aboutsummaryrefslogtreecommitdiff
path: root/libjava/classpath/java/security/cert/PolicyQualifierInfo.java
blob: b53faa93570e48adeb9eb13e658d4a5f264fa286 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/* PolicyQualifierInfo.java -- policy qualifier info object.
   Copyright (C) 2003, 2004  Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.security.cert;

import gnu.java.io.ASN1ParsingException;
import gnu.java.security.OID;
import gnu.java.security.der.DERReader;
import gnu.java.security.der.DERValue;

import java.io.ByteArrayInputStream;
import java.io.IOException;

/**
 * The PolicyQualifierInfo X.509 certificate extension.
 * PolicyQualifierInfo objects are represented by the ASN.1 structure:
 *
 * <pre>
 * PolicyQualifierInfo ::= SEQUENCE {
 *    policyQualifierId   PolicyQualifierId,
 *    qualifier           ANY DEFINED BY policyQualifierId
 * }
 *
 * PolicyQualifierId ::= OBJECT IDENTIFIER
 * </pre>
 *
 * @since 1.4
 * @specnote this class was final in 1.4, but beginning with 1.5 is not
 */
public class PolicyQualifierInfo
{

  // Fields.
  // ------------------------------------------------------------------------

  /** The <code>policyQualifierId</code> field. */
  private OID oid;

  /** The DER encoded form of this object. */
  private byte[] encoded;

  /** The DER encoded form of the <code>qualifier</code> field. */
  private DERValue qualifier;

  // Constructor.
  // ------------------------------------------------------------------------

  /**
   * Create a new PolicyQualifierInfo object from the DER encoded form
   * passed in the byte array. The argument is copied.
   *
   * <p>The ASN.1 form of PolicyQualifierInfo is:
<pre>
PolicyQualifierInfo ::= SEQUENCE {
   policyQualifierId     PolicyQualifierId,
   qualifier             ANY DEFINED BY policyQualifierId
}

PolicyQualifierId ::= OBJECT IDENTIFIER
</pre>
   *
   * @param encoded The DER encoded form.
   * @throws IOException If the structure cannot be parsed from the
   *         encoded bytes.
   */
  public PolicyQualifierInfo(byte[] encoded) throws IOException
  {
    if (encoded == null)
      throw new IOException("null bytes");
    this.encoded = (byte[]) encoded.clone();
    DERReader in = new DERReader(new ByteArrayInputStream(this.encoded));
    DERValue qualInfo = in.read();
    if (!qualInfo.isConstructed())
      throw new ASN1ParsingException("malformed PolicyQualifierInfo");
    DERValue val = in.read();
    if (!(val.getValue() instanceof OID))
      throw new ASN1ParsingException("value read not an OBJECT IDENTIFIER");
    oid = (OID) val.getValue();
    if (val.getEncodedLength() < val.getLength())
      qualifier = in.read();
  }

  // Instance methods.
  // ------------------------------------------------------------------------

  /**
   * Returns the <code>policyQualifierId</code> field of this structure,
   * as a dotted-decimal representation of the object identifier.
   *
   * @return This structure's OID field.
   */
  public final String getPolicyQualifierId()
  {
    return oid.toString();
  }

  /**
   * Returns the DER encoded form of this object; the contents of the
   * returned byte array are equivalent to those that were passed to the
   * constructor. The byte array is cloned every time this method is
   * called.
   *
   * @return The encoded form.
   */
  public final byte[] getEncoded()
  {
    return (byte[]) encoded.clone();
  }

  /**
   * Get the <code>qualifier</code> field of this object, as a DER
   * encoded byte array. The byte array returned is cloned every time
   * this method is called.
   *
   * @return The encoded qualifier.
   */
  public final byte[] getPolicyQualifier()
  {
    if (qualifier == null)
      return new byte[0];
    return qualifier.getEncoded();
  }

  /**
   * Returns a printable string representation of this object.
   *
   * @return The string representation.
   */
  public String toString()
  {
    return "PolicyQualifierInfo { policyQualifierId ::= " + oid
      + ", qualifier ::= " + qualifier + " }";
  }
}
href='#n658'>658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
// SPDX-License-Identifier: GPL-2.0-or-later

/***************************************************************************
 *   Copyright (C) 2011 by Broadcom Corporation                            *
 *   Evan Hunter - ehunter@broadcom.com                                    *
 ***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "rtos.h"
#include "target/target.h"
#include "helper/log.h"
#include "helper/binarybuffer.h"
#include "server/gdb_server.h"

static const struct rtos_type *rtos_types[] = {
	&threadx_rtos,
	&freertos_rtos,
	&ecos_rtos,
	&linux_rtos,
	&chibios_rtos,
	&chromium_ec_rtos,
	&embkernel_rtos,
	&mqx_rtos,
	&ucos_iii_rtos,
	&nuttx_rtos,
	&riot_rtos,
	&zephyr_rtos,
	&rtkernel_rtos,
	/* keep this as last, as it always matches with rtos auto */
	&hwthread_rtos,
	NULL
};

static int rtos_try_next(struct target *target);

int rtos_smp_init(struct target *target)
{
	if (target->rtos->type->smp_init)
		return target->rtos->type->smp_init(target);
	return ERROR_TARGET_INIT_FAILED;
}

static int rtos_target_for_threadid(struct connection *connection, int64_t threadid, struct target **t)
{
	struct target *curr = get_target_from_connection(connection);
	if (t)
		*t = curr;

	return ERROR_OK;
}

static int os_alloc(struct target *target, const struct rtos_type *ostype)
{
	struct rtos *os = target->rtos = calloc(1, sizeof(struct rtos));

	if (!os)
		return JIM_ERR;

	os->type = ostype;
	os->current_threadid = -1;
	os->current_thread = 0;
	os->symbols = NULL;
	os->target = target;

	/* RTOS drivers can override the packet handler in _create(). */
	os->gdb_thread_packet = rtos_thread_packet;
	os->gdb_target_for_threadid = rtos_target_for_threadid;

	return JIM_OK;
}

static void os_free(struct target *target)
{
	if (!target->rtos)
		return;

	free(target->rtos->symbols);
	rtos_free_threadlist(target->rtos);
	free(target->rtos);
	target->rtos = NULL;
}

static int os_alloc_create(struct target *target, const struct rtos_type *ostype)
{
	int ret = os_alloc(target, ostype);

	if (ret == JIM_OK) {
		ret = target->rtos->type->create(target);
		if (ret != JIM_OK)
			os_free(target);
	}

	return ret;
}

int rtos_create(struct jim_getopt_info *goi, struct target *target)
{
	int x;
	const char *cp;
	Jim_Obj *res;
	int e;

	if (!goi->is_configure && goi->argc != 0) {
		Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "NO PARAMS");
		return JIM_ERR;
	}

	os_free(target);

	e = jim_getopt_string(goi, &cp, NULL);
	if (e != JIM_OK)
		return e;

	if (strcmp(cp, "none") == 0)
		return JIM_OK;

	if (strcmp(cp, "auto") == 0) {
		/* Auto detect tries to look up all symbols for each RTOS,
		 * and runs the RTOS driver's _detect() function when GDB
		 * finds all symbols for any RTOS. See rtos_qsymbol(). */
		target->rtos_auto_detect = true;

		/* rtos_qsymbol() will iterate over all RTOSes. Allocate
		 * target->rtos here, and set it to the first RTOS type. */
		return os_alloc(target, rtos_types[0]);
	}

	for (x = 0; rtos_types[x]; x++)
		if (strcmp(cp, rtos_types[x]->name) == 0)
			return os_alloc_create(target, rtos_types[x]);

	Jim_SetResultFormatted(goi->interp, "Unknown RTOS type %s, try one of: ", cp);
	res = Jim_GetResult(goi->interp);
	for (x = 0; rtos_types[x]; x++)
		Jim_AppendStrings(goi->interp, res, rtos_types[x]->name, ", ", NULL);
	Jim_AppendStrings(goi->interp, res, ", auto or none", NULL);

	return JIM_ERR;
}

void rtos_destroy(struct target *target)
{
	os_free(target);
}

int gdb_thread_packet(struct connection *connection, char const *packet, int packet_size)
{
	struct target *target = get_target_from_connection(connection);
	if (!target->rtos)
		return rtos_thread_packet(connection, packet, packet_size);	/* thread not
										 *found*/
	return target->rtos->gdb_thread_packet(connection, packet, packet_size);
}

static struct symbol_table_elem *find_symbol(const struct rtos *os, const char *symbol)
{
	struct symbol_table_elem *s;

	for (s = os->symbols; s->symbol_name; s++)
		if (!strcmp(s->symbol_name, symbol))
			return s;

	return NULL;
}

static struct symbol_table_elem *next_symbol(struct rtos *os, char *cur_symbol, uint64_t cur_addr)
{
	if (!os->symbols)
		os->type->get_symbol_list_to_lookup(&os->symbols);

	if (!cur_symbol[0])
		return &os->symbols[0];

	struct symbol_table_elem *s = find_symbol(os, cur_symbol);
	if (!s)
		return NULL;

	s->address = cur_addr;
	s++;
	return s;
}

/* rtos_qsymbol() processes and replies to all qSymbol packets from GDB.
 *
 * GDB sends a qSymbol:: packet (empty address, empty name) to notify
 * that it can now answer qSymbol::hexcodedname queries, to look up symbols.
 *
 * If the qSymbol packet has no address that means GDB did not find the
 * symbol, in which case auto-detect will move on to try the next RTOS.
 *
 * rtos_qsymbol() then calls the next_symbol() helper function, which
 * iterates over symbol names for the current RTOS until it finds the
 * symbol in the received GDB packet, and then returns the next entry
 * in the list of symbols.
 *
 * If GDB replied about the last symbol for the RTOS and the RTOS was
 * specified explicitly, then no further symbol lookup is done. When
 * auto-detecting, the RTOS driver _detect() function must return success.
 *
 * The symbol is tried twice to handle the -flto case with gcc.  The first
 * attempt uses the symbol as-is, and the second attempt tries the symbol
 * with ".lto_priv.0" appended to it.  We only consider the first static
 * symbol here from the -flto case.  (Each subsequent static symbol with
 * the same name is exported as .lto_priv.1, .lto_priv.2, etc.)
 *
 * rtos_qsymbol() returns 1 if an RTOS has been detected, or 0 otherwise.
 */
int rtos_qsymbol(struct connection *connection, char const *packet, int packet_size)
{
	int rtos_detected = 0;
	uint64_t addr = 0;
	size_t reply_len;
	char reply[GDB_BUFFER_SIZE + 1], cur_sym[GDB_BUFFER_SIZE / 2 + 1] = ""; /* Extra byte for null-termination */
	struct symbol_table_elem *next_sym = NULL;
	struct target *target = get_target_from_connection(connection);
	struct rtos *os = target->rtos;

	reply_len = sprintf(reply, "OK");

	if (!os)
		goto done;

	/* Decode any symbol name in the packet*/
	size_t len = unhexify((uint8_t *)cur_sym, strchr(packet + 8, ':') + 1, strlen(strchr(packet + 8, ':') + 1));
	cur_sym[len] = 0;

	const char no_suffix[] = "";
	const char lto_suffix[] = ".lto_priv.0";
	const size_t lto_suffix_len = strlen(lto_suffix);

	const char *cur_suffix;
	const char *next_suffix;

	/* Detect what suffix was used during the previous symbol lookup attempt, and
	 * speculatively determine the next suffix (only used for the unknown address case) */
	if (len > lto_suffix_len && !strcmp(cur_sym + len - lto_suffix_len, lto_suffix)) {
		/* Trim the suffix from cur_sym for comparison purposes below */
		cur_sym[len - lto_suffix_len] = '\0';
		cur_suffix = lto_suffix;
		next_suffix = NULL;
	} else {
		cur_suffix = no_suffix;
		next_suffix = lto_suffix;
	}

	if ((strcmp(packet, "qSymbol::") != 0) &&               /* GDB is not offering symbol lookup for the first time */
	    (!sscanf(packet, "qSymbol:%" SCNx64 ":", &addr))) { /* GDB did not find an address for a symbol */

		/* GDB could not find an address for the previous symbol */
		struct symbol_table_elem *sym = find_symbol(os, cur_sym);

		if (next_suffix) {
			next_sym = sym;
		} else if (sym && !sym->optional) {	/* the symbol is mandatory for this RTOS */
			if (!target->rtos_auto_detect) {
				LOG_WARNING("RTOS %s not detected. (GDB could not find symbol \'%s\')", os->type->name, cur_sym);
				goto done;
			} else {
				/* Autodetecting RTOS - try next RTOS */
				if (!rtos_try_next(target)) {
					LOG_WARNING("No RTOS could be auto-detected!");
					goto done;
				}

				/* Next RTOS selected - invalidate current symbol */
				cur_sym[0] = '\x00';
			}
		}
	}

	LOG_DEBUG("RTOS: Address of symbol '%s%s' is 0x%" PRIx64, cur_sym, cur_suffix, addr);

	if (!next_sym) {
		next_sym = next_symbol(os, cur_sym, addr);
		next_suffix = no_suffix;
	}

	/* Should never happen unless the debugger misbehaves */
	if (!next_sym) {
		LOG_WARNING("RTOS: Debugger sent us qSymbol with '%s%s' that we did not ask for", cur_sym, cur_suffix);
		goto done;
	}

	if (!next_sym->symbol_name) {
		/* No more symbols need looking up */

		if (!target->rtos_auto_detect) {
			rtos_detected = 1;
			goto done;
		}

		if (os->type->detect_rtos(target)) {
			LOG_INFO("Auto-detected RTOS: %s", os->type->name);
			rtos_detected = 1;
			goto done;
		} else {
			LOG_WARNING("No RTOS could be auto-detected!");
			goto done;
		}
	}

	assert(next_suffix);

	reply_len = 8;                                   /* snprintf(..., "qSymbol:") */
	reply_len += 2 * strlen(next_sym->symbol_name);  /* hexify(..., next_sym->symbol_name, ...) */
	reply_len += 2 * strlen(next_suffix);            /* hexify(..., next_suffix, ...) */
	reply_len += 1;                                  /* Terminating NUL */
	if (reply_len > sizeof(reply)) {
		LOG_ERROR("RTOS symbol '%s%s' name is too long for GDB", next_sym->symbol_name, next_suffix);
		goto done;
	}

	LOG_DEBUG("RTOS: Requesting symbol lookup of '%s%s' from the debugger", next_sym->symbol_name, next_suffix);

	reply_len = snprintf(reply, sizeof(reply), "qSymbol:");
	reply_len += hexify(reply + reply_len,
		(const uint8_t *)next_sym->symbol_name, strlen(next_sym->symbol_name),
		sizeof(reply) - reply_len);
	reply_len += hexify(reply + reply_len,
		(const uint8_t *)next_suffix, strlen(next_suffix),
		sizeof(reply) - reply_len);

done:
	gdb_put_packet(connection, reply, reply_len);
	return rtos_detected;
}

int rtos_thread_packet(struct connection *connection, char const *packet, int packet_size)
{
	struct target *target = get_target_from_connection(connection);

	if (strncmp(packet, "qThreadExtraInfo,", 17) == 0) {
		if ((target->rtos) && (target->rtos->thread_details) &&
				(target->rtos->thread_count != 0)) {
			threadid_t threadid = 0;
			int found = -1;
			sscanf(packet, "qThreadExtraInfo,%" SCNx64, &threadid);

			if ((target->rtos) && (target->rtos->thread_details)) {
				int thread_num;
				for (thread_num = 0; thread_num < target->rtos->thread_count; thread_num++) {
					if (target->rtos->thread_details[thread_num].threadid == threadid) {
						if (target->rtos->thread_details[thread_num].exists)
							found = thread_num;
					}
				}
			}
			if (found == -1) {
				gdb_put_packet(connection, "E01", 3);	/* thread not found */
				return ERROR_OK;
			}

			struct thread_detail *detail = &target->rtos->thread_details[found];

			int str_size = 0;
			if (detail->thread_name_str)
				str_size += strlen(detail->thread_name_str);
			if (detail->extra_info_str)
				str_size += strlen(detail->extra_info_str);

			char *tmp_str = calloc(str_size + 9, sizeof(char));
			char *tmp_str_ptr = tmp_str;

			if (detail->thread_name_str)
				tmp_str_ptr += sprintf(tmp_str_ptr, "Name: %s", detail->thread_name_str);
			if (detail->extra_info_str) {
				if (tmp_str_ptr != tmp_str)
					tmp_str_ptr += sprintf(tmp_str_ptr, ", ");
				tmp_str_ptr += sprintf(tmp_str_ptr, "%s", detail->extra_info_str);
			}

			assert(strlen(tmp_str) ==
				(size_t) (tmp_str_ptr - tmp_str));

			char *hex_str = malloc(strlen(tmp_str) * 2 + 1);
			size_t pkt_len = hexify(hex_str, (const uint8_t *)tmp_str,
				strlen(tmp_str), strlen(tmp_str) * 2 + 1);

			gdb_put_packet(connection, hex_str, pkt_len);
			free(hex_str);
			free(tmp_str);
			return ERROR_OK;

		}
		gdb_put_packet(connection, "", 0);
		return ERROR_OK;
	} else if (strncmp(packet, "qSymbol", 7) == 0) {
		if (rtos_qsymbol(connection, packet, packet_size) == 1) {
			if (target->rtos_auto_detect) {
				target->rtos_auto_detect = false;
				target->rtos->type->create(target);
			}
			target->rtos->type->update_threads(target->rtos);
		}
		return ERROR_OK;
	} else if (strncmp(packet, "qfThreadInfo", 12) == 0) {
		int i;
		if (target->rtos) {
			if (target->rtos->thread_count == 0) {
				gdb_put_packet(connection, "l", 1);
			} else {
				/*thread id are 16 char +1 for ',' */
				char *out_str = malloc(17 * target->rtos->thread_count + 1);
				char *tmp_str = out_str;
				for (i = 0; i < target->rtos->thread_count; i++) {
					tmp_str += sprintf(tmp_str, "%c%016" PRIx64, i == 0 ? 'm' : ',',
										target->rtos->thread_details[i].threadid);
				}
				gdb_put_packet(connection, out_str, strlen(out_str));
				free(out_str);
			}
		} else
			gdb_put_packet(connection, "l", 1);

		return ERROR_OK;
	} else if (strncmp(packet, "qsThreadInfo", 12) == 0) {
		gdb_put_packet(connection, "l", 1);
		return ERROR_OK;
	} else if (strncmp(packet, "qAttached", 9) == 0) {
		gdb_put_packet(connection, "1", 1);
		return ERROR_OK;
	} else if (strncmp(packet, "qOffsets", 8) == 0) {
		char offsets[] = "Text=0;Data=0;Bss=0";
		gdb_put_packet(connection, offsets, sizeof(offsets)-1);
		return ERROR_OK;
	} else if (strncmp(packet, "qCRC:", 5) == 0) {
		/* make sure we check this before "qC" packet below
		 * otherwise it gets incorrectly handled */
		return GDB_THREAD_PACKET_NOT_CONSUMED;
	} else if (strncmp(packet, "qC", 2) == 0) {
		if (target->rtos) {
			char buffer[19];
			int size;
			size = snprintf(buffer, 19, "QC%016" PRIx64, target->rtos->current_thread);
			gdb_put_packet(connection, buffer, size);
		} else
			gdb_put_packet(connection, "QC0", 3);
		return ERROR_OK;
	} else if (packet[0] == 'T') {	/* Is thread alive? */
		threadid_t threadid;
		int found = -1;
		sscanf(packet, "T%" SCNx64, &threadid);
		if ((target->rtos) && (target->rtos->thread_details)) {
			int thread_num;
			for (thread_num = 0; thread_num < target->rtos->thread_count; thread_num++) {
				if (target->rtos->thread_details[thread_num].threadid == threadid) {
					if (target->rtos->thread_details[thread_num].exists)
						found = thread_num;
				}
			}
		}
		if (found != -1)
			gdb_put_packet(connection, "OK", 2);	/* thread alive */
		else
			gdb_put_packet(connection, "E01", 3);	/* thread not found */
		return ERROR_OK;
	} else if (packet[0] == 'H') {	/* Set current thread ( 'c' for step and continue, 'g' for
					 * all other operations ) */
		if ((packet[1] == 'g') && (target->rtos)) {
			threadid_t threadid;
			sscanf(packet, "Hg%16" SCNx64, &threadid);
			LOG_DEBUG("RTOS: GDB requested to set current thread to 0x%" PRIx64, threadid);
			/* threadid of 0 indicates target should choose */
			if (threadid == 0)
				target->rtos->current_threadid = target->rtos->current_thread;
			else
				target->rtos->current_threadid = threadid;
		}
		gdb_put_packet(connection, "OK", 2);
		return ERROR_OK;
	}

	return GDB_THREAD_PACKET_NOT_CONSUMED;
}

static int rtos_put_gdb_reg_list(struct connection *connection,
		struct rtos_reg *reg_list, int num_regs)
{
	size_t num_bytes = 1; /* NUL */
	for (int i = 0; i < num_regs; ++i)
		num_bytes += DIV_ROUND_UP(reg_list[i].size, 8) * 2;

	char *hex = malloc(num_bytes);
	char *hex_p = hex;

	for (int i = 0; i < num_regs; ++i) {
		size_t count = DIV_ROUND_UP(reg_list[i].size, 8);
		size_t n = hexify(hex_p, reg_list[i].value, count, num_bytes);
		hex_p += n;
		num_bytes -= n;
	}

	gdb_put_packet(connection, hex, strlen(hex));
	free(hex);

	return ERROR_OK;
}

/** Look through all registers to find this register. */
int rtos_get_gdb_reg(struct connection *connection, int reg_num)
{
	struct target *target = get_target_from_connection(connection);
	int64_t current_threadid = target->rtos->current_threadid;
	if ((target->rtos) && (current_threadid != -1) &&
			(current_threadid != 0) &&
			((current_threadid != target->rtos->current_thread) ||
			(target->smp))) {	/* in smp several current thread are possible */
		struct rtos_reg *reg_list;
		int num_regs;

		LOG_DEBUG("getting register %d for thread 0x%" PRIx64
				  ", target->rtos->current_thread=0x%" PRIx64,
										reg_num,
										current_threadid,
										target->rtos->current_thread);

		int retval;
		if (target->rtos->type->get_thread_reg) {
			reg_list = calloc(1, sizeof(*reg_list));
			num_regs = 1;
			retval = target->rtos->type->get_thread_reg(target->rtos,
					current_threadid, reg_num, &reg_list[0]);
			if (retval != ERROR_OK) {
				LOG_ERROR("RTOS: failed to get register %d", reg_num);
				return retval;
			}
		} else {
			retval = target->rtos->type->get_thread_reg_list(target->rtos,
					current_threadid,
					&reg_list,
					&num_regs);
			if (retval != ERROR_OK) {
				LOG_ERROR("RTOS: failed to get register list");
				return retval;
			}
		}

		for (int i = 0; i < num_regs; ++i) {
			if (reg_list[i].number == (uint32_t)reg_num) {
				rtos_put_gdb_reg_list(connection, reg_list + i, 1);
				free(reg_list);
				return ERROR_OK;
			}
		}

		free(reg_list);
	}
	return ERROR_FAIL;
}

/** Return a list of general registers. */
int rtos_get_gdb_reg_list(struct connection *connection)
{
	struct target *target = get_target_from_connection(connection);
	int64_t current_threadid = target->rtos->current_threadid;
	if ((target->rtos) && (current_threadid != -1) &&
			(current_threadid != 0) &&
			((current_threadid != target->rtos->current_thread) ||
			(target->smp))) {	/* in smp several current thread are possible */
		struct rtos_reg *reg_list;
		int num_regs;

		LOG_DEBUG("RTOS: getting register list for thread 0x%" PRIx64
				  ", target->rtos->current_thread=0x%" PRIx64 "\r\n",
										current_threadid,
										target->rtos->current_thread);

		int retval = target->rtos->type->get_thread_reg_list(target->rtos,
				current_threadid,
				&reg_list,
				&num_regs);
		if (retval != ERROR_OK) {
			LOG_ERROR("RTOS: failed to get register list");
			return retval;
		}

		rtos_put_gdb_reg_list(connection, reg_list, num_regs);
		free(reg_list);

		return ERROR_OK;
	}
	return ERROR_FAIL;
}

int rtos_set_reg(struct connection *connection, int reg_num,
		uint8_t *reg_value)
{
	struct target *target = get_target_from_connection(connection);
	int64_t current_threadid = target->rtos->current_threadid;
	if ((target->rtos) &&
			(target->rtos->type->set_reg) &&
			(current_threadid != -1) &&
			(current_threadid != 0)) {
		return target->rtos->type->set_reg(target->rtos, reg_num, reg_value);
	}
	return ERROR_FAIL;
}

int rtos_generic_stack_read(struct target *target,
	const struct rtos_register_stacking *stacking,
	int64_t stack_ptr,
	struct rtos_reg **reg_list,
	int *num_regs)
{
	int retval;

	if (stack_ptr == 0) {
		LOG_ERROR("null stack pointer in thread");
		return -5;
	}
	/* Read the stack */
	uint8_t *stack_data = malloc(stacking->stack_registers_size);
	uint32_t address = stack_ptr;

	if (stacking->stack_growth_direction == 1)
		address -= stacking->stack_registers_size;
	if (stacking->read_stack)
		retval = stacking->read_stack(target, address, stacking, stack_data);
	else
		retval = target_read_buffer(target, address, stacking->stack_registers_size, stack_data);
	if (retval != ERROR_OK) {
		free(stack_data);
		LOG_ERROR("Error reading stack frame from thread");
		return retval;
	}
	LOG_DEBUG("RTOS: Read stack frame at 0x%" PRIx32, address);

#if 0
		LOG_OUTPUT("Stack Data :");
		for (i = 0; i < stacking->stack_registers_size; i++)
			LOG_OUTPUT("%02X", stack_data[i]);
		LOG_OUTPUT("\r\n");
#endif

	target_addr_t new_stack_ptr;
	if (stacking->calculate_process_stack) {
		new_stack_ptr = stacking->calculate_process_stack(target,
				stack_data, stacking, stack_ptr);
	} else {
		new_stack_ptr = stack_ptr - stacking->stack_growth_direction *
			stacking->stack_registers_size;
	}

	*reg_list = calloc(stacking->num_output_registers, sizeof(struct rtos_reg));
	*num_regs = stacking->num_output_registers;

	for (int i = 0; i < stacking->num_output_registers; ++i) {
		(*reg_list)[i].number = stacking->register_offsets[i].number;
		(*reg_list)[i].size = stacking->register_offsets[i].width_bits;

		int offset = stacking->register_offsets[i].offset;
		if (offset == -2)
			buf_cpy(&new_stack_ptr, (*reg_list)[i].value, (*reg_list)[i].size);
		else if (offset != -1)
			buf_cpy(stack_data + offset, (*reg_list)[i].value, (*reg_list)[i].size);
	}

	free(stack_data);
/*	LOG_OUTPUT("Output register string: %s\r\n", *hex_reg_list); */
	return ERROR_OK;
}

static int rtos_try_next(struct target *target)
{
	struct rtos *os = target->rtos;
	const struct rtos_type **type = rtos_types;

	if (!os)
		return 0;

	while (*type && os->type != *type)
		type++;

	if (!*type || !*(++type))
		return 0;

	os->type = *type;

	free(os->symbols);
	os->symbols = NULL;

	return 1;
}

int rtos_update_threads(struct target *target)
{
	if ((target->rtos) && (target->rtos->type))
		target->rtos->type->update_threads(target->rtos);
	return ERROR_OK;
}

void rtos_free_threadlist(struct rtos *rtos)
{
	if (rtos->thread_details) {
		int j;

		for (j = 0; j < rtos->thread_count; j++) {
			struct thread_detail *current_thread = &rtos->thread_details[j];
			free(current_thread->thread_name_str);
			free(current_thread->extra_info_str);
		}
		free(rtos->thread_details);
		rtos->thread_details = NULL;
		rtos->thread_count = 0;
		rtos->current_threadid = -1;
		rtos->current_thread = 0;
	}
}

int rtos_read_buffer(struct target *target, target_addr_t address,
		uint32_t size, uint8_t *buffer)
{
	if (target->rtos->type->read_buffer)
		return target->rtos->type->read_buffer(target->rtos, address, size, buffer);
	return ERROR_NOT_IMPLEMENTED;
}

int rtos_write_buffer(struct target *target, target_addr_t address,
		uint32_t size, const uint8_t *buffer)
{
	if (target->rtos->type->write_buffer)
		return target->rtos->type->write_buffer(target->rtos, address, size, buffer);
	return ERROR_NOT_IMPLEMENTED;
}