aboutsummaryrefslogtreecommitdiff
path: root/libjava/classpath/java/security/spec/PKCS8EncodedKeySpec.java
blob: 4a4f1eccea707768192538ce69e119d815b8fd25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/* PKCS8EncodedKeySpec.java --- PKCS8 Encoded Key Specificaton class
   Copyright (C) 1999, 2001 Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
 
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.security.spec;

/**
	PKCS8 Encoded Key Specification class which is used to store 
	"PKCS#8" byte encoded keys.

	@since JDK 1.2

	@author Mark Benvenuto
*/
public class PKCS8EncodedKeySpec extends EncodedKeySpec
{
  /**
     Constructs a new PKCS8EncodedKeySpec with the specified encoded key.

     @param encodedKey A key to store, assumed to be "PKCS#8"
  */
  public PKCS8EncodedKeySpec(byte[] encodedKey)
  {
    super( encodedKey );
  }

  /**
	Gets the encoded key in byte format.

	@returns the encoded key
*/
  public byte[] getEncoded()
  {
    return super.getEncoded();
  }

  /**
	Returns the name of the key format used which is "PKCS#8"

	@return a string representing the name
*/
  public final String getFormat()
  {
    return "PKCS#8";
  }

}
08' href='#n308'>308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
/*
 * Copyright 2005-2018 The OpenSSL Project Authors. All Rights Reserved.
 *
 * Licensed under the OpenSSL license (the "License").  You may not use
 * this file except in compliance with the License.  You can obtain a copy
 * in the file LICENSE in the source distribution or at
 * https://www.openssl.org/source/license.html
 */

/*
 * Support for PVK format keys and related structures (such a PUBLICKEYBLOB
 * and PRIVATEKEYBLOB).
 */

#include "internal/cryptlib.h"
#include <openssl/pem.h>
#include <openssl/rand.h>
#include <openssl/bn.h>
#if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
# include <openssl/dsa.h>
# include <openssl/rsa.h>

/*
 * Utility function: read a DWORD (4 byte unsigned integer) in little endian
 * format
 */

static unsigned int read_ledword(const unsigned char **in)
{
    const unsigned char *p = *in;
    unsigned int ret;
    ret = *p++;
    ret |= (*p++ << 8);
    ret |= (*p++ << 16);
    ret |= (*p++ << 24);
    *in = p;
    return ret;
}

/*
 * Read a BIGNUM in little endian format. The docs say that this should take
 * up bitlen/8 bytes.
 */

static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
{
    *r = BN_lebin2bn(*in, nbyte, NULL);
    if (*r == NULL)
        return 0;
    *in += nbyte;
    return 1;
}

/* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */

# define MS_PUBLICKEYBLOB        0x6
# define MS_PRIVATEKEYBLOB       0x7
# define MS_RSA1MAGIC            0x31415352L
# define MS_RSA2MAGIC            0x32415352L
# define MS_DSS1MAGIC            0x31535344L
# define MS_DSS2MAGIC            0x32535344L

# define MS_KEYALG_RSA_KEYX      0xa400
# define MS_KEYALG_DSS_SIGN      0x2200

# define MS_KEYTYPE_KEYX         0x1
# define MS_KEYTYPE_SIGN         0x2

/* Maximum length of a blob after header */
# define BLOB_MAX_LENGTH          102400

/* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
# define MS_PVKMAGIC             0xb0b5f11eL
/* Salt length for PVK files */
# define PVK_SALTLEN             0x10
/* Maximum length in PVK header */
# define PVK_MAX_KEYLEN          102400
/* Maximum salt length */
# define PVK_MAX_SALTLEN         10240

static EVP_PKEY *b2i_rsa(const unsigned char **in,
                         unsigned int bitlen, int ispub);
static EVP_PKEY *b2i_dss(const unsigned char **in,
                         unsigned int bitlen, int ispub);

static int do_blob_header(const unsigned char **in, unsigned int length,
                          unsigned int *pmagic, unsigned int *pbitlen,
                          int *pisdss, int *pispub)
{
    const unsigned char *p = *in;
    if (length < 16)
        return 0;
    /* bType */
    if (*p == MS_PUBLICKEYBLOB) {
        if (*pispub == 0) {
            PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
            return 0;
        }
        *pispub = 1;
    } else if (*p == MS_PRIVATEKEYBLOB) {
        if (*pispub == 1) {
            PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
            return 0;
        }
        *pispub = 0;
    } else
        return 0;
    p++;
    /* Version */
    if (*p++ != 0x2) {
        PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
        return 0;
    }
    /* Ignore reserved, aiKeyAlg */
    p += 6;
    *pmagic = read_ledword(&p);
    *pbitlen = read_ledword(&p);
    *pisdss = 0;
    switch (*pmagic) {

    case MS_DSS1MAGIC:
        *pisdss = 1;
        /* fall thru */
    case MS_RSA1MAGIC:
        if (*pispub == 0) {
            PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
            return 0;
        }
        break;

    case MS_DSS2MAGIC:
        *pisdss = 1;
        /* fall thru */
    case MS_RSA2MAGIC:
        if (*pispub == 1) {
            PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
            return 0;
        }
        break;

    default:
        PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
        return -1;
    }
    *in = p;
    return 1;
}

static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
{
    unsigned int nbyte, hnbyte;
    nbyte = (bitlen + 7) >> 3;
    hnbyte = (bitlen + 15) >> 4;
    if (isdss) {

        /*
         * Expected length: 20 for q + 3 components bitlen each + 24 for seed
         * structure.
         */
        if (ispub)
            return 44 + 3 * nbyte;
        /*
         * Expected length: 20 for q, priv, 2 bitlen components + 24 for seed
         * structure.
         */
        else
            return 64 + 2 * nbyte;
    } else {
        /* Expected length: 4 for 'e' + 'n' */
        if (ispub)
            return 4 + nbyte;
        else
            /*
             * Expected length: 4 for 'e' and 7 other components. 2
             * components are bitlen size, 5 are bitlen/2
             */
            return 4 + 2 * nbyte + 5 * hnbyte;
    }

}

static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
                        int ispub)
{
    const unsigned char *p = *in;
    unsigned int bitlen, magic;
    int isdss;
    if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0) {
        PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
        return NULL;
    }
    length -= 16;
    if (length < blob_length(bitlen, isdss, ispub)) {
        PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
        return NULL;
    }
    if (isdss)
        return b2i_dss(&p, bitlen, ispub);
    else
        return b2i_rsa(&p, bitlen, ispub);
}

static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
{
    const unsigned char *p;
    unsigned char hdr_buf[16], *buf = NULL;
    unsigned int bitlen, magic, length;
    int isdss;
    EVP_PKEY *ret = NULL;
    if (BIO_read(in, hdr_buf, 16) != 16) {
        PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
        return NULL;
    }
    p = hdr_buf;
    if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
        return NULL;

    length = blob_length(bitlen, isdss, ispub);
    if (length > BLOB_MAX_LENGTH) {
        PEMerr(PEM_F_DO_B2I_BIO, PEM_R_HEADER_TOO_LONG);
        return NULL;
    }
    buf = OPENSSL_malloc(length);
    if (buf == NULL) {
        PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
        goto err;
    }
    p = buf;
    if (BIO_read(in, buf, length) != (int)length) {
        PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
        goto err;
    }

    if (isdss)
        ret = b2i_dss(&p, bitlen, ispub);
    else
        ret = b2i_rsa(&p, bitlen, ispub);

 err:
    OPENSSL_free(buf);
    return ret;
}

static EVP_PKEY *b2i_dss(const unsigned char **in,
                         unsigned int bitlen, int ispub)
{
    const unsigned char *p = *in;
    EVP_PKEY *ret = NULL;
    DSA *dsa = NULL;
    BN_CTX *ctx = NULL;
    unsigned int nbyte;
    BIGNUM *pbn = NULL, *qbn = NULL, *gbn = NULL, *priv_key = NULL;
    BIGNUM *pub_key = NULL;

    nbyte = (bitlen + 7) >> 3;

    dsa = DSA_new();
    ret = EVP_PKEY_new();
    if (dsa == NULL || ret == NULL)
        goto memerr;
    if (!read_lebn(&p, nbyte, &pbn))
        goto memerr;

    if (!read_lebn(&p, 20, &qbn))
        goto memerr;

    if (!read_lebn(&p, nbyte, &gbn))
        goto memerr;

    if (ispub) {
        if (!read_lebn(&p, nbyte, &pub_key))
            goto memerr;
    } else {
        if (!read_lebn(&p, 20, &priv_key))
            goto memerr;

        /* Calculate public key */
        pub_key = BN_new();
        if (pub_key == NULL)
            goto memerr;
        if ((ctx = BN_CTX_new()) == NULL)
            goto memerr;

        if (!BN_mod_exp(pub_key, gbn, priv_key, pbn, ctx))
            goto memerr;

        BN_CTX_free(ctx);
        ctx = NULL;
    }
    if (!DSA_set0_pqg(dsa, pbn, qbn, gbn))
        goto memerr;
    pbn = qbn = gbn = NULL;
    if (!DSA_set0_key(dsa, pub_key, priv_key))
        goto memerr;
    pub_key = priv_key = NULL;

    if (!EVP_PKEY_set1_DSA(ret, dsa))
        goto memerr;
    DSA_free(dsa);
    *in = p;
    return ret;

 memerr:
    PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
    DSA_free(dsa);
    BN_free(pbn);
    BN_free(qbn);
    BN_free(gbn);
    BN_free(pub_key);
    BN_free(priv_key);
    EVP_PKEY_free(ret);
    BN_CTX_free(ctx);
    return NULL;
}

static EVP_PKEY *b2i_rsa(const unsigned char **in,
                         unsigned int bitlen, int ispub)
{
    const unsigned char *pin = *in;
    EVP_PKEY *ret = NULL;
    BIGNUM *e = NULL, *n = NULL, *d = NULL;
    BIGNUM *p = NULL, *q = NULL, *dmp1 = NULL, *dmq1 = NULL, *iqmp = NULL;
    RSA *rsa = NULL;
    unsigned int nbyte, hnbyte;
    nbyte = (bitlen + 7) >> 3;
    hnbyte = (bitlen + 15) >> 4;
    rsa = RSA_new();
    ret = EVP_PKEY_new();
    if (rsa == NULL || ret == NULL)
        goto memerr;
    e = BN_new();
    if (e == NULL)
        goto memerr;
    if (!BN_set_word(e, read_ledword(&pin)))
        goto memerr;
    if (!read_lebn(&pin, nbyte, &n))
        goto memerr;
    if (!ispub) {
        if (!read_lebn(&pin, hnbyte, &p))
            goto memerr;
        if (!read_lebn(&pin, hnbyte, &q))
            goto memerr;
        if (!read_lebn(&pin, hnbyte, &dmp1))
            goto memerr;
        if (!read_lebn(&pin, hnbyte, &dmq1))
            goto memerr;
        if (!read_lebn(&pin, hnbyte, &iqmp))
            goto memerr;
        if (!read_lebn(&pin, nbyte, &d))
            goto memerr;
        if (!RSA_set0_factors(rsa, p, q))
            goto memerr;
        p = q = NULL;
        if (!RSA_set0_crt_params(rsa, dmp1, dmq1, iqmp))
            goto memerr;
        dmp1 = dmq1 = iqmp = NULL;
    }
    if (!RSA_set0_key(rsa, n, e, d))
        goto memerr;
    n = e = d = NULL;

    if (!EVP_PKEY_set1_RSA(ret, rsa))
        goto memerr;
    RSA_free(rsa);
    *in = pin;
    return ret;
 memerr:
    PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
    BN_free(e);
    BN_free(n);
    BN_free(p);
    BN_free(q);
    BN_free(dmp1);
    BN_free(dmq1);
    BN_free(iqmp);
    BN_free(d);
    RSA_free(rsa);
    EVP_PKEY_free(ret);
    return NULL;
}

EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
{
    return do_b2i(in, length, 0);
}

EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
{
    return do_b2i(in, length, 1);
}

EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
{
    return do_b2i_bio(in, 0);
}

EVP_PKEY *b2i_PublicKey_bio(BIO *in)
{
    return do_b2i_bio(in, 1);
}

static void write_ledword(unsigned char **out, unsigned int dw)
{
    unsigned char *p = *out;
    *p++ = dw & 0xff;
    *p++ = (dw >> 8) & 0xff;
    *p++ = (dw >> 16) & 0xff;
    *p++ = (dw >> 24) & 0xff;
    *out = p;
}

static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
{
    BN_bn2lebinpad(bn, *out, len);
    *out += len;
}

static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);

static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
static void write_dsa(unsigned char **out, DSA *dsa, int ispub);

static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
{
    unsigned char *p;
    unsigned int bitlen, magic = 0, keyalg;
    int outlen, noinc = 0;
    int pktype = EVP_PKEY_id(pk);
    if (pktype == EVP_PKEY_DSA) {
        bitlen = check_bitlen_dsa(EVP_PKEY_get0_DSA(pk), ispub, &magic);
        keyalg = MS_KEYALG_DSS_SIGN;
    } else if (pktype == EVP_PKEY_RSA) {
        bitlen = check_bitlen_rsa(EVP_PKEY_get0_RSA(pk), ispub, &magic);
        keyalg = MS_KEYALG_RSA_KEYX;
    } else
        return -1;
    if (bitlen == 0)
        return -1;
    outlen = 16 + blob_length(bitlen,
                              keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
    if (out == NULL)
        return outlen;
    if (*out)
        p = *out;
    else {
        p = OPENSSL_malloc(outlen);
        if (p == NULL)
            return -1;
        *out = p;
        noinc = 1;
    }
    if (ispub)
        *p++ = MS_PUBLICKEYBLOB;
    else
        *p++ = MS_PRIVATEKEYBLOB;
    *p++ = 0x2;
    *p++ = 0;
    *p++ = 0;
    write_ledword(&p, keyalg);
    write_ledword(&p, magic);
    write_ledword(&p, bitlen);
    if (keyalg == MS_KEYALG_DSS_SIGN)
        write_dsa(&p, EVP_PKEY_get0_DSA(pk), ispub);
    else
        write_rsa(&p, EVP_PKEY_get0_RSA(pk), ispub);
    if (!noinc)
        *out += outlen;
    return outlen;
}

static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
{
    unsigned char *tmp = NULL;
    int outlen, wrlen;
    outlen = do_i2b(&tmp, pk, ispub);
    if (outlen < 0)
        return -1;
    wrlen = BIO_write(out, tmp, outlen);
    OPENSSL_free(tmp);
    if (wrlen == outlen)
        return outlen;
    return -1;
}

static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
{
    int bitlen;
    const BIGNUM *p = NULL, *q = NULL, *g = NULL;
    const BIGNUM *pub_key = NULL, *priv_key = NULL;

    DSA_get0_pqg(dsa, &p, &q, &g);
    DSA_get0_key(dsa, &pub_key, &priv_key);
    bitlen = BN_num_bits(p);
    if ((bitlen & 7) || (BN_num_bits(q) != 160)
        || (BN_num_bits(g) > bitlen))
        goto badkey;
    if (ispub) {
        if (BN_num_bits(pub_key) > bitlen)
            goto badkey;
        *pmagic = MS_DSS1MAGIC;
    } else {
        if (BN_num_bits(priv_key) > 160)
            goto badkey;
        *pmagic = MS_DSS2MAGIC;
    }

    return bitlen;
 badkey:
    PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
    return 0;
}

static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
{
    int nbyte, hnbyte, bitlen;
    const BIGNUM *e;

    RSA_get0_key(rsa, NULL, &e, NULL);
    if (BN_num_bits(e) > 32)
        goto badkey;
    bitlen = RSA_bits(rsa);
    nbyte = RSA_size(rsa);
    hnbyte = (bitlen + 15) >> 4;
    if (ispub) {
        *pmagic = MS_RSA1MAGIC;
        return bitlen;
    } else {
        const BIGNUM *d, *p, *q, *iqmp, *dmp1, *dmq1;

        *pmagic = MS_RSA2MAGIC;

        /*
         * For private key each component must fit within nbyte or hnbyte.
         */
        RSA_get0_key(rsa, NULL, NULL, &d);
        if (BN_num_bytes(d) > nbyte)
            goto badkey;
        RSA_get0_factors(rsa, &p, &q);
        RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
        if ((BN_num_bytes(iqmp) > hnbyte)
            || (BN_num_bytes(p) > hnbyte)
            || (BN_num_bytes(q) > hnbyte)
            || (BN_num_bytes(dmp1) > hnbyte)
            || (BN_num_bytes(dmq1) > hnbyte))
            goto badkey;
    }
    return bitlen;
 badkey:
    PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
    return 0;
}

static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
{
    int nbyte, hnbyte;
    const BIGNUM *n, *d, *e, *p, *q, *iqmp, *dmp1, *dmq1;

    nbyte = RSA_size(rsa);
    hnbyte = (RSA_bits(rsa) + 15) >> 4;
    RSA_get0_key(rsa, &n, &e, &d);
    write_lebn(out, e, 4);
    write_lebn(out, n, nbyte);
    if (ispub)
        return;
    RSA_get0_factors(rsa, &p, &q);
    RSA_get0_crt_params(rsa, &dmp1, &dmq1, &iqmp);
    write_lebn(out, p, hnbyte);
    write_lebn(out, q, hnbyte);
    write_lebn(out, dmp1, hnbyte);
    write_lebn(out, dmq1, hnbyte);
    write_lebn(out, iqmp, hnbyte);
    write_lebn(out, d, nbyte);
}

static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
{
    int nbyte;
    const BIGNUM *p = NULL, *q = NULL, *g = NULL;
    const BIGNUM *pub_key = NULL, *priv_key = NULL;

    DSA_get0_pqg(dsa, &p, &q, &g);
    DSA_get0_key(dsa, &pub_key, &priv_key);
    nbyte = BN_num_bytes(p);
    write_lebn(out, p, nbyte);
    write_lebn(out, q, 20);
    write_lebn(out, g, nbyte);
    if (ispub)
        write_lebn(out, pub_key, nbyte);
    else
        write_lebn(out, priv_key, 20);
    /* Set "invalid" for seed structure values */
    memset(*out, 0xff, 24);
    *out += 24;
    return;
}

int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
{
    return do_i2b_bio(out, pk, 0);
}

int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
{
    return do_i2b_bio(out, pk, 1);
}

# ifndef OPENSSL_NO_RC4

static int do_PVK_header(const unsigned char **in, unsigned int length,
                         int skip_magic,
                         unsigned int *psaltlen, unsigned int *pkeylen)
{
    const unsigned char *p = *in;
    unsigned int pvk_magic, is_encrypted;
    if (skip_magic) {
        if (length < 20) {
            PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
            return 0;
        }
    } else {
        if (length < 24) {
            PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
            return 0;
        }
        pvk_magic = read_ledword(&p);
        if (pvk_magic != MS_PVKMAGIC) {
            PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
            return 0;
        }
    }
    /* Skip reserved */
    p += 4;
    /*
     * keytype =
     */ read_ledword(&p);
    is_encrypted = read_ledword(&p);
    *psaltlen = read_ledword(&p);
    *pkeylen = read_ledword(&p);

    if (*pkeylen > PVK_MAX_KEYLEN || *psaltlen > PVK_MAX_SALTLEN)
        return 0;

    if (is_encrypted && !*psaltlen) {
        PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
        return 0;
    }

    *in = p;
    return 1;
}

static int derive_pvk_key(unsigned char *key,
                          const unsigned char *salt, unsigned int saltlen,
                          const unsigned char *pass, int passlen)
{
    EVP_MD_CTX *mctx = EVP_MD_CTX_new();
    int rv = 1;
    if (mctx == NULL
        || !EVP_DigestInit_ex(mctx, EVP_sha1(), NULL)
        || !EVP_DigestUpdate(mctx, salt, saltlen)
        || !EVP_DigestUpdate(mctx, pass, passlen)
        || !EVP_DigestFinal_ex(mctx, key, NULL))
        rv = 0;

    EVP_MD_CTX_free(mctx);
    return rv;
}

static EVP_PKEY *do_PVK_body(const unsigned char **in,
                             unsigned int saltlen, unsigned int keylen,
                             pem_password_cb *cb, void *u)
{
    EVP_PKEY *ret = NULL;
    const unsigned char *p = *in;
    unsigned int magic;
    unsigned char *enctmp = NULL, *q;