aboutsummaryrefslogtreecommitdiff
path: root/libjava/classpath/lib/java/sql/CallableStatement.class
blob: 107a156c4809cfc97b99c9dd0ecc19ff2e924392 (plain)
ofshex dumpascii
0000 ca fe ba be 00 00 00 31 00 83 07 00 02 01 00 1a 6a 61 76 61 2f 73 71 6c 2f 43 61 6c 6c 61 62 6c .......1........java/sql/Callabl
0020 65 53 74 61 74 65 6d 65 6e 74 07 00 04 01 00 10 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 eStatement......java/lang/Object
0040 07 00 06 01 00 1a 6a 61 76 61 2f 73 71 6c 2f 50 72 65 70 61 72 65 64 53 74 61 74 65 6d 65 6e 74 ......java/sql/PreparedStatement
0060 01 00 14 72 65 67 69 73 74 65 72 4f 75 74 50 61 72 61 6d 65 74 65 72 01 00 05 28 49 49 29 56 01 ...registerOutParameter...(II)V.
0080 00 0a 45 78 63 65 70 74 69 6f 6e 73 07 00 0b 01 00 15 6a 61 76 61 2f 73 71 6c 2f 53 51 4c 45 78 ..Exceptions......java/sql/SQLEx
00a0 63 65 70 74 69 6f 6e 01 00 06 28 49 49 49 29 56 01 00 07 77 61 73 4e 75 6c 6c 01 00 03 28 29 5a ception...(III)V...wasNull...()Z
00c0 01 00 09 67 65 74 53 74 72 69 6e 67 01 00 15 28 49 29 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 ...getString...(I)Ljava/lang/Str
00e0 69 6e 67 3b 01 00 0a 67 65 74 42 6f 6f 6c 65 61 6e 01 00 04 28 49 29 5a 01 00 07 67 65 74 42 79 ing;...getBoolean...(I)Z...getBy
0100 74 65 01 00 04 28 49 29 42 01 00 08 67 65 74 53 68 6f 72 74 01 00 04 28 49 29 53 01 00 06 67 65 te...(I)B...getShort...(I)S...ge
0120 74 49 6e 74 01 00 04 28 49 29 49 01 00 07 67 65 74 4c 6f 6e 67 01 00 04 28 49 29 4a 01 00 08 67 tInt...(I)I...getLong...(I)J...g
0140 65 74 46 6c 6f 61 74 01 00 04 28 49 29 46 01 00 09 67 65 74 44 6f 75 62 6c 65 01 00 04 28 49 29 etFloat...(I)F...getDouble...(I)
0160 44 01 00 0d 67 65 74 42 69 67 44 65 63 69 6d 61 6c 01 00 1a 28 49 49 29 4c 6a 61 76 61 2f 6d 61 D...getBigDecimal...(II)Ljava/ma
0180 74 68 2f 42 69 67 44 65 63 69 6d 61 6c 3b 01 00 0a 44 65 70 72 65 63 61 74 65 64 01 00 08 67 65 th/BigDecimal;...Deprecated...ge
01a0 74 42 79 74 65 73 01 00 05 28 49 29 5b 42 01 00 07 67 65 74 44 61 74 65 01 00 12 28 49 29 4c 6a tBytes...(I)[B...getDate...(I)Lj
01c0 61 76 61 2f 73 71 6c 2f 44 61 74 65 3b 01 00 07 67 65 74 54 69 6d 65 01 00 12 28 49 29 4c 6a 61 ava/sql/Date;...getTime...(I)Lja
01e0 76 61 2f 73 71 6c 2f 54 69 6d 65 3b 01 00 0c 67 65 74 54 69 6d 65 73 74 61 6d 70 01 00 17 28 49 va/sql/Time;...getTimestamp...(I
0200 29 4c 6a 61 76 61 2f 73 71 6c 2f 54 69 6d 65 73 74 61 6d 70 3b 01 00 09 67 65 74 4f 62 6a 65 63 )Ljava/sql/Timestamp;...getObjec
0220 74 01 00 15 28 49 29 4c 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 3b 01 00 19 28 49 29 4c t...(I)Ljava/lang/Object;...(I)L
0240 6a 61 76 61 2f 6d 61 74 68 2f 42 69 67 44 65 63 69 6d 61 6c 3b 01 00 24 28 49 4c 6a 61 76 61 2f java/math/BigDecimal;..$(ILjava/
0260 75 74 69 6c 2f 4d 61 70 3b 29 4c 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 3b 01 00 09 53 util/Map;)Ljava/lang/Object;...S
0280 69 67 6e 61 74 75 72 65 01 00 4c 28 49 4c 6a 61 76 61 2f 75 74 69 6c 2f 4d 61 70 3c 4c 6a 61 76 ignature..L(ILjava/util/Map<Ljav
02a0 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 6c 61 6e 67 2f 43 6c 61 73 73 3c 2a a/lang/String;Ljava/lang/Class<*
02c0 3e 3b 3e 3b 29 4c 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 3b 01 00 06 67 65 74 52 65 66 >;>;)Ljava/lang/Object;...getRef
02e0 01 00 11 28 49 29 4c 6a 61 76 61 2f 73 71 6c 2f 52 65 66 3b 01 00 07 67 65 74 42 6c 6f 62 01 00 ...(I)Ljava/sql/Ref;...getBlob..
0300 12 28 49 29 4c 6a 61 76 61 2f 73 71 6c 2f 42 6c 6f 62 3b 01 00 07 67 65 74 43 6c 6f 62 01 00 12 .(I)Ljava/sql/Blob;...getClob...
0320 28 49 29 4c 6a 61 76 61 2f 73 71 6c 2f 43 6c 6f 62 3b 01 00 08 67 65 74 41 72 72 61 79 01 00 13 (I)Ljava/sql/Clob;...getArray...
0340 28 49 29 4c 6a 61 76 61 2f 73 71 6c 2f 41 72 72 61 79 3b 01 00 26 28 49 4c 6a 61 76 61 2f 75 74 (I)Ljava/sql/Array;..&(ILjava/ut
0360 69 6c 2f 43 61 6c 65 6e 64 61 72 3b 29 4c 6a 61 76 61 2f 73 71 6c 2f 44 61 74 65 3b 01 00 26 28 il/Calendar;)Ljava/sql/Date;..&(
0380 49 4c 6a 61 76 61 2f 75 74 69 6c 2f 43 61 6c 65 6e 64 61 72 3b 29 4c 6a 61 76 61 2f 73 71 6c 2f ILjava/util/Calendar;)Ljava/sql/
03a0 54 69 6d 65 3b 01 00 2b 28 49 4c 6a 61 76 61 2f 75 74 69 6c 2f 43 61 6c 65 6e 64 61 72 3b 29 4c Time;..+(ILjava/util/Calendar;)L
03c0 6a 61 76 61 2f 73 71 6c 2f 54 69 6d 65 73 74 61 6d 70 3b 01 00 17 28 49 49 4c 6a 61 76 61 2f 6c java/sql/Timestamp;...(IILjava/l
03e0 61 6e 67 2f 53 74 72 69 6e 67 3b 29 56 01 00 16 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 ang/String;)V...(Ljava/lang/Stri
0400 6e 67 3b 49 29 56 01 00 17 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 49 49 29 56 ng;I)V...(Ljava/lang/String;II)V
0420 01 00 28 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 49 4c 6a 61 76 61 2f 6c 61 6e ..((Ljava/lang/String;ILjava/lan
0440 67 2f 53 74 72 69 6e 67 3b 29 56 01 00 06 67 65 74 55 52 4c 01 00 11 28 49 29 4c 6a 61 76 61 2f g/String;)V...getURL...(I)Ljava/
0460 6e 65 74 2f 55 52 4c 3b 01 00 06 73 65 74 55 52 4c 01 00 23 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f net/URL;...setURL..#(Ljava/lang/
0480 53 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 6e 65 74 2f 55 52 4c 3b 29 56 01 00 07 73 65 74 4e 75 6c String;Ljava/net/URL;)V...setNul
04a0 6c 01 00 0a 73 65 74 42 6f 6f 6c 65 61 6e 01 00 16 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 l...setBoolean...(Ljava/lang/Str
04c0 69 6e 67 3b 5a 29 56 01 00 07 73 65 74 42 79 74 65 01 00 16 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f ing;Z)V...setByte...(Ljava/lang/
04e0 53 74 72 69 6e 67 3b 42 29 56 01 00 08 73 65 74 53 68 6f 72 74 01 00 16 28 4c 6a 61 76 61 2f 6c String;B)V...setShort...(Ljava/l
0500 61 6e 67 2f 53 74 72 69 6e 67 3b 53 29 56 01 00 06 73 65 74 49 6e 74 01 00 07 73 65 74 4c 6f 6e ang/String;S)V...setInt...setLon
0520 67 01 00 16 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4a 29 56 01 00 08 73 65 74 g...(Ljava/lang/String;J)V...set
0540 46 6c 6f 61 74 01 00 16 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 46 29 56 01 00 Float...(Ljava/lang/String;F)V..
0560 09 73 65 74 44 6f 75 62 6c 65 01 00 16 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b .setDouble...(Ljava/lang/String;
0580 44 29 56 01 00 0d 73 65 74 42 69 67 44 65 63 69 6d 61 6c 01 00 2b 28 4c 6a 61 76 61 2f 6c 61 6e D)V...setBigDecimal..+(Ljava/lan
05a0 67 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 6d 61 74 68 2f 42 69 67 44 65 63 69 6d 61 6c 3b 29 g/String;Ljava/math/BigDecimal;)
05c0 56 01 00 09 73 65 74 53 74 72 69 6e 67 01 00 27 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 V...setString..'(Ljava/lang/Stri
05e0 6e 67 3b 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 56 01 00 08 73 65 74 42 79 74 ng;Ljava/lang/String;)V...setByt
0600 65 73 01 00 17 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 5b 42 29 56 01 00 07 73 es...(Ljava/lang/String;[B)V...s
0620 65 74 44 61 74 65 01 00 24 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 etDate..$(Ljava/lang/String;Ljav
0640 61 2f 73 71 6c 2f 44 61 74 65 3b 29 56 01 00 07 73 65 74 54 69 6d 65 01 00 24 28 4c 6a 61 76 61 a/sql/Date;)V...setTime..$(Ljava
0660 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 73 71 6c 2f 54 69 6d 65 3b 29 56 01 00 /lang/String;Ljava/sql/Time;)V..
0680 0c 73 65 74 54 69 6d 65 73 74 61 6d 70 01 00 29 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 .setTimestamp..)(Ljava/lang/Stri
06a0 6e 67 3b 4c 6a 61 76 61 2f 73 71 6c 2f 54 69 6d 65 73 74 61 6d 70 3b 29 56 01 00 0e 73 65 74 41 ng;Ljava/sql/Timestamp;)V...setA
06c0 73 63 69 69 53 74 72 65 61 6d 01 00 2b 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b sciiStream..+(Ljava/lang/String;
06e0 4c 6a 61 76 61 2f 69 6f 2f 49 6e 70 75 74 53 74 72 65 61 6d 3b 49 29 56 01 00 0f 73 65 74 42 69 Ljava/io/InputStream;I)V...setBi
0700 6e 61 72 79 53 74 72 65 61 6d 01 00 09 73 65 74 4f 62 6a 65 63 74 01 00 29 28 4c 6a 61 76 61 2f naryStream...setObject..)(Ljava/
0720 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 3b 49 49 lang/String;Ljava/lang/Object;II
0740 29 56 01 00 28 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 6c 61 )V..((Ljava/lang/String;Ljava/la
0760 6e 67 2f 4f 62 6a 65 63 74 3b 49 29 56 01 00 27 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 ng/Object;I)V..'(Ljava/lang/Stri
0780 6e 67 3b 4c 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 3b 29 56 01 00 12 73 65 74 43 68 61 ng;Ljava/lang/Object;)V...setCha
07a0 72 61 63 74 65 72 53 74 72 65 61 6d 01 00 26 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e racterStream..&(Ljava/lang/Strin
07c0 67 3b 4c 6a 61 76 61 2f 69 6f 2f 52 65 61 64 65 72 3b 49 29 56 01 00 38 28 4c 6a 61 76 61 2f 6c g;Ljava/io/Reader;I)V..8(Ljava/l
07e0 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 73 71 6c 2f 44 61 74 65 3b 4c 6a 61 76 61 2f ang/String;Ljava/sql/Date;Ljava/
0800 75 74 69 6c 2f 43 61 6c 65 6e 64 61 72 3b 29 56 01 00 38 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 util/Calendar;)V..8(Ljava/lang/S
0820 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 73 71 6c 2f 54 69 6d 65 3b 4c 6a 61 76 61 2f 75 74 69 6c 2f tring;Ljava/sql/Time;Ljava/util/
0840 43 61 6c 65 6e 64 61 72 3b 29 56 01 00 3d 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 Calendar;)V..=(Ljava/lang/String
0860 3b 4c 6a 61 76 61 2f 73 71 6c 2f 54 69 6d 65 73 74 61 6d 70 3b 4c 6a 61 76 61 2f 75 74 69 6c 2f ;Ljava/sql/Timestamp;Ljava/util/
0880 43 61 6c 65 6e 64 61 72 3b 29 56 01 00 26 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 Calendar;)V..&(Ljava/lang/String
08a0 3b 29 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 01 00 15 28 4c 6a 61 76 61 2f 6c 61 ;)Ljava/lang/String;...(Ljava/la
08c0 6e 67 2f 53 74 72 69 6e 67 3b 29 5a 01 00 15 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e ng/String;)Z...(Ljava/lang/Strin
08e0 67 3b 29 42 01 00 15 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 53 01 00 15 28 g;)B...(Ljava/lang/String;)S...(
0900 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 49 01 00 15 28 4c 6a 61 76 61 2f 6c 61 Ljava/lang/String;)I...(Ljava/la
0920 6e 67 2f 53 74 72 69 6e 67 3b 29 4a 01 00 15 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e ng/String;)J...(Ljava/lang/Strin
0940 67 3b 29 46 01 00 15 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 44 01 00 16 28 g;)F...(Ljava/lang/String;)D...(
0960 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 5b 42 01 00 23 28 4c 6a 61 76 61 2f 6c Ljava/lang/String;)[B..#(Ljava/l
0980 61 6e 67 2f 53 74 72 69 6e 67 3b 29 4c 6a 61 76 61 2f 73 71 6c 2f 44 61 74 65 3b 01 00 23 28 4c ang/String;)Ljava/sql/Date;..#(L
09a0 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 4c 6a 61 76 61 2f 73 71 6c 2f 54 69 6d 65 java/lang/String;)Ljava/sql/Time
09c0 3b 01 00 28 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 4c 6a 61 76 61 2f 73 71 ;..((Ljava/lang/String;)Ljava/sq
09e0 6c 2f 54 69 6d 65 73 74 61 6d 70 3b 01 00 26 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e l/Timestamp;..&(Ljava/lang/Strin
0a00 67 3b 29 4c 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 3b 01 00 2a 28 4c 6a 61 76 61 2f 6c g;)Ljava/lang/Object;..*(Ljava/l
0a20 61 6e 67 2f 53 74 72 69 6e 67 3b 29 4c 6a 61 76 61 2f 6d 61 74 68 2f 42 69 67 44 65 63 69 6d 61 ang/String;)Ljava/math/BigDecima
0a40 6c 3b 01 00 35 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 75 74 l;..5(Ljava/lang/String;Ljava/ut
0a60 69 6c 2f 4d 61 70 3b 29 4c 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 3b 01 00 5d 28 4c 6a il/Map;)Ljava/lang/Object;..](Lj
0a80 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 75 74 69 6c 2f 4d 61 70 3c 4c ava/lang/String;Ljava/util/Map<L
0aa0 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 6c 61 6e 67 2f 43 6c 61 73 java/lang/String;Ljava/lang/Clas
0ac0 73 3c 2a 3e 3b 3e 3b 29 4c 6a 61 76 61 2f 6c 61 6e 67 2f 4f 62 6a 65 63 74 3b 01 00 22 28 4c 6a s<*>;>;)Ljava/lang/Object;.."(Lj
0ae0 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 4c 6a 61 76 61 2f 73 71 6c 2f 52 65 66 3b 01 ava/lang/String;)Ljava/sql/Ref;.
0b00 00 23 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 4c 6a 61 76 61 2f 73 71 6c 2f .#(Ljava/lang/String;)Ljava/sql/
0b20 42 6c 6f 62 3b 01 00 23 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 4c 6a 61 76 Blob;..#(Ljava/lang/String;)Ljav
0b40 61 2f 73 71 6c 2f 43 6c 6f 62 3b 01 00 24 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 a/sql/Clob;..$(Ljava/lang/String
0b60 3b 29 4c 6a 61 76 61 2f 73 71 6c 2f 41 72 72 61 79 3b 01 00 37 28 4c 6a 61 76 61 2f 6c 61 6e 67 ;)Ljava/sql/Array;..7(Ljava/lang
0b80 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 61 2f 75 74 69 6c 2f 43 61 6c 65 6e 64 61 72 3b 29 4c 6a 61 /String;Ljava/util/Calendar;)Lja
0ba0 76 61 2f 73 71 6c 2f 44 61 74 65 3b 01 00 37 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e va/sql/Date;..7(Ljava/lang/Strin
0bc0 67 3b 4c 6a 61 76 61 2f 75 74 69 6c 2f 43 61 6c 65 6e 64 61 72 3b 29 4c 6a 61 76 61 2f 73 71 6c g;Ljava/util/Calendar;)Ljava/sql
0be0 2f 54 69 6d 65 3b 01 00 3c 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 4c 6a 61 76 /Time;..<(Ljava/lang/String;Ljav
0c00 61 2f 75 74 69 6c 2f 43 61 6c 65 6e 64 61 72 3b 29 4c 6a 61 76 61 2f 73 71 6c 2f 54 69 6d 65 73 a/util/Calendar;)Ljava/sql/Times
0c20 74 61 6d 70 3b 01 00 22 28 4c 6a 61 76 61 2f 6c 61 6e 67 2f 53 74 72 69 6e 67 3b 29 4c 6a 61 76 tamp;.."(Ljava/lang/String;)Ljav
0c40 61 2f 6e 65 74 2f 55 52 4c 3b 01 00 0a 53 6f 75 72 63 65 46 69 6c 65 01 00 16 43 61 6c 6c 61 62 a/net/URL;...SourceFile...Callab
0c60 6c 65 53 74 61 74 65 6d 65 6e 74 2e 6a 61 76 61 06 01 00 01 00 03 00 01 00 05 00 00 00 4f 04 01 leStatement.java.............O..
0c80 00 07 00 08 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 07 00 0c 00 01 00 09 00 00 00 04 00 01 ................................
0ca0 00 0a 04 01 00 0d 00 0e 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 0f 00 10 00 01 00 09 00 00 ................................
0cc0 00 04 00 01 00 0a 04 01 00 11 00 12 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 13 00 14 00 01 ................................
0ce0 00 09 00 00 00 04 00 01 00 0a 04 01 00 15 00 16 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 17 ................................
0d00 00 18 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 19 00 1a 00 01 00 09 00 00 00 04 00 01 00 0a ................................
0d20 04 01 00 1b 00 1c 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 1d 00 1e 00 01 00 09 00 00 00 04 ................................
0d40 00 01 00 0a 04 01 00 1f 00 20 00 02 00 09 00 00 00 04 00 01 00 0a 00 21 00 00 00 00 04 01 00 22 .......................!......."
0d60 00 23 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 24 00 25 00 01 00 09 00 00 00 04 00 01 00 0a .#...............$.%............
0d80 04 01 00 26 00 27 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 28 00 29 00 01 00 09 00 00 00 04 ...&.'...............(.)........
0da0 00 01 00 0a 04 01 00 2a 00 2b 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 1f 00 2c 00 01 00 09 .......*.+.................,....
0dc0 00 00 00 04 00 01 00 0a 04 01 00 2a 00 2d 00 02 00 09 00 00 00 04 00 01 00 0a 00 2e 00 00 00 02 ...........*.-..................
0de0 00 2f 04 01 00 30 00 31 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 32 00 33 00 01 00 09 00 00 ./...0.1...............2.3......
0e00 00 04 00 01 00 0a 04 01 00 34 00 35 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 36 00 37 00 01 .........4.5...............6.7..
0e20 00 09 00 00 00 04 00 01 00 0a 04 01 00 24 00 38 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 26 .............$.8...............&
0e40 00 39 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 28 00 3a 00 01 00 09 00 00 00 04 00 01 00 0a .9...............(.:............
0e60 04 01 00 07 00 3b 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 07 00 3c 00 01 00 09 00 00 00 04 .....;.................<........
0e80 00 01 00 0a 04 01 00 07 00 3d 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 07 00 3e 00 01 00 09 .........=.................>....
0ea0 00 00 00 04 00 01 00 0a 04 01 00 3f 00 40 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 41 00 42 ...........?.@...............A.B
0ec0 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 43 00 3c 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 ...............C.<..............
0ee0 00 44 00 45 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 46 00 47 00 01 00 09 00 00 00 04 00 01 .D.E...............F.G..........
0f00 00 0a 04 01 00 48 00 49 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 4a 00 3c 00 01 00 09 00 00 .....H.I...............J.<......
0f20 00 04 00 01 00 0a 04 01 00 4b 00 4c 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 4d 00 4e 00 01 .........K.L...............M.N..
0f40 00 09 00 00 00 04 00 01 00 0a 04 01 00 4f 00 50 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 51 .............O.P...............Q
0f60 00 52 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 53 00 54 00 01 00 09 00 00 00 04 00 01 00 0a .R...............S.T............
0f80 04 01 00 55 00 56 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 57 00 58 00 01 00 09 00 00 00 04 ...U.V...............W.X........
0fa0 00 01 00 0a 04 01 00 59 00 5a 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 5b 00 5c 00 01 00 09 .......Y.Z...............[.\....
0fc0 00 00 00 04 00 01 00 0a 04 01 00 5d 00 5e 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 5f 00 5e ...........].^..............._.^
0fe0 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 60 00 61 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 ...............`.a..............
1000 00 60 00 62 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 60 00 63 00 01 00 09 00 00 00 04 00 01 .`.b...............`.c..........
1020 00 0a 04 01 00 64 00 65 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 57 00 66 00 01 00 09 00 00 .....d.e...............W.f......
1040 00 04 00 01 00 0a 04 01 00 59 00 67 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 5b 00 68 00 01 .........Y.g...............[.h..
1060 00 09 00 00 00 04 00 01 00 0a 04 01 00 43 00 3e 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 0f .............C.>................
1080 00 69 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 11 00 6a 00 01 00 09 00 00 00 04 00 01 00 0a .i.................j............
10a0 04 01 00 13 00 6b 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 15 00 6c 00 01 00 09 00 00 00 04 .....k.................l........
10c0 00 01 00 0a 04 01 00 17 00 6d 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 19 00 6e 00 01 00 09 .........m.................n....
10e0 00 00 00 04 00 01 00 0a 04 01 00 1b 00 6f 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 1d 00 70 .............o.................p
1100 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 22 00 71 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 ...............".q..............
1120 00 24 00 72 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 26 00 73 00 01 00 09 00 00 00 04 00 01 .$.r...............&.s..........
1140 00 0a 04 01 00 28 00 74 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 2a 00 75 00 01 00 09 00 00 .....(.t...............*.u......
1160 00 04 00 01 00 0a 04 01 00 1f 00 76 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 2a 00 77 00 02 ...........v...............*.w..
1180 00 09 00 00 00 04 00 01 00 0a 00 2e 00 00 00 02 00 78 04 01 00 30 00 79 00 01 00 09 00 00 00 04 .................x...0.y........
11a0 00 01 00 0a 04 01 00 32 00 7a 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 34 00 7b 00 01 00 09 .......2.z...............4.{....
11c0 00 00 00 04 00 01 00 0a 04 01 00 36 00 7c 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 24 00 7d ...........6.|...............$.}
11e0 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 26 00 7e 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 ...............&.~..............
1200 00 28 00 7f 00 01 00 09 00 00 00 04 00 01 00 0a 04 01 00 3f 00 80 00 01 00 09 00 00 00 04 00 01 .(.................?............
1220 00 0a 00 01 00 81 00 00 00 02 00 82 ............
'n960' href='#n960'>960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898
/* Support for avr-passes.def for AVR 8-bit microcontrollers.
   Copyright (C) 2024-2025 Free Software Foundation, Inc.

   This file is part of GCC.

   GCC is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3, or (at your option)
   any later version.

   GCC is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with GCC; see the file COPYING3.  If not see
   <http://www.gnu.org/licenses/>.  */

#define IN_TARGET_CODE 1

#define INCLUDE_ARRAY
#define INCLUDE_VECTOR
#include "config.h"
#include "system.h"
#include "intl.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "diagnostic-core.h"
#include "cfghooks.h"
#include "cfganal.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "optabs.h"
#include "regs.h"
#include "emit-rtl.h"
#include "recog.h"
#include "explow.h"
#include "cfgrtl.h"
#include "context.h"
#include "tree-pass.h"
#include "insn-attr.h"
#include "tm-constrs.h"


#define CONST_INT_OR_FIXED_P(X) (CONST_INT_P (X) || CONST_FIXED_P (X))

#define FIRST_GPR (AVR_TINY ? REG_18 : REG_2)


// Emit pattern PAT, and ICE when the insn is not valid / not recognized.

static rtx_insn *
emit_valid_insn (rtx pat)
{
  rtx_insn *insn = emit_insn (pat);

  if (! valid_insn_p (insn))  // Also runs recog().
    fatal_insn ("emit unrecognizable insn", insn);

  return insn;
}

// Emit a single_set with an optional scratch operand.  This function
// asserts that the new insn is valid and recognized.

static rtx_insn *
emit_valid_move_clobbercc (rtx dest, rtx src, rtx scratch = NULL_RTX)
{
  rtx pat = scratch
    ? gen_gen_move_clobbercc_scratch (dest, src, scratch)
    : gen_gen_move_clobbercc (dest, src);

  return emit_valid_insn (pat);
}


namespace
{

/////////////////////////////////////////////////////////////////////////////
// Before we start with the very code, introduce some helpers that are
// quite generic, though up to now only avr-fuse-add makes use of them.

/* Get the next / previous NONDEBUG_INSN_P after INSN in basic block BB.
   This assumes we are in CFG layout mode so that BLOCK_FOR_INSN()
   can be used.  */

static rtx_insn *
next_nondebug_insn_bb (basic_block bb, rtx_insn *insn, bool forward = true)
{
  while (insn)
    {
      insn = forward ? NEXT_INSN (insn) : PREV_INSN (insn);

      if (insn && NONDEBUG_INSN_P (insn))
	return BLOCK_FOR_INSN (insn) == bb ? insn : nullptr;
    }

  return insn;
}

static rtx_insn *
prev_nondebug_insn_bb (basic_block bb, rtx_insn *insn)
{
  return next_nondebug_insn_bb (bb, insn, false);
}


/* Like `single_set' with the addition that it sets REGNO_SCRATCH when the
   insn is a single_set with a QImode scratch register.  When the insn has
   no QImode scratch or just a scratch:QI, then set REGNO_SCRATCH = 0.
   The assumption is that the function is only used after the splits for
   REG_CC so that the pattern is a parallel with 2 elements (INSN has no
   scratch operand), or 3 elements (INSN does have a scratch operand).  */

static rtx
single_set_with_scratch (rtx_insn *insn, int &regno_scratch)
{
  regno_scratch = 0;

  if (! INSN_P (insn))
    return NULL_RTX;

  rtx set, clo, reg, pat = PATTERN (insn);

  // Search for SET + CLOBBER(QI) + CLOBBER(CC).
  if (GET_CODE (pat) == PARALLEL
      && XVECLEN (pat, 0) == 3
      && GET_CODE (set = XVECEXP (pat, 0, 0)) == SET
      // At this pass, all insn are endowed with clobber(CC).
      && GET_CODE (clo = XVECEXP (pat, 0, 2)) == CLOBBER
      && GET_MODE (XEXP (clo, 0)) == CCmode
      && GET_CODE (clo = XVECEXP (pat, 0, 1)) == CLOBBER
      && REG_P (reg = XEXP (clo, 0))
      && GET_MODE (reg) == QImode)
    {
      regno_scratch = REGNO (reg);
      return set;
    }

  return single_set (insn);
}


// One bit for each GRP in REG_0 ... REG_31.
using gprmask_t = uint32_t;

// True when this is a valid GPR number for ordinary code, e.g.
// registers wider than 2 bytes have to start at an exven regno.
// TMP_REG and ZERO_REG are not considered valid, even though
// the C source can use register vars with them.
static inline bool
gpr_regno_p (int regno, int n_bytes = 1)
{
  return (IN_RANGE (regno, FIRST_GPR, REG_32 - n_bytes)
	  // Size in { 1, 2, 3, 4, 8 } bytes.
	  && ((1u << n_bytes) & 0x11e)
	  // Registers >= 2 bytes start at an even regno.
	  && (n_bytes == 1 || regno % 2 == 0));
}

// There are cases where the C source defines local reg vars
// for R1 etc.  The assumption is that this is handled before
// calling this function, e.g. by skipping code when a register
// overlaps with a fixed register.
static inline gprmask_t
regmask (int regno, int size)
{
  gcc_checking_assert (gpr_regno_p (regno, size));
  gprmask_t bits = (1u << size) - 1;

  return bits << regno;
}

// Mask for hard register X that's some GPR, including fixed regs like R0.
static gprmask_t
regmask (rtx x)
{
  gcc_assert (REG_P (x));
  gprmask_t bits = (1u << GET_MODE_SIZE (GET_MODE (x))) - 1;

  return bits << REGNO (x);
}


// Whether X has bits in the range [B0 ... B1]
static inline bool
has_bits_in (gprmask_t x, int b0, int b1)
{
  if (b0 > b1 || b0 > 31 || b1 < 0)
    return false;

  const gprmask_t m = (2u << (b1 - b0)) - 1;
  return x & (m << b0);
}


template<typename T>
T bad_case ()
{
  gcc_unreachable ();
}

#define select false ? bad_case


namespace AVRasm
{
  // Returns true when we a scratch reg is needed in order to get
  // (siged or unsigned) 8-bit value VAL in some GPR.
  // When it's about costs rather than the sheer requirement for a
  // scratch, see also AVRasm::constant_cost.
  static inline bool ldi_needs_scratch (int regno, int val)
  {
    return regno < REG_16 && IN_RANGE (val & 0xff, 2, 254);
  }

  // Return a byte value x >= 0 such that  x <code> y == x for all y, or -1.
  static inline int neutral_val (rtx_code code)
  {
    return select<int>()
      : code == AND ? 0xff
      : code == IOR ? 0x00
      : code == XOR ? 0x00
      : code == PLUS ? 0
      : -1;
  }

  // When there exists a value x such that the image of the function
  //   y -> y <code> x  has order 1, then return that x.  Else return -1.
  static inline int image1_val (rtx_code code)
  {
    return select<int>()
      : code == AND ? 0x00
      : code == IOR ? 0xff
      : -1;
  }

  // Cost of 8-bit binary operation  x o= VAL  provided a scratch is
  // available as needed.
  static int constant_cost (rtx_code code, int regno, uint8_t val)
  {
    bool needs_scratch_p = select<bool>()
      : code == PLUS ? regno < REG_16 && val != 1 && val != 0xff
      : code == XOR ? val != 0xff && (regno < REG_16 || val != 0x80)
      : code == IOR ? regno < REG_16
      : code == AND ? regno < REG_16 && val != 0
      : code == SET ? regno < REG_16 && val != 0
      : bad_case<bool> ();

    return val == AVRasm::neutral_val (code)
      ? 0
      : 1 + needs_scratch_p;
  }
}; // AVRasm


// Returns the mode mask for a mode size of SIZE bytes.
static uint64_t size_to_mask (int size)
{
  return ((uint64_t) 2 << (8 * size - 1)) - 1;
}

// Return the scalar int mode for a modesize of 1, 2, 3, 4 or 8 bytes.
static machine_mode size_to_mode (int size)
{
  return select<machine_mode>()
    : size == 1 ? QImode
    : size == 2 ? HImode
    : size == 3 ? PSImode
    : size == 4 ? SImode
    : size == 8 ? DImode
    : bad_case<machine_mode> ();
}


//////////////////////////////////////////////////////////////////////////////
// Optimize moves after reload: -mfuse-move=<0,23>

/* The purpose of this pass is to perform optimizations after reload
   like the following ones:

   Without optimization		     |	 With optimization
   ====================		     |	 =================

   long long fn_zero (void)	    (1)
   {
      return 0;
   }

   ldi r18, 0	  ;  movqi_insn	     |	 ldi r18, 0	;  movqi_insn
   ldi r19, 0	  ;  movqi_insn	     |	 ldi r19, 0	;  movqi_insn
   ldi r20, 0	  ;  movqi_insn	     |	 movw r20, r18	;  *movhi
   ldi r21, 0	  ;  movqi_insn	     |
   ldi r22, 0	  ;  movqi_insn	     |	 movw r22, r18	;  *movhi
   ldi r23, 0	  ;  movqi_insn	     |
   ldi r24, 0	  ;  movqi_insn	     |	 movw r24, r18	;  *movhi
   ldi r25, 0	  ;  movqi_insn	     |
   ret				     |	 ret

   int fn_eq0 (char c)		    (2)
   {
       return c == 0;
   }

   mov r18, r24	   ;  movqi_insn     |	 mov r18, r24	;  movqi_insn
   ldi r24, 1	   ;  *movhi	     |	 ldi r24, 1	;  *movhi
   ldi r25, 0			     |	 ldi r25, 0
   cp  r18, ZERO   ;  cmpqi3	     |	 cpse r18, ZERO ;  peephole
   breq .+4	   ;  branch	     |
   ldi r24, 0	   ;  *movhi	     |	 ldi r24, 0	;  movqi_insn
   ldi r25, 0			     |
   ret				     |	 ret

   int a, b;			    (3)

   void fn_store_ab (void)
   {
       a = 1;
       b = -1;
   }

   ldi r24, 1	   ;  *movhi	     |	ldi r24, 1	 ;  *movhi
   ldi r25, 0			     |	ldi r25, 0
   sts a+1, r25	   ;  *movhi	     |	sts a+1, r25	 ;  *movhi
   sts a,   r24			     |	sts a,	 r24
   ldi r24, -1	   ;  *movhi	     |	sbiw r24, 2	 ;  *addhi3
   ldi r25, -1			     |
   sts b+1, r25	   ;  *movhi	     |	sts b+1, r25	 ;  *movhi
   sts b,   r24			     |	sts b,	 r24
   ret				     |	ret

   unsigned fn_crc (unsigned x, unsigned y)   (4)
   {
       for (char i = 8; i--; x <<= 1)
	   y ^= (x ^ y) & 0x80 ? 79U : 0U;
       return y;
   }

   movw r18, r24   ;  *movhi	     |	movw r18, r24	 ;  *movhi
   movw r24, r22   ;  *movhi	     |	movw r24, r22	 ;  *movhi
   ldi	r22, 8	   ;  movqi_insn     |	ldi  r22, 8	 ;  movqi_insn
  .L13:				     | .L13:
   movw r30, r18   ;  *movhi	     |	movw r30, r18	 ;  *movhi
   eor	r30, r24   ;  *xorqi3	     |	eor  r30, r24	 ;  *xorqi3
   eor	r31, r25   ;  *xorqi3	     |	eor  r31, r25	 ;  *xorqi3
   mov	r20, r30   ;  *andhi3	     |	mov  r20, r30	 ;  *andqi3
   andi r20, 1<<7		     |	andi r20, 1<<7
   clr	r21			     |
   sbrs r30, 7	   ;  *sbrx_branchhi |	sbrc r30, 7	 ;  *sbrx_branchhi
   rjmp .+4			     |
   ldi	r20, 79	   ;  movqi_insn     |	ldi  r20, 79	 ;  movqi_insn
   ldi	r21, 0	   ;  movqi_insn     |
   eor	r24, r20   ;  *xorqi3	     |	eor r24, r20	 ;  *xorqi3
   eor	r25, r21   ;  *xorqi3	     |
   lsl	r18	   ;  *ashlhi3_const |	lsl  r18	 ;  *ashlhi3_const
   rol	r19			     |	rol  r19
   subi r22, 1	   ;  *op8.for.cczn.p|	subi r22, 1	 ;  *op8.for.cczn.plus
   brne .L13	   ;  branch_ZN	     |	brne .L13	 ;  branch_ZN
   ret				     |	ret

   #define SPDR (*(uint8_t volatile*) 0x2c)     (5)

   void fn_PR49807 (long big)
   {
       SPDR = big >> 24;
       SPDR = big >> 16;
       SPDR = big >> 8;
       SPDR = big;
   }

   movw r20, r22   ;  *movhi	     |	movw r20, r22	 ;  *movhi
   movw r22, r24   ;  *movhi	     |	movw r22, r24	 ;  *movhi
   mov	r24, r23   ;  *ashrsi3_const |
   clr	r27			     |
   sbrc r24,7			     |
   com	r27			     |
   mov	r25, r27		     |
   mov	r26, r27		     |
   out	0xc, r24   ;  movqi_insn     |	out 0xc, r23	 ;  movqi_insn
   movw r24, r22   ;  *ashrsi3_const |
   clr	r27			     |
   sbrc r25, 7			     |
   com	r27			     |
   mov	r26, r27		     |
   out	0xc, r24   ;  movqi_insn     |	out 0xc, r24	 ;  movqi_insn
   clr	r27	   ;  *ashrsi3_const |
   sbrc r23, 7			     |
   dec	r27			     |
   mov	r26, r23		     |
   mov	r25, r22		     |
   mov	r24, r21		     |
   out	0xc, r24   ;  movqi_insn     |	out 0xc, r21	 ;  movqi_insn
   out	0xc, r20   ;  movqi_insn     |	out 0xc, r20	 ;  movqi_insn
   ret				     |	ret

   The insns of each basic block are traversed from first to last.
   Each insn is optimized on its own, or may be fused with the
   previous insn like in example (1).
      As the insns are traversed, memento_t keeps track of known values
   held in the GPRs (general purpse registers) R2 ... R31 by simulating
   the effect of the current insn in memento_t.apply_insn().
      The basic blocks are traversed in reverse post order so as to
   maximize the chance that GPRs from all preceding blocks are known,
   which is the case in example (2).  The traversal of the basic block
   is performed by bbinfo_t.optimize_one_function().
      bbinfo_t.optimize_one_block() traverses the insns of a BB and tries
   the following optimizations:

   bbinfo_t::try_fuse_p
      Try to fuse two 8-bit insns to one MOVW like in (1).

   bbinfo_t::try_simplify_p
      Only perform the simplest optimizations that don't impede the
      traceability of the generated code, which are:
      - Transform operations like  Rn = Rn=0 ^ Rm  to  Rn = Rm.
      - Remove insns that are no-ops like  Rn = Rn ^ Rm=0.

   bbinfo_t::try_bin_arg1_p
      In insns like  EOR Rn, arg1  where arg1 is known or is a reg that
      dies in the insn, *and* there is a different register Rm that's
      known to contain the same value, then arg1 is replaced with Rm.

   bbinfo_t::try_split_ldi_p
      Tries to simplify loads of constants like in examples (1), (2) and (3).
      It may use arithmetic instructions like AND with registers that
      are holding known values when this is profitable.

   bbinfo_t::try_split_any_p
      Split all insns where the operation can be performed on individual
      bytes, like andsi3.  In example (4) the andhi3 can be optimized
      to an andqi3.

   bbinfo_t::try_mem0_p
      Try to fuse a mem = reg insn to mem = __zero_reg__.
      This should only occur when -msplit-ldst is on, but may
      also occur with pushes since push<mode>1 splits them.
*/


// A basic block with additional information like the GPR state.
// The main entry point for the pass.  Runs various strategies
// like try_fuse, try_simplify, try_bin_arg1, try_split_ldi, try_split_any
// depending on -mfuse-add=<0,11>.
struct bbinfo_t;

// Additional insn information on a  REG = non-memory  single_set insn
// for quick access.  Only valid when the m_size member is non-zero.
struct insninfo_t;

// Helper classes with data needed by the try_xxx optimizers.
struct optimize_data_t;
struct insn_optimize_data_t;

// Records which GPRs R0 ... R31 are holding a known value,
// and which values these are.
struct memento_t;

// Abstract Interpretation of expressions.
// absint_val_t represents an 8-bit value that equals the content of
//    some GPR, or equals some known value (or both, or none of them).
// absint_byte_t represents an 8-bit entity that is equivalent to
//    an absint_val_t, or is equivalent to some (unary or binary) operation
//    on absint_val_t's like NOT, AND, IOR, XOR that operate bit-wise (and
//    hence also byte-wise).
// absint_t represents an array of absint_byte_t's.  When some insn is applied
//    to a GPR state, then memento_t.apply_insn() represents the RHS of
//    a single_set as an absint_t, and then applies that result to the GPRs.
//    For example, in  int y = x << 8  the representation is  x = [r25; r24]
//    and  RHS = [r24; 00].
struct absint_val_t;
class absint_byte_t;
struct absint_t;

// A ply_t is a potential step towards an optimal sequence to load a constant
// value into a multi-byte register.  A ply_t loosely relates to one AVR
// instruction, but it may also represent a sequence of instructions.
// For example, loading a constant into a lower register when no sratch reg
// is available may take up to 4 instructions.  There is no 1:1 correspondence
// to insns, either.
//    try_split_ldi determines the best sequence of ply_t's by means of a
// brute-force search with tree pruning:  It's much too complicated to
// construct a good sequence directly, but there are many conditions that
// good sequence will satisfy, implemented in bbinfo_t::find_plies.
struct ply_t;
struct plies_t;

// The maximal number of ply_t's in any conceivable optimal solution
// that is better than what a vanilla mov<mode> generates.
// This is 6 for modes <= 4 and 8 for modes == 8.
static constexpr int N_BEST_PLYS = 8;

#define FUSE_MOVE_MAX_MODESIZE 8

#include "avr-passes-fuse-move.h"

// Static members.

gprmask_t memento_t::fixed_regs_mask;

// Statistics.
int ply_t::n_ply_ts;
int ply_t::max_n_ply_ts;
int plies_t::max_n_plies;

bbinfo_t *bbinfo_t::bb_info;
int bbinfo_t::tick;
bbinfo_t::find_plies_data_t *bbinfo_t::fpd;

// Which optimizations should be performed.
bool bbinfo_t::try_fuse_p;
bool bbinfo_t::try_bin_arg1_p;
bool bbinfo_t::try_split_ldi_p;
bool bbinfo_t::try_split_any_p;
bool bbinfo_t::try_simplify_p;
bool bbinfo_t::use_arith_p;
bool bbinfo_t::use_set_some_p;
bool bbinfo_t::try_mem0_p;


// Abstract Interpretation of expressions.
// A bunch of absint_byte_t's.

struct absint_t
{
  static constexpr int eq_size = FUSE_MOVE_MAX_MODESIZE;
  std::array<absint_byte_t, eq_size> eq;

  rtx xexp = NULL_RTX;
  rtx xexp_new = NULL_RTX;

  absint_byte_t &operator[] (int i)
  {
    gcc_assert (IN_RANGE (i, 0, absint_t::eq_size - 1));
    return eq[i];
  }

  const absint_byte_t &operator[] (int i) const
  {
    gcc_assert (IN_RANGE (i, 0, absint_t::eq_size - 1));
    return eq[i];
  }

  absint_t () {}

  absint_t (rtx xold)
    : xexp(xold)
  {}

  absint_t (rtx xold, rtx xnew, int n_bytes)
    : xexp(xold), xexp_new(xnew)
  {
    gcc_assert (n_bytes <= eq_size);
    if (xnew)
      for (int i = 0; i < n_bytes; ++i)
	eq[i].learn_val8 (avr_uint8 (xnew, i));
  }

  // CODE != UNKNOWN: Maximal index of a byte with code CODE, or -1.
  // CODE == UNKNOWN: Maximal index of a byte with known CODE, or -1.
  int max_knows (rtx_code code = UNKNOWN) const
  {
    for (int i = eq_size - 1; i >= 0; --i)
      if ((code == UNKNOWN && ! eq[i].can (UNKNOWN))
	  || (code != UNKNOWN && eq[i].can (code)))
	return i;
    return -1;
  }

  // CODE != UNKNOWN: Maximal i such that all bytes < i have code CODE.
  // CODE == UNKNOWN: Maximal i such that all bytes < i have code != UNKNOWN.
  int end_knows (rtx_code code = UNKNOWN) const
  {
    for (int i = 0; i < eq_size; ++i)
      if ((code == UNKNOWN && eq[i].can (UNKNOWN))
	  || (code != UNKNOWN && ! eq[i].can (code)))
	return i;
    return eq_size;
  }

  // Number of bytes for which there is usable information.
  int popcount () const
  {
    int pop = 0;
    for (int i = 0; i < eq_size; ++i)
      pop += ! eq[i].can (UNKNOWN);
    return pop;
  }

  // Get the value under the assumption that all eq[].val8 are known.
  uint64_t get_value (int n_bytes, bool strict = true) const
  {
    gcc_assert (IN_RANGE (n_bytes, 1, eq_size));
    gcc_assert (! strict || end_knows (CONST_INT) >= n_bytes);

    uint64_t val = 0;
    for (int i = n_bytes - 1; i >= 0; --i)
      val = 256 * val + eq[i].val8 (strict);
    return val;
  }

  // Get n-byte value as a const_int, or NULL_RTX when (partially) unknown.
  rtx get_value_as_const_int (int n_bytes) const
  {
    gcc_checking_assert (gpr_regno_p (REG_24, n_bytes));

    if (end_knows (CONST_INT) < n_bytes)
      return NULL_RTX;

    const uint64_t val = get_value (n_bytes);
    const machine_mode mode = size_to_mode (n_bytes);

    return gen_int_mode (val, mode);
  }

  // Find a 16-bit register that contains the same value like held
  // in positions I1 and I2 (if any).  Return 0 when nothing appropriate
  // for a MOVW is found.
  int reg16_with_value (int i1, int i2, const memento_t &memo) const
  {
    if (i1 == (i2 ^ 1))
      {
	const int lo8 = eq[i1 & ~1].val8 (false);
	const int hi8 = eq[i1 | 1].val8 (false);
	if (lo8 >= 0 && hi8 >= 0)
	  return memo.reg16_with_value (lo8, hi8, 0);
      }
    return 0;
  }

  // When X is a REG rtx with a known content as of MEMO, then return
  // the respective value as a constant for mode MODE.
  // If X is NULL_RTX, or not a REG, or not known, then return NULL_RTX.
  static rtx maybe_fold (rtx x, const memento_t &memo)
  {
    int n_bytes;

    if (x != NULL_RTX
	&& REG_P (x)
	&& (n_bytes = GET_MODE_SIZE (GET_MODE (x))) <= FUSE_MOVE_MAX_MODESIZE
	&& gpr_regno_p (REGNO (x), n_bytes))
      {
	rtx xval = memo.get_value_as_const_int (REGNO (x), n_bytes);
	if (xval)
	  return avr_chunk (GET_MODE (x), xval, 0);
      }

    return NULL_RTX;
  }

  // Try to conclude about the bytes that comprise X.  DEST_MODE is the
  // context mode that is used when X is CONST_INT and has VOIDmode.
  static absint_t explore (rtx x, const memento_t &memo,
			   machine_mode dest_mode = VOIDmode)
  {
    const rtx_code code = GET_CODE (x);
    bool worth_dumping = dump_file && (dump_flags & TDF_FOLDING);

    const machine_mode mode = GET_MODE (x) == VOIDmode
      ? dest_mode
      : GET_MODE (x);

    const int n_bytes = mode == VOIDmode && CONST_INT_P (x)
      ? absint_t::eq_size
      : GET_MODE_SIZE (mode);

    if (! IN_RANGE (n_bytes, 1, absint_t::eq_size))
      return absint_t (x);

    // Eat our own dog food as produced by try_plit_ldi.

    rtx xop0 = BINARY_P (x) || UNARY_P (x) ? XEXP (x, 0) : NULL_RTX;
    rtx xval0 = xop0 && CONST_INT_OR_FIXED_P (xop0)
      ? xop0
      : absint_t::maybe_fold (xop0, memo);

    if (UNARY_P (x)
	&& REG_P (xop0)
	&& GET_MODE (xop0) == mode
	&& xval0)
      {
	rtx y = simplify_unary_operation (code, mode, xval0, mode);
	if (y && CONST_INT_OR_FIXED_P (y))
	  return absint_t (x, y, n_bytes);
      }

    rtx xop1 = BINARY_P (x) ? XEXP (x, 1) : NULL_RTX;
    rtx xval1 = xop1 && CONST_INT_OR_FIXED_P (xop1)
      ? xop1
      : absint_t::maybe_fold (xop1, memo);

    if (BINARY_P (x)
	&& xval0 && xval1)
      {
	rtx y = simplify_binary_operation (code, mode, xval0, xval1);
	if (y && CONST_INT_OR_FIXED_P (y))
	  return absint_t (x, y, n_bytes);
      }

    // No fold to a constant value was found:
    // Look at the individual bytes more closely.

    absint_t ai (x);

    switch (code)
      {
      default:
	worth_dumping = false;
	break;

      case REG:
	if (END_REGNO (x) <= REG_32
	    && ! (regmask (x) & memento_t::fixed_regs_mask))
	  for (unsigned r = REGNO (x); r < END_REGNO (x); ++r)
	    {
	      ai[r - REGNO (x)].learn_regno (r);
	      if (memo.knows (r))
		ai[r - REGNO (x)].learn_val8 (memo.value (r));
	    }
	break;

      CASE_CONST_UNIQUE:
	ai = absint_t (x, x, n_bytes);
	break;

      case ASHIFT:
      case ASHIFTRT:
      case LSHIFTRT:
      case ROTATE:
      case ROTATERT:
	if ((CONST_INT_P (xop1) && INTVAL (xop1) >= 8)
	    // DImode shift offsets for transparent calls are shipped in R16.
	    || n_bytes == 8)
	  ai = explore_shift (x, memo);
	break;

      case AND:
      case IOR:
      case XOR:
	{
	  const absint_t ai0 = absint_t::explore (xop0, memo, mode);
	  const absint_t ai1 = absint_t::explore (xop1, memo, mode);
	  for (int i = 0; i < n_bytes; ++i)
	    ai[i] = absint_byte_t (code, ai0[i], ai1[i]);
	}
	break;

      case NOT:
	{
	  const absint_t ai0 = absint_t::explore (xop0, memo);
	  for (int i = 0; i < n_bytes; ++i)
	    ai[i] = absint_byte_t (NOT, ai0[i]);
	}
	break;

      case ZERO_EXTEND:
      case SIGN_EXTEND:
	{
	  const absint_t ai0 = absint_t::explore (xop0, memo);
	  const int ai0_size = GET_MODE_SIZE (GET_MODE (xop0));
	  const absint_byte_t b_signs = ai0[ai0_size - 1].get_signs (code);
	  for (int i = 0; i < n_bytes; ++i)
	    ai[i] = i < ai0_size ? ai0[i] : b_signs;
	}
	break;

      case PLUS:
      case MINUS:
	if (SCALAR_INT_MODE_P (mode)
	    || ALL_SCALAR_FIXED_POINT_MODE_P (mode))
	  {
	    const absint_t ai0 = absint_t::explore (xop0, memo, mode);
	    const absint_t ai1 = absint_t::explore (xop1, memo, mode);
	    if (code == MINUS)
	      for (int i = 0; i < n_bytes && ai1[i].val8 (false) == 0; ++i)
		ai[i] = ai0[i];

	    if (code == PLUS)
	      for (int i = 0; i < n_bytes; ++i)
		{
		  if (ai0[i].val8 (false) == 0)
		    ai[i] = ai1[i];
		  else if (ai1[i].val8 (false) == 0)
		    ai[i] = ai0[i];
		  else
		    {
		      ai[i] = absint_byte_t (code, ai0[i], ai1[i]);
		      break;
		    }
		}

	    if (code == PLUS
		&& GET_CODE (xop0) == ZERO_EXTEND
		&& CONST_INT_P (xop1))
	      {
		rtx exop = XEXP (xop0, 0);
		int exsize = GET_MODE_SIZE (GET_MODE (exop));
		rtx lo_xop1 = avr_chunk (GET_MODE (exop), xop1, 0);
		if (lo_xop1 == const0_rtx)
		  for (int i = exsize; i < n_bytes; ++i)
		    ai[i] = ai1[i];
	      }
	  }
	break; // PLUS, MINUS

      case MULT:
	if (GET_MODE (xop0) == mode
	    && SCALAR_INT_MODE_P (mode))
	  {
	    // The constant may be located in xop0's zero_extend...
	    const absint_t ai0 = absint_t::explore (xop0, memo, mode);
	    const absint_t ai1 = absint_t::explore (xop1, memo, mode);
	    const int end0 = ai0.end_knows (CONST_INT);
	    const int end1 = ai1.end_knows (CONST_INT);
	    const uint64_t mul0 = end0 > 0 ? ai0.get_value (end0) : 1;
	    const uint64_t mul1 = end1 > 0 ? ai1.get_value (end1) : 1;
	    // Shifting in off/8 zero bytes from the right.
	    const int off = mul0 * mul1 != 0 ? ctz_hwi (mul0 * mul1) : 0;
	    for (int i = 0; i < off / 8; ++i)
	      ai[i].learn_val8 (0);
	  }
	break; // MULT

      case BSWAP:
	if (GET_MODE (xop0) == mode)
	  {
	    const absint_t ai0 = absint_t::explore (xop0, memo);
	    for (int i = 0; i < n_bytes; ++i)
	      ai[i] = ai0[n_bytes - 1 - i];
	  }
	break;
      } // switch code

    if (worth_dumping)
      {
	avr_dump (";; AI.explore %C:%m ", code, mode);
	ai.dump ();
      }

    for (int i = 0; i < n_bytes; ++i)
      gcc_assert (ai[i].check ());

    return ai;
  }

  // Helper for the method above.
  static absint_t explore_shift (rtx x, const memento_t &memo)
  {
    absint_t ai (x);

    const rtx_code code = GET_CODE (x);
    const machine_mode mode = GET_MODE (x);
    const int n_bytes = GET_MODE_SIZE (mode);

    if (! BINARY_P (x))
      return ai;

    rtx xop0 = XEXP (x, 0);
    rtx xop1 = XEXP (x, 1);

    // Look at shift offsets of DImode more closely;
    // they are in R16 for __lshrdi3 etc.  Patch xop1 on success.
    if (n_bytes == 8
	&& ! CONST_INT_P (xop1)
	&& GET_MODE (xop0) == mode)
      {
	const int n_off = GET_MODE_SIZE (GET_MODE (xop1));
	const absint_t aoff = absint_t::explore (xop1, memo);
	xop1 = aoff.get_value_as_const_int (n_off);
      }

    if (! xop1
	|| GET_MODE (xop0) != mode
	|| ! IN_RANGE (n_bytes, 1, FUSE_MOVE_MAX_MODESIZE)
	|| ! CONST_INT_P (xop1)
	|| ! IN_RANGE (INTVAL (xop1), 8, 8 * n_bytes - 1))
      return ai;

    const int off = INTVAL (xop1);
    const absint_t ai0 = absint_t::explore (xop0, memo);

    switch (GET_CODE (x))
      {
      default:
	break;

      case ASHIFT:
	// Shifting in 0x00's from the right.
	for (int i = 0; i < off / 8; ++i)
	  ai[i].learn_val8 (0);
	break;

      case LSHIFTRT:
      case ASHIFTRT:
	{
	  // Shifting in 0x00's or signs from the left.
	  absint_byte_t b_signs = ai0[n_bytes - 1].get_signs (GET_CODE (x));
	  for (int i = n_bytes - off / 8; i < n_bytes; ++i)
	    ai[i] = b_signs;
	  if (off == 8 * n_bytes - 1)
	    if (code == ASHIFTRT)
	      ai[0] = b_signs;
	}
	break;
      }

    if (off % 8 != 0
	|| ai0.popcount () == 0)
      return ai;

    // For shift offsets that are a multiple of 8, record the
    // action on the constituent bytes.

    // Bytes are moving left by this offset (or zero for "none").
    const int boffL = select<int>()
      : code == ROTATE || code == ASHIFT ? off / 8
      : code == ROTATERT ? n_bytes - off / 8
      : 0;

    // Bytes are moving right by this offset (or zero for "none").
    const int boffR = select<int>()
      : code == ROTATERT || code == ASHIFTRT || code == LSHIFTRT ? off / 8
      : code == ROTATE ? n_bytes - off / 8
      : 0;

    if (dump_flags & TDF_FOLDING)
      {
	avr_dump (";; AI.explore_shift %C:%m ", code, mode);
	if (boffL)
	  avr_dump ("<< %d%s", 8 * boffL, boffL && boffR ? ", " : "");
	if (boffR)
	  avr_dump (">> %d", 8 * boffR);
	avr_dump ("\n");
      }

    if (boffL)
      for (int i = 0; i < n_bytes - boffL; ++i)
	ai[i + boffL] = ai0[i];

    if (boffR)
      for (int i = boffR; i < n_bytes; ++i)
	ai[i - boffR] = ai0[i];

    return ai;
  }

  void dump (const char *msg = nullptr, FILE *f = dump_file) const
  {
    if (f)
      dump (NULL_RTX, msg, f);
  }

  void dump (rtx dest, const char *msg = nullptr, FILE *f = dump_file) const
  {
    if (f)
      {
	int regno = dest && REG_P (dest) ? REGNO (dest) : 0;

	msg = msg && msg[0] ? msg : "AI=[%s]\n";
	const char *const xs = strstr (msg, "%s");
	gcc_assert (xs);

	fprintf (f, "%.*s", (int) (xs - msg), msg);
	for (int i = max_knows (); i >= 0; --i)
	  {
	    const int sub_regno = eq[i].regno (false /*nonstrict*/);
	    const bool nop = regno &&  sub_regno == regno + i;
	    eq[i].dump (nop ? "%s=nop" : "%s", f);
	    fprintf (f, "%s", i ? "; " : "");
	  }
	fprintf (f, "%s", xs + strlen ("%s"));
      }
  }
}; // absint_t


// Information for a REG = non-memory single_set.

struct insninfo_t
{
  // This is an insn that sets the m_size bytes of m_regno to either
  // - A compile time constant m_isrc (m_code = CONST_INT), or
  // - The contents of register number m_rsrc (m_code = REG).
  int m_size = 0;
  int m_regno;
  int m_rsrc;
  rtx_code m_code;
  uint64_t m_isrc;
  rtx_insn *m_insn = nullptr;
  rtx m_set = NULL_RTX;
  rtx m_src = NULL_RTX;
  int m_scratch = 0; // 0 or the register number of a QImode scratch.
  rtx_code m_old_code = UNKNOWN;

  // Knowledge about the bytes of the SET_SRC:  A byte may have a known
  // value, may be known to equal some register (e.g. with BSWAP),
  // or both, or may be unknown.
  absint_t m_ai;

  // May be set for binary operations.
  absint_byte_t m_new_src;

  bool init1 (insn_optimize_data_t &, int max_size, const char *purpose);

  // Upper bound for the cost (in words) of a move<mode> insn that
  // performs a REG = CONST_XXX = .m_isrc move of modesize .m_size.
  int cost () const;
  bool combine (const insninfo_t &prev, const insninfo_t &curr);
  int emit_insn () const;

  bool needs_scratch () const
  {
    gcc_assert (m_code == CONST_INT);

    for (int i = 0; i < m_size; ++i)
      if (AVRasm::ldi_needs_scratch (m_regno, m_isrc >> (8 * i)))
	return true;

    return false;
  }

  int hamming (const memento_t &memo) const
  {
    gcc_assert (m_code == CONST_INT);

    int h = 0;
    for (int i = 0; i < m_size; ++i)
      h += ! memo.have_value (m_regno + i, 1, 0xff & (m_isrc >> (8 * i)));

    return h;
  }

  // Upper bound for the number of ply_t's of a solution, given Hamming
  // distance of HAMM (-1 for unknown).
  int n_best_plys (int hamm = -1) const
  {
    gcc_assert (m_code == CONST_INT);

    if (m_size == 8)
      return (hamm >= 0 ? hamm : m_size);
    else if (hamm <= 4)
      return (hamm >= 0 ? hamm : m_size)
	// The following terms is the max number of MOVWs with a
	// Hamming difference of less than 2.
	+ (AVR_HAVE_MOVW && m_regno < REG_14) * m_size / 2
	+ (AVR_HAVE_MOVW && m_regno == REG_14) * std::max (0, m_size - 2)
	- (AVR_HAVE_MOVW && hamm == 4 && (uint32_t) m_isrc % 0x10001 == 0);
    else
      gcc_unreachable ();
  }
}; // insninfo_t


struct insn_optimize_data_t
{
  // Known values held in GPRs prior to the action of .insn / .ii,
  memento_t &regs;
  rtx_insn *insn;
  insninfo_t ii;
  bool unused;

  insn_optimize_data_t () = delete;

  insn_optimize_data_t (memento_t &memo)
    : regs(memo)
  {}
}; // insn_optimize_data_t

struct optimize_data_t
{
  insn_optimize_data_t prev;
  insn_optimize_data_t curr;

  // Number >= 0 of new insns that replace the curr insn and maybe also the
  // prev insn.  -1 when no replacement has been found.
  int n_new_insns = -1;

  // .prev will be removed provided we have (potentially zero) new insns.
  bool delete_prev_p = false;

  // Ignore these GPRs when comparing the simulation results of
  // old and new insn sequences.  Usually some scratch reg(s).
  gprmask_t ignore_mask = 0;

  optimize_data_t () = delete;

  optimize_data_t (memento_t &prev_regs, memento_t &curr_regs)
    : prev(prev_regs), curr(curr_regs)
  {}

  bool try_fuse (bbinfo_t *);
  bool try_mem0 (bbinfo_t *);
  bool try_bin_arg1 (bbinfo_t *);
  bool try_simplify (bbinfo_t *);
  bool try_split_ldi (bbinfo_t *);
  bool try_split_any (bbinfo_t *);
  bool fail (const char *reason);
  bool emit_signs (int r_sign, gprmask_t);
  void emit_move_mask (int dest, int src, int n_bytes, gprmask_t &);
  rtx_insn *emit_sequence (basic_block, rtx_insn *);
  bool get_2ary_operands (rtx_code &, const absint_byte_t &,
			  insn_optimize_data_t &, int r_dest,
			  absint_val_t &, absint_val_t &, int &ex_cost);
  rtx_insn *emit_and_apply_move (memento_t &, rtx dest, rtx src);

  // M2 is the state of GPRs as the sequence starts; M1 is the state one before.
  static void apply_sequence (const std::vector<rtx_insn *> &insns,
			      memento_t &m1, memento_t &m2)
  {
    gcc_assert (insns.size () >= 1);

    for (auto &i : insns)
      {
	m1 = m2;
	m2.apply_insn (i, false);
      }
  }
}; // optimize_data_t


// Emit INSNS before .curr.insn, replacing .curr.insn and also .prev.insn when
// .delete_prev_p is on.  Adjusts .curr.regs and .prev.regs accordingly.
rtx_insn *
optimize_data_t::emit_sequence (basic_block bb, rtx_insn *insns)
{
  gcc_assert (n_new_insns >= 0);

  // The old insns will be replaced by and simulated...
  const std::vector<rtx_insn *> old_insns = delete_prev_p
    ? std::vector<rtx_insn *> { prev.insn, curr.insn }
    : std::vector<rtx_insn *> { curr.insn };

  // ...against the new insns.
  std::vector<rtx_insn *> new_insns;
  for (rtx_insn *i = insns; i; i = NEXT_INSN (i))
    new_insns.push_back (i);

  rtx_insn *new_curr_insn;

  memento_t &m1 = prev.regs;
  memento_t &m2 = curr.regs;

  if (new_insns.empty ())
    {
      if (delete_prev_p)
	{
	  m2 = m1;
	  m1.known = 0;
	  new_curr_insn = prev_nondebug_insn_bb (bb, prev.insn);
	}
      else
	new_curr_insn = prev.insn;
    }
  else
    {
      // We are going to emit at least one new insn.  Simulate the effect of
      // the new sequence and compare it against the effect of the old one.
      // Both effects must be the same (modulo scratch regs).

      memento_t n1 = m1;
      memento_t n2 = m2;

      if (delete_prev_p)
	{
	  m2 = m1, m1.known = 0;
	  n2 = n1, n1.known = 0;
	}

      avr_dump (";; Applying new route...\n");
      optimize_data_t::apply_sequence (new_insns, n1, n2);

      avr_dump (";; Applying old route...\n");
      optimize_data_t::apply_sequence (old_insns, m1, m2);
      avr_dump ("\n");

      if (! m2.equals (n2, ignore_mask))
	{
	  // When we come here, then
	  // - We have a genuine bug, and/or
	  // - We did produce insns that are opaque to absint_t's explore().
	  avr_dump ("INCOMPLETE APPLICATION:\n");
	  m2.dump ("regs old route=%s\n\n");
	  n2.dump ("regs new route=%s\n\n");
	  avr_dump ("The new insns are:\n%L", insns);

	  fatal_insn ("incomplete application of insn", insns);
	}

      // Use N1 and N2 as the new GPR states.  Even though they are equal
      // modulo ignore_mask, N2 may know more about GPRs when it doesn't
      // clobber the scratch reg.
      m1 = n1;
      m2 = n2;

      emit_insn_before (insns, curr.insn);

      new_curr_insn = new_insns.back ();
    }

  if (delete_prev_p)
    SET_INSN_DELETED (prev.insn);

  SET_INSN_DELETED (curr.insn);

  return new_curr_insn;
}


const pass_data avr_pass_data_fuse_move =
{
  RTL_PASS,	 // type
  "",		 // name (will be patched)
  OPTGROUP_NONE, // optinfo_flags
  TV_MACH_DEP,	 // tv_id
  0,		 // properties_required
  0,		 // properties_provided
  0,		 // properties_destroyed
  0,		 // todo_flags_start
  TODO_df_finish | TODO_df_verify // todo_flags_finish
};


class avr_pass_fuse_move : public rtl_opt_pass
{
public:
  avr_pass_fuse_move (gcc::context *ctxt, const char *name)
    : rtl_opt_pass (avr_pass_data_fuse_move, ctxt)
  {
    this->name = name;
  }

  unsigned int execute (function *func) final override
  {
    if (optimize > 0 && avropt_fuse_move > 0)
      {
	df_note_add_problem ();
	df_analyze ();

	bbinfo_t::optimize_one_function (func);
      }

    return 0;
  }
}; // avr_pass_fuse_move


// Append PLY to .plies[].  A SET or BLD ply may start a new sequence of
// SETs or BLDs and gets assigned the overhead of the sequence like for an
// initial SET or CLT instruction.  A SET ply my be added in two flavours:
// One that starts a sequence of single_sets, and one that represents the
// payload of a set_some insn.  MEMO is the GPR state prior to PLY.
void
plies_t::add (ply_t ply, const ply_t *prev, const memento_t &memo,
	      bool maybe_set_some)
{
  if (ply.code == SET)
    {
      if (prev && prev->code == SET)
	{
	  // Proceed with the SET sequence flavour.
	  ply.in_set_some = prev->in_set_some;

	  if (ply.in_set_some)
	    ply.scratch = 0;
	  else if (! ply.scratch && ply.needs_scratch ())
	    ply.cost += 2;
	}
      else
	{
	  // The 1st SET in a sequence.  May use set_some to set
	  // all bytes in one insn, or a bunch of single_sets.

	  // Route1: Bunch of single_sets.
	  const int ply_cost = ply.cost;
	  if (! ply.scratch && ply.needs_scratch ())
	    ply.cost += 2;
	  ply.in_set_some = false;

	  add (ply);

	  if (maybe_set_some)
	    {
	      // Route 2: One set_some: The 1st SET gets all the overhead.
	      ply.scratch = 0;
	      ply.cost = ply_cost + 1 + ! memo.known_dregno ();
	      ply.in_set_some = true;
	    }
	}
    } // SET
  else if (ply.is_bld ())
    {
      // The first BLD in a series of BLDs gets the extra costs
      // for the SET / CLT that precedes the BLDs.
      ply.cost += ! ply.is_same_bld (prev);
    }

  add (ply);
}


// Emit insns for .plies[] and return the number of emitted insns.
// The emitted insns represent the effect of II with MEMO, which
// is the GPR knowledge before II is executed.
int
plies_t::emit_insns (const insninfo_t &ii, const memento_t &memo) const
{
  int n_insns = 0;

  for (int i = 0; i < n_plies; ++i)
    {
      const ply_t &p = plies[i];

      // SETs and BLDs are dumped by their emit_xxxs().
      if (p.code != SET && ! p.is_bld ())
	p.dump ();

      rtx src1 = NULL_RTX;
      rtx src2 = NULL_RTX;
      rtx dest = NULL_RTX;
      rtx xscratch = NULL_RTX;
      rtx_code code = p.code;

      switch (p.code)
	{
	default:
	  avr_dump ("\n\n;; Bad ply_t:\n");
	  p.dump (i + 1);
	  gcc_unreachable ();
	  break;

	case REG: // *movhi = MOVW; movqi_insn = MOV
	  dest = gen_rtx_REG (p.size == 1 ? QImode : HImode, p.regno);
	  src1 = gen_rtx_REG (p.size == 1 ? QImode : HImode, p.arg);
	  break;

	case SET: // movqi_insn = LDI, CLR; set_some = (LDI + MOV) ** size.
	  i += emit_sets (ii, n_insns, memo, i) - 1;
	  continue;

	case MOD: // *ior<mode>3, *and<mode>3 = SET + BLD... / CLT + BLD...
	  i += emit_blds (ii, n_insns, i) - 1;
	  continue;

	case MINUS: // *subqi3 = SUB
	case PLUS:  // *addqi3 = ADD
	case AND: // *andqi3 = AND
	case IOR: // *iorqi3 = OR
	case XOR: // *xorqi3 = EOR
	  dest = gen_rtx_REG (QImode, p.regno);
	  src2 = gen_rtx_REG (QImode, p.arg);
	  break;

	case PRE_INC: // *addqi3 = INC
	case PRE_DEC: // *addqi3 = DEC
	  code = PLUS;
	  dest = gen_rtx_REG (QImode, p.regno);
	  src2 = p.code == PRE_INC ? const1_rtx : constm1_rtx;
	  break;

	case NEG: // *negqi2 = NEG
	case NOT: // *one_cmplqi2 = COM
	  dest = gen_rtx_REG (QImode, p.regno);
	  src1 = dest;
	  break;

	case ROTATE:   // *rotlqi3 = SWAP
	case ASHIFT:   // *ashlqi3 = LSL
	case ASHIFTRT: // *ashrqi3 = ASR
	case LSHIFTRT: // *lshrqi3 = LSR
	  dest = gen_rtx_REG (QImode, p.regno);
	  src2 = GEN_INT (code == ROTATE ? 4 : 1);
	  break;

	case SS_PLUS: // *addhi3 = ADIW, SBIW
	  code = PLUS;
	  dest = gen_rtx_REG (HImode, p.regno);
	  src2 = gen_int_mode (p.arg, HImode);
	  break;
	} // switch p.code

      gcc_assert (dest && (! src1) + (! src2) == 1);

      rtx src = code == REG || code == SET
	? src1
	: (src2
	   ? gen_rtx_fmt_ee (code, GET_MODE (dest), dest, src2)
	   : gen_rtx_fmt_e (code, GET_MODE (dest), src1));

      emit_valid_move_clobbercc (dest, src, xscratch);
      n_insns += 1;
    }

  return n_insns;
}


// Helper for .emit_insns().  Emit an ior<mode>3 or and<mode>3 insn
// that's equivalent to a sequence of contiguous BLDs starting at
// .plies[ISTART].  Updates N_INSNS according to the number of insns
// emitted and returns the number of consumed plys in .plies[].
int
plies_t::emit_blds (const insninfo_t &ii, int &n_insns, int istart) const
{
  const ply_t &first = plies[istart];

  gcc_assert (ii.m_size <= 4);
  gcc_assert (first.is_bld ());

  const rtx_code code = first.is_setbld () ? IOR : AND;
  const machine_mode mode = size_to_mode (ii.m_size);

  // Determine mask and number of BLDs.

  uint32_t mask = 0;
  int n_blds = 0;

  for (int i = istart; i < n_plies; ++i, ++n_blds)
    {
      const ply_t &p = plies[i];
      if (! p.is_bld () || ! p.is_same_bld (& first))
	break;

      // For AND, work on the 1-complement of the mask,
      // i.e. 1's specify which bits to clear.
      uint8_t mask8 = code == IOR ? p.arg : ~p.arg;
      mask |= mask8 << (8 * (p.regno - ii.m_regno));
    }

  mask = GET_MODE_MASK (mode) & (code == IOR ? mask : ~mask);

  if (dump_file)
    {
      fprintf (dump_file, ";; emit_blds[%d...%d] R%d[%d]%s=%0*x\n",
	       istart, istart + n_blds - 1, ii.m_regno, ii.m_size,
	       code == IOR ? "|" : "&", 2 * ii.m_size, (int) mask);
    }

  for (int i = 0; i < n_blds; ++i)
    plies[i + istart].dump ();

  rtx dest = gen_rtx_REG (mode, ii.m_regno);
  rtx src = gen_rtx_fmt_ee (code, mode, dest, gen_int_mode (mask, mode));
  rtx xscratch = mode == QImode ? NULL_RTX : gen_rtx_SCRATCH (QImode);

  emit_valid_move_clobbercc (dest, src, xscratch);
  n_insns += 1;

  return n_blds;
}


// Emit insns for a contiguous sequence of SET ply_t's starting at
// .plies[ISTART].  Advances N_INSNS by the number of emitted insns.
// MEMO ist the state of the GPRs before II is executed, where II
// represents the insn under optimization.
// The emitted insns are "movqi_insn" or "*reload_inqi"
// when .plies[ISTART].in_set_some is not set, and one "set_some" insn
// when .plies[ISTART].in_set_some is set.
int
plies_t::emit_sets (const insninfo_t &ii, int &n_insns, const memento_t &memo,
		    int istart) const
{
  gcc_assert (plies[istart].code == SET);

  const bool in_set_some = plies[istart].in_set_some;

  // Some d-regno that holds a compile-time constant, or 0.
  const int known_dregno = memo.known_dregno ();

  // Determine number of contiguous SETs,
  // and sort them in ps[] such that smaller regnos come first.

  const ply_t *ps[FUSE_MOVE_MAX_MODESIZE];
  int n_sets = 0;

  for (int i = istart; i < n_plies && plies[i].code == SET; ++i)
    ps[n_sets++] = & plies[i];

  if (dump_file)
    {
      fprintf (dump_file, ";; emit_sets[%d...%d] R%d[%d]=%0*" PRIx64,
	       istart, istart + n_sets - 1, ii.m_regno, ii.m_size,
	       2 * ii.m_size, ii.m_isrc);
      fprintf (dump_file, ", scratch=%s%d", "R" + ! ii.m_scratch, ii.m_scratch);
      fprintf (dump_file, ", known_dreg=%s%d, set_some=%d\n",
	       "R" + ! known_dregno, known_dregno, in_set_some);
    }

  for (int i = 0; i < n_sets; ++i)
    ps[i]->dump ();

  // Sort.  This is most useful on regs like (reg:SI REG_14).
  for (int i = 0; i < n_sets - 1; ++i)
    for (int j = i + 1; j < n_sets; ++j)
      if (ps[i]->regno > ps[j]->regno)
	std::swap (ps[i], ps[j]);

  // Prepare operands.
  rtx dst[FUSE_MOVE_MAX_MODESIZE];
  rtx src[FUSE_MOVE_MAX_MODESIZE];
  for (int i = 0; i < n_sets; ++i)
    {
      dst[i] = gen_rtx_REG (QImode, ps[i]->regno);
      src[i] = gen_int_mode (ps[i]->arg, QImode);
    }

  if (in_set_some)
    {
      // Emit a "set_some" insn that sets all of the collected 8-bit SETs.
      // This is a parallel with n_sets QImode SETs as payload.

      gcc_assert (! known_dregno || memo.knows (known_dregno));

      // A scratch reg...
      rtx op1 = known_dregno
	? gen_rtx_REG (QImode, known_dregno)
	: const0_rtx;
      // ...with a known content, so it can be restored without saving.
      rtx op2 = known_dregno
	? gen_int_mode (memo.values[known_dregno], QImode)
	: const0_rtx;
      // Target register envelope.
      rtx op3 = GEN_INT (ii.m_regno);
      rtx op4 = GEN_INT (ii.m_size);

      // Payload.
      for (int i = 0; i < n_sets; ++i)
	dst[i] = gen_rtx_SET (dst[i], src[i]);

      rtvec vec = gen_rtvec (5 + n_sets,
			     gen_rtx_USE (VOIDmode, op1),
			     gen_rtx_USE (VOIDmode, op2),
			     gen_rtx_USE (VOIDmode, op3),
			     gen_rtx_USE (VOIDmode, op4),
			     gen_rtx_CLOBBER (VOIDmode, cc_reg_rtx),
			     dst[0], dst[1], dst[2], dst[3]);
      rtx pattern = gen_rtx_PARALLEL (VOIDmode, vec);

      emit_valid_insn (pattern);
      n_insns += 1;
    }
  else
    {
      // Emit a bunch of movqi_insn / *reload_inqi insns.

      for (int i = 0; i < n_sets; ++i)
	if (ii.m_scratch
	    && AVRasm::constant_cost (SET, ps[i]->regno, ps[i]->arg) > 1)
	  {
	    rtx scratch = gen_rtx_REG (QImode, ii.m_scratch);
	    bool use_reload_inqi = true;
	    if (use_reload_inqi)
	      {
		emit_valid_move_clobbercc (dst[i], src[i], scratch);
		n_insns += 1;
	      }
	    else
	      {
		emit_valid_move_clobbercc (scratch, src[i]);
		emit_valid_move_clobbercc (dst[i], scratch);
		n_insns += 2;
	      }
	  }
	else
	  {
	    emit_valid_move_clobbercc (dst[i], src[i]);
	    n_insns += 1;
	  }
    }

  return n_sets;
}


// Try to find an operation such that  Y = op (X).
// Shifts and rotates are regarded as unary operaions with
// an implied 2nd operand or 1 or 4, respectively.
static rtx_code
find_arith (uint8_t y, uint8_t x)
{
#define RETIF(ex, code) y == (0xff & (ex)) ? code
  return select<rtx_code>()
    : RETIF (x + 1, PRE_INC)
    : RETIF (x - 1, PRE_DEC)
    : RETIF ((x << 4) | (x >> 4), ROTATE)
    : RETIF (-x, NEG)
    : RETIF (~x, NOT)
    : RETIF (x >> 1, LSHIFTRT)
    : RETIF (x << 1, ASHIFT)
    : RETIF ((x >> 1) | (x & 0x80), ASHIFTRT)
    : UNKNOWN;
#undef RETIF
}


// Try to find an operation such that  Z = X op X.
static rtx_code
find_arith2 (uint8_t z, uint8_t x, uint8_t y)
{
#define RETIF(ex, code) z == (0xff & (ex)) ? code
  return select<rtx_code>()
    : RETIF (x + y, PLUS)
    : RETIF (x - y, MINUS)
    : RETIF (x & y, AND)
    : RETIF (x | y, IOR)
    : RETIF (x ^ y, XOR)
    : UNKNOWN;
#undef RETIF
}


// Add plies to .plies[] that represent a MOVW, but only ones that reduce
// the Hamming distance from REGNO[SIZE] to VAL by exactly DHAMM.
void
plies_t::add_plies_movw (int regno, int size, uint64_t val,
			 int dhamm, const memento_t &memo)
{
  if (! AVR_HAVE_MOVW || size < 2)
    return;

  for (int i = 0; i < size - 1; i += 2)
    {
      // MOVW that sets less than 2 regs to the target value is
      // not needed for the upper regs.
      if (dhamm != 2 && regno + i >= REG_16)
	continue;

      const uint16_t val16 = val >> (8 * i);
      const uint8_t lo8 = val16;
      const uint8_t hi8 = val16 >> 8;

      // When one of the target bytes is already as expected, then
      // no MOVW is needed for an optimal sequence.
      if (memo.have_value (regno + i, 1, lo8)
	  || memo.have_value (regno + i + 1, 1, hi8))
	continue;

      const int h_old = memo.hamming (regno + i, 2, val16);

      // Record MOVWs that reduce the Hamming distance by DHAMM as requested.
      for (int j = FIRST_GPR; j < REG_32; j += 2)
	if (j != regno + i
	    && memo.knows (j, 2))
	  {
	    const int h_new = memo.hamming (j, 2, val16);
	    if (h_new == h_old - dhamm)
	      add (ply_t { regno + i, 2, REG, j, 1, dhamm });
	  }
    }
}


// Set PS to plys that reduce the Hamming distance from II.m_regno to
// compile-time constant II.m_isrc by 2, 1 or 0.  PREV is NULL or points
// to a previous ply_t.  MEMO is the GPR state after PREV and prior to the
// added plys.
void
bbinfo_t::get_plies (plies_t &ps, const insninfo_t &ii, const memento_t &memo,
		     const ply_t *prev)
{
  ps.reset ();

  fpd->n_get_plies += 1;

  const bool maybe_set_some = (bbinfo_t::use_set_some_p && ii.needs_scratch ());

  // Start with cheap plies, then continue to more expensive ones.
  const int regno = ii.m_regno;
  const int size = ii.m_size;
  const uint64_t val = ii.m_isrc;

  // Find MOVW with a Hamming delta of 2.
  ps.add_plies_movw (regno, size, val, 2, memo);

  // Find ADIW / SBIW
  if (AVR_HAVE_ADIW && size >= 2)
    for (int i = 0; i < size - 1; i += 2)
      if (regno + i >= REG_24
	  && memo.knows (regno + i, 2))
	{
	  const int16_t value16 = memo[regno + i] + 256 * memo[regno + i + 1];
	  const int16_t lo16 = val >> (8 * i);
	  const int16_t delta = lo16 - value16;
	  const uint8_t lo8 = val >> (8 * i);
	  const uint8_t hi8 = val >> (8 * i + 8);
	  if (IN_RANGE (delta, -63, 63)
	      && lo8 != memo[regno + i]
	      && hi8 != memo[regno + i + 1])
	    {
	      ps.add (ply_t { regno + i, 2, SS_PLUS, delta, 1, 2 });
	    }
	}

  // Find 1-reg plies.  In an optimal sequence, each 1-reg ply will decrease
  // the Hamming distance.  Thus we only have to consider plies that set
  // one of the target bytes to the target value VAL.  Start with the
  // high registers since that is the canonical order when two plies commute.

  for (int i = size - 1; i >= 0; --i)
    {
      const uint8_t val8 = val >> (8 * i);

      // Nothing to do for this byte when its value is already as desired.
      if (memo.have_value (regno + i, 1, val8))
	continue;

      // LDI or CLR.
      if (regno + i >= REG_16 || val8 == 0)
	ps.add (ply_t { regno + i, 1, SET, val8, 1 }, prev, memo,
		maybe_set_some);

      // We only may need to MOV non-zero values since there is CLR,
      // and only when there is no LDI.
      if (val8 != 0
	  && regno + i < REG_16)
	{
	  // MOV where the source register is one of the target regs.
	  for (int j = 0; j < size; ++j)
	    if (j != i)
	      if (memo.have_value (regno + j, 1, val8))
		ps.add (ply_t { regno + i, 1, REG, regno + j, 1 });

	  // MOV where the source register is not a target reg.
	  // FIXME: ticks.
	  for (int j = FIRST_GPR; j < REG_32; ++j)
	    if (! IN_RANGE (j, regno, regno + size - 1))
	      if (memo.have_value (j, 1, val8))
		ps.add (ply_t { regno + i, 1, REG, j, 1 });

	  // LDI + MOV.
	  if (regno + i < REG_16 && val8 != 0)
	    {
	      ply_t p { regno + i, 1, SET, val8, 2 };
	      p.scratch = ii.m_scratch;
	      ps.add (p, prev, memo, maybe_set_some);
	    }
	}
    }

  // Arithmetic like INC, DEC or ASHIFT.
  for (int i = size - 1; i >= 0; --i)
    if (bbinfo_t::use_arith_p
	&& regno + i < REG_16
	&& memo.knows (regno + i))
      {
	const uint8_t y = val >> (8 * i);
	const uint8_t x = memo[regno + i];
	rtx_code code;

	if (y == 0 || y == x)
	  continue;

	// INC, DEC, SWAP, LSL, NEG, ...
	if (UNKNOWN != (code = find_arith (y, x)))
	  {
	    ps.add (ply_t { regno + i, 1, code, x /* dummy */, 1 });
	    continue;
	  }

	// ADD, AND, ...
	for (int r = FIRST_GPR; r < REG_32; ++r)
	  if (r != regno + i
	      && memo.knows (r)
	      && memo[r] != 0
	      && UNKNOWN != (code = find_arith2 (y, x, memo[r])))
	    {
	      ps.add (ply_t { regno + i, 1, code, r, 1 });
	    }

	if (size < 2 || size > 4)
	  continue;

	// SET + BLD
	if ((x & y) == x && popcount_hwi (x ^ y) == 1)
	  ps.add (ply_t { regno + i, 1, MOD, x ^ y, 1 },
		  prev, memo, maybe_set_some);

	// CLT + BLD
	if ((x & y) == y && popcount_hwi (x ^ y) == 1)
	  ps.add (ply_t { regno + i, 1, MOD, x ^ y ^ 0xff, 1 },
		  prev, memo, maybe_set_some);
      }

  if (bbinfo_t::use_arith_p
      // For 8-byte values, don't use ply_t's with only a partial reduction
      // of the hamming distance.
      && size <= 4)
    {
      // Find MOVW with a Hamming delta of 1, then 0.
      ps.add_plies_movw (regno, size, val, 1, memo);
      ps.add_plies_movw (regno, size, val, 0, memo);
    }

  plies_t::max_n_plies = std::max (plies_t::max_n_plies, ps.n_plies);
}


// Try to combine two 8-bit insns PREV and CURR that (effectively)
// are REG = CONST_INT to one 16-bit such insn.  Returns true on success.
bool
insninfo_t::combine (const insninfo_t &prev, const insninfo_t &curr)
{
  if (prev.m_size == 1 && curr.m_size == 1
      && prev.m_regno == (1 ^ curr.m_regno)
      && curr.m_code == CONST_INT
      && prev.m_code == CONST_INT)
    {
      m_regno = curr.m_regno & ~1;
      m_code = CONST_INT;
      m_size = 2;
      m_scratch = std::max (curr.m_scratch, prev.m_scratch);
      m_isrc = m_regno == prev.m_regno
	? (uint8_t) prev.m_isrc + 256 * (uint8_t) curr.m_isrc
	: (uint8_t) curr.m_isrc + 256 * (uint8_t) prev.m_isrc;

      return true;
    }

  return false;
}


// Return the cost (in terms of words) of the respective mov<mode> insn.
// This can be used as an upper bound for the ply_t's cost.
int
insninfo_t::cost () const
{
  if (m_code != CONST_INT)
    return m_size;

  if (m_regno >= REG_16 || m_isrc == 0)
    return m_size
      // MOVW can save one instruction.
      - (AVR_HAVE_MOVW && m_size == 4 && (uint32_t) m_isrc % 0x10001 == 0);

  // LDI + MOV to a lower reg.
  if (m_scratch && m_size == 1)
    return 2;

  if (m_size == 8)
    {
      int len = m_size;
      for (int i = 0; i < m_size; ++i)
	len += m_regno + i < REG_16 && (0xff & (m_isrc >> (8 * i))) != 0;
      return len;
    }

  // All other cases are complicated.  Ask the output oracle.
  const machine_mode mode = size_to_mode (m_size);
  rtx xscratch = m_scratch ? all_regs_rtx[m_scratch] : NULL_RTX;
  rtx xop[] = { gen_rtx_REG (mode, m_regno), gen_int_mode (m_isrc, mode) };
  int len;
  if (m_size == 4)
    output_reload_insisf (xop, xscratch, &len);
  else
    output_reload_in_const (xop, xscratch, &len, false);

  return len;
}

// Emit the according REG = REG-or-CONST_INT insn.  Returns 1 or aborts
// when the insn is not of that form.
int
insninfo_t::emit_insn () const
{
  int n_insns = 0;

  machine_mode mode = size_to_mode (m_size);
  rtx xsrc = NULL_RTX;
  rtx xscratch = NULL_RTX;

  gcc_assert (m_size > 0);

  switch (m_code)
    {
    default:
      gcc_unreachable ();

    case CONST_INT:
      xsrc = gen_int_mode (m_isrc, mode);
      if (m_scratch && m_regno < REG_16)
	xscratch = gen_rtx_REG (QImode, m_scratch);
      break;

    case REG:
      gcc_assert (gpr_regno_p (m_rsrc, m_size));
      if (m_regno != m_rsrc)
	xsrc = gen_rtx_REG (mode, m_rsrc);
      break;
    }

  if (xsrc)
    {
      rtx dest = gen_rtx_REG (mode, m_regno);
      emit_valid_move_clobbercc (dest, xsrc, xscratch);
      n_insns += 1;
    }

  return n_insns;
}


// Entering a basic block means combining known register values from
// all incoming BBs.
void
bbinfo_t::enter ()
{
  avr_dump ("\n;; Entering [bb %d]\n", bb->index);

  gcc_assert (! done);

  edge e;
  edge_iterator ei;
  gprmask_t pred_known_mask = ~0u;
  bbinfo_t *bbi = nullptr;

  // A quick iteration over all predecessors / incoming edges to reveal
  // whether this BB is worth a closer look.
  FOR_EACH_EDGE (e, ei, bb->preds)
    {
      basic_block pred = e->src;
      bbi = & bb_info[pred->index];

      pred_known_mask &= bbi->regs.known;

      if (dump_file)
	{
	  avr_dump (";; [bb %d] <- [bb %d] ", e->dest->index, e->src->index);
	  if (bbi->done)
	    bbi->regs.dump ();
	  else
	    avr_dump (" (unknown)\n");
	}
    }

  // Only if all predecessors have already been handled, we can
  // have known values as we are entering the current BB.
  if (pred_known_mask != 0
      && bbi != nullptr)
    {
      // Initialize current BB info from BI, an arbitrary predecessor.

      regs = bbi->regs;

      // Coalesce the output values from all predecessing BBs.  At the
      // start of the current BB, a value is only known if it is known
      // in *all* predecessors and *all* these values are the same.
      FOR_EACH_EDGE (e, ei, bb->preds)
	{
	  regs.coalesce (bb_info[e->src->index].regs);
	}
    }

  if (dump_file)
    {
      avr_dump (";; [bb %d] known at start: ", bb->index);
      if (regs.known)
	regs.dump ();
      else
	avr_dump (" (none)\n");
      avr_dump ("\n");
    }
}


void
bbinfo_t::leave ()
{
  done = true;

  if (dump_file)
    fprintf (dump_file, ";; Leaving [bb %d]\n\n", bb->index);
}


/* Initialize according to INSN which is a 1-byte single_set that's
   (effectively) a reg = reg or reg = const move.  INSN may be the result
   of the current pass's optimization, e.g. something like INC R2 where R2
   has a known content.  MEMO is the state prior to INSN.  Only CONST
   cases are recorded; plus cases that are non-trivial for example when
   an XOR decays to a move.  */

bool
insninfo_t::init1 (insn_optimize_data_t &iod, int max_size,
		   const char *purpose = "")
{
  m_size = 0;
  m_insn = iod.insn;
  m_old_code = UNKNOWN;
  iod.unused = false;

  if (! iod.insn
      || ! (m_set = single_set_with_scratch (iod.insn, m_scratch)))
    return false;

  rtx dest = SET_DEST (m_set);
  machine_mode mode = GET_MODE (dest);
  const int n_bytes = GET_MODE_SIZE (mode);
  max_size = std::min (max_size, FUSE_MOVE_MAX_MODESIZE);

  if (! REG_P (dest)
      || END_REGNO (dest) > REG_32
      || n_bytes > max_size)
    return false;

  // Omit insns that (explicitly) touch fixed GPRs in any way.
  using elt0_getter_HRS = elt0_getter<HARD_REG_SET, HARD_REG_ELT_TYPE>;
  HARD_REG_SET hregs;
  CLEAR_HARD_REG_SET (hregs);
  find_all_hard_regs (PATTERN (iod.insn), & hregs);
  if (memento_t::fixed_regs_mask & (gprmask_t) elt0_getter_HRS::get (hregs))
    {
      avr_dump (";; %sinit1 has fixed GPRs\n", purpose);
      return false;
    }

  if ((iod.unused = find_reg_note (iod.insn, REG_UNUSED, dest)))
    return false;

  m_src = SET_SRC (m_set);
  m_regno = REGNO (dest);
  const rtx_code src_code = GET_CODE (m_src);

  m_ai = absint_t::explore (m_src, iod.regs, mode);

  if (m_ai.popcount ())
    {
      if (m_ai.end_knows (CONST_INT) >= n_bytes)
	{
	  m_code = CONST_INT;
	  m_old_code = CONSTANT_P (m_src) ? UNKNOWN : src_code;
	  m_isrc = m_ai.get_value (n_bytes);
	  m_size = n_bytes;
	}
      else if (! REG_P (m_src)
	       && n_bytes == 1
	       && m_ai.end_knows (REG) >= n_bytes)
	{
	  m_code = REG;
	  m_old_code = src_code;
	  m_rsrc = m_ai[0].regno ();
	  m_size = n_bytes;
	}
      else if (n_bytes == 1)
	{
	  absint_byte_t &aib = m_new_src;
	  aib = m_ai[0].find_alternative_binary (iod.regs);

	  if (aib.arity () == 2
	      && aib.arg (0).regno == m_regno)
	    {
	      m_old_code = src_code;
	      m_code = aib.get_code ();
	      m_size = n_bytes;
	    }
	}
      else if (n_bytes >= 2
	       && m_ai.end_knows (VALUE) >= n_bytes)
	{
	  m_code = src_code;
	  m_size = n_bytes;
	}

      if (dump_file && m_size != 0)
	{
	  avr_dump (";; %sinit1 (%C", purpose,
		    m_old_code ? m_old_code : m_code);
	  if (m_old_code)
	    avr_dump ("-> %C", m_code);
	  avr_dump (") insn %d to R%d[%d] := %C:%m = ", INSN_UID (iod.insn),
		    m_regno, n_bytes, src_code, mode);

	  m_ai.dump (dest);

	  if (dump_flags & TDF_FOLDING)
	    avr_dump ("\n");
	}
    }

  return m_size != 0;
}


// The private worker for .apply_insn().
void
memento_t::apply_insn1 (rtx_insn *insn, bool unused)
{
  gcc_assert (NONDEBUG_INSN_P (insn));

  if (INSN_CODE (insn) == CODE_FOR_set_some)
    {
      // This insn only sets some selected bytes of register $3 of
      // modesize $4.  If non-0, then $1 is a QImode scratch d-reg with
      // a known value of $2.

      const auto &xop = recog_data.operand;
      extract_insn (insn);
      gcc_assert (recog_data.n_operands == 7);
      gcc_assert (set_some_operation (xop[0], VOIDmode));

      const rtx &xscratch = xop[1];
      const rtx &xscratch_value = xop[2];
      const int sets_start = 5;

      for (int i = sets_start; i < XVECLEN (xop[0], 0); ++i)
	{
	  rtx xset = XVECEXP (xop[0], 0, i);
	  avr_dump (";; set_some %r = %r\n", XEXP (xset, 0), XEXP (xset, 1));
	  set_values (XEXP (xset, 0), XEXP (xset, 1));
	}

      if (REG_P (xscratch))
	{
	  avr_dump (";; set_some %r = %r restore\n", xscratch, xscratch_value);
	  set_values (xscratch, xscratch_value);
	}

      return;
    } // CODE_FOR_set_some

  memento_t mold = *this;

  // When insn changes a register in whatever way, set it to "unknown".

  HARD_REG_SET rset;
  find_all_hard_reg_sets (insn, &rset, true /* implicit */);
  (*this) &= ~rset;

  rtx set = single_set (insn);
  rtx dest;

  if (! set
      || ! REG_P (dest = SET_DEST (set))
      || END_REGNO (dest) > REG_32
      || (regmask (dest) & memento_t::fixed_regs_mask))
    return;

  rtx src = SET_SRC (set);
  const rtx_code src_code = GET_CODE (src);
  const machine_mode mode = GET_MODE (dest);
  const int n_bytes = GET_MODE_SIZE (mode);

  // Insns that are too complicated or have a poor yield.
  // Just record which regs are clobberd / changed.
  if (n_bytes > FUSE_MOVE_MAX_MODESIZE
      || MEM_P (src)
      || (REG_P (src) && END_REGNO (src) > REG_32))
    {
      // Comparisons may clobber the compared reg when it is unused after.
      if (src_code == COMPARE
	  && REG_P (XEXP (src, 0))
	  && CONSTANT_P (XEXP (src, 1)))
	{
	  rtx reg = XEXP (src, 0);
	  for (unsigned r = REGNO (reg); r < END_REGNO (reg); ++r)
	    set_unknown (r);
	}
      return;
    }

  if (unused)
    return;

  // Simulate the effect of some selected insns that are likely to produce
  // or propagate known values.

  // Get an abstract representation of src.  Bytes may be unknown,
  // known to equal some 8-bit compile-time constant (CTC) value,
  // or are known to equal some 8-bit register.
  // TODO: Currently, only the ai[].val8 knowledge ist used.
  //       What's the best way to make use of ai[].regno ?

  absint_t ai = absint_t::explore (src, mold, mode);

  if (ai.popcount ())
    {
      avr_dump (";; apply_insn %d R%d[%d] := %C:%m = ", INSN_UID (insn),
		REGNO (dest), n_bytes, src_code, mode);
      ai.dump ();

      for (int i = 0; i < n_bytes; ++i)
	if (ai[i].can (CONST_INT))
	  set_value (i + REGNO (dest), ai[i].val8 ());
    }
}


void
memento_t::apply (const ply_t &p)
{
  if (p.is_movw ())
    {
      copy_value (p.regno, p.arg);
      copy_value (p.regno + 1, p.arg + 1);
    }
  else if (p.is_adiw ())
    {
      int val = p.arg + values[p.regno] + 256 * values[1 + p.regno];
      set_value (p.regno, val);
      set_value (p.regno + 1, val >> 8);
    }
  else if (p.size == 1)
    {
      switch (p.code)
	{
	default:
	  gcc_unreachable ();
	  break;

	case REG:
	  copy_value (p.regno, p.arg);
	  break;

	case SET:
	  set_value (p.regno, p.arg);
	  if (p.scratch >= REG_16)
	    set_unknown (p.scratch);
	  break;

	case MOD: // BLD
	  gcc_assert (knows (p.regno));
	  if (popcount_hwi (p.arg) == 1)
	    values[p.regno] |= p.arg;
	  else if (popcount_hwi (p.arg) == 7)
	    values[p.regno] &= p.arg;
	  else
	    gcc_unreachable ();
	  break;

#define DO_ARITH1(code, expr)						\
	  case code:							\
	    gcc_assert (knows (p.regno));				\
	    {								\
	      const int x = values[p.regno];				\
	      set_value (p.regno, expr);				\
	    }								\
	    break

#define DO_ARITH2(code, expr)						\
	  case code:							\
	    gcc_assert (knows (p.regno));				\
	    gcc_assert (knows (p.arg));					\
	    {								\
	      const int x = values[p.regno];				\
	      const int y = values[p.arg];				\
	      set_value (p.regno, expr);				\
	    }								\
	    break

	  DO_ARITH1 (NEG, -x);
	  DO_ARITH1 (NOT, ~x);
	  DO_ARITH1 (PRE_INC, x + 1);
	  DO_ARITH1 (PRE_DEC, x - 1);
	  DO_ARITH1 (ROTATE, (x << 4) | (x >> 4));
	  DO_ARITH1 (ASHIFT, x << 1);
	  DO_ARITH1 (LSHIFTRT, x >> 1);
	  DO_ARITH1 (ASHIFTRT, (x >> 1) | (x & 0x80));

	  DO_ARITH2 (AND, x & y);
	  DO_ARITH2 (IOR, x | y);
	  DO_ARITH2 (XOR, x ^ y);
	  DO_ARITH2 (PLUS, x + y);
	  DO_ARITH2 (MINUS, x - y);
#undef DO_ARITH1
#undef DO_ARITH2
	}
    } // size == 1
  else
    gcc_unreachable ();
}


// Try to find a sequence of ply_t's that represent a II.m_regno = II.m_isrc
// insn that sets a reg to a compile-time constant, and that is more
// efficient than just a move insn.  (When try_split_any_p is on, then
// solutions that perform equal to a move insn are also allowed).
// MEMO0 is the GPR state before II runs.  A solution has been found
// when .fpd->solution has at least one entry.  LEN specifies the
// depth of recursion, which works on the LEN-th ply_t.
void
bbinfo_t::find_plies (int len, const insninfo_t &ii, const memento_t &memo0)
{
  if (len > fpd->n_best_plys)
    return;

  memento_t memo = memo0;
  bool ply_applied_p = false;

  //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
  const bool extra = dump_file && (dump_flags & TDF_FOLDING);

  if (extra)
    {
      fprintf (dump_file, ";; #%d (HAM=%d): get_plies R%d[%d] = ", len,
	       ii.hamming (fpd->regs0), ii.m_regno, ii.m_size);
      fprintf (dump_file, "0x%0*" PRIx64 "\n",
	       2 * ii.m_size, ii.m_isrc & size_to_mask (ii.m_size));
    }

  plies_t &ps = fpd->plies[len - 1];

  const ply_t *const prev = len >= 2 ? fpd->ply_stack[len - 2] : nullptr;
  const ply_t *const prev2 = len >= 3 ? fpd->ply_stack[len - 3] : nullptr;

  bbinfo_t::get_plies (ps, ii, memo0, prev);

#define NEXT(reason)					\
  do {							\
    if (extra)						\
      fprintf (dump_file, ";; cont=%s\n", reason);	\
    goto next;						\
  } while (0)

  for (int ip = 0; ip < ps.n_plies; ++ip)
    {
      const ply_t &p = ps.plies[ip];

      fpd->ply_stack[len - 1] = &p;

      if (0)
	next: continue;

      if (extra)
	ply_t::dump_plys (dump_file, len, 1, fpd->ply_stack + len - 1, memo0);

      // A MOVW with a Hamming distance of < 2 requires more plys.
      if (p.is_movw () && len + (2 - p.dhamming) > fpd->n_best_plys)
	NEXT ("movw.plys");

      if (len >= 2)
	{
	  // Destroying (parts of) the results of the previous ply
	  // won't yield an optimal sequence.
	  if (p.overrides (prev))
	    NEXT ("overrides");

	  // When two plys are independent of each other, then only
	  // investigate sequences that operate on the higher reg first.
	  // This canonicalization reduces the number of candidates,
	  if (p.commutes_with (prev, ii.m_scratch)
	      && p.regno > prev->regno)
	    NEXT ("noncanonic");

	  // Two subsequent BLDs touching the same register.
	  if (p.is_bld ()
	      && prev->is_bld ()
	      && p.changes_result_of (prev))
	    NEXT ("2bld");

	  // When there is a BLD, then at least 2 of the same kind
	  // shall occur in a row.
	  if (prev->is_bld ()
	      && ! p.is_bld ()
	      && (len == 2
		  || (prev->is_setbld () && ! prev2->is_setbld ())
		  || (prev->is_cltbld () && ! prev2->is_cltbld ())))
	    NEXT ("1bld");
	}

      // The hamming delta of a MOVW may be less than 2, namely 0 or 1.
      // When the latter is the case, then a reasonable sequence must
      // modify the result of the MOVW.
      if (len >= 2
	  && prev->is_movw ()
	  && prev->dhamming == 1
	  && ! p.changes_result_of (prev))
	NEXT ("movw.dh=1");

      if (len >= 3
	  && prev2->is_movw ()
	  && prev2->dhamming == 0
	  && ! p.changes_result_of (prev2))
	NEXT ("movw.dh=0");

      // When setting an n-byte destination, then at most n/2 MOVWs
      // will occur in an optimal sequence.
      int n_movw = 0;
      for (int i = 0; i < len; ++i)
	n_movw += fpd->ply_stack[i]->is_movw ();
      if (n_movw > ii.m_size / 2)
	NEXT ("movws");

      if (ply_applied_p)
	memo = memo0;

      memo.apply (p);

      ply_applied_p = true;

      // Calculate the cost of the sequence we have so far.  Scale by some
      // factor so that we can express that ADIW is more expensive than MOVW
      // because it is slower, but without defeating MOVW.
      const int SCALE = 4;

      int penal = 0;
      int cost = SCALE * 0;

      bool movw_p = 0;
      for (int i = 0; i < len; ++i)
	{
	  bool adiw_p = fpd->ply_stack[i]->is_adiw ();
	  cost += SCALE * fpd->ply_stack[i]->cost + adiw_p;
	  penal += adiw_p;
	  movw_p |= fpd->ply_stack[i]->is_movw ();
	}
      penal += movw_p;

      const int hamm = ii.hamming (memo);

      // The current Hamming distance yields a lower bound of how many
      // plys are still required.  Consider that future cost already now.
      int future_cost = AVR_HAVE_MOVW || (AVR_HAVE_ADIW && ii.m_regno >= REG_22)
	? (1 + hamm) / 2
	: hamm;

      // Similarly, when MOVW doesn't decrease the Hamming distance by 2,
      // then we know that at least 2 - dhamming plys must follow in the
      // future.  (MOVW + ADIW will not occur.)
      if (p.is_movw ())
	future_cost = std::max (future_cost, 2 - p.dhamming);

      if (extra && future_cost)
	avr_dump (";; future cost = %d, dh=%d\n", future_cost, hamm);

      cost += SCALE * future_cost;

      bool profitable = (cost < SCALE * fpd->max_ply_cost
			 || (bbinfo_t::try_split_any_p
			     && fpd->solution.n_plies == 0
			     && cost / SCALE <= fpd->max_ply_cost
			     && cost / SCALE == fpd->movmode_cost));
      if (! profitable)
	{
	  if (extra)
	    avr_dump (";; cont=cost %d+%d/%d\n", cost / SCALE, penal, SCALE);
	  continue;
	}

      if (hamm)
	{
	  // Go down that rabbit hole.
	  gcc_assert (ply_applied_p);
	  bbinfo_t::find_plies (1 + len, ii, memo);
	  continue;
	}

      // Found a solution that's better than everything so far.

      // Reduce the upper cost bound according to the found solution.
      // No future solution will be more expensive.
      fpd->max_ply_cost = cost / SCALE;

      fpd->solution = plies_t (len, fpd->ply_stack);

      if (dump_file)
	{
	  avr_dump (";; #%d FOUND COST = %d%s\n", len, cost / SCALE,
		    penal ? " with penalty" : "");
	  ply_t::dump_plys (dump_file, 0, len, fpd->ply_stack, fpd->regs0);
	  if (extra)
	    avr_dump (";; END\n");
	}
    } // for ply_t's

#undef NEXT
}


// Run .find_plies() and return true when .fpd->solution is a sequence of ply_t's
// that represents II, a REG = CONST insn.  MEMO is the GPR state prior to II.
bool
bbinfo_t::run_find_plies (const insninfo_t &ii, const memento_t &memo) const
{
  fpd->solution.reset ();
  fpd->regs0 = memo;
  fpd->n_get_plies = 0;

  const int hamm = ii.hamming (memo);

  if (hamm == 0)
    {
      avr_dump (";; Found redundant insn %d\n",
		ii.m_insn ? INSN_UID (ii.m_insn) : 0);
      return true;
    }

  // Upper bound (in words) for any solution that's better than mov<mode>.
  // Will be decreased by find plies as it finds better solutions.
  fpd->movmode_cost = ii.cost ();
  fpd->max_ply_cost = fpd->movmode_cost;

  // With a non-zero Hamming distance, this insn will require at least one
  // instruction.  When the upper bound for required instructions is that
  // small, then the current insn is good enough.
  if (fpd->max_ply_cost <= 1)
    return false;

  fpd->n_best_plys = ii.n_best_plys (hamm);
  gcc_assert (fpd->n_best_plys <= N_BEST_PLYS);

  if (dump_file)
    {
      const uint64_t mask = size_to_mask (ii.m_size);
      fprintf (dump_file, ";; find_plies R%d[%d] = 0x%0*" PRIx64,
	       ii.m_regno, ii.m_size, 2 * ii.m_size, ii.m_isrc & mask);
      if (ii.m_scratch)
	fprintf (dump_file, ", scratch=r%d", ii.m_scratch);
      memo.dump ("\n;; regs%s\n");
    }

  avr_dump (";; mov<mode> cost = %d\n", fpd->max_ply_cost);
  avr_dump (";; max plys = %d\n", fpd->n_best_plys);
  ply_t::n_ply_ts = 0;

  find_plies (1, ii, memo);

  avr_dump (";; get_plies called %d times\n", fpd->n_get_plies);
  avr_dump (";; n_ply_ts = %d\n", ply_t::n_ply_ts);
  ply_t::max_n_ply_ts = std::max (ply_t::max_n_ply_ts, ply_t::n_ply_ts);

  return fpd->solution.n_plies != 0;
}


// Try to propagate __zero_reg__ to a mem = reg insn's source.
// Returns true on success and sets .n_new_insns.
bool
optimize_data_t::try_mem0 (bbinfo_t *)
{
  rtx_insn *insn = curr.ii.m_insn;
  rtx set, mem, reg;
  machine_mode mode;

  if (insn
      && (set = single_set (insn))
      && MEM_P (mem = SET_DEST (set))
      && REG_P (reg = SET_SRC (set))
      && GET_MODE_SIZE (mode = GET_MODE (mem)) <= 4
      && END_REGNO (reg) <= REG_32
      && ! (regmask (reg) & memento_t::fixed_regs_mask)
      && curr.regs.have_value (REGNO (reg), GET_MODE_SIZE (mode), 0x0))
    {
      avr_dump (";; Found insn %d: mem:%m = 0 = r%d\n", INSN_UID (insn),
		mode, REGNO (reg));

      // Some insns like PUSHes don't clobber REG_CC.
      bool clobbers_cc = GET_CODE (PATTERN (insn)) == PARALLEL;

      if (clobbers_cc)
	emit_valid_move_clobbercc (mem, CONST0_RTX (mode));
      else
	emit_valid_insn (gen_rtx_SET (mem, CONST0_RTX (mode)));

      n_new_insns = 1;

      return true;
    }

  return false;
}


// Try to fuse two 1-byte insns .prev and .curr to one 2-byte insn (MOVW).
// Returns true on success, and sets .n_new_insns, .ignore_mask etc.
bool
optimize_data_t::try_fuse (bbinfo_t *bbi)
{
  insninfo_t comb;

  if (! prev.ii.m_size
      || ! curr.ii.m_size
      || ! comb.combine (prev.ii, curr.ii))
    return false;

  avr_dump (";; Working on fuse of insn %d + insn %d = 0x%04x\n",
	    INSN_UID (prev.insn), INSN_UID (curr.insn),
	    (unsigned) comb.m_isrc);

  bool found = bbi->run_find_plies (comb, prev.regs);
  if (found)
    {
      avr_dump (";; Found fuse of insns %d and %d\n",
		INSN_UID (prev.insn), INSN_UID (curr.insn));

      n_new_insns = bbinfo_t::fpd->solution.emit_insns (comb, prev.regs);
      delete_prev_p = true;

      if (prev.ii.m_scratch)
	ignore_mask |= regmask (prev.ii.m_scratch, 1);
      if (curr.ii.m_scratch)
	ignore_mask |= regmask (curr.ii.m_scratch, 1);
      ignore_mask &= ~regmask (comb.m_regno, comb.m_size);
    }

  return found;
}


// Try to replace an arithmetic 1-byte insn by a reg-reg move.
// Returns true on success, and sets .n_new_insns etc.
bool
optimize_data_t::try_simplify (bbinfo_t *)
{
  if (curr.ii.m_size == 1
      && curr.ii.m_old_code != REG
      && curr.ii.m_code == REG)
    {
      avr_dump (";; Found simplify of insn %d\n", INSN_UID (curr.insn));

      n_new_insns = curr.ii.emit_insn ();

      return true;
    }

  return false;
}


// Try to replace XEXP (*, 1) of a binary operation by a cheaper expression.
// Returns true on success; sets .n_new_insns, .ignore_mask, .delete_prev_p.
bool
optimize_data_t::try_bin_arg1 (bbinfo_t *)
{
  if (curr.ii.m_size != 1
      || curr.ii.m_new_src.arity () != 2
      || curr.unused)
    return false;

  avr_dump (";; Working on bin_arg1 insn %d\n", INSN_UID (curr.insn));

  gcc_assert (curr.ii.m_src && BINARY_P (curr.ii.m_src));
  rtx xarg1_old = XEXP (curr.ii.m_src, 1);

  const absint_byte_t &aib = curr.ii.m_new_src;
  const absint_val_t &arg0 = aib.arg (0);
  const absint_val_t &arg1 = aib.arg (1);
  const absint_val_t &arg1_old = curr.ii.m_ai[0].arg (1);

  rtx src = NULL_RTX;

  if (CONSTANT_P (xarg1_old))
    {
      // Sometimes, we allow expensive constants as 2nd operand like
      // in  R2 += 2  which produces two INCs.  When we have the
      // constant handy in a reg, then use that instead of the constant.
      const rtx_code code = aib.get_code ();
      gcc_assert (arg1.val8 == (INTVAL (xarg1_old) & 0xff));

      if (AVRasm::constant_cost (code, arg0.regno, arg1.val8) > 1)
	  src = aib.to_rtx ();
    }
  else if (REG_P (xarg1_old)
	   && dead_or_set_p (curr.insn, xarg1_old))
    {
      src = aib.to_rtx ();

      // The 2nd operand is a reg with a known content that dies
      // at the current insn.  Chances are high that the register
      // holds a reload value only used by the current insn.
      if (prev.ii.m_size == 1
	  && rtx_equal_p (xarg1_old, SET_DEST (prev.ii.m_set))
	  && CONSTANT_P (prev.ii.m_src))
	{
	  avr_dump (";; Found dying reload insn %d\n", INSN_UID (prev.insn));

	  delete_prev_p = true;
	  ignore_mask = regmask (arg1_old.regno, 1);
	}
    }

  if (src)
    {
      rtx dest = SET_DEST (curr.ii.m_set);

      avr_dump (";; Found bin_arg1 for insn %d: ", INSN_UID (curr.insn));
      avr_dump ("%C:%m %r", curr.ii.m_code, GET_MODE (dest), xarg1_old);
      aib.dump (" = %s\n");

      emit_valid_move_clobbercc (dest, src);
      n_new_insns = 1;
    }

  return src != NULL_RTX;
}


// Try to replace a REG = CONST insn by a cheaper sequence.
// Returns true on success, and sets .n_new_insns, .ignore_mask etc.
bool
optimize_data_t::try_split_ldi (bbinfo_t *bbi)
{
  if (! curr.ii.m_size
      || curr.unused
      || curr.ii.m_code != CONST_INT
      || (! bbinfo_t::try_split_any_p
	  // Finding plys will only ever succeed when there are
	  // regs with a known value.
	  && ! (curr.regs.known
		|| (AVR_HAVE_MOVW
		    && curr.ii.m_regno < REG_16 && curr.ii.m_size == 4))))
    return false;

  avr_dump (";; Working on split_ldi insn %d\n", INSN_UID (curr.insn));

  bool found = bbi->run_find_plies (curr.ii, curr.regs);
  if (found)
    {
      avr_dump (";; Found split for ldi insn %d\n", INSN_UID (curr.insn));

      n_new_insns = bbinfo_t::fpd->solution.emit_insns (curr.ii, curr.regs);

      if (curr.ii.m_scratch)
	ignore_mask = regmask (curr.ii.m_scratch, 1);
    }

  return found;
}


// Helper for try_split_any().
bool
optimize_data_t::fail (const char *reason)
{
  n_new_insns = -1;

  if (dump_file)
    fprintf (dump_file, ";; Giving up split_any: %s\n", reason);

  return false;
}


// Helper for try_split_any().
rtx_insn *
optimize_data_t::emit_and_apply_move (memento_t &memo, rtx dest, rtx src)
{
  rtx_insn *insn = emit_valid_move_clobbercc (dest, src);
  n_new_insns += 1;
  memo.apply_insn (insn, false);

  return insn;
}


// Set X0 and X1 so that they are operands valid for a andqi3, iorqi3, xorqi3
// or addqi3 insn with destination R_DEST.  The method loads X1 to
// a scratch reg as needed and records the GPR effect in IOD.regs.
// EXTRA_COST are extra costs in units of words of insns that cost more
// than one instruction.  This is a helper for try_split_any().
bool
optimize_data_t
    ::get_2ary_operands (rtx_code &code, const absint_byte_t &aib,
			 insn_optimize_data_t &iod, int r_dest,
			 absint_val_t &x0, absint_val_t &x1, int &extra_cost)
{
  if (code != IOR && code != AND && code != XOR && code != PLUS)
    return fail ("2ary: unknown code");

  x0 = aib.arg (0);
  x1 = aib.arg (1);

  if (! x0.knows_regno ()
      || x1.clueless ())
    return fail ("2ary: clueless");

  int val8 = x1.val8;
  int val8_cost = val8 < 0 ? 100 : AVRasm::constant_cost (code, r_dest, val8);

  if (x0.regno == r_dest
      && (x1.knows_regno ()
	  || val8_cost <= 1))
    {
      if (code == XOR
	  && val8 == 0x80
	  && x0.regno >= REG_16)
	{
	  // xorxi3 can only "r,0,r".
	  // x0 ^ 0x80  <=>  x0 - 0x80.
	  x1.regno = 0;
	  code = MINUS;
	}
      return true;
    }

  const bool and_1_bit = code == AND && popcount_hwi (val8) == 1;
  // andqi3 has a "r,r,Cb1" alternative where Cb1 has exactly 1 bit set.
  // This can accommodate bytes of higher AND Cb<N> alternatives.
  if (x0.regno != r_dest)
    {
      if (and_1_bit)
	{
	  extra_cost += 1 + (r_dest < REG_16);
	  return true;
	}
      else if (x1.regno == r_dest)
	{
	  std::swap (x0, x1);
	  return true;
	}
      return fail ("2ary is a 3-operand insn");
    }

  // Now we have:
  // 1)  r_dest = x0.regno, and
  // 2)  x1 is val8, and
  // 3)  x1 costs 2.

  const bool needs_scratch_p = select<bool>()
    : code == XOR ? true
    : code == AND ? popcount_hwi (val8) != 7
    : code == IOR ? popcount_hwi (val8) != 1
    : code == PLUS ? IN_RANGE (val8, 3, 0xff - 3)
    : bad_case<bool> ();

  const int r_val8 = iod.regs.regno_with_value (val8, 0 /* excludes: none */);
  if (r_val8)
    {
      // Found a reg that already holds the constant.
      x1.val8 = -1;
      x1.regno = r_val8;
      return true;
    }
  else if (iod.ii.m_scratch)
    {
      // Using the insn's scratch reg.
      rtx xdst = gen_rtx_REG (QImode, iod.ii.m_scratch);
      rtx xsrc = gen_int_mode (x1.val8, QImode);
      emit_and_apply_move (iod.regs, xdst, xsrc);

      x1.regno = iod.ii.m_scratch;
      x1.val8 = -1;

      return true;
    }
  else if (! needs_scratch_p)
    {
      // Some constants (1 and -1) can be loaded without a scratch.
      extra_cost += 1;
      return true;
    }
  else if (and_1_bit)
    {
      // This can always fall back to BST + CLR + BLD, but may be cheaper.
      extra_cost += 1 + (r_dest < REG_16);
      return true;
    }

  return fail ("2ary: expensive constant");
}


static inline bool
any_shift_p (rtx_code code)
{
  return code == LSHIFTRT || code == ASHIFTRT || code == ASHIFT;
}

// Try to split .curr into a sequence of 1-byte insns.
// Returns true on success.  Sets .n_new_insns and .ignore_mask.
bool
optimize_data_t::try_split_any (bbinfo_t *)
{
  if (curr.ii.m_size < 2
      // Constants are split by split_ldi.
      || CONSTANT_P (curr.ii.m_src)
      // Splitting requires knowledge about what to do with each byte.
      || curr.ii.m_ai.end_knows (VALUE) < curr.ii.m_size)
    return false;

  avr_dump (";; Working on split_any %C:%m insn %d\n", curr.ii.m_code,
	    GET_MODE (SET_DEST (curr.ii.m_set)), INSN_UID (curr.insn));

  const insninfo_t &ii = curr.ii;
  const int n_bytes = ii.m_size;
  int extra_cost = 0;
  int binop_cost = -1;

  // For plain AND, IOR, XOR get the current cost in units of words.
  if (BINARY_P (curr.ii.m_src))
    {
      const rtx_code code = curr.ii.m_code;
      if ((code == IOR || code == AND || code == XOR)
	  && REG_P (XEXP (curr.ii.m_src, 0))
	  && CONSTANT_P (XEXP (curr.ii.m_src, 1)))
	{
	  binop_cost = get_attr_length (curr.insn);
	  avr_dump (";; Competing against %C:%m cost = %d\n", code,
		    GET_MODE (curr.ii.m_src), binop_cost);
	}
    }

  // Step 1: Work out conflicts and which sign extends to perform.

  const gprmask_t regs_dest = regmask (ii.m_regno, n_bytes);
  int r_sign = 0;
  gprmask_t regs_signs = 0;
  bool has_lsl = false;
  bool has_lsr = false;

  for (int i = 0; i < n_bytes; ++i)
    {
      const absint_byte_t &aib = ii.m_ai[i];
      const int r_dest = ii.m_regno + i;
      const gprmask_t regs_src = aib.reg_mask ();

      // When only regs to the right are used, or only regs to the left
      // are used, then there's no conflict like it is arising for rotates.
      // For now, only implement conflict-free splits.
      has_lsl |= has_bits_in (regs_src & regs_dest, 0, r_dest - 1);
      has_lsr |= has_bits_in (regs_src & regs_dest, r_dest + 1, 31);
      if (has_lsl && has_lsr)
	return fail ("has both << and >>");

      if (aib.get_code () == SIGN_EXTEND)
	{
	  const absint_val_t x0 = aib.arg (0);
	  if (! r_sign)
	    r_sign = x0.regno;
	  else if (r_sign != x0.regno)
	    return fail ("too many signs");

	  // Signs are handled below after all the other bytes.
	  regs_signs |= regmask (r_dest, 1);
	}
    }

  // Step 2: Work on the individual bytes and emit according insns.

  n_new_insns = 0;
  memento_t memo = curr.regs;

  const int step = has_lsl ? -1 : 1;
  const int istart = step == 1 ? 0 : n_bytes - 1;
  const int iend = step == 1 ? n_bytes : -1;

  for (int i = istart; i != iend; i += step)
    {
      const absint_byte_t &aib = ii.m_ai[i];
      const int r_dest = ii.m_regno + i;
      rtx_code code = aib.get_code ();
      rtx xsrc = NULL_RTX;
      rtx xdest = gen_rtx_REG (QImode, r_dest);

      if (code == SET)
	{
	  const int r_src = aib.regno (false);
	  const int val8 = aib.val8 (false);
	  int r16;

	  // A no-op...
	  if (r_dest == r_src)
	    continue;
	  // ...or an existing 16-bit constant...
	  else if (AVR_HAVE_MOVW
		   && i + step != iend
		   // Next is not a no-op.
		   && ii.m_ai[i + step].regno (false) != r_dest + step
		   // Eligible for MOVW.
		   && r_dest + step == (r_dest ^ 1)
		   && r_dest % 2 == i % 2
		   && (r16 = ii.m_ai.reg16_with_value (i, i + step, memo)))
	    {
	      xdest = gen_rtx_REG (HImode, r_dest & ~1);
	      xsrc = gen_rtx_REG (HImode, r16);
	      i += step;
	    }
	  // ...or a reg-reg move from a multi-byte move...
	  else if (r_src
		   // Prefer a reg-reg move over a (potential) load
		   // of a constant, because the subsequent RTL
		   // peephole pass may combine it to a MOVW again.
		   && AVR_HAVE_MOVW
		   && REG_P (curr.ii.m_src))
	    xsrc = gen_rtx_REG (QImode, r_src);
	  // ...or a cheap constant...
	  else if (val8 >= 0
		   && AVRasm::constant_cost (SET, r_dest, val8) <= 1)
	    xsrc = gen_int_mode (val8, QImode);
	  // ...or a reg-reg move...
	  else if (r_src)
	    xsrc = gen_rtx_REG (QImode, r_src);
	  // ...or a costly constant that already exists in some reg...
	  else if (memo.regno_with_value (val8, 0 /* excludes: none */))
	    xsrc = gen_rtx_REG (QImode, memo.regno_with_value (val8, 0));
	  // ...or a costly constant loaded into curr.insn's scratch reg...
	  else if (ii.m_scratch)
	    {
	      rtx xscratch = gen_rtx_REG (QImode, ii.m_scratch);
	      rtx xval8 = gen_int_mode (val8, QImode);
	      emit_and_apply_move (memo, xscratch, xval8);
	      xsrc = xscratch;
	    }
	  // ...or a costly constant (1 or -1) that doesn't need a scratch.
	  else if (! AVRasm::ldi_needs_scratch (r_dest, val8))
	    {
	      extra_cost += 1;
	      xsrc = gen_int_mode (val8, QImode);
	    }
	  else
	    return fail ("expensive val8");
	} // SET
      else if (aib.arity () == 1)
	{
	  if (aib.get_code () == SIGN_EXTEND)
	    // Signs are handled after all the others.
	    continue;
	  else
	    {
	      const absint_val_t x0 = aib.arg (0);
	      rtx xop0 = gen_rtx_REG (QImode, x0.regno);
	      xsrc = gen_rtx_fmt_e (code, QImode, xop0);
	    }
	} // unary
      else if (aib.arity () == 2)
	{
	  absint_val_t x0;
	  absint_val_t x1;
	  insn_optimize_data_t iod (memo);
	  iod.ii = curr.ii;

	  if (! get_2ary_operands (code, aib, iod, r_dest, x0, x1, extra_cost))
	    return false;
	  rtx xop0 = gen_rtx_REG (QImode, x0.regno);
	  rtx xop1 = x1.knows_val8 ()
	    ? gen_int_mode (x1.val8, QImode)
	    : gen_rtx_REG (QImode, x1.regno);

	  xsrc = gen_rtx_fmt_ee (code, QImode, xop0, xop1);
	} // binary

      if (! xsrc)
	return fail ("no source found");

      if (r_sign
	  && (regmask (xdest) & regmask (r_sign, 1)))
	return fail ("clobbered r_sign");

      emit_and_apply_move (memo, xdest, xsrc);
    }

  // Step 3: Emit insns for sign extend.
  // No more need to track memo beyond this point.

  if (! emit_signs (r_sign, regs_signs))
    return false;

  if (binop_cost >= 0)
    {
      avr_dump (";; Expected cost: %d + %d\n", n_new_insns, extra_cost);
      if (n_new_insns + extra_cost > binop_cost)
	return fail ("too expensive");
    }

  if (ii.m_scratch)
    ignore_mask = regmask (ii.m_scratch, 1);

  return true;
}


// A helper for try_split_any() above.
// Emit sign extends from R_MSB.7 to all regs in REGS_SIGNS.
bool
optimize_data_t::emit_signs (const int r_msb, gprmask_t regs_signs)
{
  if (! regs_signs)
    return true;
  else if (! r_msb)
    return fail ("fatal: no r_msb given");

  // Pick an arbitrary reg from the sign destinations when the source
  // isn't one of the signs.
  const int r_signs = regs_signs & regmask (r_msb, 1)
    ? r_msb
    : ctz_hwi (regs_signs);

  // Set all bits in r_signs according to the sign of r_msb using the
  // r,r,C07 alternative of ashrqi3.
  rtx xsrc = gen_rtx_fmt_ee (ASHIFTRT, QImode,
			     gen_rtx_REG (QImode, r_msb), GEN_INT (7));
  emit_valid_move_clobbercc (gen_rtx_REG (QImode, r_signs), xsrc);
  regs_signs &= ~regmask (r_signs, 1);

  // Set up a 16-bit sign register if possible.
  int r16_signs = 0;
  if (regs_signs & regmask (r_signs ^ 1, 1))
    {
      emit_move_mask (r_signs ^ 1, r_signs, 1, regs_signs);
      r16_signs = r_signs & ~1;
    }

  // Handle all 16-bit signs regs provided MOVW.
  if (AVR_HAVE_MOVW)
    for (int r = FIRST_GPR; r < REG_32; r += 2)
      {
	const gprmask_t m = regmask (r, 2);
	if ((m & regs_signs) == m)
	  {
	    if (r16_signs)
	      emit_move_mask (r, r16_signs, 2, regs_signs);
	    else
	      {
		emit_move_mask (r + 0, r_signs, 1, regs_signs);
		emit_move_mask (r + 1, r_signs, 1, regs_signs);
		r16_signs = r;
	      }
	  }
      }

  // Handle all remaining signs.
  while (regs_signs)
    emit_move_mask (ctz_hwi (regs_signs), r_signs, 1, regs_signs);

  return true;
}

// Helper for the method above.  Move N_BYTES registers from R_SRC to R_DST,
// keeping track of which regs are still to be done in MASK.
void
optimize_data_t::emit_move_mask (int r_dst, int r_src, int n_bytes,
				 gprmask_t &mask)
{
  const gprmask_t mask_dst = regmask (r_dst, n_bytes);
  const gprmask_t mask_src = regmask (r_src, n_bytes);
  gcc_assert ((mask_dst & mask) == mask_dst);
  gcc_assert ((mask_src & mask) == 0);
  rtx xdst = gen_rtx_REG (size_to_mode (n_bytes), r_dst);
  rtx xsrc = gen_rtx_REG (size_to_mode (n_bytes), r_src);
  emit_valid_move_clobbercc (xdst, xsrc);
  n_new_insns += 1;
  mask &= ~mask_dst;
}


void
bbinfo_t::optimize_one_block (bool &changed)
{
  memento_t prev_regs;

  rtx_insn *insn = next_nondebug_insn_bb (bb, BB_HEAD (bb));

  for (rtx_insn *next_insn; insn; insn = next_insn)
    {
      next_insn = next_nondebug_insn_bb (bb, insn);

      avr_dump ("\n;; Working on insn %d\n%r\n\n", INSN_UID (insn), insn);

      optimize_data_t od (prev_regs, regs);

      od.prev.insn = prev_nondebug_insn_bb (bb, insn);
      od.curr.insn = insn;

      od.prev.ii.init1 (od.prev, 1, "IIprev ");
      od.curr.ii.init1 (od.curr, 8, "IIcurr ");

      start_sequence ();

      bool found = ((bbinfo_t::try_fuse_p && od.try_fuse (this))
		    || (bbinfo_t::try_bin_arg1_p && od.try_bin_arg1 (this))
		    || (bbinfo_t::try_simplify_p && od.try_simplify (this))
		    || (bbinfo_t::try_split_ldi_p && od.try_split_ldi (this))
		    || (bbinfo_t::try_split_any_p && od.try_split_any (this))
		    || (bbinfo_t::try_mem0_p && od.try_mem0 (this)));

      rtx_insn *new_insns = end_sequence ();

      gcc_assert (found == (od.n_new_insns >= 0));

      ++tick;

      // This insn will become the previous one in the next loop iteration.
      // Just used in dumps.
      rtx_insn *new_curr_insn;

      if (! found)
	{
	  // Nothing changed.
	  avr_dump (";; Keeping old route.\n");
	  gcc_assert (! od.delete_prev_p);

	  prev_regs = regs;
	  regs.apply_insn (insn, false);

	  new_curr_insn = insn;
	}
      else
	{
	  // We have new_insns.
	  changed = true;

	  if (dump_file)
	    {
	      avr_dump ("\n;; EMIT %d new insn%s replacing ",
			od.n_new_insns, "s" + (od.n_new_insns == 1));
	      if (od.delete_prev_p)
		avr_dump ("insn %d and ", INSN_UID (od.prev.insn));
	      avr_dump ("insn %d, delete_prev=%d:\n%L\n", INSN_UID (insn),
			od.delete_prev_p, new_insns);
	    }

	  new_curr_insn = od.emit_sequence (bb, new_insns);
	} // found

      if (dump_file && new_curr_insn)
	{
	  avr_dump ("\n");

	  const int d = regs.distance_to (prev_regs);
	  if (d || new_curr_insn != insn)
	    avr_dump (";; %d regs changed state:\n", d);

	  if (new_curr_insn != insn)
	    {
	      avr_dump (";; Befor insn %d", INSN_UID (new_curr_insn));
	      prev_regs.dump ();
	    }

	  avr_dump (";; After insn %d", INSN_UID (new_curr_insn));
	  regs.dump ();
	}
    } // for BB insns
}


void
bbinfo_t::optimize_one_function (function *func)
{
  bbinfo_t::fpd = XNEW (bbinfo_t::find_plies_data_t);
  bbinfo_t::bb_info = XCNEWVEC (bbinfo_t, last_basic_block_for_fn (func));
  int *post_order = XNEWVEC (int, n_basic_blocks_for_fn (func));

  plies_t::max_n_plies = 0;

  using elt0_getter_HRS = elt0_getter<HARD_REG_SET, HARD_REG_ELT_TYPE>;
  memento_t::fixed_regs_mask = (gprmask_t) elt0_getter_HRS::get (fixed_reg_set);

  // Option -mfuse-move=<0,23> provides a 3:2:2:2 mixed radix value:
  // -mfuse-move= 0 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 20 1 2 3  Digit
  // fuse           1   1   1   1   1    1   1   1   1   1    1   1      0
  // bin_arg1         1 1     1 1      1 1     1 1     1 1      1 1      1
  // split_any            1 1 1 1          1 1 1 1          1 1 1 1      2
  // split_ldi                    1 1  1 1 1 1 1 1 1 1 1 1  1 1 1 1      3
  // use arith                                     1 1 1 1  1 1 1 1      3

  // Which optimization(s) to perform.
  bbinfo_t::try_fuse_p = avropt_fuse_move & 0x1;      // Digit 0 in [0, 1].
  bbinfo_t::try_mem0_p = avropt_fuse_move & 0x1;      // Digit 0 in [0, 1].
  bbinfo_t::try_bin_arg1_p = avropt_fuse_move & 0x2;  // Digit 1 in [0, 1].
  bbinfo_t::try_split_any_p = avropt_fuse_move & 0x4; // Digit 2 in [0, 1].
  bbinfo_t::try_split_ldi_p = avropt_fuse_move >> 3;    // Digit 3 in [0, 2].
  bbinfo_t::use_arith_p = (avropt_fuse_move >> 3) >= 2; // Digit 3 in [0, 2].
  bbinfo_t::use_set_some_p = bbinfo_t::try_split_ldi_p; // Digit 3 in [0, 2].
  bbinfo_t::try_simplify_p = avropt_fuse_move != 0;

  // Topologically sort BBs from last to first.

  const int n_post_order = post_order_compute (post_order, false, false);
  bool changed = false;

  // Traverse the BBs from first to last in order to increase the chance
  // that register values from all incoming edges are known.

  for (int n = n_post_order - 1; n >= 0; --n)
    {
      basic_block bb = BASIC_BLOCK_FOR_FN (func, post_order[n]);

      bbinfo_t::bb_info[bb->index].bb = bb;
      bbinfo_t::bb_info[bb->index].enter ();
      bbinfo_t::bb_info[bb->index].optimize_one_block (changed);
      bbinfo_t::bb_info[bb->index].leave ();
    }

  if (plies_t::max_n_plies)
    avr_dump (";; max_n_plies=%d\n", (int) plies_t::max_n_plies);

  if (changed)
    {
      df_note_add_problem ();
      df_analyze ();
    }

  XDELETEVEC (post_order);
  XDELETEVEC (bbinfo_t::bb_info);
  XDELETE (bbinfo_t::fpd);
}

} // anonymous namespace


namespace
{


//////////////////////////////////////////////////////////////////////////////
// Try to replace 2 cbranch insns with 1 comparison and 2 branches.

static const pass_data avr_pass_data_ifelse =
{
  RTL_PASS,      // type
  "",            // name (will be patched)
  OPTGROUP_NONE, // optinfo_flags
  TV_DF_SCAN,    // tv_id
  0,             // properties_required
  0,             // properties_provided
  0,             // properties_destroyed
  0,             // todo_flags_start
  TODO_df_finish | TODO_df_verify // todo_flags_finish
};

class avr_pass_ifelse : public rtl_opt_pass
{
public:
  avr_pass_ifelse (gcc::context *ctxt, const char *name)
    : rtl_opt_pass (avr_pass_data_ifelse, ctxt)
  {
    this->name = name;
  }

  bool gate (function *) final override
  {
    return optimize > 0;
  }

  unsigned int execute (function *func) final override;
}; // avr_pass_ifelse


/* Return TRUE iff comparison code CODE is explicitly signed.  */

static bool
avr_strict_signed_p (rtx_code code)
{
  return code == GT || code == GE || code == LT || code == LE;
}


/* Return TRUE iff comparison code CODE is explicitly unsigned.  */

static bool
avr_strict_unsigned_p (rtx_code code)
{
  return code == GTU || code == GEU || code == LTU || code == LEU;
}

#include "config/avr/ranges.h"

/* Suppose the inputs represent a code like

      if (x <CMP1> XVAL1)  goto way1;
      if (x <CMP2> XVAL2)  goto way2;
      way3:;

   with two integer mode comparisons where XVAL1 and XVAL2 are CONST_INT.
   When this can be rewritten in the form

      if (x <cond1> xval)  goto way1;
      if (x <cond2> xval)  goto way2;
      way3:;

  then set CMP1 = cond1, CMP2 = cond2, and return xval.  Else return NULL_RTX.
  When SWAPT is returned true, then way1 and way2 must be swapped.
  When the incomping SWAPT is false, the outgoing one will be false, too.  */

static rtx
avr_2comparisons_rhs (rtx_code &cmp1, rtx xval1,
		      rtx_code &cmp2, rtx xval2,
		      machine_mode mode, bool &swapt)
{
  const bool may_swapt = swapt;
  swapt = false;

  //////////////////////////////////////////////////////////////////
  // Step 0: Decide about signedness, map xval1/2 to the range
  //         of [un]signed machine mode.

  const bool signed1_p = avr_strict_signed_p (cmp1);
  const bool signed2_p = avr_strict_signed_p (cmp2);
  const bool unsigned1_p = avr_strict_unsigned_p (cmp1);
  const bool unsigned2_p = avr_strict_unsigned_p (cmp2);
  const bool signed_p = signed1_p || signed2_p;
  bool unsigned_p = unsigned1_p || unsigned2_p;

  using T = Ranges::scalar_type;
  T val1 = INTVAL (xval1);
  T val2 = INTVAL (xval2);

  if (signed_p + unsigned_p > 1)
    {
      // Don't go down that rabbit hole.  When the RHSs are the
      // same, we can still save one comparison.
      return val1 == val2 ? xval1 : NULL_RTX;
    }

  // Decide about signedness.  When no explicit signedness is present,
  // then cases that are close to the unsigned boundary like  EQ 0, EQ 1
  // can also be optimized.
  if (unsigned_p
      || (! signed_p && IN_RANGE (val1, -2, 2)))
    {
      unsigned_p = true;
      val1 = UINTVAL (xval1) & GET_MODE_MASK (mode);
      val2 = UINTVAL (xval2) & GET_MODE_MASK (mode);
    }

  // No way we can decompose the domain in a usable manner when the
  // RHSes are too far apart.
  if (! IN_RANGE (val1 - val2, -2, 2))
    return NULL_RTX;

  //////////////////////////////////////////////////////////////////
  // Step 1: Represent the input conditions as truth Ranges.  This
  //         establishes a decomposition / coloring of the domain.

  Ranges dom = Ranges::NBitsRanges (GET_MODE_BITSIZE (mode), unsigned_p,
				    Ranges::ALL);
  Ranges r[4] = { dom, dom.truth (cmp1, val1), dom.truth (cmp2, val2), dom };

  // r[1] shadows r[2] shadows r[3].  r[0] is just for nice indices.
  r[3].minus (r[2]);
  r[3].minus (r[1]);
  r[2].minus (r[1]);

  //////////////////////////////////////////////////////////////////
  // Step 2: Filter for cases where the domain decomposes into three
  //         intervals:  One to the left, one to the right, and one
  //         in the middle where the latter holds exactly one value.

  for (int i = 1; i <= 3; ++i)
    {
      // Keep track of which Ranges is which.
      r[i].tag = i;

      gcc_assert (r[i].check ());

      // Filter for proper intervals.  Also return for the empty set,
      // since cases where [m_min, m_max] decomposes into two intervals
      // or less have been sorted out by the generic optimizers already,
      // and hence should not be seen here.  And more than two intervals
      // at a time cannot be optimized of course.
      if (r[i].size () != 1)
	return NULL_RTX;
    }

  // Bubble-sort the three intervals such that:
  // [1] is the left interval, i.e. the one taken by LT[U].
  // [2] is the middle interval, i.e. the one taken by EQ.
  // [3] is the right interval, i.e. the one taken by GT[U].
  Ranges::sort2 (r[1], r[3]);
  Ranges::sort2 (r[2], r[3]);
  Ranges::sort2 (r[1], r[2]);

  if (dump_file)
    fprintf (dump_file,
	     ";; Decomposed: .%d=[%ld, %ld] .%d=[%ld, %ld] .%d=[%ld, %ld]\n",
	     r[1].tag, (long) r[1].ranges[0].lo, (long) r[1].ranges[0].hi,
	     r[2].tag, (long) r[2].ranges[0].lo, (long) r[2].ranges[0].hi,
	     r[3].tag, (long) r[3].ranges[0].lo, (long) r[3].ranges[0].hi);

  // EQ / NE can handle only one value.
  if (r[2].cardinality (0) != 1)
    return NULL_RTX;

  // Success! This is the sought for xval.
  const T val = r[2].ranges[0].lo;

  //////////////////////////////////////////////////////////////////
  // Step 3: Work out which label gets which condition, trying to
  //         avoid the expensive codes GT[U] and LE[U] if possible.
  //         Avoiding expensive codes is always possible when labels
  //         way1 and way2 may be swapped.

  // The xx1 ways have an expensive GT for cmp1 which can be avoided
  // by swapping way1 with way2.
  swapt = may_swapt && r[3].tag == 1;
  if (swapt)
    std::swap (r[3], r[2].tag == 2 ? r[2] : r[1]);

  // 6 = 3! ways to assign LT, EQ, GT to the three labels.
  const int way = 100 * r[1].tag + 10 * r[2].tag + r[3].tag;

  if (dump_file)
    fprintf (dump_file, ";; Success: unsigned=%d, swapt=%d, way=%d, rhs=%ld\n",
	     unsigned_p, swapt, way, (long) val);

#define WAY(w, c1, c2)					\
  case w:						\
    cmp1 = unsigned_p ? unsigned_condition (c1) : c1;	\
    cmp2 = unsigned_p ? unsigned_condition (c2) : c2;	\
    break;

  switch (way)
    {
    default:
      gcc_unreachable ();

      // cmp1 gets the LT, avoid difficult branches for cmp2.
      WAY (123, LT, EQ);
      WAY (132, LT, NE);

      // cmp1 gets the EQ, avoid difficult branches for cmp2.
      WAY (213, EQ, LT);
      WAY (312, EQ, GE);

      // cmp1 gets the difficult GT, unavoidable as we may not swap way1/2.
      WAY (231, GT, NE);
      WAY (321, GT, EQ);
    }

#undef WAY

  return gen_int_mode (val, mode);
}


/* A helper for the next method.  Suppose we have two conditional branches
   with REG and CONST_INT operands

      if (reg <cond1> xval1) goto label1;
      if (reg <cond2> xval2) goto label2;

   If the second comparison is redundant and there are codes <cmp1>
   and <cmp2> such that the sequence can be performed as

      REG_CC = compare (reg, xval);
      if (REG_CC <cmp1> 0) goto label1;
      if (REG_CC <cmp2> 0) goto label2;

   then set COND1 to cmp1, COND2 to cmp2, SWAPT to true when the branch
   targets have to be swapped, and return XVAL.  Otherwise, return NULL_RTX.
   This function may clobber COND1 and COND2 even when it returns NULL_RTX.

   REVERSE_COND1 can be set to reverse condition COND1.  This is useful
   when the second comparison does not follow the first one, but is
   located after label1 like in:

      if (reg <cond1> xval1) goto label1;
      ...
      label1:
      if (reg <cond2> xval2) goto label2;

   In such a case we cannot swap the labels, and we may end up with a
   difficult branch -- though one comparison can still be optimized out.
   Getting rid of such difficult branches would require to reorder blocks. */

static rtx
avr_redundant_compare (rtx xreg1, rtx_code &cond1, rtx xval1,
		       rtx xreg2, rtx_code &cond2, rtx xval2,
		       bool reverse_cond1, bool &swapt)
{
  // Make sure we have two REG <cond> CONST_INT comparisons with the same reg.
  if (! rtx_equal_p (xreg1, xreg2)
      || ! CONST_INT_P (xval1)
      || ! CONST_INT_P (xval2))
    return NULL_RTX;

  if (reverse_cond1)
    cond1 = reverse_condition (cond1);

  // Allow swapping label1 <-> label2 only when ! reverse_cond1.
  swapt = ! reverse_cond1;
  rtx_code c1 = cond1;
  rtx_code c2 = cond2;
  rtx xval = avr_2comparisons_rhs (c1, xval1,
				   c2, xval2, GET_MODE (xreg1), swapt);
  if (! xval)
    return NULL_RTX;

  if (dump_file)
    {
      rtx_code a1 = reverse_cond1 ? reverse_condition (cond1) : cond1;
      rtx_code b1 = reverse_cond1 ? reverse_condition (c1) : c1;
      const char *s_rev1 = reverse_cond1 ? " reverse_cond1" : "";
      avr_dump (";; cond1: %C %r%s\n", a1, xval1, s_rev1);
      avr_dump (";; cond2: %C %r\n", cond2, xval2);
      avr_dump (";; => %C %d\n", b1, (int) INTVAL (xval));
      avr_dump (";; => %C %d\n", c2, (int) INTVAL (xval));
    }

  cond1 = c1;
  cond2 = c2;

  return xval;
}


/* Similar to the function above, but assume that

      if (xreg1 <cond1> xval1) goto label1;
      if (xreg2 <cond2> xval2) goto label2;

   are two subsequent REG-REG comparisons.  When this can be represented as

      REG_CC = compare (reg, xval);
      if (REG_CC <cmp1> 0) goto label1;
      if (REG_CC <cmp2> 0) goto label2;

   then set XREG1 to reg, COND1 and COND2 accordingly, and return xval.
   Otherwise, return NULL_RTX.  This optmization can be performed
   when { xreg1, xval1 } and { xreg2, xval2 } are equal as sets.
   It can be done in such a way that no difficult branches occur.  */

static rtx
avr_redundant_compare_regs (rtx &xreg1, rtx_code &cond1, rtx &xval1,
			    rtx &xreg2, rtx_code &cond2, rtx &xval2,
			    bool reverse_cond1)
{
  bool swapped;

  if (! REG_P (xval1))
    return NULL_RTX;
  else if (rtx_equal_p (xreg1, xreg2)
	   && rtx_equal_p (xval1, xval2))
    swapped = false;
  else if (rtx_equal_p (xreg1, xval2)
	   && rtx_equal_p (xreg2, xval1))
    swapped = true;
  else
    return NULL_RTX;

  // Found a redundant REG-REG comparison.  Assume that the incoming
  // representation has been canonicalized by CANONICALIZE_COMPARISON.
  // We can always represent this using only one comparison and in such
  // a way that no difficult branches are required.

  if (dump_file)
    {
      const char *s_rev1 = reverse_cond1 ? " reverse_cond1" : "";
      avr_dump (";; %r %C %r%s\n", xreg1, cond1, xval1, s_rev1);
      avr_dump (";; %r %C %r\n", xreg2, cond2, xval2);
    }

  if (reverse_cond1)
    cond1 = reverse_condition (cond1);

  if (swapped)
    {
      if (cond1 == EQ || cond1 == NE)
	{
	  avr_dump (";; case #21\n");
	  std::swap (xreg1, xval1);
	}
      else
	{
	  std::swap (xreg2, xval2);
	  cond2 = swap_condition (cond2);

	  // The swap may have introduced a difficult comparison.
	  // In order to get of it, only a few cases need extra care.
	  if ((cond1 == LT && cond2 == GT)
	      || (cond1 == LTU && cond2 == GTU))
	    {
	      avr_dump (";; case #22\n");
	      cond2 = NE;
	    }
	  else
	    avr_dump (";; case #23\n");
	}
    }
  else
    avr_dump (";; case #20\n");

  return xval1;
}


/* INSN1 and INSN2 are two cbranch insns for the same integer mode.
   When FOLLOW_LABEL1 is false, then INSN2 is located in the fallthrough
   path of INSN1.  When FOLLOW_LABEL1 is true, then INSN2 is located at
   the true edge of INSN1, INSN2 is preceded by a barrier, and no other
   edge leads to the basic block of INSN2.

   Try to replace INSN1 and INSN2 by a compare insn and two branch insns.
   When such a replacement has been performed, then return the insn where the
   caller should continue scanning the insn stream.  Else, return nullptr.  */

static rtx_insn *
avr_optimize_2ifelse (rtx_jump_insn *insn1,
		      rtx_jump_insn *insn2, bool follow_label1)
{
  avr_dump (";; Investigating jump_insn %d and jump_insn %d.\n",
	    INSN_UID (insn1), INSN_UID (insn2));

  // Extract the operands of the insns:
  // $0 = comparison operator ($1, $2)
  // $1 = reg
  // $2 = reg or const_int
  // $3 = code_label
  // $4 = optional SCRATCH for HI, PSI, SI cases.

  const auto &op = recog_data.operand;

  extract_insn (insn1);
  rtx xop1[5] = { op[0], op[1], op[2], op[3], op[4] };
  int n_operands = recog_data.n_operands;

  extract_insn (insn2);
  rtx xop2[5] = { op[0], op[1], op[2], op[3], op[4] };

  rtx_code code1 = GET_CODE (xop1[0]);
  rtx_code code2 = GET_CODE (xop2[0]);
  bool swap_targets = false;

  // Search redundant REG-REG comparison.
  rtx xval = avr_redundant_compare_regs (xop1[1], code1, xop1[2],
					 xop2[1], code2, xop2[2],
					 follow_label1);

  // Search redundant REG-CONST_INT comparison.
  if (! xval)
    xval = avr_redundant_compare (xop1[1], code1, xop1[2],
				  xop2[1], code2, xop2[2],
				  follow_label1, swap_targets);
  if (! xval)
    {
      avr_dump (";; Nothing found for jump_insn %d and jump_insn %d.\n",
		INSN_UID (insn1), INSN_UID (insn2));
      return nullptr;
    }

  if (follow_label1)
    code1 = reverse_condition (code1);

  //////////////////////////////////////////////////////
  // Found a replacement.

  if (dump_file)
    {
      avr_dump (";; => %C %r\n", code1, xval);
      avr_dump (";; => %C %r\n", code2, xval);

      fprintf (dump_file, "\n;; Found chain of jump_insn %d and"
	       " jump_insn %d, follow_label1=%d:\n",
	       INSN_UID (insn1), INSN_UID (insn2), follow_label1);
      print_rtl_single (dump_file, PATTERN (insn1));
      print_rtl_single (dump_file, PATTERN (insn2));
    }

  rtx_insn *next_insn
    = next_nonnote_nondebug_insn (follow_label1 ? insn1 : insn2);

  // Pop the new branch conditions and the new comparison.
  // Prematurely split into compare + branch so that we can drop
  // the 2nd comparison.  The following pass, split2, splits all
  // insns for REG_CC, and it should still work as usual even when
  // there are already some REG_CC insns around.

  rtx xcond1 = gen_rtx_fmt_ee (code1, VOIDmode, cc_reg_rtx, const0_rtx);
  rtx xcond2 = gen_rtx_fmt_ee (code2, VOIDmode, cc_reg_rtx, const0_rtx);
  rtx xpat1 = gen_branch (xop1[3], xcond1);
  rtx xpat2 = gen_branch (xop2[3], xcond2);
  rtx xcompare = NULL_RTX;
  machine_mode mode = GET_MODE (xop1[1]);

  if (mode == QImode)
    {
      gcc_assert (n_operands == 4);
      xcompare = gen_cmpqi3 (xop1[1], xval);
    }
  else
    {
      gcc_assert (n_operands == 5);
      rtx scratch = GET_CODE (xop1[4]) == SCRATCH ? xop2[4] : xop1[4];
      rtx (*gen_cmp)(rtx,rtx,rtx)
	= mode == HImode  ? gen_gen_comparehi
	: mode == PSImode ? gen_gen_comparepsi
	: gen_gen_comparesi; // SImode
      xcompare = gen_cmp (xop1[1], xval, scratch);
    }

  // Emit that stuff.

  rtx_insn *cmp = emit_insn_before (xcompare, insn1);
  rtx_jump_insn *branch1 = emit_jump_insn_after (xpat1, insn1);
  rtx_jump_insn *branch2 = emit_jump_insn_after (xpat2, insn2);

  JUMP_LABEL (branch1) = xop1[3];
  JUMP_LABEL (branch2) = xop2[3];
  // delete_insn() decrements LABEL_NUSES when deleting a JUMP_INSN,
  // but when we pop a new JUMP_INSN, do it by hand.
  ++LABEL_NUSES (xop1[3]);
  ++LABEL_NUSES (xop2[3]);

  delete_insn (insn1);
  delete_insn (insn2);

  if (swap_targets)
    {
      gcc_assert (! follow_label1);

      basic_block to1 = BLOCK_FOR_INSN (xop1[3]);
      basic_block to2 = BLOCK_FOR_INSN (xop2[3]);
      edge e1 = find_edge (BLOCK_FOR_INSN (branch1), to1);
      edge e2 = find_edge (BLOCK_FOR_INSN (branch2), to2);
      gcc_assert (e1);
      gcc_assert (e2);
      redirect_edge_and_branch (e1, to2);
      redirect_edge_and_branch (e2, to1);
    }

  // As a side effect, also recog the new insns.
  gcc_assert (valid_insn_p (cmp));
  gcc_assert (valid_insn_p (branch1));
  gcc_assert (valid_insn_p (branch2));

  return next_insn;
}


/* Sequences like

      SREG = compare (reg, 1 + val);
	  if (SREG >= 0)  goto label1;
      SREG = compare (reg, val);
	  if (SREG == 0)  goto label2;

   can be optimized to

      SREG = compare (reg, val);
	  if (SREG == 0)  goto label2;
	  if (SREG >= 0)  goto label1;

   Almost all cases where one of the comparisons is redundant can
   be transformed in such a way that only one comparison is required
   and no difficult branches are needed.  */

unsigned int
avr_pass_ifelse::execute (function *)
{
  rtx_insn *next_insn;

  for (rtx_insn *insn = get_insns (); insn; insn = next_insn)
    {
      next_insn = next_nonnote_nondebug_insn (insn);

      if (! next_insn)
	break;

      // Search for two cbranch insns.  The first one is a cbranch.
      // Filter for "cbranch<mode>4_insn" with mode in QI, HI, PSI, SI.

      if (! JUMP_P (insn))
	continue;

      int icode1 = recog_memoized (insn);

      if (icode1 != CODE_FOR_cbranchqi4_insn
	  && icode1 != CODE_FOR_cbranchhi4_insn
	  && icode1 != CODE_FOR_cbranchpsi4_insn
	  && icode1 != CODE_FOR_cbranchsi4_insn)
	continue;

      rtx_jump_insn *insn1 = as_a<rtx_jump_insn *> (insn);

      // jmp[0]: We can optimize cbranches that follow cbranch insn1.
      rtx_insn *jmp[2] = { next_insn, nullptr };

      // jmp[1]: A cbranch following the label of cbranch insn1.
      if (LABEL_NUSES (JUMP_LABEL (insn1)) == 1)
	{
	  rtx_insn *code_label1 = JUMP_LABEL_AS_INSN (insn1);
	  rtx_insn *barrier = prev_nonnote_nondebug_insn (code_label1);

	  // When the target label of insn1 is used exactly once and is
	  // not a fallthrough, i.e. is preceded by a barrier, then
	  // consider the insn following that label.
	  if (barrier && BARRIER_P (barrier))
	    jmp[1] = next_nonnote_nondebug_insn (code_label1);
      }

      // With almost certainty, only one of the two possible jumps can
      // be optimized with insn1, but it's hard to tell which one a priori.
      // Just try both.  In the unlikely case where both could be optimized,
      // prefer jmp[0] because eliminating difficult branches is impeded
      // by following label1.

      for (int j = 0; j < 2; ++j)
	if (jmp[j] && JUMP_P (jmp[j])
	    && recog_memoized (jmp[j]) == icode1)
	  {
	    rtx_insn *next
	      = avr_optimize_2ifelse (insn1, as_a<rtx_jump_insn *> (jmp[j]),
				      j == 1 /* follow_label1 */);
	    if (next)
	      {
		next_insn = next;
		break;
	      }
	  }

    } // loop insns

  return 0;
}



//////////////////////////////////////////////////////////////////////////////
// Optimize results of the casesi expander for modes < SImode.

static const pass_data avr_pass_data_casesi =
{
  RTL_PASS,      // type
  "",            // name (will be patched)
  OPTGROUP_NONE, // optinfo_flags
  TV_DF_SCAN,    // tv_id
  0,             // properties_required
  0,             // properties_provided
  0,             // properties_destroyed
  0,             // todo_flags_start
  0              // todo_flags_finish
};

class avr_pass_casesi : public rtl_opt_pass
{
public:
  avr_pass_casesi (gcc::context *ctxt, const char *name)
    : rtl_opt_pass (avr_pass_data_casesi, ctxt)
  {
    this->name = name;
  }

  bool gate (function *) final override
  {
    return optimize > 0;
  }

  unsigned int execute (function *) final override;
}; // avr_pass_casesi


/* Make one parallel insn with all the patterns from insns i[0]..i[5].  */

static rtx_insn *
avr_parallel_insn_from_insns (rtx_insn *i[5])
{
  rtvec vec = gen_rtvec (5, PATTERN (i[0]), PATTERN (i[1]), PATTERN (i[2]),
			 PATTERN (i[3]), PATTERN (i[4]));
  start_sequence ();
  emit (gen_rtx_PARALLEL (VOIDmode, vec));
  return end_sequence ();
}


/* Return true if we see an insn stream generated by casesi expander together
   with an extension to SImode of the switch value.

   If this is the case, fill in the insns from casesi to INSNS[1..5] and
   the SImode extension to INSNS[0].  Moreover, extract the operands of
   pattern casesi_<mode>_sequence forged from the sequence to recog_data.  */

static bool
avr_is_casesi_sequence (basic_block bb, rtx_insn *insn, rtx_insn *insns[5])
{
  rtx set_4, set_0;

  /* A first and quick test for a casesi sequences.  As a side effect of
     the test, harvest respective insns to INSNS[0..4].  */

  if (!(JUMP_P (insns[4] = insn)
	// casesi is the only insn that comes up with UNSPEC_INDEX_JMP,
	// hence the following test ensures that we are actually dealing
	// with code from casesi.
	&& (set_4 = single_set (insns[4]))
	&& UNSPEC == GET_CODE (SET_SRC (set_4))
	&& UNSPEC_INDEX_JMP == XINT (SET_SRC (set_4), 1)

	&& (insns[3] = prev_real_insn (insns[4]))
	&& (insns[2] = prev_real_insn (insns[3]))
	&& (insns[1] = prev_real_insn (insns[2]))

	// Insn prior to casesi.
	&& (insns[0] = prev_real_insn (insns[1]))
	&& (set_0 = single_set (insns[0]))
	&& extend_operator (SET_SRC (set_0), SImode)))
    {
      return false;
    }

  if (dump_file)
    {
      fprintf (dump_file, ";; Sequence from casesi in "
	       "[bb %d]:\n\n", bb->index);
      for (int i = 0; i < 5; i++)
	print_rtl_single (dump_file, insns[i]);
    }

  /* We have to deal with quite some operands.  Extracting them by hand
     would be tedious, therefore wrap the insn patterns into a parallel,
     run recog against it and then use insn extract to get the operands. */

  rtx_insn *xinsn = avr_parallel_insn_from_insns (insns);

  INSN_CODE (xinsn) = recog (PATTERN (xinsn), xinsn, NULL /* num_clobbers */);

  /* Failing to recognize means that someone changed the casesi expander or
     that some passes prior to this one performed some unexpected changes.
     Gracefully drop such situations instead of aborting.  */

  if (INSN_CODE (xinsn) < 0)
    {
      if (dump_file)
	fprintf (dump_file, ";; Sequence not recognized, giving up.\n\n");

      return false;
    }

  gcc_assert (CODE_FOR_casesi_qi_sequence == INSN_CODE (xinsn)
	      || CODE_FOR_casesi_hi_sequence == INSN_CODE (xinsn));

  extract_insn (xinsn);

  // Assert on the anatomy of xinsn's operands we are going to work with.

  gcc_assert (recog_data.n_operands == 12);
  gcc_assert (recog_data.n_dups == 3);

  if (dump_file)
    {
      fprintf (dump_file, ";; Operands extracted:\n");
      for (int i = 0; i < recog_data.n_operands; i++)
	avr_fdump (dump_file, ";; $%d = %r\n", i, recog_data.operand[i]);
      fprintf (dump_file, "\n");
    }

  return true;
}


/* INSNS[1..4] is a sequence as generated by casesi and INSNS[0] is an
   extension of an 8-bit or 16-bit integer to SImode.  XOP contains the
   operands of INSNS as extracted by insn_extract from pattern
   casesi_<mode>_sequence:

      $0: SImode reg switch value as result of $10.
      $1: Negative of smallest index in switch.
      $2: Number of entries in switch.
      $3: Label to table.
      $4: Label if out-of-bounds.
      $5: $0 + $1.
      $6: 3-byte PC: subreg:HI ($5) + label_ref ($3)
	  2-byte PC: subreg:HI ($5)
      $7: HI reg index into table (Z or pseudo)
      $8: Z or scratch:HI (to be clobbered)
      $9: R24 or const0_rtx (to be clobbered)
      $10: Extension to SImode of an 8-bit or 16-bit integer register $11.
      $11: QImode or HImode register input of $10.

   Try to optimize this sequence, i.e. use the original HImode / QImode
   switch value instead of SImode.  */

static void
avr_optimize_casesi (rtx_insn *insns[5], rtx *xop)
{
  // Original mode of the switch value; this is QImode or HImode.
  machine_mode mode = GET_MODE (xop[11]);

  // How the original switch value was extended to SImode; this is
  // SIGN_EXTEND or ZERO_EXTEND.
  rtx_code code = GET_CODE (xop[10]);

  // Lower index, upper index (plus one) and range of case calues.
  HOST_WIDE_INT low_idx = -INTVAL (xop[1]);
  HOST_WIDE_INT num_idx = INTVAL (xop[2]);
  HOST_WIDE_INT hig_idx = low_idx + num_idx;

  // Maximum ranges of (un)signed QImode resp. HImode.
  unsigned umax = QImode == mode ? 0xff : 0xffff;
  int imax = QImode == mode ? 0x7f : 0x7fff;
  int imin = -imax - 1;

  // Testing the case range and whether it fits into the range of the
  // (un)signed mode.  This test should actually always pass because it
  // makes no sense to have case values outside the mode range.  Notice
  // that case labels which are unreachable because they are outside the
  // mode of the switch value (e.g. "case -1" for uint8_t) have already
  // been thrown away by the middle-end.

  if (SIGN_EXTEND == code
      && low_idx >= imin
      && hig_idx <= imax)
    {
      // ok
    }
  else if (ZERO_EXTEND == code
	   && low_idx >= 0
	   && (unsigned) hig_idx <= umax)
    {
      // ok
    }
  else
    {
      if (dump_file)
	fprintf (dump_file, ";; Case ranges too big, giving up.\n\n");
      return;
    }

  // Do normalization of switch value $10 and out-of-bound check in its
  // original mode instead of in SImode.  Use a newly created pseudo.
  // This will replace insns[1..2].

  start_sequence ();

  rtx reg = copy_to_mode_reg (mode, xop[11]);

  rtx (*gen_add)(rtx,rtx,rtx) = QImode == mode ? gen_addqi3 : gen_addhi3;
  rtx (*gen_cbranch)(rtx,rtx,rtx,rtx)
    = QImode == mode ? gen_cbranchqi4 : gen_cbranchhi4;

  emit_insn (gen_add (reg, reg, gen_int_mode (-low_idx, mode)));
  rtx op0 = reg; rtx op1 = gen_int_mode (num_idx, mode);
  rtx labelref = copy_rtx (xop[4]);
  rtx xbranch = gen_cbranch (gen_rtx_fmt_ee (GTU, VOIDmode, op0, op1),
			     op0, op1, labelref);
  rtx_insn *cbranch = emit_jump_insn (xbranch);
  JUMP_LABEL (cbranch) = xop[4];
  ++LABEL_NUSES (xop[4]);

  rtx_insn *last1 = get_last_insn ();
  rtx_insn *seq1 = end_sequence ();

  emit_insn_after (seq1, insns[2]);

  // After the out-of-bounds test and corresponding branch, use a
  // 16-bit index.  If QImode is used, extend it to HImode first.
  // This will replace insns[4].

  start_sequence ();

  if (QImode == mode)
    reg = force_reg (HImode, gen_rtx_fmt_e (code, HImode, reg));

  rtx pat_4 = AVR_3_BYTE_PC
    ? gen_movhi (xop[7], reg)
    : gen_addhi3 (xop[7], reg, gen_rtx_LABEL_REF (VOIDmode, xop[3]));

  emit_insn (pat_4);

  rtx_insn *last2 = get_last_insn ();
  rtx_insn *seq2 = end_sequence ();

  emit_insn_after (seq2, insns[3]);

  if (dump_file)
    {
      fprintf (dump_file, ";; New insns: ");

      for (rtx_insn *insn = seq1; ; insn = NEXT_INSN (insn))
	{
	  fprintf (dump_file, "%d, ", INSN_UID (insn));
	  if (insn == last1)
	    break;
	}
      for (rtx_insn *insn = seq2; ; insn = NEXT_INSN (insn))
	{
	  fprintf (dump_file, "%d%s", INSN_UID (insn),
		   insn == last2 ? ".\n\n" : ", ");
	  if (insn == last2)
	    break;
	}

      fprintf (dump_file, ";; Deleting insns: %d, %d, %d.\n\n",
	       INSN_UID (insns[1]), INSN_UID (insns[2]), INSN_UID (insns[3]));
    }

  // Pseudodelete the SImode and subreg of SImode insns.  We don't care
  // about the extension insns[0]: Its result is now unused and other
  // passes will clean it up.

  SET_INSN_DELETED (insns[1]);
  SET_INSN_DELETED (insns[2]);
  SET_INSN_DELETED (insns[3]);
}


unsigned int
avr_pass_casesi::execute (function *func)
{
  basic_block bb;

  FOR_EACH_BB_FN (bb, func)
    {
      rtx_insn *insn, *insns[5];

      FOR_BB_INSNS (bb, insn)
	{
	  if (avr_is_casesi_sequence (bb, insn, insns))
	    {
	      avr_optimize_casesi (insns, recog_data.operand);
	    }
	}
    }

  return 0;
}

} // anonymous namespace

/* Perform some extra checks on operands of casesi_<mode>_sequence.
   Not all operand dependencies can be described by means of predicates.
   This function performs left over checks and should always return true.
   Returning false means that someone changed the casesi expander but did
   not adjust casesi_<mode>_sequence.  */

bool
avr_casei_sequence_check_operands (rtx *xop)
{
  rtx sub_5 = NULL_RTX;

  if (AVR_HAVE_EIJMP_EICALL
      // The last clobber op of the tablejump.
      && xop[9] == all_regs_rtx[REG_24])
    {
      // $6 is: (subreg:SI ($5) 0)
      sub_5 = xop[6];
    }

  if (!AVR_HAVE_EIJMP_EICALL
      // $6 is: (plus:HI (subreg:SI ($5) 0)
      //		 (label_ref ($3)))
      && PLUS == GET_CODE (xop[6])
      && LABEL_REF == GET_CODE (XEXP (xop[6], 1))
      && rtx_equal_p (xop[3], XEXP (XEXP (xop[6], 1), 0))
      // The last clobber op of the tablejump.
      && xop[9] == const0_rtx)
    {
      sub_5 = XEXP (xop[6], 0);
    }

  if (sub_5
      && SUBREG_P (sub_5)
      && SUBREG_BYTE (sub_5) == 0
      && rtx_equal_p (xop[5], SUBREG_REG (sub_5)))
    return true;

  if (dump_file)
    fprintf (dump_file, "\n;; Failed condition for casesi_<mode>_sequence\n\n");

  return false;
}

namespace
{


//////////////////////////////////////////////////////////////////////////////
// Find more POST_INC and PRE_DEC cases.

static const pass_data avr_pass_data_fuse_add =
{
  RTL_PASS,	    // type
  "",		    // name (will be patched)
  OPTGROUP_NONE,    // optinfo_flags
  TV_MACH_DEP,	    // tv_id
  0,		    // properties_required
  0,		    // properties_provided
  0,		    // properties_destroyed
  0,		    // todo_flags_start
  TODO_df_finish    // todo_flags_finish
};

class avr_pass_fuse_add : public rtl_opt_pass
{
public:
  avr_pass_fuse_add (gcc::context *ctxt, const char *name)
    : rtl_opt_pass (avr_pass_data_fuse_add, ctxt)
  {
    this->name = name;
  }

  // Cloning is required because we are running one instance of the pass
  // before peephole2. and a second one after cprop_hardreg.
  opt_pass * clone () final override
  {
    return make_avr_pass_fuse_add (m_ctxt);
  }

  unsigned int execute (function *func) final override
  {
    func->machine->n_avr_fuse_add_executed += 1;
    n_avr_fuse_add_executed = func->machine->n_avr_fuse_add_executed;

    if (optimize && avropt_fuse_add > 0)
      return execute1 (func);
    return 0;
  }

  unsigned int execute1 (function *);

  struct Some_Insn
  {
    rtx_insn *insn = nullptr;
    rtx dest, src;
    bool valid () const { return insn != nullptr; }
    void set_deleted ()
    {
      gcc_assert (insn);
      SET_INSN_DELETED (insn);
      insn = nullptr;
    }
  };

  // If .insn is not NULL, then this is a  reg:HI += const_int
  // of an address register.
  struct Add_Insn : Some_Insn
  {
    rtx addend;
    int regno;
    Add_Insn () {}
    Add_Insn (rtx_insn *insn);
  };

  // If .insn is not NULL, then this sets an address register
  // to a constant value.
  struct Ldi_Insn : Some_Insn
  {
    int regno;
    Ldi_Insn () {}
    Ldi_Insn (rtx_insn *insn);
  };

  // If .insn is not NULL, then this is a load or store insn where the
  // address is REG or POST_INC with an address register.
  struct Mem_Insn : Some_Insn
  {
    rtx reg_or_0, mem, addr, addr_reg;
    int addr_regno;
    rtx_code addr_code;
    machine_mode mode;
    addr_space_t addr_space;
    bool store_p, volatile_p;
    Mem_Insn () {}
    Mem_Insn (rtx_insn *insn);
  };

  rtx_insn *fuse_ldi_add (Ldi_Insn &prev_ldi, Add_Insn &add);
  rtx_insn *fuse_add_add (Add_Insn &prev_add, Add_Insn &add);
  rtx_insn *fuse_add_mem (Add_Insn &prev_add, Mem_Insn &mem);
  rtx_insn *fuse_mem_add (Mem_Insn &prev_mem, Add_Insn &add);
}; // avr_pass_fuse_add


/* Describe properties of AVR's indirect load and store instructions
   LD, LDD, ST, STD, LPM, ELPM depending on register number, volatility etc.
   Rules for "volatile" accesses are:

	 | Xmega	   |  non-Xmega
   ------+-----------------+----------------
   load  | read LSB first  | read LSB first
   store | write LSB first | write MSB first
*/

struct AVR_LdSt_Props
{
  bool has_postinc, has_predec, has_ldd;
  // The insn printers will use POST_INC or PRE_DEC addressing, no matter
  // what adressing modes we are feeding into them.
  bool want_postinc, want_predec;

  AVR_LdSt_Props (int regno, bool store_p, bool volatile_p, addr_space_t as)
  {
    bool generic_p = ADDR_SPACE_GENERIC_P (as);
    bool flashx_p = (! generic_p
		     && as != ADDR_SPACE_MEMX && as != ADDR_SPACE_FLASHX);
    has_postinc = generic_p || (flashx_p && regno == REG_Z);
    has_predec = generic_p;
    has_ldd = ! AVR_TINY && generic_p && (regno == REG_Y || regno == REG_Z);
    want_predec  = volatile_p && generic_p && ! AVR_XMEGA && store_p;
    want_postinc = volatile_p && generic_p && (AVR_XMEGA || ! store_p);
    want_postinc |= flashx_p && regno == REG_Z;
  }

  AVR_LdSt_Props (const avr_pass_fuse_add::Mem_Insn &m)
    : AVR_LdSt_Props (m.addr_regno, m.store_p, m.volatile_p, m.addr_space)
  {
    gcc_assert (m.valid ());
  }
};


/* Emit a single_set that clobbers REG_CC.  */

static rtx_insn *
emit_move_ccc (rtx dest, rtx src)
{
  return emit_insn (gen_gen_move_clobbercc (dest, src));
}


/* Emit a single_set that clobbers REG_CC after insn AFTER.  */

static rtx_insn *
emit_move_ccc_after (rtx dest, rtx src, rtx_insn *after)
{
  return emit_insn_after (gen_gen_move_clobbercc (dest, src), after);
}

static bool
reg_seen_between_p (const_rtx reg, const rtx_insn *from, const rtx_insn *to)
{
  return (reg_used_between_p (reg, from, to)
	  || reg_set_between_p (reg, from, to));
}


static void
avr_maybe_adjust_cfa (rtx_insn *insn, rtx reg, int addend)
{
  if (addend
      && frame_pointer_needed
      && REGNO (reg) == FRAME_POINTER_REGNUM
      && avropt_fuse_add == 3)
    {
      rtx plus = plus_constant (Pmode, reg, addend);
      RTX_FRAME_RELATED_P (insn) = 1;
      add_reg_note (insn, REG_CFA_ADJUST_CFA, gen_rtx_SET (reg, plus));
    }
}


// If successful, this represents a SET of a pointer register to a constant.
avr_pass_fuse_add::Ldi_Insn::Ldi_Insn (rtx_insn *insn)
{
  rtx set = single_set (insn);
  if (!set)
    return;

  src = SET_SRC (set);
  dest = SET_DEST (set);

  if (REG_P (dest)
      && GET_MODE (dest) == Pmode
      && IN_RANGE (regno = REGNO (dest), REG_X, REG_Z)
      && CONSTANT_P (src))
    {
      this->insn = insn;
    }
}

// If successful, this represents a PLUS with CONST_INT of a pointer
// register X, Y or Z.  Otherwise, the object is not valid().
avr_pass_fuse_add::Add_Insn::Add_Insn (rtx_insn *insn)
{
  rtx set = single_set (insn);
  if (!set)
    return;

  src = SET_SRC (set);
  dest = SET_DEST (set);
  if (REG_P (dest)
      // We are only interested in PLUSes that change address regs.
      && GET_MODE (dest) == Pmode
      && IN_RANGE (regno = REGNO (dest), REG_X, REG_Z)
      && PLUS == GET_CODE (src)
      && rtx_equal_p (XEXP (src, 0), dest)
      && CONST_INT_P (XEXP (src, 1)))
    {
      // This is reg:HI += const_int.
      addend = XEXP (src, 1);
      this->insn = insn;
    }
}

// If successful, this represents a load or store insn where the addressing
// mode uses pointer register X, Y or Z.  Otherwise, the object is not valid().
avr_pass_fuse_add::avr_pass_fuse_add::Mem_Insn::Mem_Insn (rtx_insn *insn)
{
  rtx set = single_set (insn);
  if (!set)
    return;

  src = SET_SRC (set);
  dest = SET_DEST (set);
  mode = GET_MODE (dest);

  if (MEM_P (dest)
      && (REG_P (src) || src == CONST0_RTX (mode)))
    {
      reg_or_0 = src;
      mem = dest;
    }
  else if (REG_P (dest) && MEM_P (src))
    {
      reg_or_0 = dest;
      mem = src;
    }
  else
    return;

  if (avr_mem_memx_p (mem)
      || avr_load_libgcc_p (mem))
    return;

  addr = XEXP (mem, 0);
  addr_code = GET_CODE (addr);

  if (addr_code == REG)
    addr_reg = addr;
  else if (addr_code == POST_INC || addr_code == PRE_DEC)
    addr_reg = XEXP (addr, 0);
  else
    return;

  addr_regno = REGNO (addr_reg);

  if (avropt_fuse_add == 2
      && frame_pointer_needed
      && addr_regno == FRAME_POINTER_REGNUM)
    MEM_VOLATILE_P (mem) = 0;

  if (reg_overlap_mentioned_p (reg_or_0, addr) // Can handle CONSTANT_P.
      || addr_regno > REG_Z
      || avr_mem_memx_p (mem)
      // The following optimizations only handle REG and POST_INC,
      // so that's all what we allow here.
      || (addr_code != REG && addr_code != POST_INC))
    return;

  addr_space = MEM_ADDR_SPACE (mem);
  volatile_p = MEM_VOLATILE_P (mem);
  store_p = MEM_P (dest);

  // Turn this "valid".
  this->insn = insn;
}

/* Try to combine a Ldi insn with a PLUS CONST_INT addend to one Ldi insn.
   If LDI is valid, then it precedes ADD in the same block.
   When a replacement is found, a new insn is emitted and the old insns
   are pseudo-deleted.  The returned insn is the point where the calling
   scanner should continue.  When no replacement is found, nullptr is
   returned and nothing changed.  */

rtx_insn *
avr_pass_fuse_add::fuse_ldi_add (Ldi_Insn &ldi, Add_Insn &add)
{
  if (! ldi.valid ()
      || reg_seen_between_p (ldi.dest, ldi.insn, add.insn))
    {
      // If something is between the Ldi and the current insn, we can
      // set the Ldi invalid to speed future scans.
      return ldi.insn = nullptr;
    }

  // Found a Ldi with const and a PLUS insns in the same BB,
  // and with no interfering insns between them.

  // Emit new Ldi with the sum of the original offsets after the old Ldi.
  rtx xval = plus_constant (Pmode, ldi.src, INTVAL (add.addend));

  rtx_insn *insn = emit_move_ccc_after (ldi.dest, xval, ldi.insn);
  avr_dump (";; new Ldi[%d] insn %d after %d: R%d = %r\n\n", ldi.regno,
	    INSN_UID (insn), INSN_UID (ldi.insn), ldi.regno, xval);

  rtx_insn *next = NEXT_INSN (add.insn);
  ldi.set_deleted ();
  add.set_deleted ();

  return next;
}

/* Try to combine two PLUS insns with CONST_INT addend to one such insn.
   If PREV_ADD is valid, then it precedes ADD in the same basic block.
   When a replacement is found, a new insn is emitted and the old insns
   are pseudo-deleted.  The returned insn is the point where the calling
   scanner should continue.  When no replacement is found, nullptr is
   returned and nothing changed.  */

rtx_insn *
avr_pass_fuse_add::fuse_add_add (Add_Insn &prev_add, Add_Insn &add)
{
  if (! prev_add.valid ()
      || reg_seen_between_p (add.dest, prev_add.insn, add.insn))
    {
      // If something is between the previous Add and the current insn,
      // we can set the previous Add invalid to speed future scans.
      return prev_add.insn = nullptr;
    }

  // Found two PLUS insns in the same BB, and with no interfering
  // insns between them.
  rtx plus = plus_constant (Pmode, add.src, INTVAL (prev_add.addend));

  rtx_insn *next;
  if (REG_P (plus))
    {
      avr_dump (";; Add[%d] from %d annihilates %d\n\n", add.regno,
		INSN_UID (prev_add.insn), INSN_UID (add.insn));
      next = NEXT_INSN (add.insn);
    }
  else
    {
      // Emit after the current insn, so that it will be picked
      // up as next valid Add insn.
      next = emit_move_ccc_after (add.dest, plus, add.insn);
      avr_dump (";; #1 new Add[%d] insn %d after %d: R%d += %d\n\n",
		add.regno, INSN_UID (next), INSN_UID (add.insn),
		add.regno, (int) INTVAL (XEXP (plus, 1)));
      gcc_assert (GET_CODE (plus) == PLUS);
    }

  add.set_deleted ();
  prev_add.set_deleted ();

  return next;
}

/* Try to combine a PLUS of the address register with a load or store insn.
   If ADD is valid, then it precedes MEM in the same basic block.
   When a replacement is found, a new insn is emitted and the old insns
   are pseudo-deleted.  The returned insn is the point where the calling
   scanner should continue.  When no replacement is found, nullptr is
   returned and nothing changed.  */

rtx_insn *
avr_pass_fuse_add::fuse_add_mem (Add_Insn &add, Mem_Insn &mem)
{
  if (! add.valid ()
      || reg_seen_between_p (add.dest, add.insn, mem.insn))
    {
      // If something is between the Add and the current insn, we can
      // set the Add invalid to speed future scans.
      return add.insn = nullptr;
    }

  AVR_LdSt_Props ap { mem };

  int msize = GET_MODE_SIZE (mem.mode);

  // The mem insn really wants PRE_DEC.
  bool case1 = ((mem.addr_code == REG || mem.addr_code == POST_INC)
		&& msize > 1 && ap.want_predec && ! ap.has_ldd);

  // The offset can be consumed by a PRE_DEC.
  bool case2 = (- INTVAL (add.addend) == msize
		&& (mem.addr_code == REG || mem.addr_code == POST_INC)
		&& ap.has_predec && ! ap.want_postinc);

  if (! case1 && ! case2)
    return nullptr;

  // Change from REG or POST_INC to PRE_DEC.
  rtx xmem = change_address (mem.mem, mem.mode,
			     gen_rtx_PRE_DEC (Pmode, mem.addr_reg));
  rtx dest = mem.store_p ? xmem : mem.reg_or_0;
  rtx src  = mem.store_p ? mem.reg_or_0 : xmem;

  rtx_insn *next = emit_move_ccc_after (dest, src, mem.insn);
  add_reg_note (next, REG_INC, mem.addr_reg);
  avr_dump (";; new Mem[%d] insn %d after %d: %r = %r\n\n", mem.addr_regno,
	    INSN_UID (next), INSN_UID (mem.insn), dest, src);

  // Changing REG or POST_INC -> PRE_DEC means that the addend before
  // the memory access must be increased by the size of the access,
  rtx plus = plus_constant (Pmode, add.src, msize);
  if (! REG_P (plus))
    {
      rtx_insn *insn = emit_move_ccc_after (add.dest, plus, add.insn);
      avr_dump (";; #2 new Add[%d] insn %d after %d: R%d += %d\n\n",
		add.regno, INSN_UID (insn), INSN_UID (add.insn),
		add.regno, (int) INTVAL (XEXP (plus, 1)));
      gcc_assert (GET_CODE (plus) == PLUS);
    }
  else
    avr_dump (";; Add[%d] insn %d consumed into %d\n\n",
	      add.regno, INSN_UID (add.insn), INSN_UID (next));

  // Changing POST_INC -> PRE_DEC means that the addend after the mem has to be
  // the size of the access.  The hope is that this new add insn may be unused.
  if (mem.addr_code == POST_INC)
    {
      plus = plus_constant (Pmode, add.dest, msize);
      rtx_insn *next2 = emit_move_ccc_after (add.dest, plus, next);
      avr_dump (";; #3 new Add[%d] insn %d after %d: R%d += %d\n\n", add.regno,
		INSN_UID (next2), INSN_UID (next), add.regno, msize);
      next = next2;
    }

  add.set_deleted ();
  mem.set_deleted ();

  return next;
}

/* Try to combine a load or store insn with a PLUS of the address register.
   If MEM is valid, then it precedes ADD in the same basic block.
   When a replacement is found, a new insn is emitted and the old insns
   are pseudo-deleted.  The returned insn is the point where the calling
   scanner should continue.  When no replacement is found, nullptr is
   returned and nothing changed.  */

rtx_insn *
avr_pass_fuse_add::fuse_mem_add (Mem_Insn &mem, Add_Insn &add)
{
  if (! mem.valid ()
      || reg_seen_between_p (add.dest, mem.insn, add.insn))
    {
      // If something is between the Mem and the current insn, we can
      // set the Mem invalid to speed future scans.
      return mem.insn = nullptr;
    }

  AVR_LdSt_Props ap { mem };

  int msize = GET_MODE_SIZE (mem.mode);

  // The add insn can be consumed by a POST_INC.
  bool case1 = (mem.addr_code == REG
		&& INTVAL (add.addend) == msize
		&& ap.has_postinc && ! ap.want_predec);

  // There are cases where even a partial consumption of the offset is better.
  // This are the cases where no LD+offset addressing is available, because
  // the address register is obviously used after the mem insn, and a mem insn
  // with REG addressing mode will have to restore the address.
  bool case2 = (mem.addr_code == REG
		&& msize > 1 && ap.want_postinc && ! ap.has_ldd);

  if (! case1 && ! case2)
    return nullptr;

  // Change addressing mode from REG to POST_INC.
  rtx xmem = change_address (mem.mem, mem.mode,
			     gen_rtx_POST_INC (Pmode, mem.addr_reg));
  rtx dest = mem.store_p ? xmem : mem.reg_or_0;
  rtx src  = mem.store_p ? mem.reg_or_0 : xmem;

  rtx_insn *insn = emit_move_ccc_after (dest, src, mem.insn);
  add_reg_note (insn, REG_INC, mem.addr_reg);
  avr_dump (";; new Mem[%d] insn %d after %d: %r = %r\n\n", add.regno,
	    INSN_UID (insn), INSN_UID (mem.insn), dest, src);

  rtx_insn *next = NEXT_INSN (add.insn);

  // Changing REG -> POST_INC means that the post addend must be
  // decreased by the size of the access.
  rtx plus = plus_constant (Pmode, add.src, -msize);
  if (! REG_P (plus))
    {
      next = emit_move_ccc_after (mem.addr_reg, plus, add.insn);
      avr_dump (";; #4 new Add[%d] insn %d after %d: R%d += %d\n\n",
		add.regno, INSN_UID (next), INSN_UID (add.insn),
		add.regno, (int) INTVAL (XEXP (plus, 1)));
      gcc_assert (GET_CODE (plus) == PLUS);
    }
  else
    avr_dump (";; Add[%d] insn %d consumed into %d\n\n",
	      add.regno, INSN_UID (add.insn), INSN_UID (insn));

  add.set_deleted ();
  mem.set_deleted ();

  return next;
}

/* Try to post-reload combine PLUS with CONST_INt of pointer registers with:
   - Sets to a constant address.
   - PLUS insn of that kind.
   - Indirect loads and stores.
   In almost all cases, combine opportunities arise from the preparation
   done by `avr_split_fake_addressing_move', but in some rare cases combinations
   are found for the ordinary cores, too.
      As we consider at most one Mem insn per try, there may still be missed
   optimizations like  POST_INC + PLUS + POST_INC  might be performed
   as  PRE_DEC + PRE_DEC  for two adjacent locations.  */

unsigned int
avr_pass_fuse_add::execute1 (function *func)
{
  df_note_add_problem ();
  df_analyze ();

  int n_add = 0, n_mem = 0, n_ldi = 0;
  basic_block bb;

  FOR_EACH_BB_FN (bb, func)
    {
      Ldi_Insn prev_ldi_insns[REG_32];
      Add_Insn prev_add_insns[REG_32];
      Mem_Insn prev_mem_insns[REG_32];
      rtx_insn *insn, *curr;

      avr_dump ("\n;; basic block %d\n\n", bb->index);

      FOR_BB_INSNS_SAFE (bb, insn, curr)
	{
	  rtx_insn *next = nullptr;
	  Ldi_Insn ldi_insn { insn };
	  Add_Insn add_insn { insn };
	  Mem_Insn mem_insn { insn };

	  if (add_insn.valid ())
	    {
	      // Found reg:HI += const_int
	      avr_dump (";; insn %d: Add[%d]: R%d += %d\n\n",
			INSN_UID (add_insn.insn), add_insn.regno,
			add_insn.regno, (int) INTVAL (add_insn.addend));
	      Ldi_Insn &prev_ldi_insn = prev_ldi_insns[add_insn.regno];
	      Add_Insn &prev_add_insn = prev_add_insns[add_insn.regno];
	      Mem_Insn &prev_mem_insn = prev_mem_insns[add_insn.regno];
	      if ((next = fuse_ldi_add (prev_ldi_insn, add_insn)))
		curr = next, n_ldi += 1;
	      else if ((next = fuse_add_add (prev_add_insn, add_insn)))
		curr = next, n_add += 1;
	      else if ((next = fuse_mem_add (prev_mem_insn, add_insn)))
		curr = next, n_mem += 1;
	      else
		prev_add_insn = add_insn;
	    }
	  else if (mem_insn.valid ())
	    {
	      int addr_regno = REGNO (mem_insn.addr_reg);
	      avr_dump (";; insn %d: Mem[%d]: %r = %r\n\n",
			INSN_UID (mem_insn.insn), addr_regno,
			mem_insn.dest, mem_insn.src);
	      Add_Insn &prev_add_insn = prev_add_insns[addr_regno];
	      if ((next = fuse_add_mem (prev_add_insn, mem_insn)))
		curr = next, n_mem += 1;
	      else
		prev_mem_insns[addr_regno] = mem_insn;
	    }
	  else if (ldi_insn.valid ())
	    {
	      if (! CONST_INT_P (ldi_insn.src))
		avr_dump (";; insn %d: Ldi[%d]: R%d = %r\n\n",
			  INSN_UID (ldi_insn.insn), ldi_insn.regno,
			  ldi_insn.regno, ldi_insn.src);
	      prev_ldi_insns[ldi_insn.regno] = ldi_insn;
	    }
	} // for insns
    } // for BBs

  avr_dump (";; Function %f: Found %d changes: %d ldi, %d add, %d mem.\n",
	    n_ldi + n_add + n_mem, n_ldi, n_add, n_mem);

  return 0;
}



//////////////////////////////////////////////////////////////////////////////
// Fuse 2 move insns after combine.

static const pass_data avr_pass_data_2moves =
{
  RTL_PASS,	    // type
  "",		    // name (will be patched)
  OPTGROUP_NONE,    // optinfo_flags
  TV_DF_SCAN,	    // tv_id
  0,		    // properties_required
  0,		    // properties_provided
  0,		    // properties_destroyed
  0,		    // todo_flags_start
  0		    // todo_flags_finish
};

class avr_pass_2moves : public rtl_opt_pass
{
public:
  avr_pass_2moves (gcc::context *ctxt, const char *name)
    : rtl_opt_pass (avr_pass_data_2moves, ctxt)
  {
    this->name = name;
  }

  unsigned int execute (function *func) final override
  {
    if (optimize && avropt_fuse_move2)
      {
	bool changed = false;
	basic_block bb;

	FOR_EACH_BB_FN (bb, func)
	  {
	    changed |= optimize_2moves_bb (bb);
	  }

	if (changed)
	  {
	    df_note_add_problem ();
	    df_analyze ();
	  }
      }

    return 0;
  }

  bool optimize_2moves (rtx_insn *, rtx_insn *);
  bool optimize_2moves_bb (basic_block);
}; // avr_pass_2moves

bool
avr_pass_2moves::optimize_2moves_bb (basic_block bb)
{
  bool changed = false;
  rtx_insn *insn1 = nullptr;
  rtx_insn *insn2 = nullptr;
  rtx_insn *curr;

  FOR_BB_INSNS (bb, curr)
    {
      if (insn1 && INSN_P (insn1)
	  && insn2 && INSN_P (insn2))
	changed |= optimize_2moves (insn1, insn2);

      insn1 = insn2;
      insn2 = curr;
    }

  return changed;
}

bool
avr_pass_2moves::optimize_2moves (rtx_insn *insn1, rtx_insn *insn2)
{
  bool good = false;
  bool bad = false;
  rtx set1, dest1, src1;
  rtx set2, dest2, src2;

  if ((set1 = single_set (insn1))
      && (set2 = single_set (insn2))
      && (src1 = SET_SRC (set1))
      && REG_P (src2 = SET_SRC (set2))
      && REG_P (dest1 = SET_DEST (set1))
      && REG_P (dest2 = SET_DEST (set2))
      && rtx_equal_p (dest1, src2)
      // Now we have:
      // insn1: dest1 = src1
      // insn2: dest2 = dest1
      && REGNO (dest1) >= FIRST_PSEUDO_REGISTER
      // Paranoia.
      && GET_CODE (PATTERN (insn1)) != PARALLEL
      && GET_CODE (PATTERN (insn2)) != PARALLEL
      && (rtx_equal_p (dest2, src1)
	  || !reg_overlap_mentioned_p (dest2, src1)))
    {
      avr_dump ("\n;; Found 2moves:\n%r\n%r\n", insn1, insn2);
      avr_dump (";; reg %d: insn uses uids:", REGNO (dest1));

      // Go check that dest1 is used exactly once, namely by insn2.

      df_ref use = DF_REG_USE_CHAIN (REGNO (dest1));
      for (; use; use = DF_REF_NEXT_REG (use))
	{
	  rtx_insn *user = DF_REF_INSN (use);
	  avr_dump (" %d", INSN_UID (user));
	  good |= INSN_UID (user) == INSN_UID (insn2);
	  bad |= INSN_UID (user) != INSN_UID (insn2);
	}
      avr_dump (".\n");

      if (good && !bad
	  // Propagate src1 to insn2:
	  // insn1: # Deleted
	  // insn2: dest2 = src1
	  && validate_change (insn2, &SET_SRC (set2), src1, false))
	{
	  SET_INSN_DELETED (insn1);
	  return true;
	}
    }

  if (good && !bad)
    avr_dump (";; Failed\n");

  return false;
}



//////////////////////////////////////////////////////////////////////////////
// Split insns with nonzero_bits() after combine.

static const pass_data avr_pass_data_split_nzb =
{
  RTL_PASS,	    // type
  "",		    // name (will be patched)
  OPTGROUP_NONE,    // optinfo_flags
  TV_DF_SCAN,	    // tv_id
  0,		    // properties_required
  0,		    // properties_provided
  0,		    // properties_destroyed
  0,		    // todo_flags_start
  0		    // todo_flags_finish
};

class avr_pass_split_nzb : public rtl_opt_pass
{
public:
  avr_pass_split_nzb (gcc::context *ctxt, const char *name)
    : rtl_opt_pass (avr_pass_data_split_nzb, ctxt)
  {
    this->name = name;
  }

  unsigned int execute (function *) final override
  {
    if (avropt_use_nonzero_bits)
      split_nzb_insns ();
    return 0;
  }

  void split_nzb_insns ();

}; // avr_pass_split_nzb


void
avr_pass_split_nzb::split_nzb_insns ()
{
  rtx_insn *next;