comparison, loc);

	  this_a1_is_null
	    = fold_build2_loc (loc, LT_EXPR, result_type, ub1, lb1);

	  this_a2_is_null = convert (result_type, boolean_false_node);
	}

      /* Otherwise, compare the computed lengths.  */
      else
	{
	  length1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length1, a1);
	  length2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (length2, a2);

	  comparison
	    = fold_build2_loc (loc, EQ_EXPR, result_type, length1, length2);

	  /* If the length expression is of the form (cond ? val : 0), assume
	     that cond is equivalent to (length != 0).  That's guaranteed by
	     construction of the array types in gnat_to_gnu_entity.  */
	  if (TREE_CODE (length1) == COND_EXPR
	      && integer_zerop (TREE_OPERAND (length1, 2)))
	    this_a1_is_null
	      = invert_truthvalue_loc (loc, TREE_OPERAND (length1, 0));
	  else
	    this_a1_is_null = fold_build2_loc (loc, EQ_EXPR, result_type,
					       length1, size_zero_node);

	  /* Likewise for the second array.  */
	  if (TREE_CODE (length2) == COND_EXPR
	      && integer_zerop (TREE_OPERAND (length2, 2)))
	    this_a2_is_null
	      = invert_truthvalue_loc (loc, TREE_OPERAND (length2, 0));
	  else
	    this_a2_is_null = fold_build2_loc (loc, EQ_EXPR, result_type,
					       length2, size_zero_node);
	}

      /* Append expressions for this dimension to the final expressions.  */
      result = build_binary_op (TRUTH_ANDIF_EXPR, result_type,
				result, comparison);

      a1_is_null = build_binary_op (TRUTH_ORIF_EXPR, result_type,
				    this_a1_is_null, a1_is_null);

      a2_is_null = build_binary_op (TRUTH_ORIF_EXPR, result_type,
				    this_a2_is_null, a2_is_null);

      t1 = TREE_TYPE (t1);
      t2 = TREE_TYPE (t2);
    }

  /* Unless the length of some dimension is known to be zero, compare the
     data in the array.  */
  if (!length_zero_p)
    {
      tree type = find_common_type (TREE_TYPE (a1), TREE_TYPE (a2));
      tree comparison;

      if (type)
	{
	  a1 = convert (type, a1),
	  a2 = convert (type, a2);
	}

      comparison = fold_build2_loc (loc, EQ_EXPR, result_type, a1, a2);

      result
	= build_binary_op (TRUTH_ANDIF_EXPR, result_type, result, comparison);
    }

  /* The result is also true if both sizes are zero.  */
  result = build_binary_op (TRUTH_ORIF_EXPR, result_type,
			    build_binary_op (TRUTH_ANDIF_EXPR, result_type,
					     a1_is_null, a2_is_null),
			    result);

  /* If the operands have side-effects, they need to be evaluated before
     doing the tests above since the place they otherwise would end up
     being evaluated at run time could be wrong.  */
  if (a1_side_effects_p)
    result = build2 (COMPOUND_EXPR, result_type, a1, result);

  if (a2_side_effects_p)
    result = build2 (COMPOUND_EXPR, result_type, a2, result);

  return result;
}

/* Return an expression tree representing an equality comparison of P1 and P2,
   two objects of fat pointer type.  The result should be of type RESULT_TYPE.

   Two fat pointers are equal in one of two ways: (1) if both have a null
   pointer to the array or (2) if they contain the same couple of pointers.
   We perform the comparison in as efficient a manner as possible.  */

static tree
compare_fat_pointers (location_t loc, tree result_type, tree p1, tree p2)
{
  tree p1_array, p2_array, p1_bounds, p2_bounds, same_array, same_bounds;
  tree p1_array_is_null, p2_array_is_null;

  /* If either operand has side-effects, they have to be evaluated only once
     in spite of the multiple references to the operand in the comparison.  */
  p1 = gnat_protect_expr (p1);
  p2 = gnat_protect_expr (p2);

  /* The constant folder doesn't fold fat pointer types so we do it here.  */
  if (TREE_CODE (p1) == CONSTRUCTOR)
    p1_array = CONSTRUCTOR_ELT (p1, 0)->value;
  else
    p1_array = build_component_ref (p1, TYPE_FIELDS (TREE_TYPE (p1)), true);

  p1_array_is_null
    = fold_build2_loc (loc, EQ_EXPR, result_type, p1_array,
		       fold_convert_loc (loc, TREE_TYPE (p1_array),
					 null_pointer_node));

  if (TREE_CODE (p2) == CONSTRUCTOR)
    p2_array = CONSTRUCTOR_ELT (p2, 0)->value;
  else
    p2_array = build_component_ref (p2, TYPE_FIELDS (TREE_TYPE (p2)), true);

  p2_array_is_null
    = fold_build2_loc (loc, EQ_EXPR, result_type, p2_array,
		       fold_convert_loc (loc, TREE_TYPE (p2_array),
					 null_pointer_node));

  /* If one of the pointers to the array is null, just compare the other.  */
  if (integer_zerop (p1_array))
    return p2_array_is_null;
  else if (integer_zerop (p2_array))
    return p1_array_is_null;

  /* Otherwise, do the fully-fledged comparison.  */
  same_array
    = fold_build2_loc (loc, EQ_EXPR, result_type, p1_array, p2_array);

  if (TREE_CODE (p1) == CONSTRUCTOR)
    p1_bounds = CONSTRUCTOR_ELT (p1, 1)->value;
  else
    p1_bounds
      = build_component_ref (p1, DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (p1))),
			     true);

  if (TREE_CODE (p2) == CONSTRUCTOR)
    p2_bounds = CONSTRUCTOR_ELT (p2, 1)->value;
  else
    p2_bounds
      = build_component_ref (p2, DECL_CHAIN (TYPE_FIELDS (TREE_TYPE (p2))),
			     true);

  same_bounds
    = fold_build2_loc (loc, EQ_EXPR, result_type, p1_bounds, p2_bounds);

  /* P1_ARRAY == P2_ARRAY && (P1_ARRAY == NULL || P1_BOUNDS == P2_BOUNDS).  */
  return build_binary_op (TRUTH_ANDIF_EXPR, result_type, same_array,
			  build_binary_op (TRUTH_ORIF_EXPR, result_type,
					   p1_array_is_null, same_bounds));
}

/* Compute the result of applying OP_CODE to LHS and RHS, where both are of
   type TYPE.  We know that TYPE is a modular type with a nonbinary
   modulus.  */

static tree
nonbinary_modular_operation (enum tree_code op_code, tree type, tree lhs,
                             tree rhs)
{
  tree modulus = TYPE_MODULUS (type);
  unsigned int needed_precision = tree_floor_log2 (modulus) + 1;
  unsigned int precision;
  bool unsignedp = true;
  tree op_type = type;
  tree result;

  /* If this is an addition of a constant, convert it to a subtraction
     of a constant since we can do that faster.  */
  if (op_code == PLUS_EXPR && TREE_CODE (rhs) == INTEGER_CST)
    {
      rhs = fold_build2 (MINUS_EXPR, type, modulus, rhs);
      op_code = MINUS_EXPR;
    }

  /* For the logical operations, we only need PRECISION bits.  For
     addition and subtraction, we need one more and for multiplication we
     need twice as many.  But we never want to make a size smaller than
     our size. */
  if (op_code == PLUS_EXPR || op_code == MINUS_EXPR)
    needed_precision += 1;
  else if (op_code == MULT_EXPR)
    needed_precision *= 2;

  precision = MAX (needed_precision, TYPE_PRECISION (op_type));

  /* Unsigned will do for everything but subtraction.  */
  if (op_code == MINUS_EXPR)
    unsignedp = false;

  /* If our type is the wrong signedness or isn't wide enough, make a new
     type and convert both our operands to it.  */
  if (TYPE_PRECISION (op_type) < precision
      || TYPE_UNSIGNED (op_type) != unsignedp)
    {
      /* Copy the type so we ensure it can be modified to make it modular.  */
      op_type = copy_type (gnat_type_for_size (precision, unsignedp));
      modulus = convert (op_type, modulus);
      SET_TYPE_MODULUS (op_type, modulus);
      TYPE_MODULAR_P (op_type) = 1;
      lhs = convert (op_type, lhs);
      rhs = convert (op_type, rhs);
    }

  /* Do the operation, then we'll fix it up.  */
  result = fold_build2 (op_code, op_type, lhs, rhs);

  /* For multiplication, we have no choice but to do a full modulus
     operation.  However, we want to do this in the narrowest
     possible size.  */
  if (op_code == MULT_EXPR)
    {
      /* Copy the type so we ensure it can be modified to make it modular.  */
      tree div_type = copy_type (gnat_type_for_size (needed_precision, 1));
      modulus = convert (div_type, modulus);
      SET_TYPE_MODULUS (div_type, modulus);
      TYPE_MODULAR_P (div_type) = 1;
      result = convert (op_type,
			fold_build2 (TRUNC_MOD_EXPR, div_type,
				     convert (div_type, result), modulus));
    }

  /* For subtraction, add the modulus back if we are negative.  */
  else if (op_code == MINUS_EXPR)
    {
      result = gnat_protect_expr (result);
      result = fold_build3 (COND_EXPR, op_type,
			    fold_build2 (LT_EXPR, boolean_type_node, result,
					 build_int_cst (op_type, 0)),
			    fold_build2 (PLUS_EXPR, op_type, result, modulus),
			    result);
    }

  /* For the other operations, subtract the modulus if we are >= it.  */
  else
    {
      result = gnat_protect_expr (result);
      result = fold_build3 (COND_EXPR, op_type,
			    fold_build2 (GE_EXPR, boolean_type_node,
					 result, modulus),
			    fold_build2 (MINUS_EXPR, op_type,
					 result, modulus),
			    result);
    }

  return convert (type, result);
}

/* This page contains routines that implement the Ada semantics with regard
   to atomic objects.  They are fully piggybacked on the middle-end support
   for atomic loads and stores.

   *** Memory barriers and volatile objects ***

   We implement the weakened form of the C.6(16) clause that was introduced
   in Ada 2012 (AI05-117).  Earlier forms of this clause wouldn't have been
   implementable without significant performance hits on modern platforms.

   We also take advantage of the requirements imposed on shared variables by
   9.10 (conditions for sequential actions) to have non-erroneous execution
   and consider that C.6(16) and C.6(17) only prescribe an uniform order of
   volatile updates with regard to sequential actions, i.e. with regard to
   reads or updates of atomic objects.

   As such, an update of an atomic object by a task requires that all earlier
   accesses to volatile objects have completed.  Similarly, later accesses to
   volatile objects cannot be reordered before the update of the atomic object.
   So, memory barriers both before and after the atomic update are needed.

   For a read of an atomic object, to avoid seeing writes of volatile objects
   by a task earlier than by the other tasks, a memory barrier is needed before
   the atomic read.  Finally, to avoid reordering later reads or updates of
   volatile objects to before the atomic read, a barrier is needed after the
   atomic read.

   So, memory barriers are needed before and after atomic reads and updates.
   And, in order to simplify the implementation, we use full memory barriers
   in all cases, i.e. we enforce sequential consistency for atomic accesses.  */

/* Return the size of TYPE, which must be a positive power of 2.  */

static unsigned int
resolve_atomic_size (tree type)
{
  unsigned HOST_WIDE_INT size = tree_to_uhwi (TYPE_SIZE_UNIT (type));

  if (size == 1 || size == 2 || size == 4 || size == 8 || size == 16)
    return size;

  /* We shouldn't reach here without having already detected that the size
     isn't compatible with an atomic access.  */
  gcc_assert (Serious_Errors_Detected);

  return 0;
}

/* Build an atomic load for the underlying atomic object in SRC.  SYNC is
   true if the load requires synchronization.  */

tree
build_atomic_load (tree src, bool sync)
{
  tree ptr_type
    = build_pointer_type
      (build_qualified_type (void_type_node,
			     TYPE_QUAL_ATOMIC | TYPE_QUAL_VOLATILE));
  tree mem_model
    = build_int_cst (integer_type_node,
		     sync ? MEMMODEL_SEQ_CST : MEMMODEL_RELAXED);
  tree orig_src = src;
  tree t, addr, val;
  unsigned int size;
  int fncode;

  /* Remove conversions to get the address of the underlying object.  */
  src = remove_conversions (src, false);
  size = resolve_atomic_size (TREE_TYPE (src));
  if (size == 0)
    return orig_src;

  fncode = (int) BUILT_IN_ATOMIC_LOAD_N + exact_log2 (size) + 1;
  t = builtin_decl_implicit ((enum built_in_function) fncode);

  addr = build_unary_op (ADDR_EXPR, ptr_type, src);
  val = build_call_expr (t, 2, addr, mem_model);

  /* First reinterpret the loaded bits in the original type of the load,
     then convert to the expected result type.  */
  t = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (src), val);
  return convert (TREE_TYPE (orig_src), t);
}

/* Build an atomic store from SRC to the underlying atomic object in DEST.
   SYNC is true if the store requires synchronization.  */

tree
build_atomic_store (tree dest, tree src, bool sync)
{
  tree ptr_type
    = build_pointer_type
      (build_qualified_type (void_type_node,
			     TYPE_QUAL_ATOMIC | TYPE_QUAL_VOLATILE));
  tree mem_model
    = build_int_cst (integer_type_node,
		     sync ? MEMMODEL_SEQ_CST : MEMMODEL_RELAXED);
  tree orig_dest = dest;
  tree t, int_type, addr;
  unsigned int size;
  int fncode;

  /* Remove conversions to get the address of the underlying object.  */
  dest = remove_conversions (dest, false);
  size = resolve_atomic_size (TREE_TYPE (dest));
  if (size == 0)
    return build_binary_op (MODIFY_EXPR, NULL_TREE, orig_dest, src);

  fncode = (int) BUILT_IN_ATOMIC_STORE_N + exact_log2 (size) + 1;
  t = builtin_decl_implicit ((enum built_in_function) fncode);
  int_type = gnat_type_for_size (BITS_PER_UNIT * size, 1);

  /* First convert the bits to be stored to the original type of the store,
     then reinterpret them in the effective type.  But if the original type
     is a padded type with the same size, convert to the inner type instead,
     as we don't want to artificially introduce a CONSTRUCTOR here.  */
  if (TYPE_IS_PADDING_P (TREE_TYPE (dest))
      && TYPE_SIZE (TREE_TYPE (dest))
	 == TYPE_SIZE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (dest)))))
    src = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (dest))), src);
  else
    src = convert (TREE_TYPE (dest), src);
  src = fold_build1 (VIEW_CONVERT_EXPR, int_type, src);
  addr = build_unary_op (ADDR_EXPR, ptr_type, dest);

  return build_call_expr (t, 3, addr, src, mem_model);
}

/* Build a load-modify-store sequence from SRC to DEST.  GNAT_NODE is used for
   the location of the sequence.  Note that, even though the load and the store
   are both atomic, the sequence itself is not atomic.  */

tree
build_load_modify_store (tree dest, tree src, Node_Id gnat_node)
{
  /* We will be modifying DEST below so we build a copy.  */
  dest = copy_node (dest);
  tree ref = dest;

  while (handled_component_p (ref))
    {
      /* The load should already have been generated during the translation
	 of the GNAT destination tree; find it out in the GNU tree.  */
      if (TREE_CODE (TREE_OPERAND (ref, 0)) == VIEW_CONVERT_EXPR)
	{
	  tree op = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
	  if (TREE_CODE (op) == CALL_EXPR && call_is_atomic_load (op))
	    {
	      tree type = TREE_TYPE (TREE_OPERAND (ref, 0));
	      tree t = CALL_EXPR_ARG (op, 0);
	      tree obj, temp, stmt;

	      /* Find out the loaded object.  */
	      if (TREE_CODE (t) == NOP_EXPR)
		t = TREE_OPERAND (t, 0);
	      if (TREE_CODE (t) == ADDR_EXPR)
		obj = TREE_OPERAND (t, 0);
	      else
		obj = build1 (INDIRECT_REF, type, t);

	      /* Drop atomic and volatile qualifiers for the temporary.  */
	      type = TYPE_MAIN_VARIANT (type);

	      /* And drop BLKmode, if need be, to put it into a register.  */
	      if (TYPE_MODE (type) == BLKmode)
		{
		  unsigned int size = tree_to_uhwi (TYPE_SIZE (type));
		  type = copy_type (type);
		  machine_mode mode = int_mode_for_size (size, 0).else_blk ();
		  SET_TYPE_MODE (type, mode);
		}

	      /* Create the temporary by inserting a SAVE_EXPR.  */
	      temp = build1 (SAVE_EXPR, type,
			     build1 (VIEW_CONVERT_EXPR, type, op));
	      TREE_OPERAND (ref, 0) = temp;

	      start_stmt_group ();

	      /* Build the modify of the temporary.  */
	      stmt = build_binary_op (MODIFY_EXPR, NULL_TREE, dest, src);
	      add_stmt_with_node (stmt, gnat_node);

	      /* Build the store to the object.  */
	      stmt = build_atomic_store (obj, temp, false);
	      add_stmt_with_node (stmt, gnat_node);

	      return end_stmt_group ();
	    }
	}

      TREE_OPERAND (ref, 0) = copy_node (TREE_OPERAND (ref, 0));
      ref = TREE_OPERAND (ref, 0);
    }

  /* Something went wrong earlier if we have not found the atomic load.  */
  gcc_unreachable ();
}

/* Make a binary operation of kind OP_CODE.  RESULT_TYPE is the type
   desired for the result.  Usually the operation is to be performed
   in that type.  For INIT_EXPR and MODIFY_EXPR, RESULT_TYPE must be
   NULL_TREE.  For ARRAY_REF, RESULT_TYPE may be NULL_TREE, in which
   case the type to be used will be derived from the operands.
   Don't fold the result if NO_FOLD is true.

   This function is very much unlike the ones for C and C++ since we
   have already done any type conversion and matching required.  All we
   have to do here is validate the work done by SEM and handle subtypes.  */

tree
build_binary_op (enum tree_code op_code, tree result_type,
		 tree left_operand, tree right_operand,
		 bool no_fold)
{
  tree left_type = TREE_TYPE (left_operand);
  tree right_type = TREE_TYPE (right_operand);
  tree left_base_type = get_base_type (left_type);
  tree right_base_type = get_base_type (right_type);
  tree operation_type = result_type;
  tree best_type = NULL_TREE;
  tree modulus, result;
  bool has_side_effects = false;

  if (operation_type
      && TREE_CODE (operation_type) == RECORD_TYPE
      && TYPE_JUSTIFIED_MODULAR_P (operation_type))
    operation_type = TREE_TYPE (TYPE_FIELDS (operation_type));

  if (operation_type
      && TREE_CODE (operation_type) == INTEGER_TYPE
      && TYPE_EXTRA_SUBTYPE_P (operation_type))
    operation_type = get_base_type (operation_type);

  modulus = (operation_type
	     && TREE_CODE (operation_type) == INTEGER_TYPE
	     && TYPE_MODULAR_P (operation_type)
	     ? TYPE_MODULUS (operation_type) : NULL_TREE);

  switch (op_code)
    {
    case INIT_EXPR:
    case MODIFY_EXPR:
      gcc_checking_assert (!result_type);

      /* If there were integral or pointer conversions on the LHS, remove
	 them; we'll be putting them back below if needed.  Likewise for
	 conversions between array and record types, except for justified
	 modular types.  But don't do this if the right operand is not
	 BLKmode (for packed arrays) unless we are not changing the mode.  */
      while ((CONVERT_EXPR_P (left_operand)
	      || TREE_CODE (left_operand) == VIEW_CONVERT_EXPR)
	     && (((INTEGRAL_TYPE_P (left_type)
		   || POINTER_TYPE_P (left_type))
		  && (INTEGRAL_TYPE_P (TREE_TYPE
				       (TREE_OPERAND (left_operand, 0)))
		      || POINTER_TYPE_P (TREE_TYPE
					 (TREE_OPERAND (left_operand, 0)))))
		 || (((TREE_CODE (left_type) == RECORD_TYPE
		       && !TYPE_JUSTIFIED_MODULAR_P (left_type))
		      || TREE_CODE (left_type) == ARRAY_TYPE)
		     && ((TREE_CODE (TREE_TYPE
				     (TREE_OPERAND (left_operand, 0)))
			  == RECORD_TYPE)
			 || (TREE_CODE (TREE_TYPE
					(TREE_OPERAND (left_operand, 0)))
			     == ARRAY_TYPE))
		     && (TYPE_MODE (right_type) == BLKmode
			 || (TYPE_MODE (left_type)
			     == TYPE_MODE (TREE_TYPE
					   (TREE_OPERAND
					    (left_operand, 0))))))))
	{
	  left_operand = TREE_OPERAND (left_operand, 0);
	  left_type = TREE_TYPE (left_operand);
	}

      /* If a class-wide type may be involved, force use of the RHS type.  */
      if ((TREE_CODE (right_type) == RECORD_TYPE
	   || TREE_CODE (right_type) == UNION_TYPE)
	  && TYPE_ALIGN_OK (right_type))
	operation_type = right_type;

      /* If we are copying between padded objects with compatible types, use
	 the padded view of the objects, this is very likely more efficient.
	 Likewise for a padded object that is assigned a constructor, if we
	 can convert the constructor to the inner type, to avoid putting a
	 VIEW_CONVERT_EXPR on the LHS.  But don't do so if we wouldn't have
	 actually copied anything.  */
      else if (TYPE_IS_PADDING_P (left_type)
	       && TREE_CONSTANT (TYPE_SIZE (left_type))
	       && ((TREE_CODE (right_operand) == COMPONENT_REF
		    && TYPE_MAIN_VARIANT (left_type)
		       == TYPE_MAIN_VARIANT
			  (TREE_TYPE (TREE_OPERAND (right_operand, 0))))
		   || (TREE_CODE (right_operand) == CONSTRUCTOR
		       && !CONTAINS_PLACEHOLDER_P
			   (DECL_SIZE (TYPE_FIELDS (left_type)))))
	       && !integer_zerop (TYPE_SIZE (right_type)))
	{
	  /* We make an exception for a BLKmode type padding a non-BLKmode
	     inner type and do the conversion of the LHS right away, since
	     unchecked_convert wouldn't do it properly.  */
	  if (TYPE_MODE (left_type) == BLKmode
	      && TYPE_MODE (right_type) != BLKmode
	      && TREE_CODE (right_operand) != CONSTRUCTOR)
	    {
	      operation_type = right_type;
	      left_operand = convert (operation_type, left_operand);
	      left_type = operation_type;
	    }
	  else
	    operation_type = left_type;
	}

      /* If we have a call to a function that returns with variable size, use
	 the RHS type in case we want to use the return slot optimization.  */
      else if (TREE_CODE (right_operand) == CALL_EXPR
	       && return_type_with_variable_size_p (right_type))
	operation_type = right_type;

      /* Find the best type to use for copying between aggregate types.  */
      else if (((TREE_CODE (left_type) == ARRAY_TYPE
		 && TREE_CODE (right_type) == ARRAY_TYPE)
		|| (TREE_CODE (left_type) == RECORD_TYPE
		    && TREE_CODE (right_type) == RECORD_TYPE))
	       && (best_type = find_common_type (left_type, right_type)))
	operation_type = best_type;

      /* Otherwise use the LHS type.  */
      else
	operation_type = left_type;

      /* Ensure everything on the LHS is valid.  If we have a field reference,
	 strip anything that get_inner_reference can handle.  Then remove any
	 conversions between types having the same code and mode.  And mark
	 VIEW_CONVERT_EXPRs with TREE_ADDRESSABLE.  When done, we must have
	 either an INDIRECT_REF, a NULL_EXPR, a SAVE_EXPR or a DECL node.  */
      result = left_operand;
      while (true)
	{
	  tree restype = TREE_TYPE (result);

	  if (TREE_CODE (result) == COMPONENT_REF
	      || TREE_CODE (result) == ARRAY_REF
	      || TREE_CODE (result) == ARRAY_RANGE_REF)
	    while (handled_component_p (result))
	      result = TREE_OPERAND (result, 0);
	  else if (TREE_CODE (result) == REALPART_EXPR
		   || TREE_CODE (result) == IMAGPART_EXPR
		   || (CONVERT_EXPR_P (result)
		       && (((TREE_CODE (restype)
			     == TREE_CODE (TREE_TYPE
					   (TREE_OPERAND (result, 0))))
			     && (TYPE_MODE (TREE_TYPE
					    (TREE_OPERAND (result, 0)))
				 == TYPE_MODE (restype)))
			   || TYPE_ALIGN_OK (restype))))
	    result = TREE_OPERAND (result, 0);
	  else if (TREE_CODE (result) == VIEW_CONVERT_EXPR)
	    {
	      TREE_ADDRESSABLE (result) = 1;
	      result = TREE_OPERAND (result, 0);
	    }
	  else
	    break;
	}

      gcc_assert (TREE_CODE (result) == INDIRECT_REF
		  || TREE_CODE (result) == NULL_EXPR
		  || TREE_CODE (result) == SAVE_EXPR
		  || DECL_P (result));

      /* Convert the right operand to the operation type unless it is
	 either already of the correct type or if the type involves a
	 placeholder, since the RHS may not have the same record type.  */
      if (operation_type != right_type
	  && !CONTAINS_PLACEHOLDER_P (TYPE_SIZE (operation_type)))
	{
	  right_operand = convert (operation_type, right_operand);
	  right_type = operation_type;
	}

      /* If the left operand is not of the same type as the operation
	 type, wrap it up in a VIEW_CONVERT_EXPR.  */
      if (left_type != operation_type)
	left_operand = unchecked_convert (operation_type, left_operand, false);

      has_side_effects = true;
      modulus = NULL_TREE;
      break;

    case ARRAY_REF:
      if (!operation_type)
	operation_type = TREE_TYPE (left_type);

      /* ... fall through ... */

    case ARRAY_RANGE_REF:
      /* First look through conversion between type variants.  Note that
	 this changes neither the operation type nor the type domain.  */
      if (TREE_CODE (left_operand) == VIEW_CONVERT_EXPR
	  && TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (left_operand, 0)))
	     == TYPE_MAIN_VARIANT (left_type))
	{
	  left_operand = TREE_OPERAND (left_operand, 0);
	  left_type = TREE_TYPE (left_operand);
	}

      /* For a range, make sure the element type is consistent.  */
      if (op_code == ARRAY_RANGE_REF
	  && TREE_TYPE (operation_type) != TREE_TYPE (left_type))
	operation_type = build_array_type (TREE_TYPE (left_type),
					   TYPE_DOMAIN (operation_type));

      /* Then convert the right operand to its base type.  This will prevent
	 unneeded sign conversions when sizetype is wider than integer.  */
      right_operand = convert (right_base_type, right_operand);
      right_operand = convert_to_index_type (right_operand);
      modulus = NULL_TREE;
      break;

    case TRUTH_ANDIF_EXPR:
    case TRUTH_ORIF_EXPR:
    case TRUTH_AND_EXPR:
    case TRUTH_OR_EXPR:
    case TRUTH_XOR_EXPR:
      gcc_checking_assert
	(TREE_CODE (get_base_type (result_type)) == BOOLEAN_TYPE);
      operation_type = left_base_type;
      left_operand = convert (operation_type, left_operand);
      right_operand = convert (operation_type, right_operand);
      break;

    case GE_EXPR:
    case LE_EXPR:
    case GT_EXPR:
    case LT_EXPR:
    case EQ_EXPR:
    case NE_EXPR:
      gcc_checking_assert
	(TREE_CODE (get_base_type (result_type)) == BOOLEAN_TYPE);
      /* If either operand is a NULL_EXPR, just return a new one.  */
      if (TREE_CODE (left_operand) == NULL_EXPR)
	return build2 (op_code, result_type,
		       build1 (NULL_EXPR, integer_type_node,
			       TREE_OPERAND (left_operand, 0)),
		       integer_zero_node);

      else if (TREE_CODE (right_operand) == NULL_EXPR)
	return build2 (op_code, result_type,
		       build1 (NULL_EXPR, integer_type_node,
			       TREE_OPERAND (right_operand, 0)),
		       integer_zero_node);

      /* If either object is a justified modular types, get the
	 fields from within.  */
      if (TREE_CODE (left_type) == RECORD_TYPE
	  && TYPE_JUSTIFIED_MODULAR_P (left_type))
	{
	  left_operand = convert (TREE_TYPE (TYPE_FIELDS (left_type)),
				  left_operand);
	  left_type = TREE_TYPE (left_operand);
	  left_base_type = get_base_type (left_type);
	}

      if (TREE_CODE (right_type) == RECORD_TYPE
	  && TYPE_JUSTIFIED_MODULAR_P (right_type))
	{
	  right_operand = convert (TREE_TYPE (TYPE_FIELDS (right_type)),
				  right_operand);
	  right_type = TREE_TYPE (right_operand);
	  right_base_type = get_base_type (right_type);
	}

      /* If both objects are arrays, compare them specially.  */
      if ((TREE_CODE (left_type) == ARRAY_TYPE
	   || (TREE_CODE (left_type) == INTEGER_TYPE
	       && TYPE_HAS_ACTUAL_BOUNDS_P (left_type)))
	  && (TREE_CODE (right_type) == ARRAY_TYPE
	      || (TREE_CODE (right_type) == INTEGER_TYPE
		  && TYPE_HAS_ACTUAL_BOUNDS_P (right_type))))
	{
	  result = compare_arrays (input_location,
				   result_type, left_operand, right_operand);
	  if (op_code == NE_EXPR)
	    result = invert_truthvalue_loc (EXPR_LOCATION (result), result);
	  else
	    gcc_assert (op_code == EQ_EXPR);

	  return result;
	}

      /* Otherwise, the base types must be the same, unless they are both fat
	 pointer types or record types.  In the latter case, use the best type
	 and convert both operands to that type.  */
      if (left_base_type != right_base_type)
	{
	  if (TYPE_IS_FAT_POINTER_P (left_base_type)
	      && TYPE_IS_FAT_POINTER_P (right_base_type))
	    {
	      gcc_assert (TYPE_MAIN_VARIANT (left_base_type)
			  == TYPE_MAIN_VARIANT (right_base_type));
	      best_type = left_base_type;
	    }

	  else if (TREE_CODE (left_base_type) == RECORD_TYPE
		   && TREE_CODE (right_base_type) == RECORD_TYPE)
	    {
	      /* The only way this is permitted is if both types have the same
		 name.  In that case, one of them must not be self-referential.
		 Use it as the best type.  Even better with a fixed size.  */
	      gcc_assert (TYPE_NAME (left_base_type)
			  && TYPE_NAME (left_base_type)
			     == TYPE_NAME (right_base_type));

	      if (TREE_CONSTANT (TYPE_SIZE (left_base_type)))
		best_type = left_base_type;
	      else if (TREE_CONSTANT (TYPE_SIZE (right_base_type)))
		best_type = right_base_type;
	      else if (!CONTAINS_PLACEHOLDER_P (TYPE_SIZE (left_base_type)))
		best_type = left_base_type;
	      else if (!CONTAINS_PLACEHOLDER_P (TYPE_SIZE (right_base_type)))
		best_type = right_base_type;
	      else
		gcc_unreachable ();
	    }

	  else if (POINTER_TYPE_P (left_base_type)
		   && POINTER_TYPE_P (right_base_type))
	    {
	      gcc_assert (TREE_TYPE (left_base_type)
			  == TREE_TYPE (right_base_type));
	      best_type = left_base_type;
	    }
	  else
	    gcc_unreachable ();

	  left_operand = convert (best_type, left_operand);
	  right_operand = convert (best_type, right_operand);
	}
      else
	{
	  left_operand = convert (left_base_type, left_operand);
	  right_operand = convert (right_base_type, right_operand);
	}

      /* If both objects are fat pointers, compare them specially.  */
      if (TYPE_IS_FAT_POINTER_P (left_base_type))
	{
	  result
	    = compare_fat_pointers (input_location,
				    result_type, left_operand, right_operand);
	  if (op_code == NE_EXPR)
	    result = invert_truthvalue_loc (EXPR_LOCATION (result), result);
	  else
	    gcc_assert (op_code == EQ_EXPR);

	  return result;
	}

      modulus = NULL_TREE;
      break;

    case LSHIFT_EXPR:
    case RSHIFT_EXPR:
    case LROTATE_EXPR:
    case RROTATE_EXPR:
       /* The RHS of a shift can be any type.  Also, ignore any modulus
	 (we used to abort, but this is needed for unchecked conversion
	 to modular types).  Otherwise, processing is the same as normal.  */
      gcc_assert (operation_type == left_base_type);
      modulus = NULL_TREE;
      left_operand = convert (operation_type, left_operand);
      break;

    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      /* For binary modulus, if the inputs are in range, so are the
	 outputs.  */
      if (modulus && integer_pow2p (modulus))
	modulus = NULL_TREE;
      goto common;

    case COMPLEX_EXPR:
      gcc_assert (TREE_TYPE (result_type) == left_base_type
		  && TREE_TYPE (result_type) == right_base_type);
      left_operand = convert (left_base_type, left_operand);
      right_operand = convert (right_base_type, right_operand);
      break;

    case TRUNC_DIV_EXPR:   case TRUNC_MOD_EXPR:
    case CEIL_DIV_EXPR:    case CEIL_MOD_EXPR:
    case FLOOR_DIV_EXPR:   case FLOOR_MOD_EXPR:
    case ROUND_DIV_EXPR:   case ROUND_MOD_EXPR:
      /* These always produce results lower than either operand.  */
      modulus = NULL_TREE;
      goto common;

    case POINTER_PLUS_EXPR:
      gcc_assert (operation_type == left_base_type
		  && sizetype == right_base_type);
      left_operand = convert (operation_type, left_operand);
      right_operand = convert (sizetype, right_operand);
      break;

    case PLUS_NOMOD_EXPR:
    case MINUS_NOMOD_EXPR:
      if (op_code == PLUS_NOMOD_EXPR)
	op_code = PLUS_EXPR;
      else
	op_code = MINUS_EXPR;
      modulus = NULL_TREE;

      /* ... fall through ... */

    case PLUS_EXPR:
    case MINUS_EXPR:
      /* Avoid doing arithmetics in ENUMERAL_TYPE or BOOLEAN_TYPE like the
	 other compilers.  Contrary to C, Ada doesn't allow arithmetics in
	 these types but can generate addition/subtraction for Succ/Pred.  */
      if (operation_type
	  && (TREE_CODE (operation_type) == ENUMERAL_TYPE
	      || TREE_CODE (operation_type) == BOOLEAN_TYPE))
	operation_type = left_base_type = right_base_type
	  = gnat_type_for_mode (TYPE_MODE (operation_type),
				TYPE_UNSIGNED (operation_type));

      /* ... fall through ... */

    default:
    common:
      /* The result type should be the same as the base types of the
	 both operands (and they should be the same).  Convert
	 everything to the result type.  */

      gcc_assert (operation_type == left_base_type
		  && left_base_type == right_base_type);
      left_operand = convert (operation_type, left_operand);
      right_operand = convert (operation_type, right_operand);
    }

  if (modulus && !integer_pow2p (modulus))
    {
      result = nonbinary_modular_operation (op_code, operation_type,
					    left_operand, right_operand);
      modulus = NULL_TREE;
    }
  /* If either operand is a NULL_EXPR, just return a new one.  */
  else if (TREE_CODE (left_operand) == NULL_EXPR)
    return build1 (NULL_EXPR, operation_type, TREE_OPERAND (left_operand, 0));
  else if (TREE_CODE (right_operand) == NULL_EXPR)
    return build1 (NULL_EXPR, operation_type, TREE_OPERAND (right_operand, 0));
  else if (op_code == ARRAY_REF || op_code == ARRAY_RANGE_REF)
    {
      result = build4 (op_code, operation_type, left_operand, right_operand,
		       NULL_TREE, NULL_TREE);
      if (!no_fold)
	result = fold (result);
    }
  else if (op_code == INIT_EXPR || op_code == MODIFY_EXPR)
    result = build2 (op_code, void_type_node, left_operand, right_operand);
  else if (no_fold)
    result = build2 (op_code, operation_type, left_operand, right_operand);
  else
    result
      = fold_build2 (op_code, operation_type, left_operand, right_operand);

  if (TREE_CONSTANT (result))
    ;
  else if (op_code == ARRAY_REF || op_code == ARRAY_RANGE_REF)
    {
      if (TYPE_VOLATILE (operation_type))
	TREE_THIS_VOLATILE (result) = 1;
    }
  else
    TREE_CONSTANT (result)
      |= (TREE_CONSTANT (left_operand) && TREE_CONSTANT (right_operand));

  TREE_SIDE_EFFECTS (result) |= has_side_effects;

  /* If we are working with modular types, perform the MOD operation
     if something above hasn't eliminated the need for it.  */
  if (modulus)
    {
      modulus = convert (operation_type, modulus);
      if (no_fold)
	result = build2 (FLOOR_MOD_EXPR, operation_type, result, modulus);
      else
	result = fold_build2 (FLOOR_MOD_EXPR, operation_type, result, modulus);
    }

  if (result_type && result_type != operation_type)
    result = convert (result_type, result);

  return result;
}

/* Similar, but for unary operations.  */

tree
build_unary_op (enum tree_code op_code, tree result_type, tree operand)
{
  tree type = TREE_TYPE (operand);
  tree base_type = get_base_type (type);
  tree operation_type = result_type;
  tree result;

  if (operation_type
      && TREE_CODE (operation_type) == RECORD_TYPE
      && TYPE_JUSTIFIED_MODULAR_P (operation_type))
    operation_type = TREE_TYPE (TYPE_FIELDS (operation_type));

  if (operation_type
      && TREE_CODE (operation_type) == INTEGER_TYPE
      && TYPE_EXTRA_SUBTYPE_P (operation_type))
    operation_type = get_base_type (operation_type);

  switch (op_code)
    {
    case REALPART_EXPR:
    case IMAGPART_EXPR:
      if (!operation_type)
	result_type = operation_type = TREE_TYPE (type);
      else
	gcc_assert (result_type == TREE_TYPE (type));

      result = fold_build1 (op_code, operation_type, operand);
      break;

    case TRUTH_NOT_EXPR:
      gcc_checking_assert
	(TREE_CODE (get_base_type (result_type)) == BOOLEAN_TYPE);
      result = invert_truthvalue_loc (EXPR_LOCATION (operand), operand);
      /* When not optimizing, fold the result as invert_truthvalue_loc
	 doesn't fold the result of comparisons.  This is intended to undo
	 the trick used for boolean rvalues in gnat_to_gnu.  */
      if (!optimize)
	result = fold (result);
      break;

    case ATTR_ADDR_EXPR:
    case ADDR_EXPR:
      switch (TREE_CODE (operand))
	{
	case INDIRECT_REF:
	case UNCONSTRAINED_ARRAY_REF:
	  result = TREE_OPERAND (operand, 0);

	  /* Make sure the type here is a pointer, not a reference.
	     GCC wants pointer types for function addresses.  */
	  if (!result_type)
	    result_type = build_pointer_type (type);

	  /* If the underlying object can alias everything, propagate the
	     property since we are effectively retrieving the object.  */
	  if (POINTER_TYPE_P (TREE_TYPE (result))
	      && TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (result)))
	    {
	      if (TREE_CODE (result_type) == POINTER_TYPE
		  && !TYPE_REF_CAN_ALIAS_ALL (result_type))
		result_type
		  = build_pointer_type_for_mode (TREE_TYPE (result_type),
						 TYPE_MODE (result_type),
						 true);
	      else if (TREE_CODE (result_type) == REFERENCE_TYPE
		       && !TYPE_REF_CAN_ALIAS_ALL (result_type))
	        result_type
		  = build_reference_type_for_mode (TREE_TYPE (result_type),
						   TYPE_MODE (result_type),
						   true);
	    }
	  break;

	case NULL_EXPR:
	  result = operand;
	  TREE_TYPE (result) = type = build_pointer_type (type);
	  break;

	case COMPOUND_EXPR:
	  /* Fold a compound expression if it has unconstrained array type
	     since the middle-end cannot handle it.  But we don't it in the
	     general case because it may introduce aliasing issues if the
	     first operand is an indirect assignment and the second operand
	     the corresponding address, e.g. for an allocator.  However do
	     it for a return value to expose it for later recognition.  */
	  if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE
	      || (TREE_CODE (TREE_OPERAND (operand, 1)) == VAR_DECL
		  && DECL_RETURN_VALUE_P (TREE_OPERAND (operand, 1))))
	    {
	      result = build_unary_op (ADDR_EXPR, result_type,
				       TREE_OPERAND (operand, 1));
	      result = build2 (COMPOUND_EXPR, TREE_TYPE (result),
			       TREE_OPERAND (operand, 0), result);
	      break;
	    }
	  goto common;

	case ARRAY_REF:
	case ARRAY_RANGE_REF:
	case COMPONENT_REF:
	case BIT_FIELD_REF:
	    /* If this is for 'Address, find the address of the prefix and add
	       the offset to the field.  Otherwise, do this the normal way.  */
	  if (op_code == ATTR_ADDR_EXPR)
	    {
	      poly_int64 bitsize;
	      poly_int64 bitpos;
	      tree offset, inner;
	      machine_mode mode;
	      int unsignedp, reversep, volatilep;

	      inner = get_inner_reference (operand, &bitsize, &bitpos, &offset,
					   &mode, &unsignedp, &reversep,
					   &volatilep);

	      /* If INNER is a padding type whose field has a self-referential
		 size, convert to that inner type.  We know the offset is zero
		 and we need to have that type visible.  */
	      if (type_is_padding_self_referential (TREE_TYPE (inner)))
		inner = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (inner))),
				 inner);

	      /* Compute the offset as a byte offset from INNER.  */
	      if (!offset)
		offset = size_zero_node;

	      offset
		= size_binop (PLUS_EXPR, offset,
			      size_int (bits_to_bytes_round_down (bitpos)));

	      /* Take the address of INNER, convert it to a pointer to our type
		 and add the offset.  */
	      inner = build_unary_op (ADDR_EXPR,
				      build_pointer_type (TREE_TYPE (operand)),
				      inner);
	      result = build_binary_op (POINTER_PLUS_EXPR, TREE_TYPE (inner),
					inner, offset);
	      break;
	    }
	  goto common;

	case CONSTRUCTOR:
	  /* If this is just a constructor for a padded record, we can
	     just take the address of the single field and convert it to
	     a pointer to our type.  */
	  if (TYPE_IS_PADDING_P (type))
	    {
	      result
		= build_unary_op (ADDR_EXPR,
				  build_pointer_type (TREE_TYPE (operand)),
				  CONSTRUCTOR_ELT (operand, 0)->value);
	      break;
	    }
	  goto common;

	case NOP_EXPR:
	  if (AGGREGATE_TYPE_P (type)
	      && AGGREGATE_TYPE_P (TREE_TYPE (TREE_OPERAND (operand, 0))))
	    return build_unary_op (ADDR_EXPR, result_type,
				   TREE_OPERAND (operand, 0));

	  /* ... fallthru ... */

	case VIEW_CONVERT_EXPR:
	  /* If this just a variant conversion or if the conversion doesn't
	     change the mode, get the result type from this type and go down.
	     This is needed for conversions of CONST_DECLs, to eventually get
	     to the address of their CORRESPONDING_VARs.  */
	  if ((TYPE_MAIN_VARIANT (type)
	       == TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (operand, 0))))
	      || (TYPE_MODE (type) != BLKmode
		  && (TYPE_MODE (type)
		      == TYPE_MODE (TREE_TYPE (TREE_OPERAND (operand, 0))))))
	    return build_unary_op (ADDR_EXPR,
				   (result_type ? result_type
				    : build_pointer_type (type)),
				   TREE_OPERAND (operand, 0));
	  goto common;

	case CONST_DECL:
	  operand = DECL_CONST_CORRESPONDING_VAR (operand);

	  /* ... fall through ... */

	default:
	common:

	  /* If we are taking the address of a padded record whose field
	     contains a template, take the address of the field.  */
	  if (TYPE_IS_PADDING_P (type)
	      && TREE_CODE (TREE_TYPE (TYPE_FIELDS (type))) == RECORD_TYPE
	      && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (TYPE_FIELDS (type))))
	    {
	      type = TREE_TYPE (TYPE_FIELDS (type));
	      operand = convert (type, operand);
	    }

	  gnat_mark_addressable (operand);
	  result = build_fold_addr_expr (operand);
	}

      TREE_CONSTANT (result) = staticp (operand) || TREE_CONSTANT (operand);
      break;

    case INDIRECT_REF:
      {
	tree t = remove_conversions (operand, false);
	bool can_never_be_null = DECL_P (t) && DECL_CAN_NEVER_BE_NULL_P (t);

	/* If TYPE is a thin pointer, either first retrieve the base if this
	   is an expression with an offset built for the initialization of an
	   object with an unconstrained nominal subtype, or else convert to
	   the fat pointer.  */
	if (TYPE_IS_THIN_POINTER_P (type))
	  {
	    tree rec_type = TREE_TYPE (type);

	    if (TREE_CODE (operand) == POINTER_PLUS_EXPR
		&& TREE_OPERAND (operand, 1)
		   == byte_position (DECL_CHAIN (TYPE_FIELDS (rec_type)))
		&& TREE_CODE (TREE_OPERAND (operand, 0)) == NOP_EXPR)
	      {
		operand = TREE_OPERAND (TREE_OPERAND (operand, 0), 0);
		type = TREE_TYPE (operand);
	      }
	    else if (TYPE_UNCONSTRAINED_ARRAY (rec_type))
	      {
		operand
		  = convert (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (rec_type)),
			     operand);
		type = TREE_TYPE (operand);
	      }
	  }

	/* If we want to refer to an unconstrained array, use the appropriate
	   expression.  But this will never survive down to the back-end.  */
	if (TYPE_IS_FAT_POINTER_P (type))
	  {
	    result = build1 (UNCONSTRAINED_ARRAY_REF,
			     TYPE_UNCONSTRAINED_ARRAY (type), operand);
	    TREE_READONLY (result)
	      = TYPE_READONLY (TYPE_UNCONSTRAINED_ARRAY (type));
	  }

	/* If we are dereferencing an ADDR_EXPR, return its operand.  */
	else if (TREE_CODE (operand) == ADDR_EXPR)
	  result = TREE_OPERAND (operand, 0);

	/* Otherwise, build and fold the indirect reference.  */
	else
	  {
	    result = build_fold_indirect_ref (operand);
	    TREE_READONLY (result) = TYPE_READONLY (TREE_TYPE (type));
	  }

	if (!TYPE_IS_FAT_POINTER_P (type) && TYPE_VOLATILE (TREE_TYPE (type)))
	  {
	    TREE_SIDE_EFFECTS (result) = 1;
	    if (TREE_CODE (result) == INDIRECT_REF)
	      TREE_THIS_VOLATILE (result) = TYPE_VOLATILE (TREE_TYPE (result));
	  }

	if ((TREE_CODE (result) == INDIRECT_REF
	     || TREE_CODE (result) == UNCONSTRAINED_ARRAY_REF)
	    && can_never_be_null)
	  TREE_THIS_NOTRAP (result) = 1;

	break;
      }

    case NEGATE_EXPR:
    case BIT_NOT_EXPR:
      {
	tree modulus = ((operation_type
			 && TREE_CODE (operation_type) == INTEGER_TYPE
			 && TYPE_MODULAR_P (operation_type))
			? TYPE_MODULUS (operation_type) : NULL_TREE);
	int mod_pow2 = modulus && integer_pow2p (modulus);

	/* If this is a modular type, there are various possibilities
	   depending on the operation and whether the modulus is a
	   power of two or not.  */

	if (modulus)
	  {
	    gcc_assert (operation_type == base_type);
	    operand = convert (operation_type, operand);

	    /* The fastest in the negate case for binary modulus is
	       the straightforward code; the TRUNC_MOD_EXPR below
	       is an AND operation.  */
	    if (op_code == NEGATE_EXPR && mod_pow2)
	      result = fold_build2 (TRUNC_MOD_EXPR, operation_type,
				    fold_build1 (NEGATE_EXPR, operation_type,
						 operand),
				    modulus);

	    /* For nonbinary negate case, return zero for zero operand,
	       else return the modulus minus the operand.  If the modulus
	       is a power of two minus one, we can do the subtraction
	       as an XOR since it is equivalent and faster on most machines. */
	    else if (op_code == NEGATE_EXPR && !mod_pow2)
	      {
		if (integer_pow2p (fold_build2 (PLUS_EXPR, operation_type,
						modulus,
						build_int_cst (operation_type,
							       1))))
		  result = fold_build2 (BIT_XOR_EXPR, operation_type,
					operand, modulus);
		else
		  result = fold_build2 (MINUS_EXPR, operation_type,
					modulus, operand);

		result = fold_build3 (COND_EXPR, operation_type,
				      fold_build2 (NE_EXPR,
						   boolean_type_node,
						   operand,
						   build_int_cst
						   (operation_type, 0)),
				      result, operand);
	      }
	    else
	      {
		/* For the NOT cases, we need a constant equal to
		   the modulus minus one.  For a binary modulus, we
		   XOR against the constant and subtract the operand from
		   that constant for nonbinary modulus.  */

		tree cnst = fold_build2 (MINUS_EXPR, operation_type, modulus,
					 build_int_cst (operation_type, 1));

		if (mod_pow2)
		  result = fold_build2 (BIT_XOR_EXPR, operation_type,
					operand, cnst);
		else
		  result = fold_build2 (MINUS_EXPR, operation_type,
					cnst, operand);
	      }

	    break;
	  }
      }

      /* ... fall through ... */

    default:
      gcc_assert (operation_type == base_type);
      result = fold_build1 (op_code, operation_type,
			    convert (operation_type, operand));
    }

  if (result_type && TREE_TYPE (result) != result_type)
    result = convert (result_type, result);

  return result;
}

/* Similar, but for COND_EXPR.  */

tree
build_cond_expr (tree result_type, tree condition_operand,
                 tree true_operand, tree false_operand)
{
  bool addr_p = false;
  tree result;

  /* The front-end verified that result, true and false operands have
     same base type.  Convert everything to the result type.  */
  true_operand = convert (result_type, true_operand);
  false_operand = convert (result_type, false_operand);

  /* If the result type is unconstrained, take the address of the operands and
     then dereference the result.  Likewise if the result type is passed by
     reference, because creating a temporary of this type is not allowed.  */
  if (TREE_CODE (result_type) == UNCONSTRAINED_ARRAY_TYPE
      || TYPE_IS_BY_REFERENCE_P (result_type)
      || CONTAINS_PLACEHOLDER_P (TYPE_SIZE (result_type)))
    {
      result_type = build_pointer_type (result_type);
      true_operand = build_unary_op (ADDR_EXPR, result_type, true_operand);
      false_operand = build_unary_op (ADDR_EXPR, result_type, false_operand);
      addr_p = true;
    }

  result = fold_build3 (COND_EXPR, result_type, condition_operand,
			true_operand, false_operand);

  /* If we have a common SAVE_EXPR (possibly surrounded by arithmetics)
     in both arms, make sure it gets evaluated by moving it ahead of the
     conditional expression.  This is necessary because it is evaluated
     in only one place at run time and would otherwise be uninitialized
     in one of the arms.  */
  true_operand = skip_simple_arithmetic (true_operand);
  false_operand = skip_simple_arithmetic (false_operand);

  if (true_operand == false_operand && TREE_CODE (true_operand) == SAVE_EXPR)
    result = build2 (COMPOUND_EXPR, result_type, true_operand, result);

  if (addr_p)
    result = build_unary_op (INDIRECT_REF, NULL_TREE, result);

  return result;
}

/* Similar, but for COMPOUND_EXPR.  */

tree
build_compound_expr (tree result_type, tree stmt_operand, tree expr_operand)
{
  bool addr_p = false;
  tree result;

  /* If the result type is unconstrained, take the address of the operand and
     then dereference the result.  Likewise if the result type is passed by
     reference, but this is natively handled in the gimplifier.  */
  if (TREE_CODE (result_type) == UNCONSTRAINED_ARRAY_TYPE
      || CONTAINS_PLACEHOLDER_P (TYPE_SIZE (result_type)))
    {
      result_type = build_pointer_type (result_type);
      expr_operand = build_unary_op (ADDR_EXPR, result_type, expr_operand);
      addr_p = true;
    }

  result = fold_build2 (COMPOUND_EXPR, result_type, stmt_operand,
			expr_operand);

  if (addr_p)
    result = build_unary_op (INDIRECT_REF, NULL_TREE, result);

  return result;
}

/* Conveniently construct a function call expression.  FNDECL names the
   function to be called, N is the number of arguments, and the "..."
   parameters are the argument expressions.  Unlike build_call_expr
   this doesn't fold the call, hence it will always return a CALL_EXPR.  */

tree
build_call_n_expr (tree fndecl, int n, ...)
{
  va_list ap;
  tree fntype = TREE_TYPE (fndecl);
  tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);

  va_start (ap, n);
  fn = build_call_valist (TREE_TYPE (fntype), fn, n, ap);
  va_end (ap);
  return fn;
}

/* Build a goto to LABEL for a raise, with an optional call to Local_Raise.
   MSG gives the exception's identity for the call to Local_Raise, if any.  */

static tree
build_goto_raise (Entity_Id gnat_label, int msg)
{
  tree gnu_label = gnat_to_gnu_entity (gnat_label, NULL_TREE, false);
  tree gnu_result = build1 (GOTO_EXPR, void_type_node, gnu_label);
  Entity_Id local_raise = Get_Local_Raise_Call_Entity ();

  /* If Local_Raise is present, build Local_Raise (Exception'Identity).  */
  if (Present (local_raise))
    {
      tree gnu_local_raise
	= gnat_to_gnu_entity (local_raise, NULL_TREE, false);
      tree gnu_exception_entity
	= gnat_to_gnu_entity (Get_RT_Exception_Entity (msg), NULL_TREE, false);
      tree gnu_call
	= build_call_n_expr (gnu_local_raise, 1,
			     build_unary_op (ADDR_EXPR, NULL_TREE,
					     gnu_exception_entity));
      gnu_result
	= build2 (COMPOUND_EXPR, void_type_node, gnu_call, gnu_result);
    }

  TREE_USED (gnu_label) = 1;
  return gnu_result;
}

/* Expand the SLOC of GNAT_NODE, if present, into tree location information
   pointed to by FILENAME, LINE and COL.  Fall back to the current location
   if GNAT_NODE is absent or has no SLOC.  */

static void
expand_sloc (Node_Id gnat_node, tree *filename, tree *line, tree *col)
{
  const char *str;
  int line_number, column_number;

  if (Debug_Flag_NN || Exception_Locations_Suppressed)
    {
      str = "";
      line_number = 0;
      column_number = 0;
    }
  else if (Present (gnat_node) && Sloc (gnat_node) != No_Location)
    {
      str = Get_Name_String
	    (Debug_Source_Name (Get_Source_File_Index (Sloc (gnat_node))));
      line_number = Get_Logical_Line_Number (Sloc (gnat_node));
      column_number = Get_Column_Number (Sloc (gnat_node));
    }
  else
    {
      str = lbasename (LOCATION_FILE (input_location));
      line_number = LOCATION_LINE (input_location);
      column_number = LOCATION_COLUMN (input_location);
    }

  const int len = strlen (str);
  *filename = build_string (len, str);
  TREE_TYPE (*filename) = build_array_type (char_type_node,
					    build_index_type (size_int (len)));
  *line = build_int_cst (NULL_TREE, line_number);
  if (col)
    *col = build_int_cst (NULL_TREE, column_number);
}

/* Build a call to a function that raises an exception and passes file name
   and line number, if requested.  MSG says which exception function to call.
   GNAT_NODE is the node conveying the source location for which the error
   should be signaled, or Empty in which case the error is signaled for the
   current location.  KIND says which kind of exception node this is for,
   among N_Raise_{Constraint,Storage,Program}_Error.  */

tree
build_call_raise (int msg, Node_Id gnat_node, char kind)
{
  Entity_Id gnat_label = get_exception_label (kind);
  tree fndecl = gnat_raise_decls[msg];
  tree filename, line;

  /* If this is to be done as a goto, handle that case.  */
  if (Present (gnat_label))
    return build_goto_raise (gnat_label, msg);

  expand_sloc (gnat_node, &filename, &line, NULL);

  return
    build_call_n_expr (fndecl, 2,
		       build1 (ADDR_EXPR,
			       build_pointer_type (char_type_node),
			       filename),
		       line);
}

/* Similar to build_call_raise, with extra information about the column
   where the check failed.  */

tree
build_call_raise_column (int msg, Node_Id gnat_node, char kind)
{
  Entity_Id gnat_label = get_exception_label (kind);
  tree fndecl = gnat_raise_decls_ext[msg];
  tree filename, line, col;

  /* If this is to be done as a goto, handle that case.  */
  if (Present (gnat_label))
    return build_goto_raise (gnat_label, msg);

  expand_sloc (gnat_node, &filename, &line, &col);

  return
    build_call_n_expr (fndecl, 3,
		       build1 (ADDR_EXPR,
			       build_pointer_type (char_type_node),
			       filename),
		       line, col);
}

/* Similar to build_call_raise_column, for an index or range check exception ,
   with extra information of the form "INDEX out of range FIRST..LAST".  */

tree
build_call_raise_range (int msg, Node_Id gnat_node, char kind,
			tree index, tree first, tree last)
{
  Entity_Id gnat_label = get_exception_label (kind);
  tree fndecl = gnat_raise_decls_ext[msg];
  tree filename, line, col;

  /* If this is to be done as a goto, handle that case.  */
  if (Present (gnat_label))
    return build_goto_raise (gnat_label, msg);

  expand_sloc (gnat_node, &filename, &line, &col);

  return
    build_call_n_expr (fndecl, 6,
		       build1 (ADDR_EXPR,
			       build_pointer_type (char_type_node),
			       filename),
		       line, col,
		       convert (integer_type_node, index),
		       convert (integer_type_node, first),
		       convert (integer_type_node, last));
}

/* qsort comparer for the bit positions of two constructor elements
   for record components.  */

static int
compare_elmt_bitpos (const PTR rt1, const PTR rt2)
{
  const constructor_elt * const elmt1 = (const constructor_elt *) rt1;
  const constructor_elt * const elmt2 = (const constructor_elt *) rt2;
  const_tree const field1 = elmt1->index;
  const_tree const field2 = elmt2->index;
  const int ret
    = tree_int_cst_compare (bit_position (field1), bit_position (field2));

  return ret ? ret : (int) (DECL_UID (field1) - DECL_UID (field2));
}

/* Return a CONSTRUCTOR of TYPE whose elements are V.  */

tree
gnat_build_constructor (tree type, vec<constructor_elt, va_gc> *v)
{
  bool allconstant = (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST);
  bool read_only = true;
  bool side_effects = false;
  tree result, obj, val;
  unsigned int n_elmts;

  /* Scan the elements to see if they are all constant or if any has side
     effects, to let us set global flags on the resulting constructor.  Count
     the elements along the way for possible sorting purposes below.  */
  FOR_EACH_CONSTRUCTOR_ELT (v, n_elmts, obj, val)
    {
      /* The predicate must be in keeping with output_constructor.  */
      if ((!TREE_CONSTANT (val) && !TREE_STATIC (val))
	  || (TREE_CODE (type) == RECORD_TYPE
	      && CONSTRUCTOR_BITFIELD_P (obj)
	      && !initializer_constant_valid_for_bitfield_p (val))
	  || !initializer_constant_valid_p (val,
					    TREE_TYPE (val),
					    TYPE_REVERSE_STORAGE_ORDER (type)))
	allconstant = false;

      if (!TREE_READONLY (val))
	read_only = false;

      if (TREE_SIDE_EFFECTS (val))
	side_effects = true;
    }

  /* For record types with constant components only, sort field list
     by increasing bit position.  This is necessary to ensure the
     constructor can be output as static data.  */
  if (allconstant && TREE_CODE (type) == RECORD_TYPE && n_elmts > 1)
    v->qsort (compare_elmt_bitpos);

  result = build_constructor (type, v);
  CONSTRUCTOR_NO_CLEARING (result) = 1;
  TREE_CONSTANT (result) = TREE_STATIC (result) = allconstant;
  TREE_SIDE_EFFECTS (result) = side_effects;
  TREE_READONLY (result) = TYPE_READONLY (type) || read_only || allconstant;
  return result;
}

/* Return a COMPONENT_REF to access FIELD in RECORD, or NULL_TREE if the field
   is not found in the record.  Don't fold the result if NO_FOLD is true.  */

static tree
build_simple_component_ref (tree record, tree field, bool no_fold)
{
  tree type = TYPE_MAIN_VARIANT (TREE_TYPE (record));
  tree ref;

  gcc_assert (RECORD_OR_UNION_TYPE_P (type) && COMPLETE_TYPE_P (type));

  /* Try to fold a conversion from another record or union type unless the type
     contains a placeholder as it might be needed for a later substitution.  */
  if (TREE_CODE (record) == VIEW_CONVERT_EXPR
      && RECORD_OR_UNION_TYPE_P (TREE_TYPE (TREE_OPERAND (record, 0)))
      && !type_contains_placeholder_p (type))
    {
      tree op = TREE_OPERAND (record, 0);

      /* If this is an unpadding operation, convert the underlying object to
	 the unpadded type directly.  */
      if (TYPE_IS_PADDING_P (type) && field == TYPE_FIELDS (type))
	return convert (TREE_TYPE (field), op);

      /* Otherwise try to access FIELD directly in the underlying type, but
	 make sure that the form of the reference doesn't change too much;
	 this can happen for an unconstrained bit-packed array type whose
	 constrained form can be an integer type.  */
      ref = build_simple_component_ref (op, field, no_fold);
      if (ref && TREE_CODE (TREE_TYPE (ref)) == TREE_CODE (TREE_TYPE (field)))
	return ref;
    }

  /* If this field is not in the specified record, see if we can find a field
     in the specified record whose original field is the same as this one.  */
  if (DECL_CONTEXT (field) != type)
    {
      tree new_field;

      /* First loop through normal components.  */
      for (new_field = TYPE_FIELDS (type);
	   new_field;
	   new_field = DECL_CHAIN (new_field))
	if (SAME_FIELD_P (field, new_field))
	  break;

      /* Next, loop through DECL_INTERNAL_P components if we haven't found the
	 component in the first search.  Doing this search in two steps is
	 required to avoid hidden homonymous fields in the _Parent field.  */
      if (!new_field)
	for (new_field = TYPE_FIELDS (type);
	     new_field;
	     new_field = DECL_CHAIN (new_field))
	  if (DECL_INTERNAL_P (new_field)
	      && RECORD_OR_UNION_TYPE_P (TREE_TYPE (new_field)))
	    {
	      tree field_ref
		= build_simple_component_ref (record, new_field, no_fold);
	      ref = build_simple_component_ref (field_ref, field, no_fold);
	      if (ref)
		return ref;
	    }

      field = new_field;
    }

  if (!field)
    return NULL_TREE;

  /* If the field's offset has overflowed, do not try to access it, as doing
     so may trigger sanity checks deeper in the back-end.  Note that we don't
     need to warn since this will be done on trying to declare the object.  */
  if (TREE_CODE (DECL_FIELD_OFFSET (field)) == INTEGER_CST
      && TREE_OVERFLOW (DECL_FIELD_OFFSET (field)))
    return NULL_TREE;

  ref = build3 (COMPONENT_REF, TREE_TYPE (field), record, field, NULL_TREE);

  if (TREE_READONLY (record)
      || TREE_READONLY (field)
      || TYPE_READONLY (type))
    TREE_READONLY (ref) = 1;

  if (TREE_THIS_VOLATILE (record)
      || TREE_THIS_VOLATILE (field)
      || TYPE_VOLATILE (type))
    TREE_THIS_VOLATILE (ref) = 1;

  if (no_fold)
    return ref;

  /* The generic folder may punt in this case because the inner array type
     can be self-referential, but folding is in fact not problematic.  */
  if (TREE_CODE (record) == CONSTRUCTOR
      && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (record)))
    {
      vec<constructor_elt, va_gc> *elts = CONSTRUCTOR_ELTS (record);
      unsigned HOST_WIDE_INT idx;
      tree index, value;
      FOR_EACH_CONSTRUCTOR_ELT (elts, idx, index, value)
       if (index == field)
	return value;
      return ref;
    }

  return fold (ref);
}

/* Likewise, but return NULL_EXPR and generate a Constraint_Error if the
   field is not found in the record.  */

tree
build_component_ref (tree record, tree field, bool no_fold)
{
  tree ref = build_simple_component_ref (record, field, no_fold);
  if (ref)
    return ref;

  /* Assume this is an invalid user field so raise Constraint_Error.  */
  return build1 (NULL_EXPR, TREE_TYPE (field),
		 build_call_raise (CE_Discriminant_Check_Failed, Empty,
				   N_Raise_Constraint_Error));
}

/* Helper for build_call_alloc_dealloc, with arguments to be interpreted
   identically.  Process the case where a GNAT_PROC to call is provided.  */

static inline tree
build_call_alloc_dealloc_proc (tree gnu_obj, tree gnu_size, tree gnu_type,
			       Entity_Id gnat_proc, Entity_Id gnat_pool)
{
  tree gnu_proc = gnat_to_gnu (gnat_proc);
  tree gnu_call;

  /* A storage pool's underlying type is a record type (for both predefined
     storage pools and GNAT simple storage pools). The secondary stack uses
     the same mechanism, but its pool object (SS_Pool) is an integer.  */
  if (Is_Record_Type (Underlying_Type (Etype (gnat_pool))))
    {
      /* The size is the third parameter; the alignment is the
	 same type.  */
      Entity_Id gnat_size_type
	= Etype (Next_Formal (Next_Formal (First_Formal (gnat_proc))));
      tree gnu_size_type = gnat_to_gnu_type (gnat_size_type);

      tree gnu_pool = gnat_to_gnu (gnat_pool);
      tree gnu_pool_addr = build_unary_op (ADDR_EXPR, NULL_TREE, gnu_pool);
      tree gnu_align = size_int (TYPE_ALIGN (gnu_type) / BITS_PER_UNIT);

      gnu_size = convert (gnu_size_type, gnu_size);
      gnu_align = convert (gnu_size_type, gnu_align);

      /* The first arg is always the address of the storage pool; next
	 comes the address of the object, for a deallocator, then the
	 size and alignment.  */
      if (gnu_obj)
	gnu_call = build_call_n_expr (gnu_proc, 4, gnu_pool_addr, gnu_obj,
				      gnu_size, gnu_align);
      else
	gnu_call = build_call_n_expr (gnu_proc, 3, gnu_pool_addr,
				      gnu_size, gnu_align);
    }

  /* Secondary stack case.  */
  else
    {
      /* The size is the second parameter.  */
      Entity_Id gnat_size_type
	= Etype (Next_Formal (First_Formal (gnat_proc)));
      tree gnu_size_type = gnat_to_gnu_type (gnat_size_type);

      gnu_size = convert (gnu_size_type, gnu_size);

      /* The first arg is the address of the object, for a deallocator,
	 then the size.  */
      if (gnu_obj)
	gnu_call = build_call_n_expr (gnu_proc, 2, gnu_obj, gnu_size);
      else
	gnu_call = build_call_n_expr (gnu_proc, 1, gnu_size);
    }

  return gnu_call;
}

/* Helper for build_call_alloc_dealloc, to build and return an allocator for
   DATA_SIZE bytes aimed at containing a DATA_TYPE object, using the default
   __gnat_malloc allocator.  Honor DATA_TYPE alignments greater than what the
   latter offers.  */

static inline tree
maybe_wrap_malloc (tree data_size, tree data_type, Node_Id gnat_node)
{
  /* When the DATA_TYPE alignment is stricter than what malloc offers
     (super-aligned case), we allocate an "aligning" wrapper type and return
     the address of its single data field with the malloc's return value
     stored just in front.  */

  unsigned int data_align = TYPE_ALIGN (data_type);
  unsigned int system_allocator_alignment
      = get_target_system_allocator_alignment () * BITS_PER_UNIT;

  tree aligning_type
    = ((data_align > system_allocator_alignment)
       ? make_aligning_type (data_type, data_align, data_size,
			     system_allocator_alignment,
			     POINTER_SIZE / BITS_PER_UNIT,
			     gnat_node)
       : NULL_TREE);

  tree size_to_malloc
    = aligning_type ? TYPE_SIZE_UNIT (aligning_type) : data_size;

  tree malloc_ptr = build_call_n_expr (malloc_decl, 1, size_to_malloc);

  if (aligning_type)
    {
      /* Latch malloc's return value and get a pointer to the aligning field
	 first.  */
      tree storage_ptr = gnat_protect_expr (malloc_ptr);

      tree aligning_record_addr
	= convert (build_pointer_type (aligning_type), storage_ptr);

      tree aligning_record
	= build_unary_op (INDIRECT_REF, NULL_TREE, aligning_record_addr);

      tree aligning_field
	= build_component_ref (aligning_record, TYPE_FIELDS (aligning_type),
			       false);

      tree aligning_field_addr
        = build_unary_op (ADDR_EXPR, NULL_TREE, aligning_field);

      /* Then arrange to store the allocator's return value ahead
	 and return.  */
      tree storage_ptr_slot_addr
	= build_binary_op (POINTER_PLUS_EXPR, ptr_type_node,
			   convert (ptr_type_node, aligning_field_addr),
			   size_int (-(HOST_WIDE_INT) POINTER_SIZE
				     / BITS_PER_UNIT));

      tree storage_ptr_slot
	= build_unary_op (INDIRECT_REF, NULL_TREE,
			  convert (build_pointer_type (ptr_type_node),
				   storage_ptr_slot_addr));

      return
	build2 (COMPOUND_EXPR, TREE_TYPE (aligning_field_addr),
		build_binary_op (INIT_EXPR, NULL_TREE,
				 storage_ptr_slot, storage_ptr),
		aligning_field_addr);
    }
  else
    return malloc_ptr;
}

/* Helper for build_call_alloc_dealloc, to release a DATA_TYPE object
   designated by DATA_PTR using the __gnat_free entry point.  */

static inline tree
maybe_wrap_free (tree data_ptr, tree data_type)
{
  /* In the regular alignment case, we pass the data pointer straight to free.
     In the superaligned case, we need to retrieve the initial allocator
     return value, stored in front of the data block at allocation time.  */

  unsigned int data_align = TYPE_ALIGN (data_type);
  unsigned int system_allocator_alignment
      = get_target_system_allocator_alignment () * BITS_PER_UNIT;

  tree free_ptr;