aboutsummaryrefslogtreecommitdiff
path: root/libjava/classpath/lib/java/util/EnumMap$6.class
blob: 5eba9e250b8f7c062bb3efdedd6d6bdd249a7c8f (plain)
ofshex dumpascii
0000 ca fe ba be 00 00 00 31 00 59 07 00 02 01 00 13 6a 61 76 61 2f 75 74 69 6c 2f 45 6e 75 6d 4d 61 .......1.Y......java/util/EnumMa
0020 70 24 36 07 00 04 01 00 10 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 07 00 06 01 00 12 6a p$6......java/lang/Object......j
0040 61 76 61 2f 75 74 69 6c 2f 49 74 65 72 61 74 6f 72 01 00 05 63 6f 75 6e 74 01 00 01 49 01 00 05 ava/util/Iterator...count...I...
0060 69 6e 64 65 78 01 00 06 74 68 69 73 24 31 01 00 15 4c 6a 61 76 61 2f 75 74 69 6c 2f 45 6e 75 6d index...this$1...Ljava/util/Enum
0080 4d 61 70 24 35 3b 01 00 06 3c 69 6e 69 74 3e 01 00 18 28 4c 6a 61 76 61 2f 75 74 69 6c 2f 45 6e Map$5;...<init>...(Ljava/util/En
00a0 75 6d 4d 61 70 24 35 3b 29 56 01 00 04 43 6f 64 65 09 00 01 00 10 0c 00 0a 00 0b 0a 00 03 00 12 umMap$5;)V...Code...............
00c0 0c 00 0c 00 13 01 00 03 28 29 56 09 00 01 00 15 0c 00 07 00 08 09 00 01 00 17 0c 00 09 00 08 01 ........()V.....................
00e0 00 0f 4c 69 6e 65 4e 75 6d 62 65 72 54 61 62 6c 65 01 00 12 4c 6f 63 61 6c 56 61 72 69 61 62 6c ..LineNumberTable...LocalVariabl
0100 65 54 61 62 6c 65 01 00 04 74 68 69 73 01 00 15 4c 6a 61 76 61 2f 75 74 69 6c 2f 45 6e 75 6d 4d eTable...this...Ljava/util/EnumM
0120 61 70 24 36 3b 01 00 07 68 61 73 4e 65 78 74 01 00 03 28 29 5a 0a 00 1f 00 21 07 00 20 01 00 13 ap$6;...hasNext...()Z....!......
0140 6a 61 76 61 2f 75 74 69 6c 2f 45 6e 75 6d 4d 61 70 24 35 0c 00 22 00 23 01 00 08 61 63 63 65 73 java/util/EnumMap$5..".#...acces
0160 73 24 30 01 00 2a 28 4c 6a 61 76 61 2f 75 74 69 6c 2f 45 6e 75 6d 4d 61 70 24 35 3b 29 4c 6a 61 s$0..*(Ljava/util/EnumMap$5;)Lja
0180 76 61 2f 75 74 69 6c 2f 45 6e 75 6d 4d 61 70 3b 09 00 25 00 27 07 00 26 01 00 11 6a 61 76 61 2f va/util/EnumMap;..%.'..&...java/
01a0 75 74 69 6c 2f 45 6e 75 6d 4d 61 70 0c 00 28 00 08 01 00 0b 63 61 72 64 69 6e 61 6c 69 74 79 01 util/EnumMap..(.....cardinality.
01c0 00 04 6e 65 78 74 01 00 17 28 29 4c 6a 61 76 61 2f 75 74 69 6c 2f 4d 61 70 24 45 6e 74 72 79 3b ..next...()Ljava/util/Map$Entry;
01e0 01 00 09 53 69 67 6e 61 74 75 72 65 01 00 1f 28 29 4c 6a 61 76 61 2f 75 74 69 6c 2f 4d 61 70 24 ...Signature...()Ljava/util/Map$
0200 45 6e 74 72 79 3c 54 4b 3b 54 56 3b 3e 3b 09 00 25 00 2e 0c 00 2f 00 30 01 00 05 73 74 6f 72 65 Entry<TK;TV;>;..%..../.0...store
0220 01 00 13 5b 4c 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 3b 09 00 25 00 32 0c 00 33 00 34 ...[Ljava/lang/Object;..%.2..3.4
0240 01 00 09 65 6d 70 74 79 53 6c 6f 74 01 00 12 4c 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 ...emptySlot...Ljava/lang/Object
0260 3b 07 00 36 01 00 13 6a 61 76 61 2f 75 74 69 6c 2f 45 6e 75 6d 4d 61 70 24 37 09 00 25 00 38 0c ;..6...java/util/EnumMap$7..%.8.
0280 00 39 00 3a 01 00 09 65 6e 75 6d 43 6c 61 73 73 01 00 11 4c 6a 61 76 61 2f 6c 61 6e 67 2f 43 6c .9.:...enumClass...Ljava/lang/Cl
02a0 61 73 73 3b 0a 00 3c 00 3e 07 00 3d 01 00 0f 6a 61 76 61 2f 6c 61 6e 67 2f 43 6c 61 73 73 0c 00 ass;..<.>..=...java/lang/Class..
02c0 3f 00 40 01 00 10 67 65 74 45 6e 75 6d 43 6f 6e 73 74 61 6e 74 73 01 00 15 28 29 5b 4c 6a 61 76 ?.@...getEnumConstants...()[Ljav
02e0 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 3b 07 00 42 01 00 11 5b 4c 6a 61 76 61 2f 6c 61 6e 67 2f a/lang/Object;..B...[Ljava/lang/
0300 45 6e 75 6d 3b 0a 00 35 00 44 0c 00 0c 00 45 01 00 3a 28 4c 6a 61 76 61 2f 75 74 69 6c 2f 45 6e Enum;..5.D....E..:(Ljava/util/En
0320 75 6d 4d 61 70 24 36 3b 4c 6a 61 76 61 2f 6c 61 6e 67 2f 45 6e 75 6d 3b 4c 6a 61 76 61 2f 6c 61 umMap$6;Ljava/lang/Enum;Ljava/la
0340 6e 67 2f 4f 62 6a 65 63 74 3b 29 56 01 00 06 72 65 6d 6f 76 65 01 00 14 28 29 4c 6a 61 76 61 2f ng/Object;)V...remove...()Ljava/
0360 6c 61 6e 67 2f 4f 62 6a 65 63 74 3b 0a 00 01 00 49 0c 00 29 00 2a 01 00 08 61 63 63 65 73 73 24 lang/Object;....I..).*...access$
0380 31 01 00 2c 28 4c 6a 61 76 61 2f 75 74 69 6c 2f 45 6e 75 6d 4d 61 70 24 36 3b 29 4c 6a 61 76 61 1..,(Ljava/util/EnumMap$6;)Ljava
03a0 2f 75 74 69 6c 2f 45 6e 75 6d 4d 61 70 24 35 3b 01 00 0a 53 6f 75 72 63 65 46 69 6c 65 01 00 0c /util/EnumMap$5;...SourceFile...
03c0 45 6e 75 6d 4d 61 70 2e 6a 61 76 61 01 00 45 4c 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 EnumMap.java..ELjava/lang/Object
03e0 3b 4c 6a 61 76 61 2f 75 74 69 6c 2f 49 74 65 72 61 74 6f 72 3c 4c 6a 61 76 61 2f 75 74 69 6c 2f ;Ljava/util/Iterator<Ljava/util/
0400 4d 61 70 24 45 6e 74 72 79 3c 54 4b 3b 54 56 3b 3e 3b 3e 3b 01 00 0f 45 6e 63 6c 6f 73 69 6e 67 Map$Entry<TK;TV;>;>;...Enclosing
0420 4d 65 74 68 6f 64 0c 00 51 00 52 01 00 08 69 74 65 72 61 74 6f 72 01 00 16 28 29 4c 6a 61 76 61 Method..Q.R...iterator...()Ljava
0440 2f 75 74 69 6c 2f 49 74 65 72 61 74 6f 72 3b 01 00 0c 49 6e 6e 65 72 43 6c 61 73 73 65 73 07 00 /util/Iterator;...InnerClasses..
0460 55 01 00 13 6a 61 76 61 2f 75 74 69 6c 2f 4d 61 70 24 45 6e 74 72 79 07 00 57 01 00 0d 6a 61 76 U...java/util/Map$Entry..W...jav
0480 61 2f 75 74 69 6c 2f 4d 61 70 01 00 05 45 6e 74 72 79 00 20 00 01 00 03 00 01 00 05 00 03 00 00 a/util/Map...Entry..............
04a0 00 07 00 08 00 00 00 00 00 09 00 08 00 00 10 10 00 0a 00 0b 00 00 00 06 00 00 00 0c 00 0d 00 01 ................................
04c0 00 0e 00 00 00 4a 00 02 00 02 00 00 00 14 2a 2b b5 00 0f 2a b7 00 11 2a 03 b5 00 14 2a 02 b5 00 .....J........*+...*...*....*...
04e0 16 b1 00 00 00 02 00 18 00 00 00 12 00 04 00 00 00 01 00 05 01 3c 00 09 01 3e 00 0e 01 3f 00 19 .....................<...>...?..
0500 00 00 00 0c 00 01 00 00 00 14 00 1a 00 1b 00 00 00 01 00 1c 00 1d 00 01 00 0e 00 00 00 3f 00 02 .............................?..
0520 00 01 00 00 00 15 2a b4 00 14 2a b4 00 0f b8 00 1e b4 00 24 a2 00 05 04 ac 03 ac 00 00 00 02 00 ......*...*........$............
0540 18 00 00 00 06 00 01 00 00 01 43 00 19 00 00 00 0c 00 01 00 00 00 15 00 1a 00 1b 00 00 00 01 00 ..........C.....................
0560 29 00 2a 00 02 00 2b 00 00 00 02 00 2c 00 0e 00 00 00 9d 00 06 00 01 00 00 00 63 2a 59 b4 00 14 ).*...+.....,.............c*Y...
0580 04 60 b5 00 14 2a 59 b4 00 16 04 60 b5 00 16 a7 00 0d 2a 59 b4 00 16 04 60 b5 00 16 2a b4 00 0f .`...*Y....`......*Y....`...*...
05a0 b8 00 1e b4 00 2d 2a b4 00 16 32 b2 00 31 a5 ff e4 bb 00 35 59 2a 2a b4 00 0f b8 00 1e b4 00 37 .....-*...2..1.....5Y**........7
05c0 b6 00 3b c0 00 41 2a b4 00 16 32 2a b4 00 0f b8 00 1e b4 00 2d 2a b4 00 16 32 b7 00 43 b0 00 00 ..;..A*...2*........-*...2..C...
05e0 00 02 00 18 00 00 00 16 00 05 00 00 01 48 00 0a 01 49 00 36 01 4d 00 50 01 4e 00 5f 01 4d 00 19 .............H...I.6.M.P.N._.M..
0600 00 00 00 0c 00 01 00 00 00 63 00 1a 00 1b 00 00 00 01 00 46 00 13 00 01 00 0e 00 00 00 55 00 03 .........c.........F.........U..
0620 00 01 00 00 00 23 2a b4 00 0f b8 00 1e 59 b4 00 24 04 64 b5 00 24 2a b4 00 0f b8 00 1e b4 00 2d .....#*......Y..$.d..$*........-
0640 2a b4 00 16 b2 00 31 53 b1 00 00 00 02 00 18 00 00 00 0e 00 03 00 00 01 5a 00 10 01 5b 00 22 01 *.....1S................Z...[.".
0660 5c 00 19 00 00 00 0c 00 01 00 00 00 23 00 1a 00 1b 00 00 10 41 00 29 00 47 00 01 00 0e 00 00 00 \...........#.......A.).G.......
0680 25 00 01 00 01 00 00 00 05 2a b6 00 48 b0 00 00 00 02 00 18 00 00 00 06 00 01 00 00 00 01 00 19 %........*..H...................
06a0 00 00 00 02 00 00 10 08 00 4a 00 4b 00 01 00 0e 00 00 00 25 00 01 00 01 00 00 00 05 2a b4 00 0f .........J.K.......%........*...
06c0 b0 00 00 00 02 00 18 00 00 00 06 00 01 00 00 01 3c 00 19 00 00 00 02 00 00 00 04 00 4c 00 00 00 ................<...........L...
06e0 02 00 4d 00 2b 00 00 00 02 00 4e 00 4f 00 00 00 04 00 1f 00 50 00 53 00 00 00 22 00 04 00 1f 00 ..M.+.....N.O.......P.S...".....
0700 00 00 00 00 00 00 01 00 00 00 00 00 00 00 35 00 00 00 00 00 00 00 54 00 56 00 58 06 09 ..............5.......T.V.X..
='n388' href='#n388'>388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663
/*  Loop transformation code generation
    Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
    Contributed by Daniel Berlin <dberlin@dberlin.org>

    This file is part of GCC.
    
    GCC is free software; you can redistribute it and/or modify it under
    the terms of the GNU General Public License as published by the Free
    Software Foundation; either version 2, or (at your option) any later
    version.
    
    GCC is distributed in the hope that it will be useful, but WITHOUT ANY
    WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.
    
    You should have received a copy of the GNU General Public License
    along with GCC; see the file COPYING.  If not, write to the Free
    Software Foundation, 59 Temple Place - Suite 330, Boston, MA
    02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-pass.h"
#include "tree-scalar-evolution.h"
#include "vec.h"
#include "lambda.h"

/* This loop nest code generation is based on non-singular matrix
   math.
 
 A little terminology and a general sketch of the algorithm.  See "A singular
 loop transformation framework based on non-singular matrices" by Wei Li and
 Keshav Pingali for formal proofs that the various statements below are
 correct. 

 A loop iteration space represents the points traversed by the loop.  A point in the
 iteration space can be represented by a vector of size <loop depth>.  You can
 therefore represent the iteration space as an integral combinations of a set
 of basis vectors. 

 A loop iteration space is dense if every integer point between the loop
 bounds is a point in the iteration space.  Every loop with a step of 1
 therefore has a dense iteration space.

 for i = 1 to 3, step 1 is a dense iteration space.
   
 A loop iteration space is sparse if it is not dense.  That is, the iteration
 space skips integer points that are within the loop bounds.  

 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
 2 is skipped.

 Dense source spaces are easy to transform, because they don't skip any
 points to begin with.  Thus we can compute the exact bounds of the target
 space using min/max and floor/ceil.

 For a dense source space, we take the transformation matrix, decompose it
 into a lower triangular part (H) and a unimodular part (U). 
 We then compute the auxiliary space from the unimodular part (source loop
 nest . U = auxiliary space) , which has two important properties:
  1. It traverses the iterations in the same lexicographic order as the source
  space.
  2. It is a dense space when the source is a dense space (even if the target
  space is going to be sparse).
 
 Given the auxiliary space, we use the lower triangular part to compute the
 bounds in the target space by simple matrix multiplication.
 The gaps in the target space (IE the new loop step sizes) will be the
 diagonals of the H matrix.

 Sparse source spaces require another step, because you can't directly compute
 the exact bounds of the auxiliary and target space from the sparse space.
 Rather than try to come up with a separate algorithm to handle sparse source
 spaces directly, we just find a legal transformation matrix that gives you
 the sparse source space, from a dense space, and then transform the dense
 space.

 For a regular sparse space, you can represent the source space as an integer
 lattice, and the base space of that lattice will always be dense.  Thus, we
 effectively use the lattice to figure out the transformation from the lattice
 base space, to the sparse iteration space (IE what transform was applied to
 the dense space to make it sparse).  We then compose this transform with the
 transformation matrix specified by the user (since our matrix transformations
 are closed under composition, this is okay).  We can then use the base space
 (which is dense) plus the composed transformation matrix, to compute the rest
 of the transform using the dense space algorithm above.
 
 In other words, our sparse source space (B) is decomposed into a dense base
 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
 We then compute the composition of L and the user transformation matrix (T),
 so that T is now a transform from A to the result, instead of from B to the
 result. 
 IE A.(LT) = result instead of B.T = result
 Since A is now a dense source space, we can use the dense source space
 algorithm above to compute the result of applying transform (LT) to A.

 Fourier-Motzkin elimination is used to compute the bounds of the base space
 of the lattice.  */

DEF_VEC_I(int);
DEF_VEC_ALLOC_I(int,heap);

static bool perfect_nestify (struct loops *, 
			     struct loop *, VEC(tree,heap) *, 
			     VEC(tree,heap) *, VEC(int,heap) *,
			     VEC(tree,heap) *);
/* Lattice stuff that is internal to the code generation algorithm.  */

typedef struct
{
  /* Lattice base matrix.  */
  lambda_matrix base;
  /* Lattice dimension.  */
  int dimension;
  /* Origin vector for the coefficients.  */
  lambda_vector origin;
  /* Origin matrix for the invariants.  */
  lambda_matrix origin_invariants;
  /* Number of invariants.  */
  int invariants;
} *lambda_lattice;

#define LATTICE_BASE(T) ((T)->base)
#define LATTICE_DIMENSION(T) ((T)->dimension)
#define LATTICE_ORIGIN(T) ((T)->origin)
#define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
#define LATTICE_INVARIANTS(T) ((T)->invariants)

static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
		       int, int);
static lambda_lattice lambda_lattice_new (int, int);
static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);

static tree find_induction_var_from_exit_cond (struct loop *);

/* Create a new lambda body vector.  */

lambda_body_vector
lambda_body_vector_new (int size)
{
  lambda_body_vector ret;

  ret = ggc_alloc (sizeof (*ret));
  LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
  LBV_SIZE (ret) = size;
  LBV_DENOMINATOR (ret) = 1;
  return ret;
}

/* Compute the new coefficients for the vector based on the
  *inverse* of the transformation matrix.  */

lambda_body_vector
lambda_body_vector_compute_new (lambda_trans_matrix transform,
				lambda_body_vector vect)
{
  lambda_body_vector temp;
  int depth;

  /* Make sure the matrix is square.  */
  gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));

  depth = LTM_ROWSIZE (transform);

  temp = lambda_body_vector_new (depth);
  LBV_DENOMINATOR (temp) =
    LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
  lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
			     LTM_MATRIX (transform), depth,
			     LBV_COEFFICIENTS (temp));
  LBV_SIZE (temp) = LBV_SIZE (vect);
  return temp;
}

/* Print out a lambda body vector.  */

void
print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
{
  print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
}

/* Return TRUE if two linear expressions are equal.  */

static bool
lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
	   int depth, int invariants)
{
  int i;

  if (lle1 == NULL || lle2 == NULL)
    return false;
  if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
    return false;
  if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
    return false;
  for (i = 0; i < depth; i++)
    if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
      return false;
  for (i = 0; i < invariants; i++)
    if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
	LLE_INVARIANT_COEFFICIENTS (lle2)[i])
      return false;
  return true;
}

/* Create a new linear expression with dimension DIM, and total number
   of invariants INVARIANTS.  */

lambda_linear_expression
lambda_linear_expression_new (int dim, int invariants)
{
  lambda_linear_expression ret;

  ret = ggc_alloc_cleared (sizeof (*ret));

  LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
  LLE_CONSTANT (ret) = 0;
  LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
  LLE_DENOMINATOR (ret) = 1;
  LLE_NEXT (ret) = NULL;

  return ret;
}

/* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
   The starting letter used for variable names is START.  */

static void
print_linear_expression (FILE * outfile, lambda_vector expr, int size,
			 char start)
{
  int i;
  bool first = true;
  for (i = 0; i < size; i++)
    {
      if (expr[i] != 0)
	{
	  if (first)
	    {
	      if (expr[i] < 0)
		fprintf (outfile, "-");
	      first = false;
	    }
	  else if (expr[i] > 0)
	    fprintf (outfile, " + ");
	  else
	    fprintf (outfile, " - ");
	  if (abs (expr[i]) == 1)
	    fprintf (outfile, "%c", start + i);
	  else
	    fprintf (outfile, "%d%c", abs (expr[i]), start + i);
	}
    }
}

/* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
   depth/number of coefficients is given by DEPTH, the number of invariants is
   given by INVARIANTS, and the character to start variable names with is given
   by START.  */

void
print_lambda_linear_expression (FILE * outfile,
				lambda_linear_expression expr,
				int depth, int invariants, char start)
{
  fprintf (outfile, "\tLinear expression: ");
  print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
  fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
  fprintf (outfile, "  invariants: ");
  print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
			   invariants, 'A');
  fprintf (outfile, "  denominator: %d\n", LLE_DENOMINATOR (expr));
}

/* Print a lambda loop structure LOOP to OUTFILE.  The depth/number of
   coefficients is given by DEPTH, the number of invariants is 
   given by INVARIANTS, and the character to start variable names with is given
   by START.  */

void
print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
		   int invariants, char start)
{
  int step;
  lambda_linear_expression expr;

  gcc_assert (loop);

  expr = LL_LINEAR_OFFSET (loop);
  step = LL_STEP (loop);
  fprintf (outfile, "  step size = %d \n", step);

  if (expr)
    {
      fprintf (outfile, "  linear offset: \n");
      print_lambda_linear_expression (outfile, expr, depth, invariants,
				      start);
    }

  fprintf (outfile, "  lower bound: \n");
  for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
    print_lambda_linear_expression (outfile, expr, depth, invariants, start);
  fprintf (outfile, "  upper bound: \n");
  for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
    print_lambda_linear_expression (outfile, expr, depth, invariants, start);
}

/* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
   number of invariants.  */

lambda_loopnest
lambda_loopnest_new (int depth, int invariants)
{
  lambda_loopnest ret;
  ret = ggc_alloc (sizeof (*ret));

  LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
  LN_DEPTH (ret) = depth;
  LN_INVARIANTS (ret) = invariants;

  return ret;
}

/* Print a lambda loopnest structure, NEST, to OUTFILE.  The starting
   character to use for loop names is given by START.  */

void
print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
{
  int i;
  for (i = 0; i < LN_DEPTH (nest); i++)
    {
      fprintf (outfile, "Loop %c\n", start + i);
      print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
			 LN_INVARIANTS (nest), 'i');
      fprintf (outfile, "\n");
    }
}

/* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
   of invariants.  */

static lambda_lattice
lambda_lattice_new (int depth, int invariants)
{
  lambda_lattice ret;
  ret = ggc_alloc (sizeof (*ret));
  LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
  LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
  LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
  LATTICE_DIMENSION (ret) = depth;
  LATTICE_INVARIANTS (ret) = invariants;
  return ret;
}

/* Compute the lattice base for NEST.  The lattice base is essentially a
   non-singular transform from a dense base space to a sparse iteration space.
   We use it so that we don't have to specially handle the case of a sparse
   iteration space in other parts of the algorithm.  As a result, this routine
   only does something interesting (IE produce a matrix that isn't the
   identity matrix) if NEST is a sparse space.  */

static lambda_lattice
lambda_lattice_compute_base (lambda_loopnest nest)
{
  lambda_lattice ret;
  int depth, invariants;
  lambda_matrix base;

  int i, j, step;
  lambda_loop loop;
  lambda_linear_expression expression;

  depth = LN_DEPTH (nest);
  invariants = LN_INVARIANTS (nest);

  ret = lambda_lattice_new (depth, invariants);
  base = LATTICE_BASE (ret);
  for (i = 0; i < depth; i++)
    {
      loop = LN_LOOPS (nest)[i];
      gcc_assert (loop);
      step = LL_STEP (loop);
      /* If we have a step of 1, then the base is one, and the
         origin and invariant coefficients are 0.  */
      if (step == 1)
	{
	  for (j = 0; j < depth; j++)
	    base[i][j] = 0;
	  base[i][i] = 1;
	  LATTICE_ORIGIN (ret)[i] = 0;
	  for (j = 0; j < invariants; j++)
	    LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
	}
      else
	{
	  /* Otherwise, we need the lower bound expression (which must
	     be an affine function)  to determine the base.  */
	  expression = LL_LOWER_BOUND (loop);
	  gcc_assert (expression && !LLE_NEXT (expression) 
		      && LLE_DENOMINATOR (expression) == 1);

	  /* The lower triangular portion of the base is going to be the
	     coefficient times the step */
	  for (j = 0; j < i; j++)
	    base[i][j] = LLE_COEFFICIENTS (expression)[j]
	      * LL_STEP (LN_LOOPS (nest)[j]);
	  base[i][i] = step;
	  for (j = i + 1; j < depth; j++)
	    base[i][j] = 0;

	  /* Origin for this loop is the constant of the lower bound
	     expression.  */
	  LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);

	  /* Coefficient for the invariants are equal to the invariant
	     coefficients in the expression.  */
	  for (j = 0; j < invariants; j++)
	    LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
	      LLE_INVARIANT_COEFFICIENTS (expression)[j];
	}
    }
  return ret;
}

/* Compute the greatest common denominator of two numbers (A and B) using
   Euclid's algorithm.  */

static int
gcd (int a, int b)
{

  int x, y, z;

  x = abs (a);
  y = abs (b);

  while (x > 0)
    {
      z = y % x;
      y = x;
      x = z;
    }

  return (y);
}

/* Compute the greatest common denominator of a VECTOR of SIZE numbers.  */

static int
gcd_vector (lambda_vector vector, int size)
{
  int i;
  int gcd1 = 0;

  if (size > 0)
    {
      gcd1 = vector[0];
      for (i = 1; i < size; i++)
	gcd1 = gcd (gcd1, vector[i]);
    }
  return gcd1;
}

/* Compute the least common multiple of two numbers A and B .  */

static int
lcm (int a, int b)
{
  return (abs (a) * abs (b) / gcd (a, b));
}

/* Perform Fourier-Motzkin elimination to calculate the bounds of the
   auxiliary nest.
   Fourier-Motzkin is a way of reducing systems of linear inequalities so that
   it is easy to calculate the answer and bounds.
   A sketch of how it works:
   Given a system of linear inequalities, ai * xj >= bk, you can always
   rewrite the constraints so they are all of the form
   a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
   in b1 ... bk, and some a in a1...ai)
   You can then eliminate this x from the non-constant inequalities by
   rewriting these as a <= b, x >= constant, and delete the x variable.
   You can then repeat this for any remaining x variables, and then we have
   an easy to use variable <= constant (or no variables at all) form that we
   can construct our bounds from. 
   
   In our case, each time we eliminate, we construct part of the bound from
   the ith variable, then delete the ith variable. 
   
   Remember the constant are in our vector a, our coefficient matrix is A,
   and our invariant coefficient matrix is B.
   
   SIZE is the size of the matrices being passed.
   DEPTH is the loop nest depth.
   INVARIANTS is the number of loop invariants.
   A, B, and a are the coefficient matrix, invariant coefficient, and a
   vector of constants, respectively.  */

static lambda_loopnest 
compute_nest_using_fourier_motzkin (int size,
				    int depth, 
				    int invariants,
				    lambda_matrix A,
				    lambda_matrix B,
				    lambda_vector a)
{

  int multiple, f1, f2;
  int i, j, k;
  lambda_linear_expression expression;
  lambda_loop loop;
  lambda_loopnest auxillary_nest;
  lambda_matrix swapmatrix, A1, B1;
  lambda_vector swapvector, a1;
  int newsize;

  A1 = lambda_matrix_new (128, depth);
  B1 = lambda_matrix_new (128, invariants);
  a1 = lambda_vector_new (128);

  auxillary_nest = lambda_loopnest_new (depth, invariants);

  for (i = depth - 1; i >= 0; i--)
    {
      loop = lambda_loop_new ();
      LN_LOOPS (auxillary_nest)[i] = loop;
      LL_STEP (loop) = 1;

      for (j = 0; j < size; j++)
	{
	  if (A[j][i] < 0)
	    {
	      /* Any linear expression in the matrix with a coefficient less
		 than 0 becomes part of the new lower bound.  */ 
	      expression = lambda_linear_expression_new (depth, invariants);

	      for (k = 0; k < i; k++)
		LLE_COEFFICIENTS (expression)[k] = A[j][k];

	      for (k = 0; k < invariants; k++)
		LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];

	      LLE_DENOMINATOR (expression) = -1 * A[j][i];
	      LLE_CONSTANT (expression) = -1 * a[j];

	      /* Ignore if identical to the existing lower bound.  */
	      if (!lle_equal (LL_LOWER_BOUND (loop),
			      expression, depth, invariants))
		{
		  LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
		  LL_LOWER_BOUND (loop) = expression;
		}

	    }
	  else if (A[j][i] > 0)
	    {
	      /* Any linear expression with a coefficient greater than 0
		 becomes part of the new upper bound.  */ 
	      expression = lambda_linear_expression_new (depth, invariants);
	      for (k = 0; k < i; k++)
		LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];

	      for (k = 0; k < invariants; k++)
		LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];

	      LLE_DENOMINATOR (expression) = A[j][i];
	      LLE_CONSTANT (expression) = a[j];

	      /* Ignore if identical to the existing upper bound.  */
	      if (!lle_equal (LL_UPPER_BOUND (loop),
			      expression, depth, invariants))
		{
		  LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
		  LL_UPPER_BOUND (loop) = expression;
		}

	    }
	}

      /* This portion creates a new system of linear inequalities by deleting
	 the i'th variable, reducing the system by one variable.  */
      newsize = 0;
      for (j = 0; j < size; j++)
	{
	  /* If the coefficient for the i'th variable is 0, then we can just
	     eliminate the variable straightaway.  Otherwise, we have to
	     multiply through by the coefficients we are eliminating.  */
	  if (A[j][i] == 0)
	    {
	      lambda_vector_copy (A[j], A1[newsize], depth);
	      lambda_vector_copy (B[j], B1[newsize], invariants);
	      a1[newsize] = a[j];
	      newsize++;
	    }
	  else if (A[j][i] > 0)
	    {
	      for (k = 0; k < size; k++)
		{
		  if (A[k][i] < 0)
		    {
		      multiple = lcm (A[j][i], A[k][i]);
		      f1 = multiple / A[j][i];
		      f2 = -1 * multiple / A[k][i];

		      lambda_vector_add_mc (A[j], f1, A[k], f2,
					    A1[newsize], depth);
		      lambda_vector_add_mc (B[j], f1, B[k], f2,
					    B1[newsize], invariants);
		      a1[newsize] = f1 * a[j] + f2 * a[k];
		      newsize++;
		    }
		}
	    }
	}

      swapmatrix = A;
      A = A1;
      A1 = swapmatrix;

      swapmatrix = B;
      B = B1;
      B1 = swapmatrix;

      swapvector = a;
      a = a1;
      a1 = swapvector;

      size = newsize;
    }

  return auxillary_nest;
}

/* Compute the loop bounds for the auxiliary space NEST.
   Input system used is Ax <= b.  TRANS is the unimodular transformation.  
   Given the original nest, this function will 
   1. Convert the nest into matrix form, which consists of a matrix for the
   coefficients, a matrix for the 
   invariant coefficients, and a vector for the constants.  
   2. Use the matrix form to calculate the lattice base for the nest (which is
   a dense space) 
   3. Compose the dense space transform with the user specified transform, to 
   get a transform we can easily calculate transformed bounds for.
   4. Multiply the composed transformation matrix times the matrix form of the
   loop.
   5. Transform the newly created matrix (from step 4) back into a loop nest
   using fourier motzkin elimination to figure out the bounds.  */

static lambda_loopnest
lambda_compute_auxillary_space (lambda_loopnest nest,
				lambda_trans_matrix trans)
{
  lambda_matrix A, B, A1, B1;
  lambda_vector a, a1;
  lambda_matrix invertedtrans;
  int depth, invariants, size;
  int i, j;
  lambda_loop loop;
  lambda_linear_expression expression;
  lambda_lattice lattice;

  depth = LN_DEPTH (nest);
  invariants = LN_INVARIANTS (nest);

  /* Unfortunately, we can't know the number of constraints we'll have
     ahead of time, but this should be enough even in ridiculous loop nest
     cases. We must not go over this limit.  */
  A = lambda_matrix_new (128, depth);
  B = lambda_matrix_new (128, invariants);
  a = lambda_vector_new (128);

  A1 = lambda_matrix_new (128, depth);
  B1 = lambda_matrix_new (128, invariants);
  a1 = lambda_vector_new (128);

  /* Store the bounds in the equation matrix A, constant vector a, and
     invariant matrix B, so that we have Ax <= a + B.
     This requires a little equation rearranging so that everything is on the
     correct side of the inequality.  */
  size = 0;
  for (i = 0; i < depth; i++)
    {
      loop = LN_LOOPS (nest)[i];

      /* First we do the lower bound.  */
      if (LL_STEP (loop) > 0)
	expression = LL_LOWER_BOUND (loop);
      else
	expression = LL_UPPER_BOUND (loop);

      for (; expression != NULL; expression = LLE_NEXT (expression))
	{
	  /* Fill in the coefficient.  */
	  for (j = 0; j < i; j++)
	    A[size][j] = LLE_COEFFICIENTS (expression)[j];

	  /* And the invariant coefficient.  */
	  for (j = 0; j < invariants; j++)
	    B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];

	  /* And the constant.  */
	  a[size] = LLE_CONSTANT (expression);

	  /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b.  IE put all
	     constants and single variables on   */
	  A[size][i] = -1 * LLE_DENOMINATOR (expression);
	  a[size] *= -1;
	  for (j = 0; j < invariants; j++)
	    B[size][j] *= -1;

	  size++;
	  /* Need to increase matrix sizes above.  */
	  gcc_assert (size <= 127);
	  
	}

      /* Then do the exact same thing for the upper bounds.  */
      if (LL_STEP (loop) > 0)
	expression = LL_UPPER_BOUND (loop);
      else
	expression = LL_LOWER_BOUND (loop);

      for (; expression != NULL; expression = LLE_NEXT (expression))
	{
	  /* Fill in the coefficient.  */
	  for (j = 0; j < i; j++)
	    A[size][j] = LLE_COEFFICIENTS (expression)[j];

	  /* And the invariant coefficient.  */
	  for (j = 0; j < invariants; j++)
	    B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];

	  /* And the constant.  */
	  a[size] = LLE_CONSTANT (expression);

	  /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b.  */
	  for (j = 0; j < i; j++)
	    A[size][j] *= -1;
	  A[size][i] = LLE_DENOMINATOR (expression);
	  size++;
	  /* Need to increase matrix sizes above.  */
	  gcc_assert (size <= 127);

	}
    }

  /* Compute the lattice base x = base * y + origin, where y is the
     base space.  */
  lattice = lambda_lattice_compute_base (nest);

  /* Ax <= a + B then becomes ALy <= a+B - A*origin.  L is the lattice base  */

  /* A1 = A * L */
  lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);

  /* a1 = a - A * origin constant.  */
  lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
  lambda_vector_add_mc (a, 1, a1, -1, a1, size);

  /* B1 = B - A * origin invariant.  */
  lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
		      invariants);
  lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);

  /* Now compute the auxiliary space bounds by first inverting U, multiplying
     it by A1, then performing fourier motzkin.  */

  invertedtrans = lambda_matrix_new (depth, depth);

  /* Compute the inverse of U.  */
  lambda_matrix_inverse (LTM_MATRIX (trans),
			 invertedtrans, depth);

  /* A = A1 inv(U).  */
  lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);

  return compute_nest_using_fourier_motzkin (size, depth, invariants,
					     A, B1, a1);
}

/* Compute the loop bounds for the target space, using the bounds of
   the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.  
   The target space loop bounds are computed by multiplying the triangular
   matrix H by the auxiliary nest, to get the new loop bounds.  The sign of
   the loop steps (positive or negative) is then used to swap the bounds if
   the loop counts downwards.
   Return the target loopnest.  */

static lambda_loopnest
lambda_compute_target_space (lambda_loopnest auxillary_nest,
			     lambda_trans_matrix H, lambda_vector stepsigns)
{
  lambda_matrix inverse, H1;
  int determinant, i, j;
  int gcd1, gcd2;
  int factor;

  lambda_loopnest target_nest;
  int depth, invariants;
  lambda_matrix target;

  lambda_loop auxillary_loop, target_loop;
  lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;

  depth = LN_DEPTH (auxillary_nest);
  invariants = LN_INVARIANTS (auxillary_nest);

  inverse = lambda_matrix_new (depth, depth);
  determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);

  /* H1 is H excluding its diagonal.  */
  H1 = lambda_matrix_new (depth, depth);
  lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);

  for (i = 0; i < depth; i++)
    H1[i][i] = 0;

  /* Computes the linear offsets of the loop bounds.  */
  target = lambda_matrix_new (depth, depth);
  lambda_matrix_mult (H1, inverse, target, depth, depth, depth);

  target_nest = lambda_loopnest_new (depth, invariants);

  for (i = 0; i < depth; i++)
    {

      /* Get a new loop structure.  */
      target_loop = lambda_loop_new ();
      LN_LOOPS (target_nest)[i] = target_loop;

      /* Computes the gcd of the coefficients of the linear part.  */
      gcd1 = gcd_vector (target[i], i);

      /* Include the denominator in the GCD.  */
      gcd1 = gcd (gcd1, determinant);

      /* Now divide through by the gcd.  */
      for (j = 0; j < i; j++)
	target[i][j] = target[i][j] / gcd1;

      expression = lambda_linear_expression_new (depth, invariants);
      lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
      LLE_DENOMINATOR (expression) = determinant / gcd1;
      LLE_CONSTANT (expression) = 0;
      lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
			   invariants);
      LL_LINEAR_OFFSET (target_loop) = expression;
    }

  /* For each loop, compute the new bounds from H.  */
  for (i = 0; i < depth; i++)
    {
      auxillary_loop = LN_LOOPS (auxillary_nest)[i];
      target_loop = LN_LOOPS (target_nest)[i];
      LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
      factor = LTM_MATRIX (H)[i][i];

      /* First we do the lower bound.  */
      auxillary_expr = LL_LOWER_BOUND (auxillary_loop);

      for (; auxillary_expr != NULL;
	   auxillary_expr = LLE_NEXT (auxillary_expr))
	{
	  target_expr = lambda_linear_expression_new (depth, invariants);
	  lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
				     depth, inverse, depth,
				     LLE_COEFFICIENTS (target_expr));
	  lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
				    LLE_COEFFICIENTS (target_expr), depth,
				    factor);

	  LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
	  lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
			      LLE_INVARIANT_COEFFICIENTS (target_expr),
			      invariants);
	  lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
				    LLE_INVARIANT_COEFFICIENTS (target_expr),
				    invariants, factor);
	  LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);

	  if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
	    {
	      LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
		* determinant;
	      lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
					(target_expr),
					LLE_INVARIANT_COEFFICIENTS
					(target_expr), invariants,
					determinant);
	      LLE_DENOMINATOR (target_expr) =
		LLE_DENOMINATOR (target_expr) * determinant;
	    }
	  /* Find the gcd and divide by it here, rather than doing it
	     at the tree level.  */
	  gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
	  gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
			     invariants);
	  gcd1 = gcd (gcd1, gcd2);
	  gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
	  gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
	  for (j = 0; j < depth; j++)
	    LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
	  for (j = 0; j < invariants; j++)
	    LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
	  LLE_CONSTANT (target_expr) /= gcd1;
	  LLE_DENOMINATOR (target_expr) /= gcd1;
	  /* Ignore if identical to existing bound.  */
	  if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
			  invariants))
	    {
	      LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
	      LL_LOWER_BOUND (target_loop) = target_expr;
	    }
	}
      /* Now do the upper bound.  */
      auxillary_expr = LL_UPPER_BOUND (auxillary_loop);

      for (; auxillary_expr != NULL;
	   auxillary_expr = LLE_NEXT (auxillary_expr))
	{
	  target_expr = lambda_linear_expression_new (depth, invariants);
	  lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
				     depth, inverse, depth,
				     LLE_COEFFICIENTS (target_expr));
	  lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
				    LLE_COEFFICIENTS (target_expr), depth,
				    factor);
	  LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
	  lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
			      LLE_INVARIANT_COEFFICIENTS (target_expr),
			      invariants);
	  lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
				    LLE_INVARIANT_COEFFICIENTS (target_expr),
				    invariants, factor);
	  LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);

	  if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
	    {
	      LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
		* determinant;
	      lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
					(target_expr),
					LLE_INVARIANT_COEFFICIENTS
					(target_expr), invariants,
					determinant);
	      LLE_DENOMINATOR (target_expr) =
		LLE_DENOMINATOR (target_expr) * determinant;
	    }
	  /* Find the gcd and divide by it here, instead of at the
	     tree level.  */
	  gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
	  gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
			     invariants);
	  gcd1 = gcd (gcd1, gcd2);
	  gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
	  gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
	  for (j = 0; j < depth; j++)
	    LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
	  for (j = 0; j < invariants; j++)
	    LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
	  LLE_CONSTANT (target_expr) /= gcd1;
	  LLE_DENOMINATOR (target_expr) /= gcd1;
	  /* Ignore if equal to existing bound.  */
	  if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
			  invariants))
	    {
	      LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
	      LL_UPPER_BOUND (target_loop) = target_expr;
	    }
	}
    }
  for (i = 0; i < depth; i++)
    {
      target_loop = LN_LOOPS (target_nest)[i];
      /* If necessary, exchange the upper and lower bounds and negate
         the step size.  */
      if (stepsigns[i] < 0)
	{
	  LL_STEP (target_loop) *= -1;
	  tmp_expr = LL_LOWER_BOUND (target_loop);
	  LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
	  LL_UPPER_BOUND (target_loop) = tmp_expr;
	}
    }
  return target_nest;
}

/* Compute the step signs of TRANS, using TRANS and stepsigns.  Return the new
   result.  */

static lambda_vector
lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
{
  lambda_matrix matrix, H;
  int size;
  lambda_vector newsteps;
  int i, j, factor, minimum_column;
  int temp;

  matrix = LTM_MATRIX (trans);
  size = LTM_ROWSIZE (trans);
  H = lambda_matrix_new (size, size);

  newsteps = lambda_vector_new (size);
  lambda_vector_copy (stepsigns, newsteps, size);

  lambda_matrix_copy (matrix, H, size, size);

  for (j = 0; j < size; j++)
    {
      lambda_vector row;
      row = H[j];
      for (i = j; i < size; i++)
	if (row[i] < 0)
	  lambda_matrix_col_negate (H, size, i);
      while (lambda_vector_first_nz (row, size, j + 1) < size)
	{
	  minimum_column = lambda_vector_min_nz (row, size, j);
	  lambda_matrix_col_exchange (H, size, j, minimum_column);

	  temp = newsteps[j];
	  newsteps[j] = newsteps[minimum_column];
	  newsteps[minimum_column] = temp;

	  for (i = j + 1; i < size; i++)
	    {
	      factor = row[i] / row[j];
	      lambda_matrix_col_add (H, size, j, i, -1 * factor);
	    }
	}
    }
  return newsteps;
}

/* Transform NEST according to TRANS, and return the new loopnest.
   This involves
   1. Computing a lattice base for the transformation
   2. Composing the dense base with the specified transformation (TRANS)
   3. Decomposing the combined transformation into a lower triangular portion,
   and a unimodular portion. 
   4. Computing the auxiliary nest using the unimodular portion.
   5. Computing the target nest using the auxiliary nest and the lower
   triangular portion.  */ 

lambda_loopnest
lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
{
  lambda_loopnest auxillary_nest, target_nest;

  int depth, invariants;
  int i, j;
  lambda_lattice lattice;
  lambda_trans_matrix trans1, H, U;
  lambda_loop loop;
  lambda_linear_expression expression;
  lambda_vector origin;
  lambda_matrix origin_invariants;
  lambda_vector stepsigns;
  int f;

  depth = LN_DEPTH (nest);
  invariants = LN_INVARIANTS (nest);

  /* Keep track of the signs of the loop steps.  */
  stepsigns = lambda_vector_new (depth);
  for (i = 0; i < depth; i++)
    {
      if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
	stepsigns[i] = 1;
      else
	stepsigns[i] = -1;
    }

  /* Compute the lattice base.  */
  lattice = lambda_lattice_compute_base (nest);
  trans1 = lambda_trans_matrix_new (depth, depth);

  /* Multiply the transformation matrix by the lattice base.  */

  lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
		      LTM_MATRIX (trans1), depth, depth, depth);

  /* Compute the Hermite normal form for the new transformation matrix.  */
  H = lambda_trans_matrix_new (depth, depth);
  U = lambda_trans_matrix_new (depth, depth);
  lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
			 LTM_MATRIX (U));

  /* Compute the auxiliary loop nest's space from the unimodular
     portion.  */
  auxillary_nest = lambda_compute_auxillary_space (nest, U);

  /* Compute the loop step signs from the old step signs and the
     transformation matrix.  */
  stepsigns = lambda_compute_step_signs (trans1, stepsigns);

  /* Compute the target loop nest space from the auxiliary nest and
     the lower triangular matrix H.  */
  target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
  origin = lambda_vector_new (depth);
  origin_invariants = lambda_matrix_new (depth, invariants);
  lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
			     LATTICE_ORIGIN (lattice), origin);
  lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
		      origin_invariants, depth, depth, invariants);

  for (i = 0; i < depth; i++)
    {
      loop = LN_LOOPS (target_nest)[i];
      expression = LL_LINEAR_OFFSET (loop);
      if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
	f = 1;
      else
	f = LLE_DENOMINATOR (expression);

      LLE_CONSTANT (expression) += f * origin[i];

      for (j = 0; j < invariants; j++)
	LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
	  f * origin_invariants[i][j];
    }

  return target_nest;

}

/* Convert a gcc tree expression EXPR to a lambda linear expression, and
   return the new expression.  DEPTH is the depth of the loopnest.
   OUTERINDUCTIONVARS is an array of the induction variables for outer loops
   in this nest.  INVARIANTS is the array of invariants for the loop.  EXTRA
   is the amount we have to add/subtract from the expression because of the
   type of comparison it is used in.  */

static lambda_linear_expression
gcc_tree_to_linear_expression (int depth, tree expr,
			       VEC(tree,heap) *outerinductionvars,
			       VEC(tree,heap) *invariants, int extra)
{
  lambda_linear_expression lle = NULL;
  switch (TREE_CODE (expr))
    {
    case INTEGER_CST:
      {
	lle = lambda_linear_expression_new (depth, 2 * depth);
	LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
	if (extra != 0)
	  LLE_CONSTANT (lle) += extra;

	LLE_DENOMINATOR (lle) = 1;
      }
      break;
    case SSA_NAME:
      {
	tree iv, invar;
	size_t i;
	for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
	  if (iv != NULL)
	    {
	      if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
		{
		  lle = lambda_linear_expression_new (depth, 2 * depth);
		  LLE_COEFFICIENTS (lle)[i] = 1;
		  if (extra != 0)
		    LLE_CONSTANT (lle) = extra;

		  LLE_DENOMINATOR (lle) = 1;
		}
	    }
	for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
	  if (invar != NULL)
	    {
	      if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
		{
		  lle = lambda_linear_expression_new (depth, 2 * depth);
		  LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
		  if (extra != 0)
		    LLE_CONSTANT (lle) = extra;
		  LLE_DENOMINATOR (lle) = 1;
		}
	    }
      }
      break;
    default:
      return NULL;
    }

  return lle;
}

/* Return the depth of the loopnest NEST */

static int 
depth_of_nest (struct loop *nest)
{
  size_t depth = 0;
  while (nest)
    {
      depth++;
      nest = nest->inner;
    }
  return depth;
}


/* Return true if OP is invariant in LOOP and all outer loops.  */

static bool
invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
{
  if (is_gimple_min_invariant (op))
    return true;
  if (loop->depth == 0)
    return true;
  if (!expr_invariant_in_loop_p (loop, op))
    return false;
  if (loop->outer 
      && !invariant_in_loop_and_outer_loops (loop->outer, op))
    return false;
  return true;
}

/* Generate a lambda loop from a gcc loop LOOP.  Return the new lambda loop,
   or NULL if it could not be converted.
   DEPTH is the depth of the loop.
   INVARIANTS is a pointer to the array of loop invariants.
   The induction variable for this loop should be stored in the parameter
   OURINDUCTIONVAR.
   OUTERINDUCTIONVARS is an array of induction variables for outer loops.  */

static lambda_loop
gcc_loop_to_lambda_loop (struct loop *loop, int depth,
			 VEC(tree,heap) ** invariants,
			 tree * ourinductionvar,
			 VEC(tree,heap) * outerinductionvars,
			 VEC(tree,heap) ** lboundvars,
			 VEC(tree,heap) ** uboundvars,
			 VEC(int,heap) ** steps)
{
  tree phi;
  tree exit_cond;
  tree access_fn, inductionvar;
  tree step;
  lambda_loop lloop = NULL;
  lambda_linear_expression lbound, ubound;
  tree test;
  int stepint;
  int extra = 0;
  tree lboundvar, uboundvar, uboundresult;

  /* Find out induction var and exit condition.  */
  inductionvar = find_induction_var_from_exit_cond (loop);
  exit_cond = get_loop_exit_condition (loop);

  if (inductionvar == NULL || exit_cond == NULL)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
      return NULL;
    }

  test = TREE_OPERAND (exit_cond, 0);

  if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
    {

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot find PHI node for induction variable\n");

      return NULL;
    }

  phi = SSA_NAME_DEF_STMT (inductionvar);
  if (TREE_CODE (phi) != PHI_NODE)
    {
      phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
      if (!phi)
	{

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file,
		     "Unable to convert loop: Cannot find PHI node for induction variable\n");

	  return NULL;
	}

      phi = SSA_NAME_DEF_STMT (phi);
      if (TREE_CODE (phi) != PHI_NODE)
	{

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file,
		     "Unable to convert loop: Cannot find PHI node for induction variable\n");
	  return NULL;
	}

    }

  /* The induction variable name/version we want to put in the array is the
     result of the induction variable phi node.  */
  *ourinductionvar = PHI_RESULT (phi);
  access_fn = instantiate_parameters
    (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
  if (access_fn == chrec_dont_know)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Access function for induction variable phi is unknown\n");

      return NULL;
    }

  step = evolution_part_in_loop_num (access_fn, loop->num);
  if (!step || step == chrec_dont_know)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot determine step of loop.\n");

      return NULL;
    }
  if (TREE_CODE (step) != INTEGER_CST)
    {

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Step of loop is not integer.\n");
      return NULL;
    }

  stepint = TREE_INT_CST_LOW (step);

  /* Only want phis for induction vars, which will have two
     arguments.  */
  if (PHI_NUM_ARGS (phi) != 2)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
      return NULL;
    }

  /* Another induction variable check. One argument's source should be
     in the loop, one outside the loop.  */
  if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
      && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
    {

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");

      return NULL;
    }

  if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
    {
      lboundvar = PHI_ARG_DEF (phi, 1);
      lbound = gcc_tree_to_linear_expression (depth, lboundvar,
					      outerinductionvars, *invariants,
					      0);
    }
  else
    {
      lboundvar = PHI_ARG_DEF (phi, 0);
      lbound = gcc_tree_to_linear_expression (depth, lboundvar,
					      outerinductionvars, *invariants,
					      0);
    }
  
  if (!lbound)
    {

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot convert lower bound to linear expression\n");

      return NULL;
    }
  /* One part of the test may be a loop invariant tree.  */
  VEC_reserve (tree, heap, *invariants, 1);
  if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
      && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
    VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
  else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
	   && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
    VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
  
  /* The non-induction variable part of the test is the upper bound variable.
   */
  if (TREE_OPERAND (test, 0) == inductionvar)
    uboundvar = TREE_OPERAND (test, 1);
  else
    uboundvar = TREE_OPERAND (test, 0);
    

  /* We only size the vectors assuming we have, at max, 2 times as many
     invariants as we do loops (one for each bound).
     This is just an arbitrary number, but it has to be matched against the
     code below.  */
  gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
  

  /* We might have some leftover.  */
  if (TREE_CODE (test) == LT_EXPR)
    extra = -1 * stepint;
  else if (TREE_CODE (test) == NE_EXPR)
    extra = -1 * stepint;
  else if (TREE_CODE (test) == GT_EXPR)
    extra = -1 * stepint;
  else if (TREE_CODE (test) == EQ_EXPR)
    extra = 1 * stepint;
  
  ubound = gcc_tree_to_linear_expression (depth, uboundvar,
					  outerinductionvars,
					  *invariants, extra);
  uboundresult = build (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
			build_int_cst (TREE_TYPE (uboundvar), extra));
  VEC_safe_push (tree, heap, *uboundvars, uboundresult);
  VEC_safe_push (tree, heap, *lboundvars, lboundvar);
  VEC_safe_push (int, heap, *steps, stepint);
  if (!ubound)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
      return NULL;
    }

  lloop = lambda_loop_new ();
  LL_STEP (lloop) = stepint;
  LL_LOWER_BOUND (lloop) = lbound;
  LL_UPPER_BOUND (lloop) = ubound;
  return lloop;
}

/* Given a LOOP, find the induction variable it is testing against in the exit
   condition.  Return the induction variable if found, NULL otherwise.  */

static tree
find_induction_var_from_exit_cond (struct loop *loop)
{
  tree expr = get_loop_exit_condition (loop);
  tree ivarop;
  tree test;
  if (expr == NULL_TREE)
    return NULL_TREE;
  if (TREE_CODE (expr) != COND_EXPR)
    return NULL_TREE;
  test = TREE_OPERAND (expr, 0);
  if (!COMPARISON_CLASS_P (test))
    return NULL_TREE;

  /* Find the side that is invariant in this loop. The ivar must be the other
     side.  */
  
  if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
      ivarop = TREE_OPERAND (test, 1);
  else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
      ivarop = TREE_OPERAND (test, 0);
  else
    return NULL_TREE;

  if (TREE_CODE (ivarop) != SSA_NAME)
    return NULL_TREE;
  return ivarop;
}

DEF_VEC_P(lambda_loop);
DEF_VEC_ALLOC_P(lambda_loop,heap);

/* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
   Return the new loop nest.  
   INDUCTIONVARS is a pointer to an array of induction variables for the
   loopnest that will be filled in during this process.
   INVARIANTS is a pointer to an array of invariants that will be filled in
   during this process.  */

lambda_loopnest
gcc_loopnest_to_lambda_loopnest (struct loops *currloops,
				 struct loop * loop_nest,
				 VEC(tree,heap) **inductionvars,
				 VEC(tree,heap) **invariants,
				 bool need_perfect_nest)
{
  lambda_loopnest ret = NULL;
  struct loop *temp;
  int depth = 0;
  size_t i;
  VEC(lambda_loop,heap) *loops = NULL;
  VEC(tree,heap) *uboundvars = NULL;
  VEC(tree,heap) *lboundvars  = NULL;
  VEC(int,heap) *steps = NULL;
  lambda_loop newloop;
  tree inductionvar = NULL;
  
  depth = depth_of_nest (loop_nest);
  temp = loop_nest;
  while (temp)
    {
      newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
					 &inductionvar, *inductionvars,
					 &lboundvars, &uboundvars,
					 &steps);
      if (!newloop)
	return NULL;
      VEC_safe_push (tree, heap, *inductionvars, inductionvar);
      VEC_safe_push (lambda_loop, heap, loops, newloop);
      temp = temp->inner;
    }
  if (need_perfect_nest)
    {
      if (!perfect_nestify (currloops, loop_nest,