aboutsummaryrefslogtreecommitdiff
path: root/libjava/boehm.cc
blob: ccfe9ee16c4a6ef03972f8b575de9a9816d01091 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
// boehm.cc - interface between libjava and Boehm GC.

/* Copyright (C) 1998, 1999, 2000  Red Hat, Inc.

   This file is part of libgcj.

This software is copyrighted work licensed under the terms of the
Libgcj License.  Please consult the file "LIBGCJ_LICENSE" for
details.  */

#include <config.h>

#include <stdio.h>

#include <jvm.h>
#include <gcj/cni.h>

#include <java/lang/Class.h>
#include <java-interp.h>

// More nastiness: the GC wants to define TRUE and FALSE.  We don't
// need the Java definitions (themselves a hack), so we undefine them.
#undef TRUE
#undef FALSE

extern "C"
{
#include <gc_priv.h>
#include <gc_mark.h>

  // These aren't declared in any Boehm GC header.
  void GC_finalize_all (void);
  ptr_t GC_debug_generic_malloc (size_t size, int k, GC_EXTRA_PARAMS);
};

// FIXME: this should probably be defined in some GC header.
#ifdef GC_DEBUG
#  define GC_GENERIC_MALLOC(Size, Type) \
    GC_debug_generic_malloc (Size, Type, GC_EXTRAS)
#else
#  define GC_GENERIC_MALLOC(Size, Type) GC_generic_malloc (Size, Type)
#endif

// We must check for plausibility ourselves.
#define MAYBE_MARK(Obj, Top, Limit, Source, Exit)  \
      if ((ptr_t) (Obj) >= GC_least_plausible_heap_addr \
	  && (ptr_t) (Obj) <= GC_greatest_plausible_heap_addr) \
        PUSH_CONTENTS (Obj, Top, Limit, Source, Exit)

#define ObjectClass _CL_Q34java4lang6Object
extern java::lang::Class ObjectClass;
#define ClassClass _CL_Q34java4lang5Class
extern java::lang::Class ClassClass;



// Nonzero if this module has been initialized.
static int initialized = 0;

// `kind' index used when allocating Java objects.
static int obj_kind_x;

// `kind' index used when allocating Java arrays.
static int array_kind_x;

// Freelist used for Java objects.
static ptr_t *obj_free_list;

// Freelist used for Java arrays.
static ptr_t *array_free_list;



// This is called by the GC during the mark phase.  It marks a Java
// object.  We use `void *' arguments and return, and not what the
// Boehm GC wants, to avoid pollution in our headers.
void *
_Jv_MarkObj (void *addr, void *msp, void *msl, void * /*env*/)
{
  mse *mark_stack_ptr = (mse *) msp;
  mse *mark_stack_limit = (mse *) msl;
  jobject obj = (jobject) addr;

  _Jv_VTable *dt = *(_Jv_VTable **) addr;
  // We check this in case a GC occurs before the vtbl is set.  FIXME:
  // should use allocation lock while initializing object.
  if (! dt)
    return mark_stack_ptr;
  jclass klass = dt->clas;

  // Every object has a sync_info pointer.
  word w = (word) obj->sync_info;
  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, obj, o1label);
  // Mark the object's class.
  w = (word) klass;
  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, obj, o2label);

  if (klass == &ClassClass)
    {
      jclass c = (jclass) addr;

#if 0
      // The next field should probably not be marked, since this is
      // only used in the class hash table.  Marking this field
      // basically prohibits class unloading. --Kresten
      w = (word) c->next;
      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c2label);
#endif

      w = (word) c->name;
      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c3label);
      w = (word) c->superclass;
      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c4label);
      for (int i = 0; i < c->constants.size; ++i)
	{
	  /* FIXME: We could make this more precise by using the tags -KKT */
	  w = (word) c->constants.data[i].p;
	  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c5label);
	}

#ifdef INTERPRETER
      if (_Jv_IsInterpretedClass (c))
	{
	  w = (word) c->constants.tags;
	  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c5alabel);
	  w = (word) c->constants.data;
	  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c5blabel);
	}
#endif

      // If the class is an array, then the methods field holds a
      // pointer to the element class.  If the class is primitive,
      // then the methods field holds a pointer to the array class.
      w = (word) c->methods;
      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c6label);


      if (! c->isArray() && ! c->isPrimitive())
	{
	  // Scan each method in the cases where `methods' really
	  // points to a methods structure.
	  for (int i = 0; i < c->method_count; ++i)
	    {
	      w = (word) c->methods[i].name;
	      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c,
			     cm1label);
	      w = (word) c->methods[i].signature;
	      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c,
			     cm2label);

	      // FIXME: `ncode' entry?

#ifdef INTERPRETER
	      // The interpreter installs a heap-allocated
	      // trampoline here, so we'll mark it. 
	      if (_Jv_IsInterpretedClass (c))
		  {
		      w = (word) c->methods[i].ncode;
		      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c,
				  cm3label);
		  }
#endif
	    }
	}

      // Mark all the fields.
      w = (word) c->fields;
      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c8label);
      for (int i = 0; i < c->field_count; ++i)
	{
	  _Jv_Field* field = &c->fields[i];

#ifndef COMPACT_FIELDS
	  w = (word) field->name;
	  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c8alabel);
#endif
	  w = (word) field->type;
	  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c8blabel);

	  // For the interpreter, we also need to mark the memory
	  // containing static members
	  if (field->flags & 0x0008)
	    {
	      w = (word) field->u.addr;
	      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c8clabel);

	      // also, if the static member is a reference,
	      // mark also the value pointed to.  We check for isResolved
	      // since marking can happen before memory is allocated for
	      // static members.
	      if (JvFieldIsRef (field) && field->isResolved()) 
		{
		  jobject val = *(jobject*) field->u.addr;
		  w = (word) val;
		  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit,
			      c, c8elabel);
		}
	    }
	}

      w = (word) c->vtable;
      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, c9label);
      w = (word) c->interfaces;
      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, cAlabel);
      for (int i = 0; i < c->interface_count; ++i)
	{
	  w = (word) c->interfaces[i];
	  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, cClabel);
	}
      w = (word) c->loader;
      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, c, cBlabel);

#ifdef INTERPRETER
      if (_Jv_IsInterpretedClass (c))
	{
	  _Jv_InterpClass* ic = (_Jv_InterpClass*)c;

	  w = (word) ic->interpreted_methods;
	  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, ic, cElabel);

	  for (int i = 0; i < c->method_count; i++)
	    {
	      w = (word) ic->interpreted_methods[i];
	      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, ic, \
			  cFlabel);
	    }

	  w = (word) ic->field_initializers;
	  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, ic, cGlabel);
	  
	}
#endif

    }
  else
    {
      // NOTE: each class only holds information about the class
      // itself.  So we must do the marking for the entire inheritance
      // tree in order to mark all fields.  FIXME: what about
      // interfaces?  We skip Object here, because Object only has a
      // sync_info, and we handled that earlier.
      // Note: occasionally `klass' can be null.  For instance, this
      // can happen if a GC occurs between the point where an object
      // is allocated and where the vtbl slot is set.
      while (klass && klass != &ObjectClass)
	{
	  jfieldID field = JvGetFirstInstanceField (klass);
	  jint max = JvNumInstanceFields (klass);

	  for (int i = 0; i < max; ++i)
	    {
	      if (JvFieldIsRef (field))
		{
		  jobject val = JvGetObjectField (obj, field);
		  w = (word) val;
		  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit,
			      obj, elabel);
		}
	      field = field->getNextField ();
	    }
	  klass = klass->getSuperclass();
	}
    }

  return mark_stack_ptr;
}

// This is called by the GC during the mark phase.  It marks a Java
// array (of objects).  We use `void *' arguments and return, and not
// what the Boehm GC wants, to avoid pollution in our headers.
void *
_Jv_MarkArray (void *addr, void *msp, void *msl, void * /*env*/)
{
  mse *mark_stack_ptr = (mse *) msp;
  mse *mark_stack_limit = (mse *) msl;
  jobjectArray array = (jobjectArray) addr;

  _Jv_VTable *dt = *(_Jv_VTable **) addr;
  // We check this in case a GC occurs before the vtbl is set.  FIXME:
  // should use allocation lock while initializing object.
  if (! dt)
    return mark_stack_ptr;
  jclass klass = dt->clas;

  // Every object has a sync_info pointer.
  word w = (word) array->sync_info;
  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, array, e1label);
  // Mark the object's class.
  w = (word) klass;
  MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, obj, o2label);

  for (int i = 0; i < JvGetArrayLength (array); ++i)
    {
      jobject obj = elements (array)[i];
      w = (word) obj;
      MAYBE_MARK (w, mark_stack_ptr, mark_stack_limit, array, e2label);
    }

  return mark_stack_ptr;
}

// Allocate space for a new Java object.  FIXME: this might be the
// wrong interface; we might prefer to pass in the object type as
// well.  It isn't important for this collector, but it might be for
// other collectors.
void *
_Jv_AllocObj (jsize size)
{
  return GC_GENERIC_MALLOC (size, obj_kind_x);
}

// Allocate space for a new Java array.  FIXME: again, this might be
// the wrong interface.
void *
_Jv_AllocArray (jsize size)
{
  return GC_GENERIC_MALLOC (size, array_kind_x);
}

// Allocate some space that is known to be pointer-free.
void *
_Jv_AllocBytes (jsize size)
{
  void *r = GC_GENERIC_MALLOC (size, PTRFREE);
  // We have to explicitly zero memory here, as the GC doesn't
  // guarantee that PTRFREE allocations are zeroed.  Note that we
  // don't have to do this for other allocation types because we set
  // the `ok_init' flag in the type descriptor.
  if (r != NULL)
    memset (r, 0, size);
  return r;
}

static void
call_finalizer (GC_PTR obj, GC_PTR client_data)
{
  _Jv_FinalizerFunc *fn = (_Jv_FinalizerFunc *) client_data;
  jobject jobj = (jobject) obj;

  (*fn) (jobj);
}

void
_Jv_RegisterFinalizer (void *object, _Jv_FinalizerFunc *meth)
{
  GC_REGISTER_FINALIZER_NO_ORDER (object, call_finalizer, (GC_PTR) meth,
				  NULL, NULL);
}

void
_Jv_RunFinalizers (void)
{
  GC_invoke_finalizers ();
}

void
_Jv_RunAllFinalizers (void)
{
  GC_finalize_all ();
}

void
_Jv_RunGC (void)
{
  GC_gcollect ();
}

long
_Jv_GCTotalMemory (void)
{
  return GC_get_heap_size ();
}

long
_Jv_GCFreeMemory (void)
{
  return GC_get_free_bytes ();
}

void
_Jv_GCSetInitialHeapSize (size_t size)
{
  size_t current = GC_get_heap_size ();
  if (size > current)
    GC_expand_hp (size - current);
}

void
_Jv_GCSetMaximumHeapSize (size_t size)
{
  GC_set_max_heap_size ((GC_word) size);
}

void
_Jv_InitGC (void)
{
  int proc;
  DCL_LOCK_STATE;

  DISABLE_SIGNALS ();
  LOCK ();

  if (initialized)
    {
      UNLOCK ();
      ENABLE_SIGNALS ();
      return;
    }
  initialized = 1;

  GC_java_finalization = 1;

  // Set up state for marking and allocation of Java objects.
  obj_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
						     * sizeof (ptr_t),
						     PTRFREE);
  memset (obj_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));

  proc = GC_n_mark_procs++;
  GC_mark_procs[proc] = (mark_proc) _Jv_MarkObj;

  obj_kind_x = GC_n_kinds++;
  GC_obj_kinds[obj_kind_x].ok_freelist = obj_free_list;
  GC_obj_kinds[obj_kind_x].ok_reclaim_list = 0;
  GC_obj_kinds[obj_kind_x].ok_descriptor = MAKE_PROC (proc, 0);
  GC_obj_kinds[obj_kind_x].ok_relocate_descr = FALSE;
  GC_obj_kinds[obj_kind_x].ok_init = TRUE;

  // Set up state for marking and allocation of arrays of Java
  // objects.
  array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
						       * sizeof (ptr_t),
						       PTRFREE);
  memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));

  proc = GC_n_mark_procs++;
  GC_mark_procs[proc] = (mark_proc) _Jv_MarkArray;

  array_kind_x = GC_n_kinds++;
  GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
  GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
  GC_obj_kinds[array_kind_x].ok_descriptor = MAKE_PROC (proc, 0);
  GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
  GC_obj_kinds[array_kind_x].ok_init = TRUE;

  UNLOCK ();
  ENABLE_SIGNALS ();
}