aboutsummaryrefslogtreecommitdiff
path: root/libjava/classpath/java/lang/Math.java
blob: 90574d52fc84601945d0a9ebdb70ca310c888f57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130<
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#ifndef ERROR_H
#define ERROR_H

#include "command.h"

/* To achieve C99 printf compatibility in MinGW, gnu_printf should be
 * used for __attribute__((format( ... ))), with GCC v4.4 or later
 */
#if (defined(IS_MINGW) && (((__GNUC__ << 16) + __GNUC_MINOR__) >= 0x00040004))
#define PRINTF_ATTRIBUTE_FORMAT gnu_printf
#else
#define PRINTF_ATTRIBUTE_FORMAT printf
#endif

/* logging priorities
 * LOG_LVL_SILENT - turn off all output. In lieu of try + catch this can be used as a
 *                  feeble ersatz.
 * LOG_LVL_USER - user messages. Could be anything from information
 *                to progress messags. These messages do not represent
 *                incorrect or unexpected behaviour, just normal execution.
 * LOG_LVL_ERROR - fatal errors, that are likely to cause program abort
 * LOG_LVL_WARNING - non-fatal errors, that may be resolved later
 * LOG_LVL_INFO - state information, etc.
 * LOG_LVL_DEBUG - debug statements, execution trace
 */
enum log_levels
{
	LOG_LVL_SILENT = -3,
	LOG_LVL_OUTPUT = -2,
	LOG_LVL_USER = -1,
	LOG_LVL_ERROR = 0,
	LOG_LVL_WARNING = 1,
	LOG_LVL_INFO = 2,
	LOG_LVL_DEBUG = 3
};

void log_printf(enum log_levels level, const char *file, unsigned line,
	const char *function, const char *format, ...)
__attribute__ ((format (PRINTF_ATTRIBUTE_FORMAT, 5, 6)));
void log_printf_lf(enum log_levels level, const char *file, unsigned line,
	const char *function, const char *format, ...)
__attribute__ ((format (PRINTF_ATTRIBUTE_FORMAT, 5, 6)));

int log_init(struct command_context *cmd_ctx);
int set_log_output(struct command_context *cmd_ctx, FILE *output);

int log_register_commands(struct command_context *cmd_ctx);

void keep_alive(void);
void kept_alive(void);

void alive_sleep(uint64_t ms);
void busy_sleep(uint64_t ms);

/* log entries can be paused and replayed roughly according to the try/catch/rethrow
 * concepts in C++
 */
void log_try(void);
void log_catch(void);
void log_rethrow(void);


typedef void (*log_callback_fn)(void *priv, const char *file, unsigned line,
		const char *function, const char *string);

struct log_callback {
	log_callback_fn fn;
	void *priv;
	struct log_callback *next;
};

int log_add_callback(log_callback_fn fn, void *priv);
int log_remove_callback(log_callback_fn fn, void *priv);

char *alloc_vprintf(const char *fmt, va_list ap);
char *alloc_printf(const char *fmt, ...);

extern int debug_level;

/* Avoid fn call and building parameter list if we're not outputting the information.
 * Matters on feeble CPUs for DEBUG/INFO statements that are involved frequently */

#define LOG_LEVEL_IS(FOO)  ((debug_level) >= (FOO))

#define LOG_DEBUG(expr ...) \
		((debug_level >= LOG_LVL_DEBUG) ? log_printf_lf (LOG_LVL_DEBUG, __FILE__, __LINE__, __FUNCTION__, expr) , 0 : 0)

#define LOG_INFO(expr ...) \
		log_printf_lf (LOG_LVL_INFO, __FILE__, __LINE__, __FUNCTION__, expr)

#define LOG_INFO_N(expr ...) \
		log_printf (LOG_LVL_INFO, __FILE__, __LINE__, __FUNCTION__, expr)

#define LOG_WARNING(expr ...) \
		log_printf_lf (LOG_LVL_WARNING, __FILE__, __LINE__, __FUNCTION__, expr)

#define LOG_ERROR(expr ...) \
		log_printf_lf (LOG_LVL_ERROR, __FILE__, __LINE__, __FUNCTION__, expr)

#define LOG_USER(expr ...) \
		log_printf_lf (LOG_LVL_USER, __FILE__, __LINE__, __FUNCTION__, expr)

#define LOG_USER_N(expr ...) \
		log_printf (LOG_LVL_USER, __FILE__, __LINE__, __FUNCTION__, expr)

#define LOG_OUTPUT(expr ...) \
		log_printf (LOG_LVL_OUTPUT, __FILE__, __LINE__, __FUNCTION__, expr)

/* general failures
 * error codes < 100
 */
#define ERROR_OK					(0)
#define ERROR_INVALID_ARGUMENTS		ERROR_COMMAND_SYNTAX_ERROR
#define ERROR_NO_CONFIG_FILE		(-2)
#define ERROR_BUF_TOO_SMALL			(-3)
/* see "Error:" log entry for meaningful message to the user. The caller should
 * make no assumptions about what went wrong and try to handle the problem.
 */
#define ERROR_FAIL					(-4)

#endif /* LOG_H */
ref='#n490'>490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
/* java.lang.Math -- common mathematical functions, native allowed (VMMath)
   Copyright (C) 1998, 2001, 2002, 2003, 2006 Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.lang;

import gnu.classpath.Configuration;

import java.util.Random;

/**
 * Helper class containing useful mathematical functions and constants.
 * <P>
 *
 * Note that angles are specified in radians.  Conversion functions are
 * provided for your convenience.
 *
 * @author Paul Fisher
 * @author John Keiser
 * @author Eric Blake (ebb9@email.byu.edu)
 * @author Andrew John Hughes (gnu_andrew@member.fsf.org)
 * @since 1.0
 */
public final class Math
{

  // FIXME - This is here because we need to load the "javalang" system
  // library somewhere late in the bootstrap cycle. We cannot do this
  // from VMSystem or VMRuntime since those are used to actually load
  // the library. This is mainly here because historically Math was
  // late enough in the bootstrap cycle to start using System after it
  // was initialized (called from the java.util classes).
  static
  {
    if (Configuration.INIT_LOAD_LIBRARY)
      {
        System.loadLibrary("javalang");
      }
  }

  /**
   * Math is non-instantiable
   */
  private Math()
  {
  }

  /**
   * A random number generator, initialized on first use.
   */
  private static Random rand;

  /**
   * The most accurate approximation to the mathematical constant <em>e</em>:
   * <code>2.718281828459045</code>. Used in natural log and exp.
   *
   * @see #log(double)
   * @see #exp(double)
   */
  public static final double E = 2.718281828459045;

  /**
   * The most accurate approximation to the mathematical constant <em>pi</em>:
   * <code>3.141592653589793</code>. This is the ratio of a circle's diameter
   * to its circumference.
   */
  public static final double PI = 3.141592653589793;

  /**
   * Take the absolute value of the argument.
   * (Absolute value means make it positive.)
   * <P>
   *
   * Note that the the largest negative value (Integer.MIN_VALUE) cannot
   * be made positive.  In this case, because of the rules of negation in
   * a computer, MIN_VALUE is what will be returned.
   * This is a <em>negative</em> value.  You have been warned.
   *
   * @param i the number to take the absolute value of
   * @return the absolute value
   * @see Integer#MIN_VALUE
   */
  public static int abs(int i)
  {
    return (i < 0) ? -i : i;
  }

  /**
   * Take the absolute value of the argument.
   * (Absolute value means make it positive.)
   * <P>
   *
   * Note that the the largest negative value (Long.MIN_VALUE) cannot
   * be made positive.  In this case, because of the rules of negation in
   * a computer, MIN_VALUE is what will be returned.
   * This is a <em>negative</em> value.  You have been warned.
   *
   * @param l the number to take the absolute value of
   * @return the absolute value
   * @see Long#MIN_VALUE
   */
  public static long abs(long l)
  {
    return (l < 0) ? -l : l;
  }

  /**
   * Take the absolute value of the argument.
   * (Absolute value means make it positive.)
   * <P>
   *
   * This is equivalent, but faster than, calling
   * <code>Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))</code>.
   *
   * @param f the number to take the absolute value of
   * @return the absolute value
   */
  public static float abs(float f)
  {
    return (f <= 0) ? 0 - f : f;
  }

  /**
   * Take the absolute value of the argument.
   * (Absolute value means make it positive.)
   *
   * This is equivalent, but faster than, calling
   * <code>Double.longBitsToDouble(Double.doubleToLongBits(a)
   *       &lt;&lt; 1) &gt;&gt;&gt; 1);</code>.
   *
   * @param d the number to take the absolute value of
   * @return the absolute value
   */
  public static double abs(double d)
  {
    return (d <= 0) ? 0 - d : d;
  }

  /**
   * Return whichever argument is smaller.
   *
   * @param a the first number
   * @param b a second number
   * @return the smaller of the two numbers
   */
  public static int min(int a, int b)
  {
    return (a < b) ? a : b;
  }

  /**
   * Return whichever argument is smaller.
   *
   * @param a the first number
   * @param b a second number
   * @return the smaller of the two numbers
   */
  public static long min(long a, long b)
  {
    return (a < b) ? a : b;
  }

  /**
   * Return whichever argument is smaller. If either argument is NaN, the
   * result is NaN, and when comparing 0 and -0, -0 is always smaller.
   *
   * @param a the first number
   * @param b a second number
   * @return the smaller of the two numbers
   */
  public static float min(float a, float b)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return a;
    // no need to check if b is NaN; < will work correctly
    // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
    if (a == 0 && b == 0)
      return -(-a - b);
    return (a < b) ? a : b;
  }

  /**
   * Return whichever argument is smaller. If either argument is NaN, the
   * result is NaN, and when comparing 0 and -0, -0 is always smaller.
   *
   * @param a the first number
   * @param b a second number
   * @return the smaller of the two numbers
   */
  public static double min(double a, double b)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return a;
    // no need to check if b is NaN; < will work correctly
    // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
    if (a == 0 && b == 0)
      return -(-a - b);
    return (a < b) ? a : b;
  }

  /**
   * Return whichever argument is larger.
   *
   * @param a the first number
   * @param b a second number
   * @return the larger of the two numbers
   */
  public static int max(int a, int b)
  {
    return (a > b) ? a : b;
  }

  /**
   * Return whichever argument is larger.
   *
   * @param a the first number
   * @param b a second number
   * @return the larger of the two numbers
   */
  public static long max(long a, long b)
  {
    return (a > b) ? a : b;
  }

  /**
   * Return whichever argument is larger. If either argument is NaN, the
   * result is NaN, and when comparing 0 and -0, 0 is always larger.
   *
   * @param a the first number
   * @param b a second number
   * @return the larger of the two numbers
   */
  public static float max(float a, float b)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return a;
    // no need to check if b is NaN; > will work correctly
    // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
    if (a == 0 && b == 0)
      return a - -b;
    return (a > b) ? a : b;
  }

  /**
   * Return whichever argument is larger. If either argument is NaN, the
   * result is NaN, and when comparing 0 and -0, 0 is always larger.
   *
   * @param a the first number
   * @param b a second number
   * @return the larger of the two numbers
   */
  public static double max(double a, double b)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return a;
    // no need to check if b is NaN; > will work correctly
    // recall that -0.0 == 0.0, but [+-]0.0 - [+-]0.0 behaves special
    if (a == 0 && b == 0)
      return a - -b;
    return (a > b) ? a : b;
  }

  /**
   * The trigonometric function <em>sin</em>. The sine of NaN or infinity is
   * NaN, and the sine of 0 retains its sign. This is accurate within 1 ulp,
   * and is semi-monotonic.
   *
   * @param a the angle (in radians)
   * @return sin(a)
   */
  public static double sin(double a)
  {
    return VMMath.sin(a);
  }

  /**
   * The trigonometric function <em>cos</em>. The cosine of NaN or infinity is
   * NaN. This is accurate within 1 ulp, and is semi-monotonic.
   *
   * @param a the angle (in radians)
   * @return cos(a)
   */
  public static double cos(double a)
  {
    return VMMath.cos(a);
  }

  /**
   * The trigonometric function <em>tan</em>. The tangent of NaN or infinity
   * is NaN, and the tangent of 0 retains its sign. This is accurate within 1
   * ulp, and is semi-monotonic.
   *
   * @param a the angle (in radians)
   * @return tan(a)
   */
  public static double tan(double a)
  {
    return VMMath.tan(a);
  }

  /**
   * The trigonometric function <em>arcsin</em>. The range of angles returned
   * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN or
   * its absolute value is beyond 1, the result is NaN; and the arcsine of
   * 0 retains its sign. This is accurate within 1 ulp, and is semi-monotonic.
   *
   * @param a the sin to turn back into an angle
   * @return arcsin(a)
   */
  public static double asin(double a)
  {
    return VMMath.asin(a);
  }

  /**
   * The trigonometric function <em>arccos</em>. The range of angles returned
   * is 0 to pi radians (0 to 180 degrees). If the argument is NaN or
   * its absolute value is beyond 1, the result is NaN. This is accurate
   * within 1 ulp, and is semi-monotonic.
   *
   * @param a the cos to turn back into an angle
   * @return arccos(a)
   */
  public static double acos(double a)
  {
    return VMMath.acos(a);
  }

  /**
   * The trigonometric function <em>arcsin</em>. The range of angles returned
   * is -pi/2 to pi/2 radians (-90 to 90 degrees). If the argument is NaN, the
   * result is NaN; and the arctangent of 0 retains its sign. This is accurate
   * within 1 ulp, and is semi-monotonic.
   *
   * @param a the tan to turn back into an angle
   * @return arcsin(a)
   * @see #atan2(double, double)
   */
  public static double atan(double a)
  {
    return VMMath.atan(a);
  }

  /**
   * A special version of the trigonometric function <em>arctan</em>, for
   * converting rectangular coordinates <em>(x, y)</em> to polar
   * <em>(r, theta)</em>. This computes the arctangent of x/y in the range
   * of -pi to pi radians (-180 to 180 degrees). Special cases:<ul>
   * <li>If either argument is NaN, the result is NaN.</li>
   * <li>If the first argument is positive zero and the second argument is
   * positive, or the first argument is positive and finite and the second
   * argument is positive infinity, then the result is positive zero.</li>
   * <li>If the first argument is negative zero and the second argument is
   * positive, or the first argument is negative and finite and the second
   * argument is positive infinity, then the result is negative zero.</li>
   * <li>If the first argument is positive zero and the second argument is
   * negative, or the first argument is positive and finite and the second
   * argument is negative infinity, then the result is the double value
   * closest to pi.</li>
   * <li>If the first argument is negative zero and the second argument is
   * negative, or the first argument is negative and finite and the second
   * argument is negative infinity, then the result is the double value
   * closest to -pi.</li>
   * <li>If the first argument is positive and the second argument is
   * positive zero or negative zero, or the first argument is positive
   * infinity and the second argument is finite, then the result is the
   * double value closest to pi/2.</li>
   * <li>If the first argument is negative and the second argument is
   * positive zero or negative zero, or the first argument is negative
   * infinity and the second argument is finite, then the result is the
   * double value closest to -pi/2.</li>
   * <li>If both arguments are positive infinity, then the result is the
   * double value closest to pi/4.</li>
   * <li>If the first argument is positive infinity and the second argument
   * is negative infinity, then the result is the double value closest to
   * 3*pi/4.</li>
   * <li>If the first argument is negative infinity and the second argument
   * is positive infinity, then the result is the double value closest to
   * -pi/4.</li>
   * <li>If both arguments are negative infinity, then the result is the
   * double value closest to -3*pi/4.</li>
   *
   * </ul><p>This is accurate within 2 ulps, and is semi-monotonic. To get r,
   * use sqrt(x*x+y*y).
   *
   * @param y the y position
   * @param x the x position
   * @return <em>theta</em> in the conversion of (x, y) to (r, theta)
   * @see #atan(double)
   */
  public static double atan2(double y, double x)
  {
    return VMMath.atan2(y,x);
  }

  /**
   * Take <em>e</em><sup>a</sup>.  The opposite of <code>log()</code>. If the
   * argument is NaN, the result is NaN; if the argument is positive infinity,
   * the result is positive infinity; and if the argument is negative
   * infinity, the result is positive zero. This is accurate within 1 ulp,
   * and is semi-monotonic.
   *
   * @param a the number to raise to the power
   * @return the number raised to the power of <em>e</em>
   * @see #log(double)
   * @see #pow(double, double)
   */
  public static double exp(double a)
  {
    return VMMath.exp(a);
  }

  /**
   * Take ln(a) (the natural log).  The opposite of <code>exp()</code>. If the
   * argument is NaN or negative, the result is NaN; if the argument is
   * positive infinity, the result is positive infinity; and if the argument
   * is either zero, the result is negative infinity. This is accurate within
   * 1 ulp, and is semi-monotonic.
   *
   * <p>Note that the way to get log<sub>b</sub>(a) is to do this:
   * <code>ln(a) / ln(b)</code>.
   *
   * @param a the number to take the natural log of
   * @return the natural log of <code>a</code>
   * @see #exp(double)
   */
  public static double log(double a)
  {
    return VMMath.log(a);
  }

  /**
   * Take a square root. If the argument is NaN or negative, the result is
   * NaN; if the argument is positive infinity, the result is positive
   * infinity; and if the result is either zero, the result is the same.
   * This is accurate within the limits of doubles.
   *
   * <p>For a cube root, use <code>cbrt</code>.  For other roots, use
   * <code>pow(a, 1 / rootNumber)</code>.</p>
   *
   * @param a the numeric argument
   * @return the square root of the argument
   * @see #cbrt(double)
   * @see #pow(double, double)
   */
  public static double sqrt(double a)
  {
    return VMMath.sqrt(a);
  }

  /**
   * Raise a number to a power. Special cases:<ul>
   * <li>If the second argument is positive or negative zero, then the result
   * is 1.0.</li>
   * <li>If the second argument is 1.0, then the result is the same as the
   * first argument.</li>
   * <li>If the second argument is NaN, then the result is NaN.</li>
   * <li>If the first argument is NaN and the second argument is nonzero,
   * then the result is NaN.</li>
   * <li>If the absolute value of the first argument is greater than 1 and
   * the second argument is positive infinity, or the absolute value of the
   * first argument is less than 1 and the second argument is negative
   * infinity, then the result is positive infinity.</li>
   * <li>If the absolute value of the first argument is greater than 1 and
   * the second argument is negative infinity, or the absolute value of the
   * first argument is less than 1 and the second argument is positive
   * infinity, then the result is positive zero.</li>
   * <li>If the absolute value of the first argument equals 1 and the second
   * argument is infinite, then the result is NaN.</li>
   * <li>If the first argument is positive zero and the second argument is
   * greater than zero, or the first argument is positive infinity and the
   * second argument is less than zero, then the result is positive zero.</li>
   * <li>If the first argument is positive zero and the second argument is
   * less than zero, or the first argument is positive infinity and the
   * second argument is greater than zero, then the result is positive
   * infinity.</li>
   * <li>If the first argument is negative zero and the second argument is
   * greater than zero but not a finite odd integer, or the first argument is
   * negative infinity and the second argument is less than zero but not a
   * finite odd integer, then the result is positive zero.</li>
   * <li>If the first argument is negative zero and the second argument is a
   * positive finite odd integer, or the first argument is negative infinity
   * and the second argument is a negative finite odd integer, then the result
   * is negative zero.</li>
   * <li>If the first argument is negative zero and the second argument is
   * less than zero but not a finite odd integer, or the first argument is
   * negative infinity and the second argument is greater than zero but not a
   * finite odd integer, then the result is positive infinity.</li>
   * <li>If the first argument is negative zero and the second argument is a
   * negative finite odd integer, or the first argument is negative infinity
   * and the second argument is a positive finite odd integer, then the result
   * is negative infinity.</li>
   * <li>If the first argument is less than zero and the second argument is a
   * finite even integer, then the result is equal to the result of raising
   * the absolute value of the first argument to the power of the second
   * argument.</li>
   * <li>If the first argument is less than zero and the second argument is a
   * finite odd integer, then the result is equal to the negative of the
   * result of raising the absolute value of the first argument to the power
   * of the second argument.</li>
   * <li>If the first argument is finite and less than zero and the second
   * argument is finite and not an integer, then the result is NaN.</li>
   * <li>If both arguments are integers, then the result is exactly equal to
   * the mathematical result of raising the first argument to the power of
   * the second argument if that result can in fact be represented exactly as
   * a double value.</li>
   *
   * </ul><p>(In the foregoing descriptions, a floating-point value is
   * considered to be an integer if and only if it is a fixed point of the
   * method {@link #ceil(double)} or, equivalently, a fixed point of the
   * method {@link #floor(double)}. A value is a fixed point of a one-argument
   * method if and only if the result of applying the method to the value is
   * equal to the value.) This is accurate within 1 ulp, and is semi-monotonic.
   *
   * @param a the number to raise
   * @param b the power to raise it to
   * @return a<sup>b</sup>
   */
  public static double pow(double a, double b)
  {
    return VMMath.pow(a,b);
  }

  /**
   * Get the IEEE 754 floating point remainder on two numbers. This is the
   * value of <code>x - y * <em>n</em></code>, where <em>n</em> is the closest
   * double to <code>x / y</code> (ties go to the even n); for a zero
   * remainder, the sign is that of <code>x</code>. If either argument is NaN,
   * the first argument is infinite, or the second argument is zero, the result
   * is NaN; if x is finite but y is infinite, the result is x. This is
   * accurate within the limits of doubles.
   *
   * @param x the dividend (the top half)
   * @param y the divisor (the bottom half)
   * @return the IEEE 754-defined floating point remainder of x/y
   * @see #rint(double)
   */
  public static double IEEEremainder(double x, double y)
  {
    return VMMath.IEEEremainder(x,y);
  }

  /**
   * Take the nearest integer that is that is greater than or equal to the
   * argument. If the argument is NaN, infinite, or zero, the result is the
   * same; if the argument is between -1 and 0, the result is negative zero.
   * Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
   *
   * @param a the value to act upon
   * @return the nearest integer &gt;= <code>a</code>
   */
  public static double ceil(double a)
  {
    return VMMath.ceil(a);
  }

  /**
   * Take the nearest integer that is that is less than or equal to the
   * argument. If the argument is NaN, infinite, or zero, the result is the
   * same. Note that <code>Math.ceil(x) == -Math.floor(-x)</code>.
   *
   * @param a the value to act upon
   * @return the nearest integer &lt;= <code>a</code>
   */
  public static double floor(double a)
  {
    return VMMath.floor(a);
  }

  /**
   * Take the nearest integer to the argument.  If it is exactly between
   * two integers, the even integer is taken. If the argument is NaN,
   * infinite, or zero, the result is the same.
   *
   * @param a the value to act upon
   * @return the nearest integer to <code>a</code>
   */
  public static double rint(double a)
  {
    return VMMath.rint(a);
  }

  /**
   * Take the nearest integer to the argument.  This is equivalent to
   * <code>(int) Math.floor(a + 0.5f)</code>. If the argument is NaN, the result
   * is 0; otherwise if the argument is outside the range of int, the result
   * will be Integer.MIN_VALUE or Integer.MAX_VALUE, as appropriate.
   *
   * @param a the argument to round
   * @return the nearest integer to the argument
   * @see Integer#MIN_VALUE
   * @see Integer#MAX_VALUE
   */
  public static int round(float a)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return 0;
    return (int) floor(a + 0.5f);
  }

  /**
   * Take the nearest long to the argument.  This is equivalent to
   * <code>(long) Math.floor(a + 0.5)</code>. If the argument is NaN, the
   * result is 0; otherwise if the argument is outside the range of long, the
   * result will be Long.MIN_VALUE or Long.MAX_VALUE, as appropriate.
   *
   * @param a the argument to round
   * @return the nearest long to the argument
   * @see Long#MIN_VALUE
   * @see Long#MAX_VALUE
   */
  public static long round(double a)
  {
    // this check for NaN, from JLS 15.21.1, saves a method call
    if (a != a)
      return 0;
    return (long) floor(a + 0.5d);
  }

  /**
   * Get a random number.  This behaves like Random.nextDouble(), seeded by
   * System.currentTimeMillis() when first called. In other words, the number
   * is from a pseudorandom sequence, and lies in the range [+0.0, 1.0).
   * This random sequence is only used by this method, and is threadsafe,
   * although you may want your own random number generator if it is shared
   * among threads.
   *
   * @return a random number
   * @see Random#nextDouble()
   * @see System#currentTimeMillis()
   */
  public static synchronized double random()
  {
    if (rand == null)
      rand = new Random();
    return rand.nextDouble();
  }

  /**
   * Convert from degrees to radians. The formula for this is
   * radians = degrees * (pi/180); however it is not always exact given the
   * limitations of floating point numbers.
   *
   * @param degrees an angle in degrees
   * @return the angle in radians
   * @since 1.2
   */
  public static double toRadians(double degrees)
  {
    return (degrees * PI) / 180;
  }

  /**
   * Convert from radians to degrees. The formula for this is
   * degrees = radians * (180/pi); however it is not always exact given the
   * limitations of floating point numbers.
   *
   * @param rads an angle in radians
   * @return the angle in degrees
   * @since 1.2
   */
  public static double toDegrees(double rads)
  {
    return (rads * 180) / PI;
  }

  /**
   * <p>
   * Take a cube root. If the argument is <code>NaN</code>, an infinity or
   * zero, then the original value is returned.  The returned result is
   * within 1 ulp of the exact result.  For a finite value, <code>x</code>,
   * the cube root of <code>-x</code> is equal to the negation of the cube root
   * of <code>x</code>. 
   * </p>
   * <p>
   * For a square root, use <code>sqrt</code>.  For other roots, use
   * <code>pow(a, 1 / rootNumber)</code>.
   * </p>
   *
   * @param a the numeric argument
   * @return the cube root of the argument
   * @see #sqrt(double)
   * @see #pow(double, double)
   * @since 1.5
   */
  public static double cbrt(double a)
  {
    return VMMath.cbrt(a);
  }

  /**
   * <p>
   * Returns the hyperbolic cosine of the given value.  For a value,
   * <code>x</code>, the hyperbolic cosine is <code>(e<sup>x</sup> + 
   * e<sup>-x</sup>)/2</code>
   * with <code>e</code> being <a href="#E">Euler's number</a>.  The returned
   * result is within 2.5 ulps of the exact result.
   * </p>
   * <p>
   * If the supplied value is <code>NaN</code>, then the original value is
   * returned.  For either infinity, positive infinity is returned.
   * The hyperbolic cosine of zero is 1.0.
   * </p>
   * 
   * @param a the numeric argument
   * @return the hyperbolic cosine of <code>a</code>.
   * @since 1.5
   */
  public static double cosh(double a)
  {
    return VMMath.cosh(a);
  }

  /**
   * <p>
   * Returns <code>e<sup>a</sup> - 1.  For values close to 0, the
   * result of <code>expm1(a) + 1</code> tend to be much closer to the
   * exact result than simply <code>exp(x)</code>.  The result is within
   * 1 ulp of the exact result, and results are semi-monotonic.  For finite
   * inputs, the returned value is greater than or equal to -1.0.  Once
   * a result enters within half a ulp of this limit, the limit is returned.
   * </p>   
   * <p>
   * For <code>NaN</code>, positive infinity and zero, the original value
   * is returned.  Negative infinity returns a result of -1.0 (the limit).
   * </p>
   * 
   * @param a the numeric argument
   * @return <code>e<sup>a</sup> - 1</code>
   * @since 1.5
   */
  public static double expm1(double a)
  {
    return VMMath.expm1(a);
  }

  /**
   * <p>
   * Returns the hypotenuse, <code>a<sup>2</sup> + b<sup>2</sup></code>,
   * without intermediate overflow or underflow.  The returned result is
   * within 1 ulp of the exact result.  If one parameter is held constant,
   * then the result in the other parameter is semi-monotonic.
   * </p>
   * <p>
   * If either of the arguments is an infinity, then the returned result
   * is positive infinity.  Otherwise, if either argument is <code>NaN</code>,
   * then <code>NaN</code> is returned.
   * </p>
   * 
   * @param a the first parameter.
   * @param b the second parameter.
   * @return the hypotenuse matching the supplied parameters.
   * @since 1.5
   */
  public static double hypot(double a, double b)
  {
    return VMMath.hypot(a,b);
  }

  /**
   * <p>
   * Returns the base 10 logarithm of the supplied value.  The returned
   * result is within 1 ulp of the exact result, and the results are
   * semi-monotonic.
   * </p>
   * <p>
   * Arguments of either <code>NaN</code> or less than zero return
   * <code>NaN</code>.  An argument of positive infinity returns positive
   * infinity.  Negative infinity is returned if either positive or negative
   * zero is supplied.  Where the argument is the result of
   * <code>10<sup>n</sup</code>, then <code>n</code> is returned.
   * </p>
   *
   * @param a the numeric argument.
   * @return the base 10 logarithm of <code>a</code>.
   * @since 1.5
   */
  public static double log10(double a)
  {
    return VMMath.log10(a);
  }

  /**
   * <p>
   * Returns the natural logarithm resulting from the sum of the argument,
   * <code>a</code> and 1.  For values close to 0, the
   * result of <code>log1p(a)</code> tend to be much closer to the
   * exact result than simply <code>log(1.0+a)</code>.  The returned
   * result is within 1 ulp of the exact result, and the results are
   * semi-monotonic.
   * </p>
   * <p>
   * Arguments of either <code>NaN</code> or less than -1 return
   * <code>NaN</code>.  An argument of positive infinity or zero
   * returns the original argument.  Negative infinity is returned from an
   * argument of -1.
   * </p>
   *
   * @param a the numeric argument.
   * @return the natural logarithm of <code>a</code> + 1.
   * @since 1.5
   */
  public static double log1p(double a)
  {
    return VMMath.log1p(a);
  }

  /**
   * <p>
   * Returns the sign of the argument as follows:
   * </p>
   * <ul>
   * <li>If <code>a</code> is greater than zero, the result is 1.0.</li>
   * <li>If <code>a</code> is less than zero, the result is -1.0.</li>
   * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
   * <li>If <code>a</code> is positive or negative zero, the result is the
   * same.</li>
   * </ul>
   * 
   * @param a the numeric argument.
   * @return the sign of the argument.
   * @since 1.5.
   */
  public static double signum(double a)
  {
    if (Double.isNaN(a))
      return Double.NaN;
    if (a > 0)
      return 1.0;
    if (a < 0)
      return -1.0;
    return a;
  }

  /**
   * <p>
   * Returns the sign of the argument as follows:
   * </p>
   * <ul>
   * <li>If <code>a</code> is greater than zero, the result is 1.0f.</li>
   * <li>If <code>a</code> is less than zero, the result is -1.0f.</li>
   * <li>If <code>a</code> is <code>NaN</code>, the result is <code>NaN</code>.
   * <li>If <code>a</code> is positive or negative zero, the result is the
   * same.</li>
   * </ul>
   * 
   * @param a the numeric argument.
   * @return the sign of the argument.
   * @since 1.5.
   */
  public static float signum(float a)
  {
    if (Float.isNaN(a))
      return Float.NaN;
    if (a > 0)
      return 1.0f;
    if (a < 0)
      return -1.0f;
    return a;
  }

  /**
   * <p>
   * Returns the hyperbolic sine of the given value.  For a value,
   * <code>x</code>, the hyperbolic sine is <code>(e<sup>x</sup> - 
   * e<sup>-x</sup>)/2</code>
   * with <code>e</code> being <a href="#E">Euler's number</a>.  The returned
   * result is within 2.5 ulps of the exact result.
   * </p>
   * <p>
   * If the supplied value is <code>NaN</code>, an infinity or a zero, then the
   * original value is returned.
   * </p>
   * 
   * @param a the numeric argument
   * @return the hyperbolic sine of <code>a</code>.
   * @since 1.5
   */
  public static double sinh(double a)
  {
    return VMMath.sinh(a);
  }

  /**
   * <p>
   * Returns the hyperbolic tangent of the given value.  For a value,
   * <code>x</code>, the hyperbolic tangent is <code>(e<sup>x</sup> - 
   * e<sup>-x</sup>)/(e<sup>x</sup> + e<sup>-x</sup>)</code>
   * (i.e. <code>sinh(a)/cosh(a)</code>)
   * with <code>e</code> being <a href="#E">Euler's number</a>.  The returned
   * result is within 2.5 ulps of the exact result.  The absolute value
   * of the exact result is always less than 1.  Computed results are thus
   * less than or equal to 1 for finite arguments, with results within
   * half a ulp of either positive or negative 1 returning the appropriate
   * limit value (i.e. as if the argument was an infinity).
   * </p>
   * <p>
   * If the supplied value is <code>NaN</code> or zero, then the original
   * value is returned.  Positive infinity returns +1.0 and negative infinity
   * returns -1.0.
   * </p>
   * 
   * @param a the numeric argument
   * @return the hyperbolic tangent of <code>a</code>.
   * @since 1.5
   */
  public static double tanh(double a)
  {
    return VMMath.tanh(a);
  }

  /**
   * Return the ulp for the given double argument.  The ulp is the
   * difference between the argument and the next larger double.  Note
   * that the sign of the double argument is ignored, that is,
   * ulp(x) == ulp(-x).  If the argument is a NaN, then NaN is returned.
   * If the argument is an infinity, then +Inf is returned.  If the
   * argument is zero (either positive or negative), then
   * {@link Double#MIN_VALUE} is returned.
   * @param d the double whose ulp should be returned
   * @return the difference between the argument and the next larger double
   * @since 1.5
   */
  public static double ulp(double d)
  {
    if (Double.isNaN(d))
      return d;
    if (Double.isInfinite(d))
      return Double.POSITIVE_INFINITY;
    // This handles both +0.0 and -0.0.
    if (d == 0.0)
      return Double.MIN_VALUE;
    long bits = Double.doubleToLongBits(d);
    final int mantissaBits = 52;
    final int exponentBits = 11;
    final long mantMask = (1L << mantissaBits) - 1;
    long mantissa = bits & mantMask;
    final long expMask = (1L << exponentBits) - 1;
    long exponent = (bits >>> mantissaBits) & expMask;

    // Denormal number, so the answer is easy.
    if (exponent == 0)
      {
        long result = (exponent << mantissaBits) | 1L;
        return Double.longBitsToDouble(result);
      }

    // Conceptually we want to have '1' as the mantissa.  Then we would
    // shift the mantissa over to make a normal number.  If this underflows
    // the exponent, we will make a denormal result.
    long newExponent = exponent - mantissaBits;
    long newMantissa;
    if (newExponent > 0)
      newMantissa = 0;
    else
      {
        newMantissa = 1L << -(newExponent - 1);
        newExponent = 0;
      }
    return Double.longBitsToDouble((newExponent << mantissaBits) | newMantissa);
  }

  /**
   * Return the ulp for the given float argument.  The ulp is the
   * difference between the argument and the next larger float.  Note
   * that the sign of the float argument is ignored, that is,
   * ulp(x) == ulp(-x).  If the argument is a NaN, then NaN is returned.
   * If the argument is an infinity, then +Inf is returned.  If the
   * argument is zero (either positive or negative), then
   * {@link Float#MIN_VALUE} is returned.
   * @param f the float whose ulp should be returned
   * @return the difference between the argument and the next larger float
   * @since 1.5
   */
  public static float ulp(float f)
  {
    if (Float.isNaN(f))
      return f;
    if (Float.isInfinite(f))
      return Float.POSITIVE_INFINITY;
    // This handles both +0.0 and -0.0.
    if (f == 0.0)
      return Float.MIN_VALUE;
    int bits = Float.floatToIntBits(f);
    final int mantissaBits = 23;
    final int exponentBits = 8;
    final int mantMask = (1 << mantissaBits) - 1;
    int mantissa = bits & mantMask;
    final int expMask = (1 << exponentBits) - 1;
    int exponent = (bits >>> mantissaBits) & expMask;

    // Denormal number, so the answer is easy.
    if (exponent == 0)
      {
        int result = (exponent << mantissaBits) | 1;
        return Float.intBitsToFloat(result);
      }

    // Conceptually we want to have '1' as the mantissa.  Then we would
    // shift the mantissa over to make a normal number.  If this underflows
    // the exponent, we will make a denormal result.
    int newExponent = exponent - mantissaBits;
    int newMantissa;
    if (newExponent > 0)
      newMantissa = 0;
    else
      {
        newMantissa = 1 << -(newExponent - 1);
        newExponent = 0;
      }
    return Float.intBitsToFloat((newExponent << mantissaBits) | newMantissa);
  }
}