1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/* Copyright (C) 2009-2019 Free Software Foundation, Inc.
Contributed by Richard Henderson <rth@redhat.com>.
This file is part of the GNU Transactional Memory Library (libitm).
Libitm is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
Libitm is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
// Implements an AA tree (http://en.wikipedia.org/wiki/AA_tree) with an
// integer key, and data attached to the node via flexible array member.
#include "libitm_i.h"
namespace GTM HIDDEN {
// The code for rebalancing the tree is greatly simplified by never
// having to check for null pointers. Instead, leaf node links point
// to this node, NIL, which points to itself.
const aa_node_base aa_node_base::s_nil(0);
// Remove left horizontal links. Swap the pointers of horizontal left links.
aa_node_base *
aa_node_base::skew ()
{
aa_node_base *l = this->link(L);
if (this->m_level != 0 && l->m_level == this->m_level)
{
this->set_link(L, l->link(R));
l->set_link(R, this);
return l;
}
return this;
}
// Remove consecutive horizontal links. Take the middle node,
// elevate it, and return it.
aa_node_base *
aa_node_base::split ()
{
aa_node_base *r = this->link(R);
if (this->m_level != 0 && r->link(R)->m_level == this->m_level)
{
this->set_link(R, r->link(L));
r->set_link(L, this);
r->m_level += 1;
return r;
}
return this;
}
// Decrease the level of THIS to be one more than the level of its children.
void
aa_node_base::decrease_level ()
{
aa_node_base *l = this->link(L);
aa_node_base *r = this->link(R);
level_type llev = l->m_level;
level_type rlev = r->m_level;
level_type should_be = (llev < rlev ? llev : rlev) + 1;
if (should_be < this->m_level)
{
this->m_level = should_be;
if (should_be < rlev)
r->m_level = should_be;
}
}
// Find and return the node in the tree with key K.
template<typename KEY>
typename aa_tree_key<KEY>::node_ptr
aa_tree_key<KEY>::find(KEY k) const
{
node_ptr t = m_tree;
if (t != 0)
do
{
if (t->key == k)
return t;
t = t->link(k > t->key);
}
while (!t->is_nil());
return 0;
}
// Insert N into T and rebalance. Return the new balanced tree.
template<typename KEY>
typename aa_tree_key<KEY>::node_ptr
aa_tree_key<KEY>::insert_1 (node_ptr t, node_ptr n)
{
bool dir = n->key > t->key;
node_ptr c = t->link(dir);
// Insert the node, recursively.
if (c->is_nil())
c = n;
else
c = insert_1 (c, n);
t->set_link(dir, c);
// Rebalance the tree, as needed.
t = t->skew();
t = t->split();
return t;
}
template<typename KEY>
void
aa_tree_key<KEY>::insert(node_ptr n)
{
if (m_tree == 0)
m_tree = n;
else
m_tree = insert_1 (m_tree, n);
}
// Delete K from T and rebalance. Return the new balanced tree.
template<typename KEY>
typename aa_tree_key<KEY>::node_ptr
aa_tree_key<KEY>::erase_1 (node_ptr t, KEY k, node_ptr *pfree)
{
node_ptr r;
bool dir;
// If this is the node we're looking for, delete it. Else recurse.
if (k == t->key)
{
node_ptr l, sub, end;
l = t->link(node::L);
r = t->link(node::R);
if (pfree)
*pfree = t;
// If this is a leaf node, simply remove the node. Otherwise,
// we have to find either a predecessor or a successor node to
// replace this one.
if (l->is_nil())
{
if (r->is_nil())
return r;
sub = r, dir = node::L;
}
else
sub = l, dir = node::R;
// Find the successor or predecessor.
for (end = sub; !end->link(dir)->is_nil(); end = end->link(dir))
continue;
// Remove it (but don't free) from the subtree.
sub = erase_1 (sub, end->key, 0);
// Replace T with the successor we just extracted.
end->set_link(!dir, sub);
t = end;
}
else
{
dir = k > t->key;
t->set_link(dir, erase_1 (t->link(dir), k, pfree));
}
// Rebalance the tree.
t->decrease_level();
t = t->skew();
r = t->link(node::R)->skew();
t->set_link(node::R, r);
r->set_link(node::R, r->link(node::R)->skew());
t = t->split ();
t->set_link(node::R, t->link(node::R)->split());
return t;
}
template<typename KEY>
typename aa_tree_key<KEY>::node_ptr
aa_tree_key<KEY>::erase (KEY k)
{
node_ptr t = m_tree;
if (t == 0)
return 0;
node_ptr do_free = 0;
t = erase_1 (t, k, &do_free);
if (t->is_nil())
t = 0;
m_tree = t;
return do_free;
}
// Instantiate key classes.
template class aa_tree_key<uintptr_t>;
} // namespace GTM
|