aboutsummaryrefslogtreecommitdiff
path: root/libgomp/libgomp.texi
blob: 50da248b74db5ffa7af1d6a1f4e80b7440d7f7ae (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
\input texinfo @c -*-texinfo-*-

@c %**start of header
@setfilename libgomp.info
@settitle GNU libgomp
@c %**end of header


@copying
Copyright @copyright{} 2006-2024 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3 or
any later version published by the Free Software Foundation; with the
Invariant Sections being ``Funding Free Software'', the Front-Cover
texts being (a) (see below), and with the Back-Cover Texts being (b)
(see below).  A copy of the license is included in the section entitled
``GNU Free Documentation License''.

(a) The FSF's Front-Cover Text is:

     A GNU Manual

(b) The FSF's Back-Cover Text is:

     You have freedom to copy and modify this GNU Manual, like GNU
     software.  Copies published by the Free Software Foundation raise
     funds for GNU development.
@end copying

@ifinfo
@dircategory GNU Libraries
@direntry
* libgomp: (libgomp).          GNU Offloading and Multi Processing Runtime Library.
@end direntry

This manual documents libgomp, the GNU Offloading and Multi Processing
Runtime library.  This is the GNU implementation of the OpenMP and
OpenACC APIs for parallel and accelerator programming in C/C++ and
Fortran.

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA

@insertcopying
@end ifinfo


@setchapternewpage odd

@titlepage
@title GNU Offloading and Multi Processing Runtime Library
@subtitle The GNU OpenMP and OpenACC Implementation
@page
@vskip 0pt plus 1filll
@comment For the @value{version-GCC} Version*
@sp 1
Published by the Free Software Foundation @*
51 Franklin Street, Fifth Floor@*
Boston, MA 02110-1301, USA@*
@sp 1
@insertcopying
@end titlepage

@summarycontents
@contents
@page


@node Top, Enabling OpenMP
@top Introduction
@cindex Introduction

This manual documents the usage of libgomp, the GNU Offloading and
Multi Processing Runtime Library.  This includes the GNU
implementation of the @uref{https://www.openmp.org, OpenMP} Application
Programming Interface (API) for multi-platform shared-memory parallel
programming in C/C++ and Fortran, and the GNU implementation of the
@uref{https://www.openacc.org, OpenACC} Application Programming
Interface (API) for offloading of code to accelerator devices in C/C++
and Fortran.

Originally, libgomp implemented the GNU OpenMP Runtime Library.  Based
on this, support for OpenACC and offloading (both OpenACC and OpenMP
4's target construct) has been added later on, and the library's name
changed to GNU Offloading and Multi Processing Runtime Library.



@comment
@comment  When you add a new menu item, please keep the right hand
@comment  aligned to the same column.  Do not use tabs.  This provides
@comment  better formatting.
@comment
@menu
* Enabling OpenMP::            How to enable OpenMP for your applications.
* OpenMP Implementation Status:: List of implemented features by OpenMP version
* OpenMP Runtime Library Routines: Runtime Library Routines.
                               The OpenMP runtime application programming
                               interface.
* OpenMP Environment Variables: Environment Variables.
                               Influencing OpenMP runtime behavior with
                               environment variables.
* Enabling OpenACC::           How to enable OpenACC for your
                               applications.
* OpenACC Runtime Library Routines:: The OpenACC runtime application
                               programming interface.
* OpenACC Environment Variables:: Influencing OpenACC runtime behavior with
                               environment variables.
* CUDA Streams Usage::         Notes on the implementation of
                               asynchronous operations.
* OpenACC Library Interoperability:: OpenACC library interoperability with the
                               NVIDIA CUBLAS library.
* OpenACC Profiling Interface::
* OpenMP-Implementation Specifics:: Notes specifics of this OpenMP
                               implementation
* Offload-Target Specifics::   Notes on offload-target specific internals
* The libgomp ABI::            Notes on the external ABI presented by libgomp.
* Reporting Bugs::             How to report bugs in the GNU Offloading and
                               Multi Processing Runtime Library.
* Copying::                    GNU general public license says
                               how you can copy and share libgomp.
* GNU Free Documentation License::
                               How you can copy and share this manual.
* Funding::                    How to help assure continued work for free 
                               software.
* Library Index::              Index of this documentation.
@end menu


@c ---------------------------------------------------------------------
@c Enabling OpenMP
@c ---------------------------------------------------------------------

@node Enabling OpenMP
@chapter Enabling OpenMP

To activate the OpenMP extensions for C/C++ and Fortran, the compile-time
flag @option{-fopenmp} must be specified.  For C and C++, this enables
the handling of the OpenMP directives using @code{#pragma omp} and the
@code{[[omp::directive(...)]]}, @code{[[omp::sequence(...)]]} and
@code{[[omp::decl(...)]]} attributes.  For Fortran, it enables for
free source form the @code{!$omp} sentinel for directives and the
@code{!$} conditional compilation sentinel and for fixed source form the
@code{c$omp}, @code{*$omp} and @code{!$omp} sentinels for directives and
the @code{c$}, @code{*$} and @code{!$} conditional compilation sentinels.
The flag also arranges for automatic linking of the OpenMP runtime library
(@ref{Runtime Library Routines}).

The @option{-fopenmp-simd} flag can be used to enable a subset of
OpenMP directives that do not require the linking of either the
OpenMP runtime library or the POSIX threads library.

A complete description of all OpenMP directives may be found in the
@uref{https://www.openmp.org, OpenMP Application Program Interface} manuals.
See also @ref{OpenMP Implementation Status}.


@c ---------------------------------------------------------------------
@c OpenMP Implementation Status
@c ---------------------------------------------------------------------

@node OpenMP Implementation Status
@chapter OpenMP Implementation Status

@menu
* OpenMP 4.5:: Feature completion status to 4.5 specification
* OpenMP 5.0:: Feature completion status to 5.0 specification
* OpenMP 5.1:: Feature completion status to 5.1 specification
* OpenMP 5.2:: Feature completion status to 5.2 specification
* OpenMP Technical Report 12:: Feature completion status to second 6.0 preview
@end menu

The @code{_OPENMP} preprocessor macro and Fortran's @code{openmp_version}
parameter, provided by @code{omp_lib.h} and the @code{omp_lib} module, have
the value @code{201511} (i.e. OpenMP 4.5).

@node OpenMP 4.5
@section OpenMP 4.5

The OpenMP 4.5 specification is fully supported.

@node OpenMP 5.0
@section OpenMP 5.0

@unnumberedsubsec New features listed in Appendix B of the OpenMP specification
@c This list is sorted as in OpenMP 5.1's B.3 not as in OpenMP 5.0's B.2

@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item Array shaping @tab N @tab
@item Array sections with non-unit strides in C and C++ @tab N @tab
@item Iterators @tab Y @tab
@item @code{metadirective} directive @tab N @tab
@item @code{declare variant} directive
      @tab P @tab @emph{simd} traits not handled correctly
@item @var{target-offload-var} ICV and @code{OMP_TARGET_OFFLOAD}
      env variable @tab Y @tab
@item Nested-parallel changes to @var{max-active-levels-var} ICV @tab Y @tab
@item @code{requires} directive @tab Y
      @tab See also @ref{Offload-Target Specifics}
@item @code{teams} construct outside an enclosing target region @tab Y @tab
@item Non-rectangular loop nests @tab P
      @tab Full support for C/C++, partial for Fortran
           (@uref{https://gcc.gnu.org/PR110735,PR110735})
@item @code{!=} as relational-op in canonical loop form for C/C++ @tab Y @tab
@item @code{nonmonotonic} as default loop schedule modifier for worksharing-loop
      constructs @tab Y @tab
@item Collapse of associated loops that are imperfectly nested loops @tab Y @tab
@item Clauses @code{if}, @code{nontemporal} and @code{order(concurrent)} in
      @code{simd} construct @tab Y @tab
@item @code{atomic} constructs in @code{simd} @tab Y @tab
@item @code{loop} construct @tab Y @tab
@item @code{order(concurrent)} clause @tab Y @tab
@item @code{scan} directive and @code{in_scan} modifier for the
      @code{reduction} clause @tab Y @tab
@item @code{in_reduction} clause on @code{task} constructs @tab Y @tab
@item @code{in_reduction} clause on @code{target} constructs @tab P
      @tab @code{nowait} only stub
@item @code{task_reduction} clause with @code{taskgroup} @tab Y @tab
@item @code{task} modifier to @code{reduction} clause @tab Y @tab
@item @code{affinity} clause to @code{task} construct @tab Y @tab Stub only
@item @code{detach} clause to @code{task} construct @tab Y @tab
@item @code{omp_fulfill_event} runtime routine @tab Y @tab
@item @code{reduction} and @code{in_reduction} clauses on @code{taskloop}
      and @code{taskloop simd} constructs @tab Y @tab
@item @code{taskloop} construct cancelable by @code{cancel} construct
      @tab Y @tab
@item @code{mutexinoutset} @emph{dependence-type} for @code{depend} clause
      @tab Y @tab
@item Predefined memory spaces, memory allocators, allocator traits
      @tab Y @tab See also @ref{Memory allocation}
@item Memory management routines @tab Y @tab
@item @code{allocate} directive @tab P
      @tab Only C for stack/automatic and Fortran for stack/automatic
      and allocatable/pointer variables
@item @code{allocate} clause @tab P @tab Initial support
@item @code{use_device_addr} clause on @code{target data} @tab Y @tab
@item @code{ancestor} modifier on @code{device} clause @tab Y @tab
@item Implicit declare target directive @tab Y @tab
@item Discontiguous array section with @code{target update} construct
      @tab N @tab
@item C/C++'s lvalue expressions in @code{to}, @code{from}
      and @code{map} clauses @tab Y @tab
@item C/C++'s lvalue expressions in @code{depend} clauses @tab Y @tab
@item Nested @code{declare target} directive @tab Y @tab
@item Combined @code{master} constructs @tab Y @tab
@item @code{depend} clause on @code{taskwait} @tab Y @tab
@item Weak memory ordering clauses on @code{atomic} and @code{flush} construct
      @tab Y @tab
@item @code{hint} clause on the @code{atomic} construct @tab Y @tab Stub only
@item @code{depobj} construct and depend objects  @tab Y @tab
@item Lock hints were renamed to synchronization hints @tab Y @tab
@item @code{conditional} modifier to @code{lastprivate} clause @tab Y @tab
@item Map-order clarifications @tab P @tab
@item @code{close} @emph{map-type-modifier} @tab Y @tab
@item Mapping C/C++ pointer variables and to assign the address of
      device memory mapped by an array section @tab P @tab
@item Mapping of Fortran pointer and allocatable variables, including pointer
      and allocatable components of variables
      @tab P @tab Mapping of vars with allocatable components unsupported
@item @code{defaultmap} extensions @tab Y @tab
@item @code{declare mapper} directive @tab N @tab
@item @code{omp_get_supported_active_levels} routine @tab Y @tab
@item Runtime routines and environment variables to display runtime thread
      affinity information @tab Y @tab
@item @code{omp_pause_resource} and @code{omp_pause_resource_all} runtime
      routines @tab Y @tab
@item @code{omp_get_device_num} runtime routine @tab Y @tab
@item OMPT interface @tab N @tab
@item OMPD interface @tab N @tab
@end multitable

@unnumberedsubsec Other new OpenMP 5.0 features

@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item Supporting C++'s range-based for loop @tab Y @tab
@end multitable


@node OpenMP 5.1
@section OpenMP 5.1

@unnumberedsubsec New features listed in Appendix B of the OpenMP specification

@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item OpenMP directive as C++ attribute specifiers @tab Y @tab
@item @code{omp_all_memory} reserved locator @tab Y @tab
@item @emph{target_device trait} in OpenMP Context @tab N @tab
@item @code{target_device} selector set in context selectors @tab N @tab
@item C/C++'s @code{declare variant} directive: elision support of
      preprocessed code @tab N @tab
@item @code{declare variant}: new clauses @code{adjust_args} and
      @code{append_args} @tab N @tab
@item @code{dispatch} construct @tab N @tab
@item device-specific ICV settings with environment variables @tab Y @tab
@item @code{assume} and @code{assumes} directives @tab Y @tab
@item @code{nothing} directive @tab Y @tab
@item @code{error} directive @tab Y @tab
@item @code{masked} construct @tab Y @tab
@item @code{scope} directive @tab Y @tab
@item Loop transformation constructs @tab Y @tab
@item @code{strict} modifier in the @code{grainsize} and @code{num_tasks}
      clauses of the @code{taskloop} construct @tab Y @tab
@item @code{align} clause in @code{allocate} directive @tab P
      @tab Only C and Fortran (and not for static variables)
@item @code{align} modifier in @code{allocate} clause @tab Y @tab
@item @code{thread_limit} clause to @code{target} construct @tab Y @tab
@item @code{has_device_addr} clause to @code{target} construct @tab Y @tab
@item Iterators in @code{target update} motion clauses and @code{map}
      clauses @tab N @tab
@item Indirect calls to the device version of a procedure or function in
      @code{target} regions @tab Y @tab
@item @code{interop} directive @tab N @tab
@item @code{omp_interop_t} object support in runtime routines @tab N @tab
@item @code{nowait} clause in @code{taskwait} directive @tab Y @tab
@item Extensions to the @code{atomic} directive @tab Y @tab
@item @code{seq_cst} clause on a @code{flush} construct @tab Y @tab
@item @code{inoutset} argument to the @code{depend} clause @tab Y @tab
@item @code{private} and @code{firstprivate} argument to @code{default}
      clause in C and C++ @tab Y @tab
@item @code{present} argument to @code{defaultmap} clause @tab Y @tab
@item @code{omp_set_num_teams}, @code{omp_set_teams_thread_limit},
      @code{omp_get_max_teams}, @code{omp_get_teams_thread_limit} runtime
      routines @tab Y @tab
@item @code{omp_target_is_accessible} runtime routine @tab Y @tab
@item @code{omp_target_memcpy_async} and @code{omp_target_memcpy_rect_async}
      runtime routines @tab Y @tab
@item @code{omp_get_mapped_ptr} runtime routine @tab Y @tab
@item @code{omp_calloc}, @code{omp_realloc}, @code{omp_aligned_alloc} and
      @code{omp_aligned_calloc} runtime routines @tab Y @tab
@item @code{omp_alloctrait_key_t} enum: @code{omp_atv_serialized} added,
      @code{omp_atv_default} changed @tab Y @tab
@item @code{omp_display_env} runtime routine @tab Y @tab
@item @code{ompt_scope_endpoint_t} enum: @code{ompt_scope_beginend} @tab N @tab
@item @code{ompt_sync_region_t} enum additions @tab N @tab
@item @code{ompt_state_t} enum: @code{ompt_state_wait_barrier_implementation}
      and @code{ompt_state_wait_barrier_teams} @tab N @tab
@item @code{ompt_callback_target_data_op_emi_t},
      @code{ompt_callback_target_emi_t}, @code{ompt_callback_target_map_emi_t}
      and @code{ompt_callback_target_submit_emi_t} @tab N @tab
@item @code{ompt_callback_error_t} type @tab N @tab
@item @code{OMP_PLACES} syntax extensions @tab Y @tab
@item @code{OMP_NUM_TEAMS} and @code{OMP_TEAMS_THREAD_LIMIT} environment
      variables @tab Y @tab
@end multitable

@unnumberedsubsec Other new OpenMP 5.1 features

@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item Support of strictly structured blocks in Fortran @tab Y @tab
@item Support of structured block sequences in C/C++ @tab Y @tab
@item @code{unconstrained} and @code{reproducible} modifiers on @code{order}
      clause @tab Y @tab
@item Support @code{begin/end declare target} syntax in C/C++ @tab Y @tab
@item Pointer predetermined firstprivate getting initialized
to address of matching mapped list item per 5.1, Sect. 2.21.7.2 @tab N @tab
@item For Fortran, diagnose placing declarative before/between @code{USE},
      @code{IMPORT}, and @code{IMPLICIT} as invalid @tab N @tab
@item Optional comma between directive and clause in the @code{#pragma} form @tab Y @tab
@item @code{indirect} clause in @code{declare target} @tab Y @tab
@item @code{device_type(nohost)}/@code{device_type(host)} for variables @tab N @tab
@item @code{present} modifier to the @code{map}, @code{to} and @code{from}
      clauses @tab Y @tab
@end multitable


@node OpenMP 5.2
@section OpenMP 5.2

@unnumberedsubsec New features listed in Appendix B of the OpenMP specification

@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item @code{omp_in_explicit_task} routine and @var{explicit-task-var} ICV
      @tab Y @tab
@item @code{omp}/@code{ompx}/@code{omx} sentinels and @code{omp_}/@code{ompx_}
      namespaces @tab N/A
      @tab warning for @code{ompx/omx} sentinels@footnote{The @code{ompx}
      sentinel as C/C++ pragma and C++ attributes are warned for with
      @code{-Wunknown-pragmas} (implied by @code{-Wall}) and @code{-Wattributes}
      (enabled by default), respectively; for Fortran free-source code, there is
      a warning enabled by default and, for fixed-source code, the @code{omx}
      sentinel is warned for with @code{-Wsurprising} (enabled by
      @code{-Wall}).  Unknown clauses are always rejected with an error.}
@item Clauses on @code{end} directive can be on directive @tab Y @tab
@item @code{destroy} clause with destroy-var argument on @code{depobj}
      @tab Y @tab
@item Deprecation of no-argument @code{destroy} clause on @code{depobj}
      @tab N @tab
@item @code{linear} clause syntax changes and @code{step} modifier @tab Y @tab
@item Deprecation of minus operator for reductions @tab N @tab
@item Deprecation of separating @code{map} modifiers without comma @tab N @tab
@item @code{declare mapper} with iterator and @code{present} modifiers
      @tab N @tab
@item If a matching mapped list item is not found in the data environment, the
      pointer retains its original value @tab Y @tab
@item New @code{enter} clause as alias for @code{to} on declare target directive
      @tab Y @tab
@item Deprecation of @code{to} clause on declare target directive @tab N @tab
@item Extended list of directives permitted in Fortran pure procedures
      @tab Y @tab
@item New @code{allocators} directive for Fortran @tab Y @tab
@item Deprecation of @code{allocate} directive for Fortran
      allocatables/pointers @tab N @tab
@item Optional paired @code{end} directive with @code{dispatch} @tab N @tab
@item New @code{memspace} and @code{traits} modifiers for @code{uses_allocators}
      @tab N @tab
@item Deprecation of traits array following the allocator_handle expression in
      @code{uses_allocators} @tab N @tab
@item New @code{otherwise} clause as alias for @code{default} on metadirectives
      @tab N @tab
@item Deprecation of @code{default} clause on metadirectives @tab N @tab
@item Deprecation of delimited form of @code{declare target} @tab N @tab
@item Reproducible semantics changed for @code{order(concurrent)} @tab N @tab
@item @code{allocate} and @code{firstprivate} clauses on @code{scope}
      @tab Y @tab
@item @code{ompt_callback_work} @tab N @tab
@item Default map-type for the @code{map} clause in @code{target enter/exit data}
      @tab Y @tab
@item New @code{doacross} clause as alias for @code{depend} with
      @code{source}/@code{sink} modifier @tab Y @tab
@item Deprecation of @code{depend} with @code{source}/@code{sink} modifier
      @tab N @tab
@item @code{omp_cur_iteration} keyword @tab Y @tab
@end multitable

@unnumberedsubsec Other new OpenMP 5.2 features

@multitable @columnfractions .60 .10 .25
@headitem Description @tab Status @tab Comments
@item For Fortran, optional comma between directive and clause @tab N @tab
@item Conforming device numbers and @code{omp_initial_device} and
      @code{omp_invalid_device} enum/PARAMETER @tab Y @tab
@item Initial value of @var{default-device-var} ICV with
      @code{OMP_TARGET_OFFLOAD=mandatory} @tab Y @tab
@item @code{all} as @emph{implicit-behavior} for @code{defaultmap} @tab Y @tab
@item @emph{interop_types} in any position of the modifier list for the @code{init} clause
      of the @code{interop} construct @tab N @tab
@item Invoke virtual member functions of C++ objects created on the host device
      on other devices @tab N @tab
@item @code{iterator} and @code{mapper} as map-type modifier in @code{declare mappter}
      @tab N @tab
@end multitable


@node OpenMP Technical Report 12
@section OpenMP Technical Report 12

Technical Report (TR) 12 is the second preview for OpenMP 6.0.

@unnumberedsubsec New features listed in Appendix B of the OpenMP specification
@multitable @columnfractions .60 .10 .25
@item Features deprecated in versions 5.2, 5.1 and 5.0 were removed
      @tab N/A @tab Backward compatibility
@item Full support for C23 was added @tab P @tab
@item Full support for C++23 was added @tab P @tab
@item @code{_ALL} suffix to the device-scope environment variables
      @tab P @tab Host device number wrongly accepted
@item @code{num_threads} now accepts a list @tab N @tab
@item Supporting increments with abstract names in @code{OMP_PLACES} @tab N @tab
@item Extension of @code{OMP_DEFAULT_DEVICE} and new
      @code{OMP_AVAILABLE_DEVICES} environment vars @tab N @tab
@item New @code{OMP_THREADS_RESERVE} environment variable @tab N @tab
@item The @code{decl} attribute was added to the C++ attribute syntax
      @tab Y @tab
@item The OpenMP directive syntax was extended to include C 23 attribute
      specifiers @tab Y @tab
@item All inarguable clauses take now an optional Boolean argument @tab N @tab
@item For Fortran, @emph{locator list} can be also function reference with
      data pointer result @tab N @tab
@item Concept of @emph{assumed-size arrays} in C and C++
      @tab N @tab
@item @emph{directive-name-modifier} accepted in all clauses @tab N @tab
@item For Fortran, atomic with BLOCK construct and, for C/C++, with
      unlimited curly braces supported @tab N @tab
@item For Fortran, atomic compare with storing the comparison result
      @tab N @tab
@item New @code{looprange} clause @tab N @tab
@item Ref-count change for @code{use_device_ptr}/@code{use_device_addr}
      @tab N @tab
@item Support for inductions @tab N @tab
@item Implicit reduction identifiers of C++ classes
      @tab N @tab
@item Change of the @emph{map-type} property from @emph{ultimate} to
      @emph{default} @tab N @tab
@item @code{self} modifier to @code{map} and @code{self} as
      @code{defaultmap} argument @tab N @tab
@item Mapping of @emph{assumed-size arrays} in C, C++ and Fortran
      @tab N @tab
@item @code{groupprivate} directive @tab N @tab
@item @code{local} clause to @code{declare target} directive @tab N @tab
@item @code{part_size} allocator trait @tab N @tab
@item @code{pin_device}, @code{preferred_device} and @code{target_access}
      allocator traits
      @tab N @tab
@item @code{access} allocator trait changes @tab N @tab
@item Extension of @code{interop} operation of @code{append_args}, allowing all
      modifiers of the @code{init} clause
      @tab N @tab
@item @code{interop} clause to @code{dispatch} @tab N @tab
@item @code{message} and @code{severity} clauses to @code{parallel} directive
      @tab N @tab
@item @code{self} clause to @code{requires} directive @tab N @tab
@item @code{no_openmp_constructs} assumptions clause @tab N @tab
@item @code{reverse} loop-transformation construct @tab N @tab
@item @code{interchange} loop-transformation construct @tab N @tab
@item @code{fuse} loop-transformation construct @tab N @tab
@item @code{apply} code to loop-transforming constructs @tab N @tab
@item @code{omp_curr_progress_width} identifier @tab N @tab
@item @code{safesync} clause to the @code{parallel} construct @tab N @tab
@item @code{omp_get_max_progress_width} runtime routine @tab N @tab
@item @code{strict} modifier keyword to @code{num_threads} @tab N @tab
@item @code{atomic} permitted in a construct with @code{order(concurrent)}
      @tab N @tab
@item @code{workdistribute} directive for Fortran @tab N
      @tab Renamed just after TR12; added in TR12 as @code{coexecute}
@item Fortran DO CONCURRENT as associated loop in a @code{loop} construct
      @tab N @tab
@item @code{threadset} clause in task-generating constructs @tab N @tab
@item @code{nowait} clause with reverse-offload @code{target} directives
      @tab N @tab
@item Boolean argument to @code{nowait} and @code{nogroup} may be non constant
      @tab N @tab
@item @code{memscope} clause to @code{atomic} and @code{flush} @tab N @tab
@item @code{omp_is_free_agent} and @code{omp_ancestor_is_free_agent} routines
      @tab N @tab
@item @code{omp_target_memset} and @code{omp_target_memset_rect_async} routines
      @tab N @tab
@item Routines for obtaining memory spaces/allocators for shared/device memory
      @tab N @tab
@item @code{omp_get_memspace_num_resources} routine @tab N @tab
@item @code{omp_get_submemspace} routine @tab N @tab
@item @code{ompt_target_data_transfer} and @code{ompt_target_data_transfer_async}
      values in @code{ompt_target_data_op_t} enum @tab N @tab
@item @code{ompt_get_buffer_limits} OMPT routine @tab N @tab
@end multitable

@unnumberedsubsec Other new TR 12 features
@multitable @columnfractions .60 .10 .25
@item Canonical loop nest enclosed in (multiple) curly braces (C/C++) or BLOCK constructs (Fortran)
      @tab N @tab
@item Relaxed Fortran restrictions to the @code{aligned} clause @tab N @tab
@item Mapping lambda captures @tab N @tab
@item New @code{omp_pause_stop_tool} constant for omp_pause_resource @tab N @tab
@end multitable



@c ---------------------------------------------------------------------
@c OpenMP Runtime Library Routines
@c ---------------------------------------------------------------------

@node Runtime Library Routines
@chapter OpenMP Runtime Library Routines

The runtime routines described here are defined by Section 18 of the OpenMP
specification in version 5.2.

@menu
* Thread Team Routines::
* Thread Affinity Routines::
* Teams Region Routines::
* Tasking Routines::
* Resource Relinquishing Routines::
* Device Information Routines::
* Device Memory Routines::
* Lock Routines::
* Timing Routines::
* Event Routine::
@c * Interoperability Routines::
* Memory Management Routines::
@c * Tool Control Routine::
* Environment Display Routine::
@end menu



@node Thread Team Routines
@section Thread Team Routines

Routines controlling threads in the current contention group.
They have C linkage and do not throw exceptions.

@menu
* omp_set_num_threads::         Set upper team size limit
* omp_get_num_threads::         Size of the active team
* omp_get_max_threads::         Maximum number of threads of parallel region
* omp_get_thread_num::          Current thread ID
* omp_in_parallel::             Whether a parallel region is active
* omp_set_dynamic::             Enable/disable dynamic teams
* omp_get_dynamic::             Dynamic teams setting
* omp_get_cancellation::        Whether cancellation support is enabled
* omp_set_nested::              Enable/disable nested parallel regions
* omp_get_nested::              Nested parallel regions
* omp_set_schedule::            Set the runtime scheduling method
* omp_get_schedule::            Obtain the runtime scheduling method
* omp_get_teams_thread_limit::  Maximum number of threads imposed by teams
* omp_get_supported_active_levels:: Maximum number of active regions supported
* omp_set_max_active_levels::   Limits the number of active parallel regions
* omp_get_max_active_levels::   Current maximum number of active regions
* omp_get_level::               Number of parallel regions
* omp_get_ancestor_thread_num:: Ancestor thread ID
* omp_get_team_size::           Number of threads in a team
* omp_get_active_level::        Number of active parallel regions
@end menu



@node omp_set_num_threads
@subsection @code{omp_set_num_threads} -- Set upper team size limit
@table @asis
@item @emph{Description}:
Specifies the number of threads used by default in subsequent parallel
sections, if those do not specify a @code{num_threads} clause.  The
argument of @code{omp_set_num_threads} shall be a positive integer.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_num_threads(int num_threads);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_num_threads(num_threads)}
@item                   @tab @code{integer, intent(in) :: num_threads}
@end multitable

@item @emph{See also}:
@ref{OMP_NUM_THREADS}, @ref{omp_get_num_threads}, @ref{omp_get_max_threads}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.1.
@end table



@node omp_get_num_threads
@subsection @code{omp_get_num_threads} -- Size of the active team
@table @asis
@item @emph{Description}:
Returns the number of threads in the current team.  In a sequential section of
the program @code{omp_get_num_threads} returns 1.

The default team size may be initialized at startup by the
@env{OMP_NUM_THREADS} environment variable.  At runtime, the size
of the current team may be set either by the @code{NUM_THREADS}
clause or by @code{omp_set_num_threads}.  If none of the above were
used to define a specific value and @env{OMP_DYNAMIC} is disabled,
one thread per CPU online is used.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_threads(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_threads()}
@end multitable

@item @emph{See also}:
@ref{omp_get_max_threads}, @ref{omp_set_num_threads}, @ref{OMP_NUM_THREADS}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.2.
@end table



@node omp_get_max_threads
@subsection @code{omp_get_max_threads} -- Maximum number of threads of parallel region
@table @asis
@item @emph{Description}:
Return the maximum number of threads used for the current parallel region
that does not use the clause @code{num_threads}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_threads(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_threads()}
@end multitable

@item @emph{See also}:
@ref{omp_set_num_threads}, @ref{omp_set_dynamic}, @ref{omp_get_thread_limit}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.3.
@end table



@node omp_get_thread_num
@subsection @code{omp_get_thread_num} -- Current thread ID
@table @asis
@item @emph{Description}:
Returns a unique thread identification number within the current team.
In a sequential parts of the program, @code{omp_get_thread_num}
always returns 0.  In parallel regions the return value varies
from 0 to @code{omp_get_num_threads}-1 inclusive.  The return
value of the primary thread of a team is always 0.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_thread_num(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_thread_num()}
@end multitable

@item @emph{See also}:
@ref{omp_get_num_threads}, @ref{omp_get_ancestor_thread_num}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.4.
@end table



@node omp_in_parallel
@subsection @code{omp_in_parallel} -- Whether a parallel region is active
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running in parallel,
@code{false} otherwise.  Here, @code{true} and @code{false} represent
their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_in_parallel(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_in_parallel()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.6.
@end table


@node omp_set_dynamic
@subsection @code{omp_set_dynamic} -- Enable/disable dynamic teams
@table @asis
@item @emph{Description}:
Enable or disable the dynamic adjustment of the number of threads 
within a team.  The function takes the language-specific equivalent
of @code{true} and @code{false}, where @code{true} enables dynamic 
adjustment of team sizes and @code{false} disables it.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_dynamic(int dynamic_threads);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_dynamic(dynamic_threads)}
@item                   @tab @code{logical, intent(in) :: dynamic_threads}
@end multitable

@item @emph{See also}:
@ref{OMP_DYNAMIC}, @ref{omp_get_dynamic}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.7.
@end table



@node omp_get_dynamic
@subsection @code{omp_get_dynamic} -- Dynamic teams setting
@table @asis
@item @emph{Description}:
This function returns @code{true} if enabled, @code{false} otherwise. 
Here, @code{true} and @code{false} represent their language-specific 
counterparts.

The dynamic team setting may be initialized at startup by the 
@env{OMP_DYNAMIC} environment variable or at runtime using
@code{omp_set_dynamic}.  If undefined, dynamic adjustment is
disabled by default.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_dynamic(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_dynamic()}
@end multitable

@item @emph{See also}:
@ref{omp_set_dynamic}, @ref{OMP_DYNAMIC}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.8.
@end table



@node omp_get_cancellation
@subsection @code{omp_get_cancellation} -- Whether cancellation support is enabled
@table @asis
@item @emph{Description}:
This function returns @code{true} if cancellation is activated, @code{false}
otherwise.  Here, @code{true} and @code{false} represent their language-specific
counterparts.  Unless @env{OMP_CANCELLATION} is set true, cancellations are
deactivated.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_cancellation(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_cancellation()}
@end multitable

@item @emph{See also}:
@ref{OMP_CANCELLATION}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.9.
@end table



@node omp_set_nested
@subsection @code{omp_set_nested} -- Enable/disable nested parallel regions
@table @asis
@item @emph{Description}:
Enable or disable nested parallel regions, i.e., whether team members
are allowed to create new teams.  The function takes the language-specific
equivalent of @code{true} and @code{false}, where @code{true} enables 
dynamic adjustment of team sizes and @code{false} disables it.

Enabling nested parallel regions also sets the maximum number of
active nested regions to the maximum supported.  Disabling nested parallel
regions sets the maximum number of active nested regions to one.

Note that the @code{omp_set_nested} API routine was deprecated
in the OpenMP specification 5.2 in favor of @code{omp_set_max_active_levels}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_nested(int nested);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_nested(nested)}
@item                   @tab @code{logical, intent(in) :: nested}
@end multitable

@item @emph{See also}:
@ref{omp_get_nested}, @ref{omp_set_max_active_levels},
@ref{OMP_MAX_ACTIVE_LEVELS}, @ref{OMP_NESTED}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.10.
@end table



@node omp_get_nested
@subsection @code{omp_get_nested} -- Nested parallel regions
@table @asis
@item @emph{Description}:
This function returns @code{true} if nested parallel regions are
enabled, @code{false} otherwise.  Here, @code{true} and @code{false}
represent their language-specific counterparts.

The state of nested parallel regions at startup depends on several
environment variables.  If @env{OMP_MAX_ACTIVE_LEVELS} is defined
and is set to greater than one, then nested parallel regions will be
enabled.  If not defined, then the value of the @env{OMP_NESTED}
environment variable will be followed if defined.  If neither are
defined, then if either @env{OMP_NUM_THREADS} or @env{OMP_PROC_BIND}
are defined with a list of more than one value, then nested parallel
regions are enabled.  If none of these are defined, then nested parallel
regions are disabled by default.

Nested parallel regions can be enabled or disabled at runtime using
@code{omp_set_nested}, or by setting the maximum number of nested
regions with @code{omp_set_max_active_levels} to one to disable, or
above one to enable.

Note that the @code{omp_get_nested} API routine was deprecated
in the OpenMP specification 5.2 in favor of @code{omp_get_max_active_levels}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_nested(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_get_nested()}
@end multitable

@item @emph{See also}:
@ref{omp_get_max_active_levels}, @ref{omp_set_nested},
@ref{OMP_MAX_ACTIVE_LEVELS}, @ref{OMP_NESTED}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.11.
@end table



@node omp_set_schedule
@subsection @code{omp_set_schedule} -- Set the runtime scheduling method
@table @asis
@item @emph{Description}:
Sets the runtime scheduling method.  The @var{kind} argument can have the
value @code{omp_sched_static}, @code{omp_sched_dynamic},
@code{omp_sched_guided} or @code{omp_sched_auto}.  Except for
@code{omp_sched_auto}, the chunk size is set to the value of
@var{chunk_size} if positive, or to the default value if zero or negative.
For @code{omp_sched_auto} the @var{chunk_size} argument is ignored.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_schedule(omp_sched_t kind, int chunk_size);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_schedule(kind, chunk_size)}
@item                   @tab @code{integer(kind=omp_sched_kind) kind}
@item                   @tab @code{integer chunk_size}
@end multitable

@item @emph{See also}:
@ref{omp_get_schedule}
@ref{OMP_SCHEDULE}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.12.
@end table



@node omp_get_schedule
@subsection @code{omp_get_schedule} -- Obtain the runtime scheduling method
@table @asis
@item @emph{Description}:
Obtain the runtime scheduling method.  The @var{kind} argument is set to
@code{omp_sched_static}, @code{omp_sched_dynamic},
@code{omp_sched_guided} or @code{omp_sched_auto}.  The second argument,
@var{chunk_size}, is set to the chunk size.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_get_schedule(omp_sched_t *kind, int *chunk_size);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_get_schedule(kind, chunk_size)}
@item                   @tab @code{integer(kind=omp_sched_kind) kind}
@item                   @tab @code{integer chunk_size}
@end multitable

@item @emph{See also}:
@ref{omp_set_schedule}, @ref{OMP_SCHEDULE}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.13.
@end table


@node omp_get_teams_thread_limit
@subsection @code{omp_get_teams_thread_limit} -- Maximum number of threads imposed by teams
@table @asis
@item @emph{Description}:
Return the maximum number of threads that are able to participate in
each team created by a teams construct.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_teams_thread_limit(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_teams_thread_limit()}
@end multitable

@item @emph{See also}:
@ref{omp_set_teams_thread_limit}, @ref{OMP_TEAMS_THREAD_LIMIT}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.4.6.
@end table



@node omp_get_supported_active_levels
@subsection @code{omp_get_supported_active_levels} -- Maximum number of active regions supported
@table @asis
@item @emph{Description}:
This function returns the maximum number of nested, active parallel regions
supported by this implementation.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_supported_active_levels(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_supported_active_levels()}
@end multitable

@item @emph{See also}:
@ref{omp_get_max_active_levels}, @ref{omp_set_max_active_levels}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.2.15.
@end table



@node omp_set_max_active_levels
@subsection @code{omp_set_max_active_levels} -- Limits the number of active parallel regions
@table @asis
@item @emph{Description}:
This function limits the maximum allowed number of nested, active
parallel regions.  @var{max_levels} must be less or equal to
the value returned by @code{omp_get_supported_active_levels}.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_max_active_levels(int max_levels);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_max_active_levels(max_levels)}
@item                   @tab @code{integer max_levels}
@end multitable

@item @emph{See also}:
@ref{omp_get_max_active_levels}, @ref{omp_get_active_level},
@ref{omp_get_supported_active_levels}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.15.
@end table



@node omp_get_max_active_levels
@subsection @code{omp_get_max_active_levels} -- Current maximum number of active regions
@table @asis
@item @emph{Description}:
This function obtains the maximum allowed number of nested, active parallel regions.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_active_levels(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_active_levels()}
@end multitable

@item @emph{See also}:
@ref{omp_set_max_active_levels}, @ref{omp_get_active_level}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.16.
@end table


@node omp_get_level
@subsection @code{omp_get_level} -- Obtain the current nesting level
@table @asis
@item @emph{Description}:
This function returns the nesting level for the parallel blocks,
which enclose the calling call.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_level(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_level()}
@end multitable

@item @emph{See also}:
@ref{omp_get_active_level}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.17.
@end table



@node omp_get_ancestor_thread_num
@subsection @code{omp_get_ancestor_thread_num} -- Ancestor thread ID
@table @asis
@item @emph{Description}:
This function returns the thread identification number for the given
nesting level of the current thread.  For values of @var{level} outside
zero to @code{omp_get_level} -1 is returned; if @var{level} is
@code{omp_get_level} the result is identical to @code{omp_get_thread_num}.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_ancestor_thread_num(int level);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_ancestor_thread_num(level)}
@item                   @tab @code{integer level}
@end multitable

@item @emph{See also}:
@ref{omp_get_level}, @ref{omp_get_thread_num}, @ref{omp_get_team_size}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.18.
@end table



@node omp_get_team_size
@subsection @code{omp_get_team_size} -- Number of threads in a team
@table @asis
@item @emph{Description}:
This function returns the number of threads in a thread team to which
either the current thread or its ancestor belongs.  For values of @var{level}
outside zero to @code{omp_get_level}, -1 is returned; if @var{level} is zero,
1 is returned, and for @code{omp_get_level}, the result is identical
to @code{omp_get_num_threads}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_team_size(int level);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_team_size(level)}
@item                   @tab @code{integer level}
@end multitable

@item @emph{See also}:
@ref{omp_get_num_threads}, @ref{omp_get_level}, @ref{omp_get_ancestor_thread_num}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.19.
@end table



@node omp_get_active_level
@subsection @code{omp_get_active_level} -- Number of parallel regions
@table @asis
@item @emph{Description}:
This function returns the nesting level for the active parallel blocks,
which enclose the calling call.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_active_level(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_active_level()}
@end multitable

@item @emph{See also}:
@ref{omp_get_level}, @ref{omp_get_max_active_levels}, @ref{omp_set_max_active_levels}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.20.
@end table



@node Thread Affinity Routines
@section Thread Affinity Routines

Routines controlling and accessing thread-affinity policies.
They have C linkage and do not throw exceptions.

@menu
* omp_get_proc_bind::           Whether threads may be moved between CPUs
@c * omp_get_num_places:: <fixme>
@c * omp_get_place_num_procs:: <fixme>
@c * omp_get_place_proc_ids:: <fixme>
@c * omp_get_place_num:: <fixme>
@c * omp_get_partition_num_places:: <fixme>
@c * omp_get_partition_place_nums:: <fixme>
@c * omp_set_affinity_format:: <fixme>
@c * omp_get_affinity_format:: <fixme>
@c * omp_display_affinity:: <fixme>
@c * omp_capture_affinity:: <fixme>
@end menu



@node omp_get_proc_bind
@subsection @code{omp_get_proc_bind} -- Whether threads may be moved between CPUs
@table @asis
@item @emph{Description}:
This functions returns the currently active thread affinity policy, which is
set via @env{OMP_PROC_BIND}.  Possible values are @code{omp_proc_bind_false},
@code{omp_proc_bind_true}, @code{omp_proc_bind_primary},
@code{omp_proc_bind_master}, @code{omp_proc_bind_close} and @code{omp_proc_bind_spread},
where @code{omp_proc_bind_master} is an alias for @code{omp_proc_bind_primary}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{omp_proc_bind_t omp_get_proc_bind(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(kind=omp_proc_bind_kind) function omp_get_proc_bind()}
@end multitable

@item @emph{See also}:
@ref{OMP_PROC_BIND}, @ref{OMP_PLACES}, @ref{GOMP_CPU_AFFINITY},

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.22.
@end table



@node Teams Region Routines
@section Teams Region Routines

Routines controlling the league of teams that are executed in a @code{teams}
region.  They have C linkage and do not throw exceptions.

@menu
* omp_get_num_teams::           Number of teams
* omp_get_team_num::            Get team number
* omp_set_num_teams::           Set upper teams limit for teams region
* omp_get_max_teams::           Maximum number of teams for teams region
* omp_set_teams_thread_limit::  Set upper thread limit for teams construct
* omp_get_thread_limit::        Maximum number of threads
@end menu



@node omp_get_num_teams
@subsection @code{omp_get_num_teams} -- Number of teams
@table @asis
@item @emph{Description}:
Returns the number of teams in the current team region.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_teams(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_teams()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.32.
@end table



@node omp_get_team_num
@subsection @code{omp_get_team_num} -- Get team number
@table @asis
@item @emph{Description}:
Returns the team number of the calling thread.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_team_num(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_team_num()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.33.
@end table



@node omp_set_num_teams
@subsection @code{omp_set_num_teams} -- Set upper teams limit for teams construct
@table @asis
@item @emph{Description}:
Specifies the upper bound for number of teams created by the teams construct
which does not specify a @code{num_teams} clause.  The
argument of @code{omp_set_num_teams} shall be a positive integer.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_num_teams(int num_teams);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_num_teams(num_teams)}
@item                   @tab @code{integer, intent(in) :: num_teams}
@end multitable

@item @emph{See also}:
@ref{OMP_NUM_TEAMS}, @ref{omp_get_num_teams}, @ref{omp_get_max_teams}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.4.3.
@end table



@node omp_get_max_teams
@subsection @code{omp_get_max_teams} -- Maximum number of teams of teams region
@table @asis
@item @emph{Description}:
Return the maximum number of teams used for the teams region
that does not use the clause @code{num_teams}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_teams(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_teams()}
@end multitable

@item @emph{See also}:
@ref{omp_set_num_teams}, @ref{omp_get_num_teams}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.4.4.
@end table



@node omp_set_teams_thread_limit
@subsection @code{omp_set_teams_thread_limit} -- Set upper thread limit for teams construct
@table @asis
@item @emph{Description}:
Specifies the upper bound for number of threads that are available
for each team created by the teams construct which does not specify a
@code{thread_limit} clause.  The argument of
@code{omp_set_teams_thread_limit} shall be a positive integer.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_teams_thread_limit(int thread_limit);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_teams_thread_limit(thread_limit)}
@item                   @tab @code{integer, intent(in) :: thread_limit}
@end multitable

@item @emph{See also}:
@ref{OMP_TEAMS_THREAD_LIMIT}, @ref{omp_get_teams_thread_limit}, @ref{omp_get_thread_limit}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.4.5.
@end table



@node omp_get_thread_limit
@subsection @code{omp_get_thread_limit} -- Maximum number of threads
@table @asis
@item @emph{Description}:
Return the maximum number of threads of the program.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_thread_limit(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_thread_limit()}
@end multitable

@item @emph{See also}:
@ref{omp_get_max_threads}, @ref{OMP_THREAD_LIMIT}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.14.
@end table



@node Tasking Routines
@section Tasking Routines

Routines relating to explicit tasks.
They have C linkage and do not throw exceptions.

@menu
* omp_get_max_task_priority::   Maximum task priority value that can be set
* omp_in_explicit_task::        Whether a given task is an explicit task
* omp_in_final::                Whether in final or included task region
@c * omp_is_free_agent:: <fixme>/TR12
@c * omp_ancestor_is_free_agent:: <fixme>/TR12
@end menu



@node omp_get_max_task_priority
@subsection @code{omp_get_max_task_priority} -- Maximum priority value
that can be set for tasks.
@table @asis
@item @emph{Description}:
This function obtains the maximum allowed priority number for tasks.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_max_task_priority(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_max_task_priority()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.29.
@end table



@node omp_in_explicit_task
@subsection @code{omp_in_explicit_task} -- Whether a given task is an explicit task
@table @asis
@item @emph{Description}:
The function returns the @var{explicit-task-var} ICV; it returns true when the
encountering task was generated by a task-generating construct such as
@code{target}, @code{task} or @code{taskloop}.  Otherwise, the encountering task
is in an implicit task region such as generated by the implicit or explicit
@code{parallel} region and @code{omp_in_explicit_task} returns false.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_in_explicit_task(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_in_explicit_task()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.2}, Section 18.5.2.
@end table



@node omp_in_final
@subsection @code{omp_in_final} -- Whether in final or included task region
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running in a final
or included task region, @code{false} otherwise.  Here, @code{true}
and @code{false} represent their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_in_final(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_in_final()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.21.
@end table



@node Resource Relinquishing Routines
@section Resource Relinquishing Routines

Routines releasing resources used by the OpenMP runtime.
They have C linkage and do not throw exceptions.

@menu
* omp_pause_resource:: Release OpenMP resources on a device
* omp_pause_resource_all:: Release OpenMP resources on all devices
@end menu



@node omp_pause_resource
@subsection @code{omp_pause_resource} -- Release OpenMP resources on a device
@table @asis
@item @emph{Description}:
Free resources used by the OpenMP program and the runtime library on and for the
device specified by @var{device_num}; on success, zero is returned and non-zero
otherwise.

The value of @var{device_num} must be a conforming device number.  The routine
may not be called from within any explicit region and all explicit threads that
do not bind to the implicit parallel region have finalized execution.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_pause_resource(omp_pause_resource_t kind, int device_num);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_pause_resource(kind, device_num)}
@item                   @tab @code{integer (kind=omp_pause_resource_kind) kind}
@item                   @tab @code{integer device_num}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.2.43.
@end table



@node omp_pause_resource_all
@subsection @code{omp_pause_resource_all} -- Release OpenMP resources on all devices
@table @asis
@item @emph{Description}:
Free resources used by the OpenMP program and the runtime library on all devices,
including the host. On success, zero is returned and non-zero otherwise.

The routine may not be called from within any explicit region and all explicit
threads that do not bind to the implicit parallel region have finalized execution.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_pause_resource(omp_pause_resource_t kind);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_pause_resource(kind)}
@item                   @tab @code{integer (kind=omp_pause_resource_kind) kind}
@end multitable

@item @emph{See also}:
@ref{omp_pause_resource}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.2.44.
@end table



@node Device Information Routines
@section Device Information Routines

Routines related to devices available to an OpenMP program.
They have C linkage and do not throw exceptions.

@menu
* omp_get_num_procs::           Number of processors online
@c * omp_get_max_progress_width:: <fixme>/TR11
* omp_set_default_device::      Set the default device for target regions
* omp_get_default_device::      Get the default device for target regions
* omp_get_num_devices::         Number of target devices
* omp_get_device_num::          Get device that current thread is running on
* omp_is_initial_device::       Whether executing on the host device
* omp_get_initial_device::      Device number of host device
@end menu



@node omp_get_num_procs
@subsection @code{omp_get_num_procs} -- Number of processors online
@table @asis
@item @emph{Description}:
Returns the number of processors online on that device.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_procs(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_procs()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.5.
@end table



@node omp_set_default_device
@subsection @code{omp_set_default_device} -- Set the default device for target regions
@table @asis
@item @emph{Description}:
Set the default device for target regions without device clause.  The argument
shall be a nonnegative device number.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_default_device(int device_num);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_default_device(device_num)}
@item                   @tab @code{integer device_num}
@end multitable

@item @emph{See also}:
@ref{OMP_DEFAULT_DEVICE}, @ref{omp_get_default_device}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.29.
@end table



@node omp_get_default_device
@subsection @code{omp_get_default_device} -- Get the default device for target regions
@table @asis
@item @emph{Description}:
Get the default device for target regions without device clause.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_default_device(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_default_device()}
@end multitable

@item @emph{See also}:
@ref{OMP_DEFAULT_DEVICE}, @ref{omp_set_default_device}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.30.
@end table



@node omp_get_num_devices
@subsection @code{omp_get_num_devices} -- Number of target devices
@table @asis
@item @emph{Description}:
Returns the number of target devices.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_num_devices(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_num_devices()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.31.
@end table



@node omp_get_device_num
@subsection @code{omp_get_device_num} -- Return device number of current device
@table @asis
@item @emph{Description}:
This function returns a device number that represents the device that the
current thread is executing on. For OpenMP 5.0, this must be equal to the
value returned by the @code{omp_get_initial_device} function when called
from the host.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_device_num(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_device_num()}
@end multitable

@item @emph{See also}:
@ref{omp_get_initial_device}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.2.37.
@end table



@node omp_is_initial_device
@subsection @code{omp_is_initial_device} -- Whether executing on the host device
@table @asis
@item @emph{Description}:
This function returns @code{true} if currently running on the host device,
@code{false} otherwise.  Here, @code{true} and @code{false} represent
their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_is_initial_device(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_is_initial_device()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.34.
@end table



@node omp_get_initial_device
@subsection @code{omp_get_initial_device} -- Return device number of initial device
@table @asis
@item @emph{Description}:
This function returns a device number that represents the host device.
For OpenMP 5.1, this must be equal to the value returned by the
@code{omp_get_num_devices} function.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_get_initial_device(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function omp_get_initial_device()}
@end multitable

@item @emph{See also}:
@ref{omp_get_num_devices}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.2.35.
@end table



@node Device Memory Routines
@section Device Memory Routines

Routines related to memory allocation and managing corresponding
pointers on devices. They have C linkage and do not throw exceptions.

@menu
* omp_target_alloc:: Allocate device memory
* omp_target_free:: Free device memory
* omp_target_is_present:: Check whether storage is mapped
* omp_target_is_accessible:: Check whether memory is device accessible
* omp_target_memcpy:: Copy data between devices
* omp_target_memcpy_async:: Copy data between devices asynchronously
* omp_target_memcpy_rect:: Copy a subvolume of data between devices
* omp_target_memcpy_rect_async:: Copy a subvolume of data between devices asynchronously
@c * omp_target_memset:: <fixme>/TR12
@c * omp_target_memset_async:: <fixme>/TR12
* omp_target_associate_ptr:: Associate a device pointer with a host pointer
* omp_target_disassociate_ptr:: Remove device--host pointer association
* omp_get_mapped_ptr:: Return device pointer to a host pointer
@end menu



@node omp_target_alloc
@subsection @code{omp_target_alloc} -- Allocate device memory
@table @asis
@item @emph{Description}:
This routine allocates @var{size} bytes of memory in the device environment
associated with the device number @var{device_num}.  If successful, a device
pointer is returned, otherwise a null pointer.

In GCC, when the device is the host or the device shares memory with the host,
the memory is allocated on the host; in that case, when @var{size} is zero,
either NULL or a unique pointer value that can later be successfully passed to
@code{omp_target_free} is returned.  When the allocation is not performed on
the host, a null pointer is returned when @var{size} is zero; in that case,
additionally a diagnostic might be printed to standard error (stderr).

Running this routine in a @code{target} region except on the initial device
is not supported.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *omp_target_alloc(size_t size, int device_num)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_target_alloc(size, device_num) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int, c_size_t}
@item                   @tab @code{integer(c_size_t), value :: size}
@item                   @tab @code{integer(c_int), value :: device_num}
@end multitable

@item @emph{See also}:
@ref{omp_target_free}, @ref{omp_target_associate_ptr}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.1
@end table



@node omp_target_free
@subsection @code{omp_target_free} -- Free device memory
@table @asis
@item @emph{Description}:
This routine frees memory allocated by the @code{omp_target_alloc} routine.
The @var{device_ptr} argument must be either a null pointer or a device pointer
returned by @code{omp_target_alloc} for the specified @code{device_num}.  The
device number @var{device_num} must be a conforming device number.

Running this routine in a @code{target} region except on the initial device
is not supported.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_target_free(void *device_ptr, int device_num)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_target_free(device_ptr, device_num) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int}
@item                   @tab @code{type(c_ptr), value :: device_ptr}
@item                   @tab @code{integer(c_int), value :: device_num}
@end multitable

@item @emph{See also}:
@ref{omp_target_alloc}, @ref{omp_target_disassociate_ptr}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.2
@end table



@node omp_target_is_present
@subsection @code{omp_target_is_present} -- Check whether storage is mapped
@table @asis
@item @emph{Description}:
This routine tests whether storage, identified by the host pointer @var{ptr}
is mapped to the device specified by @var{device_num}.  If so, it returns
a nonzero value and otherwise zero.

In GCC, this includes self mapping such that @code{omp_target_is_present}
returns @emph{true} when @var{device_num} specifies the host or when the host
and the device share memory.  If @var{ptr} is a null pointer, @var{true} is
returned and if @var{device_num} is an invalid device number, @var{false} is
returned.

If those conditions do not apply, @emph{true} is returned if the association has
been established by an explicit or implicit @code{map} clause, the
@code{declare target} directive or a call to the @code{omp_target_associate_ptr}
routine.

Running this routine in a @code{target} region except on the initial device
is not supported.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_is_present(const void *ptr,}
@item                   @tab @code{                          int device_num)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_is_present(ptr, &}
@item                   @tab @code{    device_num) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int}
@item                   @tab @code{type(c_ptr), value :: ptr}
@item                   @tab @code{integer(c_int), value :: device_num}
@end multitable

@item @emph{See also}:
@ref{omp_target_associate_ptr}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.3
@end table



@node omp_target_is_accessible
@subsection @code{omp_target_is_accessible} -- Check whether memory is device accessible
@table @asis
@item @emph{Description}:
This routine tests whether memory, starting at the address given by @var{ptr}
and extending @var{size} bytes, is accessibly on the device specified by
@var{device_num}.  If so, it returns a nonzero value and otherwise zero.

The address given by @var{ptr} is interpreted to be in the address space of
the device and @var{size} must be positive.

Note that GCC's current implementation assumes that @var{ptr} is a valid host
pointer. Therefore, all addresses given by @var{ptr} are assumed to be
accessible on the initial device. And, to err on the safe side, this memory
is only available on a non-host device that can access all host memory
([uniform] shared memory access).

Running this routine in a @code{target} region except on the initial device
is not supported.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_is_accessible(const void *ptr,}
@item                   @tab @code{                             size_t size,}
@item                   @tab @code{                             int device_num)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_is_accessible(ptr, &}
@item                   @tab @code{    size, device_num) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_size_t, c_int}
@item                   @tab @code{type(c_ptr), value :: ptr}
@item                   @tab @code{integer(c_size_t), value :: size}
@item                   @tab @code{integer(c_int), value :: device_num}
@end multitable

@item @emph{See also}:
@ref{omp_target_associate_ptr}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.4
@end table



@node omp_target_memcpy
@subsection @code{omp_target_memcpy} -- Copy data between devices
@table @asis
@item @emph{Description}:
This routine copies @var{length} of bytes of data from the device
identified by device number @var{src_device_num} to device @var{dst_device_num}.
The data is copied from the source device from the address provided by
@var{src}, shifted by the offset of @var{src_offset} bytes, to the destination
device's @var{dst} address shifted by @var{dst_offset}.  The routine returns
zero on success and non-zero otherwise.

Running this routine in a @code{target} region except on the initial device
is not supported.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_memcpy(void *dst,}
@item                   @tab @code{                           const void *src,}
@item                   @tab @code{                           size_t length,}
@item                   @tab @code{                           size_t dst_offset,}
@item                   @tab @code{                           size_t src_offset,}
@item                   @tab @code{                           int dst_device_num,}
@item                   @tab @code{                           int src_device_num)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_memcpy( &}
@item                   @tab @code{    dst, src, length, dst_offset, src_offset, &}
@item                   @tab @code{    dst_device_num, src_device_num) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_size_t, c_int}
@item                   @tab @code{type(c_ptr), value :: dst, src}
@item                   @tab @code{integer(c_size_t), value :: length, dst_offset, src_offset}
@item                   @tab @code{integer(c_int), value :: dst_device_num, src_device_num}
@end multitable

@item @emph{See also}:
@ref{omp_target_memcpy_async}, @ref{omp_target_memcpy_rect}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.5
@end table



@node omp_target_memcpy_async
@subsection @code{omp_target_memcpy_async} -- Copy data between devices asynchronously
@table @asis
@item @emph{Description}:
This routine copies asynchronously @var{length} of bytes of data from the
device identified by device number @var{src_device_num} to device
@var{dst_device_num}.  The data is copied from the source device from the
address provided by @var{src}, shifted by the offset of @var{src_offset} bytes,
to the destination device's @var{dst} address shifted by @var{dst_offset}.
Task dependence is expressed by passing an array of depend objects to
@var{depobj_list}, where the number of array elements is passed as
@var{depobj_count}; if the count is zero, the @var{depobj_list} argument is
ignored.  The routine returns zero if the copying process has successfully
been started and non-zero otherwise.

Running this routine in a @code{target} region except on the initial device
is not supported.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_memcpy_async(void *dst,}
@item                   @tab @code{                           const void *src,}
@item                   @tab @code{                           size_t length,}
@item                   @tab @code{                           size_t dst_offset,}
@item                   @tab @code{                           size_t src_offset,}
@item                   @tab @code{                           int dst_device_num,}
@item                   @tab @code{                           int src_device_num,}
@item                   @tab @code{                           int depobj_count,}
@item                   @tab @code{                           omp_depend_t *depobj_list)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_memcpy_async( &}
@item                   @tab @code{    dst, src, length, dst_offset, src_offset, &}
@item                   @tab @code{    dst_device_num, src_device_num, &}
@item                   @tab @code{    depobj_count, depobj_list) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_size_t, c_int}
@item                   @tab @code{type(c_ptr), value :: dst, src}
@item                   @tab @code{integer(c_size_t), value :: length, dst_offset, src_offset}
@item                   @tab @code{integer(c_int), value :: dst_device_num, src_device_num, depobj_count}
@item                   @tab @code{integer(omp_depend_kind), optional :: depobj_list(*)}
@end multitable

@item @emph{See also}:
@ref{omp_target_memcpy}, @ref{omp_target_memcpy_rect_async}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.7
@end table



@node omp_target_memcpy_rect
@subsection @code{omp_target_memcpy_rect} -- Copy a subvolume of data between devices
@table @asis
@item @emph{Description}:
This routine copies a subvolume of data from the device identified by
device number @var{src_device_num} to device @var{dst_device_num}. 
The array has @var{num_dims} dimensions and each array element has a size of
@var{element_size} bytes.  The @var{volume} array specifies how many elements
per dimension are copied.  The full sizes of the destination and source arrays
are given by the @var{dst_dimensions} and @var{src_dimensions} arguments,
respectively.  The offset per dimension to the first element to be copied is
given by the @var{dst_offset} and @var{src_offset} arguments.  The routine
returns zero on success and non-zero otherwise.

The OpenMP specification only requires that @var{num_dims} up to three is
supported.  In order to find implementation-specific maximally supported number
of dimensions, the routine returns this value when invoked with a null pointer
to both the @var{dst} and @var{src} arguments.  As GCC supports arbitrary
dimensions, it returns @code{INT_MAX}.

The device-number arguments must be conforming device numbers, the @var{src} and
@var{dst} must be either both null pointers or all of the following must be
fulfilled: @var{element_size} and @var{num_dims} must be positive and the
@var{volume}, offset and dimension arrays must have at least @var{num_dims}
dimensions.

Running this routine in a @code{target} region is not supported except on
the initial device.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_memcpy_rect(void *dst,}
@item                   @tab @code{                           const void *src,}
@item                   @tab @code{                           size_t element_size,}
@item                   @tab @code{                           int num_dims,}
@item                   @tab @code{                           const size_t *volume,}
@item                   @tab @code{                           const size_t *dst_offset,}
@item                   @tab @code{                           const size_t *src_offset,}
@item                   @tab @code{                           const size_t *dst_dimensions,}
@item                   @tab @code{                           const size_t *src_dimensions,}
@item                   @tab @code{                           int dst_device_num,}
@item                   @tab @code{                           int src_device_num)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_memcpy_rect( &}
@item                   @tab @code{    dst, src, element_size, num_dims, volume, &}
@item                   @tab @code{    dst_offset, src_offset, dst_dimensions, &}
@item                   @tab @code{    src_dimensions, dst_device_num, src_device_num) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_size_t, c_int}
@item                   @tab @code{type(c_ptr), value :: dst, src}
@item                   @tab @code{integer(c_size_t), value :: element_size, dst_offset, src_offset}
@item                   @tab @code{integer(c_size_t), value :: volume, dst_dimensions, src_dimensions}
@item                   @tab @code{integer(c_int), value :: num_dims, dst_device_num, src_device_num}
@end multitable

@item @emph{See also}:
@ref{omp_target_memcpy_rect_async}, @ref{omp_target_memcpy}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.6
@end table



@node omp_target_memcpy_rect_async
@subsection @code{omp_target_memcpy_rect_async} -- Copy a subvolume of data between devices asynchronously
@table @asis
@item @emph{Description}:
This routine copies asynchronously a subvolume of data from the device
identified by device number @var{src_device_num} to device @var{dst_device_num}.
The array has @var{num_dims} dimensions and each array element has a size of
@var{element_size} bytes.  The @var{volume} array specifies how many elements
per dimension are copied.  The full sizes of the destination and source arrays
are given by the @var{dst_dimensions} and @var{src_dimensions} arguments,
respectively.  The offset per dimension to the first element to be copied is
given by the @var{dst_offset} and @var{src_offset} arguments.  Task dependence
is expressed by passing an array of depend objects to @var{depobj_list}, where
the number of array elements is passed as @var{depobj_count}; if the count is
zero, the @var{depobj_list} argument is ignored.  The routine
returns zero on success and non-zero otherwise.

The OpenMP specification only requires that @var{num_dims} up to three is
supported.  In order to find implementation-specific maximally supported number
of dimensions, the routine returns this value when invoked with a null pointer
to both the @var{dst} and @var{src} arguments.  As GCC supports arbitrary
dimensions, it returns @code{INT_MAX}.

The device-number arguments must be conforming device numbers, the @var{src} and
@var{dst} must be either both null pointers or all of the following must be
fulfilled: @var{element_size} and @var{num_dims} must be positive and the
@var{volume}, offset and dimension arrays must have at least @var{num_dims}
dimensions.

Running this routine in a @code{target} region is not supported except on
the initial device.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_memcpy_rect_async(void *dst,}
@item                   @tab @code{                           const void *src,}
@item                   @tab @code{                           size_t element_size,}
@item                   @tab @code{                           int num_dims,}
@item                   @tab @code{                           const size_t *volume,}
@item                   @tab @code{                           const size_t *dst_offset,}
@item                   @tab @code{                           const size_t *src_offset,}
@item                   @tab @code{                           const size_t *dst_dimensions,}
@item                   @tab @code{                           const size_t *src_dimensions,}
@item                   @tab @code{                           int dst_device_num,}
@item                   @tab @code{                           int src_device_num,}
@item                   @tab @code{                           int depobj_count,}
@item                   @tab @code{                           omp_depend_t *depobj_list)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_memcpy_rect_async( &}
@item                   @tab @code{    dst, src, element_size, num_dims, volume, &}
@item                   @tab @code{    dst_offset, src_offset, dst_dimensions, &}
@item                   @tab @code{    src_dimensions, dst_device_num, src_device_num, &}
@item                   @tab @code{    depobj_count, depobj_list) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_size_t, c_int}
@item                   @tab @code{type(c_ptr), value :: dst, src}
@item                   @tab @code{integer(c_size_t), value :: element_size, dst_offset, src_offset}
@item                   @tab @code{integer(c_size_t), value :: volume, dst_dimensions, src_dimensions}
@item                   @tab @code{integer(c_int), value :: num_dims, dst_device_num, src_device_num}
@item                   @tab @code{integer(c_int), value :: depobj_count}
@item                   @tab @code{integer(omp_depend_kind), optional :: depobj_list(*)}
@end multitable

@item @emph{See also}:
@ref{omp_target_memcpy_rect}, @ref{omp_target_memcpy_async}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.8
@end table



@node omp_target_associate_ptr
@subsection @code{omp_target_associate_ptr} -- Associate a device pointer with a host pointer
@table @asis
@item @emph{Description}:
This routine associates storage on the host with storage on a device identified
by @var{device_num}.  The device pointer is usually obtained by calling
@code{omp_target_alloc} or by other means (but not by using the @code{map}
clauses or the @code{declare target} directive).  The host pointer should point
to memory that has a storage size of at least @var{size}.

The @var{device_offset} parameter specifies the offset into @var{device_ptr}
that is used as the base address for the device side of the mapping; the
storage size should be at least @var{device_offset} plus @var{size}.

After the association, the host pointer can be used in a @code{map} clause and
in the @code{to} and @code{from} clauses of the @code{target update} directive
to transfer data between the associated pointers. The reference count of such
associated storage is infinite.  The association can be removed by calling
@code{omp_target_disassociate_ptr} which should be done before the lifetime
of either storage ends.

The routine returns nonzero (@code{EINVAL}) when the @var{device_num} invalid,
for when the initial device or the associated device shares memory with the
host.  @code{omp_target_associate_ptr} returns zero if @var{host_ptr} points
into already associated storage that is fully inside of a previously associated
memory.  Otherwise, if the association was successful zero is returned; if none
of the cases above apply, nonzero (@code{EINVAL}) is returned.

The @code{omp_target_is_present} routine can be used to test whether
associated storage for a device pointer exists.

Running this routine in a @code{target} region except on the initial device
is not supported.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_associate_ptr(const void *host_ptr,}
@item                   @tab @code{                             const void *device_ptr,}
@item                   @tab @code{                             size_t size,}
@item                   @tab @code{                             size_t device_offset,}
@item                   @tab @code{                             int device_num)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_associate_ptr(host_ptr, &}
@item                   @tab @code{    device_ptr, size, device_offset, device_num) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int, c_size_t}
@item                   @tab @code{type(c_ptr), value :: host_ptr, device_ptr}
@item                   @tab @code{integer(c_size_t), value :: size, device_offset}
@item                   @tab @code{integer(c_int), value :: device_num}
@end multitable

@item @emph{See also}:
@ref{omp_target_disassociate_ptr}, @ref{omp_target_is_present},
@ref{omp_target_alloc}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.9
@end table



@node omp_target_disassociate_ptr
@subsection @code{omp_target_disassociate_ptr} -- Remove device--host pointer association
@table @asis
@item @emph{Description}:
This routine removes the storage association established by calling
@code{omp_target_associate_ptr} and sets the reference count to zero,
even if @code{omp_target_associate_ptr} was invoked multiple times for
for host pointer @code{ptr}.  If applicable, the device memory needs
to be freed by the user.

If an associated device storage location for the @var{device_num} was
found and has infinite reference count, the association is removed and
zero is returned.  In all other cases, nonzero (@code{EINVAL}) is returned
and no other action is taken.

Note that passing a host pointer where the association to the device pointer
was established with the @code{declare target} directive yields undefined
behavior.

Running this routine in a @code{target} region except on the initial device
is not supported.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_target_disassociate_ptr(const void *ptr,}
@item                   @tab @code{                                int device_num)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer(c_int) function omp_target_disassociate_ptr(ptr, &}
@item                   @tab @code{    device_num) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int}
@item                   @tab @code{type(c_ptr), value :: ptr}
@item                   @tab @code{integer(c_int), value :: device_num}
@end multitable

@item @emph{See also}:
@ref{omp_target_associate_ptr}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.10
@end table



@node omp_get_mapped_ptr
@subsection @code{omp_get_mapped_ptr} -- Return device pointer to a host pointer
@table @asis
@item @emph{Description}:
If the device number is refers to the initial device or to a device with
memory accessible from the host (shared memory), the @code{omp_get_mapped_ptr}
routines returns the value of the passed @var{ptr}.  Otherwise, if associated
storage to the passed host pointer @var{ptr} exists on device associated with
@var{device_num}, it returns that pointer. In all other cases and in cases of
an error, a null pointer is returned.

The association of storage location is established either via an explicit or
implicit @code{map} clause, the @code{declare target} directive or the
@code{omp_target_associate_ptr} routine.

Running this routine in a @code{target} region except on the initial device
is not supported.

@item @emph{C/C++}
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *omp_get_mapped_ptr(const void *ptr, int device_num);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_get_mapped_ptr(ptr, device_num) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only: c_ptr, c_int}
@item                   @tab @code{type(c_ptr), value :: ptr}
@item                   @tab @code{integer(c_int), value :: device_num}
@end multitable

@item @emph{See also}:
@ref{omp_target_associate_ptr}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.8.11
@end table



@node Lock Routines
@section Lock Routines

Initialize, set, test, unset and destroy simple and nested locks.
The routines have C linkage and do not throw exceptions.

@menu
* omp_init_lock::            Initialize simple lock
* omp_init_nest_lock::       Initialize nested lock
@c * omp_init_lock_with_hint:: <fixme>
@c * omp_init_nest_lock_with_hint:: <fixme>
* omp_destroy_lock::         Destroy simple lock
* omp_destroy_nest_lock::    Destroy nested lock
* omp_set_lock::             Wait for and set simple lock
* omp_set_nest_lock::        Wait for and set simple lock
* omp_unset_lock::           Unset simple lock
* omp_unset_nest_lock::      Unset nested lock
* omp_test_lock::            Test and set simple lock if available
* omp_test_nest_lock::       Test and set nested lock if available
@end menu



@node omp_init_lock
@subsection @code{omp_init_lock} -- Initialize simple lock
@table @asis
@item @emph{Description}:
Initialize a simple lock.  After initialization, the lock is in
an unlocked state.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_init_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_init_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(out) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_destroy_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.1.
@end table



@node omp_init_nest_lock
@subsection @code{omp_init_nest_lock} -- Initialize nested lock
@table @asis
@item @emph{Description}:
Initialize a nested lock.  After initialization, the lock is in
an unlocked state and the nesting count is set to zero.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_init_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_init_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(out) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_destroy_nest_lock}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.1.
@end table



@node omp_destroy_lock
@subsection @code{omp_destroy_lock} -- Destroy simple lock
@table @asis
@item @emph{Description}:
Destroy a simple lock.  In order to be destroyed, a simple lock must be
in the unlocked state. 

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_destroy_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_destroy_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.3.
@end table



@node omp_destroy_nest_lock
@subsection @code{omp_destroy_nest_lock} -- Destroy nested lock
@table @asis
@item @emph{Description}:
Destroy a nested lock.  In order to be destroyed, a nested lock must be
in the unlocked state and its nesting count must equal zero.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_destroy_nest_lock(omp_nest_lock_t *);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_destroy_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.3.
@end table



@node omp_set_lock
@subsection @code{omp_set_lock} -- Wait for and set simple lock
@table @asis
@item @emph{Description}:
Before setting a simple lock, the lock variable must be initialized by 
@code{omp_init_lock}.  The calling thread is blocked until the lock 
is available.  If the lock is already held by the current thread, 
a deadlock occurs.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_test_lock}, @ref{omp_unset_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.4.
@end table



@node omp_set_nest_lock
@subsection @code{omp_set_nest_lock} -- Wait for and set nested lock
@table @asis
@item @emph{Description}:
Before setting a nested lock, the lock variable must be initialized by 
@code{omp_init_nest_lock}.  The calling thread is blocked until the lock
is available.  If the lock is already held by the current thread, the
nesting count for the lock is incremented.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_init_nest_lock}, @ref{omp_unset_nest_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.4.
@end table



@node omp_unset_lock
@subsection @code{omp_unset_lock} -- Unset simple lock
@table @asis
@item @emph{Description}:
A simple lock about to be unset must have been locked by @code{omp_set_lock}
or @code{omp_test_lock} before.  In addition, the lock must be held by the
thread calling @code{omp_unset_lock}.  Then, the lock becomes unlocked.  If one
or more threads attempted to set the lock before, one of them is chosen to,
again, set the lock to itself.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_unset_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_unset_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_set_lock}, @ref{omp_test_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.5.
@end table



@node omp_unset_nest_lock
@subsection @code{omp_unset_nest_lock} -- Unset nested lock
@table @asis
@item @emph{Description}:
A nested lock about to be unset must have been locked by @code{omp_set_nested_lock}
or @code{omp_test_nested_lock} before.  In addition, the lock must be held by the
thread calling @code{omp_unset_nested_lock}.  If the nesting count drops to zero, the
lock becomes unlocked.  If one ore more threads attempted to set the lock before,
one of them is chosen to, again, set the lock to itself.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_unset_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_unset_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable

@item @emph{See also}:
@ref{omp_set_nest_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.5.
@end table



@node omp_test_lock
@subsection @code{omp_test_lock} -- Test and set simple lock if available
@table @asis
@item @emph{Description}:
Before setting a simple lock, the lock variable must be initialized by 
@code{omp_init_lock}.  Contrary to @code{omp_set_lock}, @code{omp_test_lock} 
does not block if the lock is not available.  This function returns
@code{true} upon success, @code{false} otherwise.  Here, @code{true} and
@code{false} represent their language-specific counterparts.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_test_lock(omp_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_test_lock(svar)}
@item                   @tab @code{integer(omp_lock_kind), intent(inout) :: svar}
@end multitable

@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.6.
@end table



@node omp_test_nest_lock
@subsection @code{omp_test_nest_lock} -- Test and set nested lock if available
@table @asis
@item @emph{Description}:
Before setting a nested lock, the lock variable must be initialized by 
@code{omp_init_nest_lock}.  Contrary to @code{omp_set_nest_lock},
@code{omp_test_nest_lock} does not block if the lock is not available. 
If the lock is already held by the current thread, the new nesting count 
is returned.  Otherwise, the return value equals zero.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int omp_test_nest_lock(omp_nest_lock_t *lock);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{logical function omp_test_nest_lock(nvar)}
@item                   @tab @code{integer(omp_nest_lock_kind), intent(inout) :: nvar}
@end multitable


@item @emph{See also}:
@ref{omp_init_lock}, @ref{omp_set_lock}, @ref{omp_set_lock}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.3.6.
@end table



@node Timing Routines
@section Timing Routines

Portable, thread-based, wall clock timer.
The routines have C linkage and do not throw exceptions.

@menu
* omp_get_wtick::            Get timer precision.
* omp_get_wtime::            Elapsed wall clock time.
@end menu



@node omp_get_wtick
@subsection @code{omp_get_wtick} -- Get timer precision
@table @asis
@item @emph{Description}:
Gets the timer precision, i.e., the number of seconds between two 
successive clock ticks.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{double omp_get_wtick(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{double precision function omp_get_wtick()}
@end multitable

@item @emph{See also}:
@ref{omp_get_wtime}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.4.2.
@end table



@node omp_get_wtime
@subsection @code{omp_get_wtime} -- Elapsed wall clock time
@table @asis
@item @emph{Description}:
Elapsed wall clock time in seconds.  The time is measured per thread, no
guarantee can be made that two distinct threads measure the same time.
Time is measured from some "time in the past", which is an arbitrary time
guaranteed not to change during the execution of the program.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{double omp_get_wtime(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{double precision function omp_get_wtime()}
@end multitable

@item @emph{See also}:
@ref{omp_get_wtick}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 3.4.1.
@end table



@node Event Routine
@section Event Routine

Support for event objects.
The routine has C linkage and do not throw exceptions.

@menu
* omp_fulfill_event::        Fulfill and destroy an OpenMP event.
@end menu



@node omp_fulfill_event
@subsection @code{omp_fulfill_event} -- Fulfill and destroy an OpenMP event
@table @asis
@item @emph{Description}:
Fulfill the event associated with the event handle argument.  Currently, it
is only used to fulfill events generated by detach clauses on task
constructs - the effect of fulfilling the event is to allow the task to
complete.

The result of calling @code{omp_fulfill_event} with an event handle other
than that generated by a detach clause is undefined.  Calling it with an
event handle that has already been fulfilled is also undefined.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_fulfill_event(omp_event_handle_t event);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_fulfill_event(event)}
@item                   @tab @code{integer (kind=omp_event_handle_kind) :: event}
@end multitable

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.5.1.
@end table



@c @node Interoperability Routines
@c @section Interoperability Routines
@c
@c Routines to obtain properties from an @code{omp_interop_t} object.
@c They have C linkage and do not throw exceptions.
@c
@c @menu
@c * omp_get_num_interop_properties:: <fixme>
@c * omp_get_interop_int:: <fixme>
@c * omp_get_interop_ptr:: <fixme>
@c * omp_get_interop_str:: <fixme>
@c * omp_get_interop_name:: <fixme>
@c * omp_get_interop_type_desc:: <fixme>
@c * omp_get_interop_rc_desc:: <fixme>
@c @end menu

@node Memory Management Routines
@section Memory Management Routines

Routines to manage and allocate memory on the current device.
They have C linkage and do not throw exceptions.

@menu
* omp_init_allocator:: Create an allocator
* omp_destroy_allocator:: Destroy an allocator
* omp_set_default_allocator:: Set the default allocator
* omp_get_default_allocator:: Get the default allocator
* omp_alloc:: Memory allocation with an allocator
* omp_aligned_alloc:: Memory allocation with an allocator and alignment
* omp_free:: Freeing memory allocated with OpenMP routines
* omp_calloc:: Allocate nullified memory with an allocator
* omp_aligned_calloc:: Allocate nullified aligned memory with an allocator
* omp_realloc:: Reallocate memory allocated with OpenMP routines
@c * omp_get_memspace_num_resources:: <fixme>/TR11
@c * omp_get_submemspace:: <fixme>/TR11
@end menu



@node omp_init_allocator
@subsection @code{omp_init_allocator} -- Create an allocator
@table @asis
@item @emph{Description}:
Create an allocator that uses the specified memory space and has the specified
traits; if an allocator that fulfills the requirements cannot be created,
@code{omp_null_allocator} is returned.

The predefined memory spaces and available traits can be found at
@ref{OMP_ALLOCATOR}, where the trait names have to be prefixed by
@code{omp_atk_} (e.g. @code{omp_atk_pinned}) and the named trait values by
@code{omp_atv_} (e.g. @code{omp_atv_true}); additionally, @code{omp_atv_default}
may be used as trait value to specify that the default value should be used.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{omp_allocator_handle_t omp_init_allocator(}
@item                   @tab @code{  omp_memspace_handle_t memspace,}
@item                   @tab @code{  int ntraits,}
@item                   @tab @code{  const omp_alloctrait_t traits[]);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function omp_init_allocator(memspace, ntraits, traits)}
@item                   @tab @code{integer (omp_allocator_handle_kind) :: omp_init_allocator}
@item                   @tab @code{integer (omp_memspace_handle_kind), intent(in) :: memspace}
@item                   @tab @code{integer, intent(in) :: ntraits}
@item                   @tab @code{type (omp_alloctrait), intent(in) :: traits(*)}
@end multitable

@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_destroy_allocator}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.2
@end table



@node omp_destroy_allocator
@subsection @code{omp_destroy_allocator} -- Destroy an allocator
@table @asis
@item @emph{Description}:
Releases all resources used by a memory allocator, which must not represent
a predefined memory allocator.  Accessing memory after its allocator has been
destroyed has unspecified behavior.  Passing @code{omp_null_allocator} to the
routine is permitted but has no effect.


@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_destroy_allocator (omp_allocator_handle_t allocator);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_destroy_allocator(allocator)}
@item                   @tab @code{integer (omp_allocator_handle_kind), intent(in) :: allocator}
@end multitable

@item @emph{See also}:
@ref{omp_init_allocator}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.3
@end table



@node omp_set_default_allocator
@subsection @code{omp_set_default_allocator} -- Set the default allocator
@table @asis
@item @emph{Description}:
Sets the default allocator that is used when no allocator has been specified
in the @code{allocate} or @code{allocator} clause or if an OpenMP memory
routine is invoked with the @code{omp_null_allocator} allocator.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_set_default_allocator(omp_allocator_handle_t allocator);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_set_default_allocator(allocator)}
@item                   @tab @code{integer (omp_allocator_handle_kind), intent(in) :: allocator}
@end multitable

@item @emph{See also}:
@ref{omp_get_default_allocator}, @ref{omp_init_allocator}, @ref{OMP_ALLOCATOR},
@ref{Memory allocation}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.4
@end table



@node omp_get_default_allocator
@subsection @code{omp_get_default_allocator} -- Get the default allocator
@table @asis
@item @emph{Description}:
The routine returns the default allocator that is used when no allocator has
been specified in the @code{allocate} or @code{allocator} clause or if an
OpenMP memory routine is invoked with the @code{omp_null_allocator} allocator.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{omp_allocator_handle_t omp_get_default_allocator();}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function omp_get_default_allocator()}
@item                   @tab @code{integer (omp_allocator_handle_kind) :: omp_get_default_allocator}
@end multitable

@item @emph{See also}:
@ref{omp_set_default_allocator}, @ref{OMP_ALLOCATOR}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.5
@end table



@node omp_alloc
@subsection @code{omp_alloc} -- Memory allocation with an allocator
@table @asis
@item @emph{Description}:
Allocate memory with the specified allocator, which can either be a predefined
allocator, an allocator handle or @code{omp_null_allocator}.  If the allocators
is @code{omp_null_allocator}, the allocator specified by the
@var{def-allocator-var} ICV is used.  @var{size} must be a nonnegative number
denoting the number of bytes to be allocated; if @var{size} is zero,
@code{omp_alloc} will return a null pointer.  If successful, a pointer to the
allocated memory is returned, otherwise the @code{fallback} trait of the
allocator determines the behavior.  The content of the allocated memory is
unspecified.

In @code{target} regions, either the @code{dynamic_allocators} clause must
appear on a @code{requires} directive in the same compilation unit -- or the
@var{allocator} argument may only be a constant expression with the value of
one of the predefined allocators and may not be @code{omp_null_allocator}.

Memory allocated by @code{omp_alloc} must be freed using @code{omp_free}.

@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_alloc(size_t size,}
@item                   @tab @code{  omp_allocator_handle_t allocator)}
@end multitable

@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_alloc(size_t size,}
@item                   @tab @code{  omp_allocator_handle_t allocator=omp_null_allocator)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_alloc(size, allocator) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t}
@item                   @tab @code{integer (c_size_t), value :: size}
@item                   @tab @code{integer (omp_allocator_handle_kind), value :: allocator}
@end multitable

@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_set_default_allocator},
@ref{omp_free}, @ref{omp_init_allocator}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.6
@end table



@node omp_aligned_alloc
@subsection @code{omp_aligned_alloc} -- Memory allocation with an allocator and alignment
@table @asis
@item @emph{Description}:
Allocate memory with the specified allocator, which can either be a predefined
allocator, an allocator handle or @code{omp_null_allocator}.  If the allocators
is @code{omp_null_allocator}, the allocator specified by the
@var{def-allocator-var} ICV is used.  @var{alignment} must be a positive power
of two and @var{size} must be a nonnegative number that is a multiple of the
alignment and denotes the number of bytes to be allocated; if @var{size} is
zero, @code{omp_aligned_alloc} will return a null pointer.  The alignment will
be at least the maximal value required by @code{alignment} trait of the
allocator and the value of the  passed @var{alignment} argument.  If successful,
a pointer to the allocated memory is returned, otherwise the @code{fallback}
trait of the allocator determines the behavior.  The content of the allocated
memory is unspecified.

In @code{target} regions, either the @code{dynamic_allocators} clause must
appear on a @code{requires} directive in the same compilation unit -- or the
@var{allocator} argument may only be a constant expression with the value of
one of the predefined allocators and may not be @code{omp_null_allocator}.

Memory allocated by @code{omp_aligned_alloc} must be freed using
@code{omp_free}.

@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_aligned_alloc(size_t alignment,}
@item                   @tab @code{  size_t size,}
@item                   @tab @code{  omp_allocator_handle_t allocator)}
@end multitable

@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_aligned_alloc(size_t alignment,}
@item                   @tab @code{  size_t size,}
@item                   @tab @code{  omp_allocator_handle_t allocator=omp_null_allocator)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_aligned_alloc(alignment, size, allocator) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t}
@item                   @tab @code{integer (c_size_t), value :: alignment, size}
@item                   @tab @code{integer (omp_allocator_handle_kind), value :: allocator}
@end multitable

@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_set_default_allocator},
@ref{omp_free}, @ref{omp_init_allocator}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.13.6
@end table



@node omp_free
@subsection @code{omp_free} -- Freeing memory allocated with OpenMP routines
@table @asis
@item @emph{Description}:
The @code{omp_free} routine deallocates memory previously allocated by an
OpenMP memory-management routine. The @var{ptr} argument must point to such
memory or be a null pointer; if it is a null pointer, no operation is
performed.  If specified, the @var{allocator} argument must be either the
memory allocator that was used for the allocation or @code{omp_null_allocator};
if it is @code{omp_null_allocator}, the implementation will determine the value
automatically.

Calling @code{omp_free} invokes undefined behavior if the memory
was already deallocated or when the used allocator has already been destroyed.

@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_free(void *ptr,}
@item                   @tab @code{  omp_allocator_handle_t allocator)}
@end multitable

@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_free(void *ptr,}
@item                   @tab @code{  omp_allocator_handle_t allocator=omp_null_allocator)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_free(ptr, allocator) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr}
@item                   @tab @code{type (c_ptr), value :: ptr}
@item                   @tab @code{integer (omp_allocator_handle_kind), value :: allocator}
@end multitable

@item @emph{See also}:
@ref{omp_alloc}, @ref{omp_aligned_alloc}, @ref{omp_calloc},
@ref{omp_aligned_calloc}, @ref{omp_realloc}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.7
@end table



@node omp_calloc
@subsection @code{omp_calloc} -- Allocate nullified memory with an allocator
@table @asis
@item @emph{Description}:
Allocate zero-initialized memory with the specified allocator, which can either
be a predefined allocator, an allocator handle or @code{omp_null_allocator}.  If
the allocators is @code{omp_null_allocator}, the allocator specified by the
@var{def-allocator-var} ICV is used.  The to-be allocated memory is for an
array with @var{nmemb} elements, each having a size of @var{size} bytes.  Both
@var{nmemb} and @var{size} must be nonnegative numbers; if either of them is
zero, @code{omp_calloc} will return a null pointer.  If successful, a pointer to
the zero-initialized allocated memory is returned, otherwise the @code{fallback}
trait of the allocator determines the behavior.

In @code{target} regions, either the @code{dynamic_allocators} clause must
appear on a @code{requires} directive in the same compilation unit -- or the
@var{allocator} argument may only be a constant expression with the value of
one of the predefined allocators and may not be @code{omp_null_allocator}.

Memory allocated by @code{omp_calloc} must be freed using @code{omp_free}.

@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_calloc(size_t nmemb, size_t size,}
@item                   @tab @code{  omp_allocator_handle_t allocator)}
@end multitable

@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_calloc(size_t nmemb, size_t size,}
@item                   @tab @code{  omp_allocator_handle_t allocator=omp_null_allocator)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_calloc(nmemb, size, allocator) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t}
@item                   @tab @code{integer (c_size_t), value :: nmemb, size}
@item                   @tab @code{integer (omp_allocator_handle_kind), value :: allocator}
@end multitable

@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_set_default_allocator},
@ref{omp_free}, @ref{omp_init_allocator}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.13.8
@end table



@node omp_aligned_calloc
@subsection @code{omp_aligned_calloc} -- Allocate aligned nullified memory with an allocator
@table @asis
@item @emph{Description}:
Allocate zero-initialized memory with the specified allocator, which can either
be a predefined allocator, an allocator handle or @code{omp_null_allocator}.  If
the allocators is @code{omp_null_allocator}, the allocator specified by the
@var{def-allocator-var} ICV is used.  The to-be allocated memory is for an
array with @var{nmemb} elements, each having a size of @var{size} bytes.  Both
@var{nmemb} and @var{size} must be nonnegative numbers; if either of them is
zero, @code{omp_aligned_calloc} will return a null pointer.  @var{alignment}
must be a positive power of two and @var{size} must be a multiple of the
alignment; the alignment will be at least the maximal value required by
@code{alignment} trait of the allocator and the value of the  passed
@var{alignment} argument.  If successful, a pointer to the zero-initialized
allocated memory is returned, otherwise the @code{fallback} trait of the
allocator determines the behavior.

In @code{target} regions, either the @code{dynamic_allocators} clause must
appear on a @code{requires} directive in the same compilation unit -- or the
@var{allocator} argument may only be a constant expression with the value of
one of the predefined allocators and may not be @code{omp_null_allocator}.

Memory allocated by @code{omp_aligned_calloc} must be freed using
@code{omp_free}.

@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_aligned_calloc(size_t nmemb, size_t size,}
@item                   @tab @code{  omp_allocator_handle_t allocator)}
@end multitable

@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_aligned_calloc(size_t nmemb, size_t size,}
@item                   @tab @code{  omp_allocator_handle_t allocator=omp_null_allocator)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_aligned_calloc(nmemb, size, allocator) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t}
@item                   @tab @code{integer (c_size_t), value :: nmemb, size}
@item                   @tab @code{integer (omp_allocator_handle_kind), value :: allocator}
@end multitable

@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_set_default_allocator},
@ref{omp_free}, @ref{omp_init_allocator}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.13.8
@end table



@node omp_realloc
@subsection @code{omp_realloc} -- Reallocate memory allocated with OpenMP routines
@table @asis
@item @emph{Description}:
The @code{omp_realloc} routine deallocates memory to which @var{ptr} points to
and allocates new memory with the specified @var{allocator} argument; the
new memory will have the content of the old memory up to the minimum of the
old size and the new @var{size}, otherwise the content of the returned memory
is unspecified.  If the new allocator is the same as the old one, the routine
tries to resize the existing memory allocation, returning the same address as
@var{ptr} if successful.  @var{ptr} must point to memory allocated by an OpenMP
memory-management routine.

The @var{allocator} and @var{free_allocator} arguments must be a predefined
allocator, an allocator handle or @code{omp_null_allocator}.  If
@var{free_allocator} is @code{omp_null_allocator}, the implementation
automatically determines the allocator used for the allocation of @var{ptr}.
If @var{allocator} is @code{omp_null_allocator} and @var{ptr} is not a
null pointer, the same allocator as @code{free_allocator} is used and
when @var{ptr} is a null pointer the allocator specified by the
@var{def-allocator-var} ICV is used.

The @var{size} must be a nonnegative number denoting the number of bytes to be
allocated; if @var{size} is zero, @code{omp_realloc} will return free the
memory and return a null pointer.  When @var{size} is nonzero: if successful,
a pointer to the allocated memory is returned, otherwise the @code{fallback}
trait of the allocator determines the behavior.

In @code{target} regions, either the @code{dynamic_allocators} clause must
appear on a @code{requires} directive in the same compilation unit -- or the
@var{free_allocator} and @var{allocator} arguments may only be a constant
expression with the value of one of the predefined allocators and may not be
@code{omp_null_allocator}.

Memory allocated by @code{omp_realloc} must be freed using @code{omp_free}.
Calling @code{omp_free} invokes undefined behavior if the memory
was already deallocated or when the used allocator has already been destroyed.

@item @emph{C}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_realloc(void *ptr, size_t size,}
@item                   @tab @code{  omp_allocator_handle_t allocator,}
@item                   @tab @code{  omp_allocator_handle_t free_allocator)}
@end multitable

@item @emph{C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void* omp_realloc(void *ptr, size_t size,}
@item                   @tab @code{  omp_allocator_handle_t allocator=omp_null_allocator,}
@item                   @tab @code{  omp_allocator_handle_t free_allocator=omp_null_allocator)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function omp_realloc(ptr, size, allocator, free_allocator) bind(C)}
@item                   @tab @code{use, intrinsic :: iso_c_binding, only : c_ptr, c_size_t}
@item                   @tab @code{type(C_ptr), value :: ptr}
@item                   @tab @code{integer (c_size_t), value :: size}
@item                   @tab @code{integer (omp_allocator_handle_kind), value :: allocator, free_allocator}
@end multitable

@item @emph{See also}:
@ref{OMP_ALLOCATOR}, @ref{Memory allocation}, @ref{omp_set_default_allocator},
@ref{omp_free}, @ref{omp_init_allocator}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 3.7.9
@end table



@c @node Tool Control Routine
@c @section Tool Control Routine
@c
@c FIXME

@node Environment Display Routine
@section Environment Display Routine

Routine to display the OpenMP version number and the initial value of ICVs.
It has C linkage and does not throw exceptions.

@menu
* omp_display_env:: print the initial ICV values
@end menu

@node omp_display_env
@subsection @code{omp_display_env} -- print the initial ICV values
@table @asis
@item @emph{Description}:
Each time this routine is invoked, the OpenMP version number and initial value
of internal control variables (ICVs) is printed on @code{stderr}.  The displayed
values are those at startup after evaluating the environment variables; later
calls to API routines or clauses used in enclosing constructs do not affect
the output.

If the @var{verbose} argument is @code{false}, only the OpenMP version and
standard OpenMP ICVs are shown; if it is @code{true}, additionally, the
GCC-specific ICVs are shown.

The output consists of multiple lines and starts with
@samp{OPENMP DISPLAY ENVIRONMENT BEGIN} followed by the name-value lines and
ends with @samp{OPENMP DISPLAY ENVIRONMENT END}.  The @var{name} is followed by
an equal sign and the @var{value} is enclosed in single quotes.

The first line has as @var{name} either @samp{_OPENMP} or @samp{openmp_version}
and shows as value the supported OpenMP version number (4-digit year, 2-digit
month) of the implementation, matching the value of the @code{_OPENMP} macro
and, in Fortran, the named constant @code{openmp_version}.

In each of the succeeding lines, the @var{name} matches the environment-variable
name of an ICV and shows its value.  Those line are might be prefixed by pair of
brackets and a space, where the brackets enclose a comma-separated list of
devices to which the ICV-value combination applies to; the value can either be a
numeric device number or an abstract name denoting all devices (@code{all}), the
initial host device (@code{host}) or all devices but the host (@code{device}).
Note that the same ICV might be printed multiple times for multiple devices,
even if all have the same value.

The effect when invoked from within a @code{target} region is unspecified.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void omp_display_env(int verbose)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine omp_display_env(vebose)}
@item                   @tab @code{logical, intent(in) :: verbose}
@end multitable

@item @emph{Example}:
Note that the GCC-specific ICVs, such as the shown @code{GOMP_SPINCOUNT},
are only printed when @var{varbose} set to @code{true}.

@smallexample
OPENMP DISPLAY ENVIRONMENT BEGIN
  _OPENMP = '201511'
  [host] OMP_DYNAMIC = 'FALSE'
  [host] OMP_NESTED = 'FALSE'
  [all] OMP_CANCELLATION = 'FALSE'
  ...
  [host] GOMP_SPINCOUNT = '300000'
OPENMP DISPLAY ENVIRONMENT END
@end smallexample


@item @emph{See also}:
@ref{OMP_DISPLAY_ENV}, @ref{Environment Variables},
@ref{Implementation-defined ICV Initialization}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 3.15
@end table


@c ---------------------------------------------------------------------
@c OpenMP Environment Variables
@c ---------------------------------------------------------------------

@node Environment Variables
@chapter OpenMP Environment Variables

The environment variables which beginning with @env{OMP_} are defined by
section 4 of the OpenMP specification in version 4.5 or in a later version
of the specification, while those beginning with @env{GOMP_} are GNU extensions.
Most @env{OMP_} environment variables have an associated internal control
variable (ICV).

For any OpenMP environment variable that sets an ICV and is neither
@code{OMP_DEFAULT_DEVICE} nor has global ICV scope, associated
device-specific environment variables exist.  For them, the environment
variable without suffix affects the host.  The suffix @code{_DEV_} followed
by a non-negative device number less that the number of available devices sets
the ICV for the corresponding device.  The suffix @code{_DEV} sets the ICV
of all non-host devices for which a device-specific corresponding environment
variable has not been set while the @code{_ALL} suffix sets the ICV of all
host and non-host devices for which a more specific corresponding environment
variable is not set.

@menu
* OMP_ALLOCATOR::           Set the default allocator
* OMP_AFFINITY_FORMAT::     Set the format string used for affinity display
* OMP_CANCELLATION::        Set whether cancellation is activated
* OMP_DISPLAY_AFFINITY::    Display thread affinity information
* OMP_DISPLAY_ENV::         Show OpenMP version and environment variables
* OMP_DEFAULT_DEVICE::      Set the device used in target regions
* OMP_DYNAMIC::             Dynamic adjustment of threads
* OMP_MAX_ACTIVE_LEVELS::   Set the maximum number of nested parallel regions
* OMP_MAX_TASK_PRIORITY::   Set the maximum task priority value
* OMP_NESTED::              Nested parallel regions
* OMP_NUM_TEAMS::           Specifies the number of teams to use by teams region
* OMP_NUM_THREADS::         Specifies the number of threads to use
* OMP_PROC_BIND::           Whether threads may be moved between CPUs
* OMP_PLACES::              Specifies on which CPUs the threads should be placed
* OMP_STACKSIZE::           Set default thread stack size
* OMP_SCHEDULE::            How threads are scheduled
* OMP_TARGET_OFFLOAD::      Controls offloading behavior
* OMP_TEAMS_THREAD_LIMIT::  Set the maximum number of threads imposed by teams
* OMP_THREAD_LIMIT::        Set the maximum number of threads
* OMP_WAIT_POLICY::         How waiting threads are handled
* GOMP_CPU_AFFINITY::       Bind threads to specific CPUs
* GOMP_DEBUG::              Enable debugging output
* GOMP_STACKSIZE::          Set default thread stack size
* GOMP_SPINCOUNT::          Set the busy-wait spin count
* GOMP_RTEMS_THREAD_POOLS:: Set the RTEMS specific thread pools
@end menu


@node OMP_ALLOCATOR
@section @env{OMP_ALLOCATOR} -- Set the default allocator
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{def-allocator-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Sets the default allocator that is used when no allocator has been specified
in the @code{allocate} or @code{allocator} clause or if an OpenMP memory
routine is invoked with the @code{omp_null_allocator} allocator.
If unset, @code{omp_default_mem_alloc} is used.

The value can either be a predefined allocator or a predefined memory space
or a predefined memory space followed by a colon and a comma-separated list
of memory trait and value pairs, separated by @code{=}.

Note: The corresponding device environment variables are currently not
supported.  Therefore, the non-host @var{def-allocator-var} ICVs are always
initialized to @code{omp_default_mem_alloc}.  However, on all devices,
the @code{omp_set_default_allocator} API routine can be used to change
value.

@multitable @columnfractions .45 .45
@headitem Predefined allocators @tab Associated predefined memory spaces
@item omp_default_mem_alloc     @tab omp_default_mem_space
@item omp_large_cap_mem_alloc   @tab omp_large_cap_mem_space
@item omp_const_mem_alloc       @tab omp_const_mem_space
@item omp_high_bw_mem_alloc     @tab omp_high_bw_mem_space
@item omp_low_lat_mem_alloc     @tab omp_low_lat_mem_space
@item omp_cgroup_mem_alloc      @tab omp_low_lat_mem_space (implementation defined)
@item omp_pteam_mem_alloc       @tab omp_low_lat_mem_space (implementation defined)
@item omp_thread_mem_alloc      @tab omp_low_lat_mem_space (implementation defined)
@item ompx_gnu_pinned_mem_alloc @tab omp_default_mem_space (GNU extension)
@end multitable

The predefined allocators use the default values for the traits,
as listed below.  Except that the last three allocators have the
@code{access} trait set to @code{cgroup}, @code{pteam}, and
@code{thread}, respectively.

@multitable @columnfractions .25 .40 .25
@headitem Trait @tab Allowed values @tab Default value
@item @code{sync_hint} @tab @code{contended}, @code{uncontended},
                            @code{serialized}, @code{private}
                       @tab @code{contended}
@item @code{alignment} @tab Positive integer being a power of two
                       @tab 1 byte
@item @code{access}    @tab @code{all}, @code{cgroup},
                            @code{pteam}, @code{thread}
                       @tab @code{all}
@item @code{pool_size} @tab Positive integer
                       @tab See @ref{Memory allocation}
@item @code{fallback}  @tab @code{default_mem_fb}, @code{null_fb},
                            @code{abort_fb}, @code{allocator_fb}
                       @tab See below
@item @code{fb_data}   @tab @emph{unsupported as it needs an allocator handle}
                       @tab (none)
@item @code{pinned}    @tab @code{true}, @code{false}
                       @tab See below
@item @code{partition} @tab @code{environment}, @code{nearest},
                            @code{blocked}, @code{interleaved}
                       @tab @code{environment}
@end multitable

For the @code{fallback} trait, the default value is @code{null_fb} for the
@code{omp_default_mem_alloc} allocator and any allocator that is associated
with device memory; for all other allocators, it is @code{default_mem_fb}
by default.

For the @code{pinned} trait, the default value is @code{true} for
predefined allocator @code{ompx_gnu_pinned_mem_alloc} (a GNU extension), and
@code{false} for all others.

Examples:
@smallexample
OMP_ALLOCATOR=omp_high_bw_mem_alloc
OMP_ALLOCATOR=omp_large_cap_mem_space
OMP_ALLOCATOR=omp_low_lat_mem_space:pinned=true,partition=nearest
@end smallexample

@item @emph{See also}:
@ref{Memory allocation}, @ref{omp_get_default_allocator},
@ref{omp_set_default_allocator}, @ref{Offload-Target Specifics}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 6.21
@end table



@node OMP_AFFINITY_FORMAT
@section @env{OMP_AFFINITY_FORMAT} -- Set the format string used for affinity display
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{affinity-format-var}
@item @emph{Scope:} device
@item @emph{Description}:
Sets the format string used when displaying OpenMP thread affinity information.
Special values are output using @code{%} followed by an optional size
specification and then either the single-character field type or its long
name enclosed in curly braces; using @code{%%} displays a literal percent.
The size specification consists of an optional @code{0.} or @code{.} followed
by a positive integer, specifying the minimal width of the output.  With
@code{0.} and numerical values, the output is padded with zeros on the left;
with @code{.}, the output is padded by spaces on the left; otherwise, the
output is padded by spaces on the right.  If unset, the value is
``@code{level %L thread %i affinity %A}''.

Supported field types are:

@multitable @columnfractions .10 .25 .60
@item t @tab team_num @tab value returned by @code{omp_get_team_num}
@item T @tab num_teams @tab value returned by @code{omp_get_num_teams}
@item L @tab nesting_level @tab value returned by @code{omp_get_level}
@item n @tab thread_num @tab value returned by @code{omp_get_thread_num}
@item N @tab num_threads @tab value returned by @code{omp_get_num_threads}
@item a @tab ancestor_tnum
      @tab value returned by
           @code{omp_get_ancestor_thread_num(omp_get_level()-1)}
@item H @tab host @tab name of the host that executes the thread
@item P @tab process_id @tab process identifier
@item i @tab native_thread_id @tab native thread identifier
@item A @tab thread_affinity
      @tab comma separated list of integer values or ranges, representing the
           processors on which a process might execute, subject to affinity
           mechanisms
@end multitable

For instance, after setting

@smallexample
OMP_AFFINITY_FORMAT="%0.2a!%n!%.4L!%N;%.2t;%0.2T;%@{team_num@};%@{num_teams@};%A"
@end smallexample

with either @code{OMP_DISPLAY_AFFINITY} being set or when calling
@code{omp_display_affinity} with @code{NULL} or an empty string, the program
might display the following:

@smallexample
00!0!   1!4; 0;01;0;1;0-11
00!3!   1!4; 0;01;0;1;0-11
00!2!   1!4; 0;01;0;1;0-11
00!1!   1!4; 0;01;0;1;0-11
@end smallexample

@item @emph{See also}:
@ref{OMP_DISPLAY_AFFINITY}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 6.14
@end table



@node OMP_CANCELLATION
@section @env{OMP_CANCELLATION} -- Set whether cancellation is activated
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{cancel-var}
@item @emph{Scope:} global
@item @emph{Description}:
If set to @code{TRUE}, the cancellation is activated.  If set to @code{FALSE} or
if unset, cancellation is disabled and the @code{cancel} construct is ignored.

@item @emph{See also}:
@ref{omp_get_cancellation}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.11
@end table



@node OMP_DISPLAY_AFFINITY
@section @env{OMP_DISPLAY_AFFINITY} -- Display thread affinity information
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{display-affinity-var}
@item @emph{Scope:} global
@item @emph{Description}:
If set to @code{FALSE} or if unset, affinity displaying is disabled.
If set to @code{TRUE}, the runtime displays affinity information about
OpenMP threads in a parallel region upon entering the region and every time
any change occurs.

@item @emph{See also}:
@ref{OMP_AFFINITY_FORMAT}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 6.13
@end table




@node OMP_DISPLAY_ENV
@section @env{OMP_DISPLAY_ENV} -- Show OpenMP version and environment variables
@cindex Environment Variable
@table @asis
@item @emph{ICV:} none
@item @emph{Scope:} not applicable
@item @emph{Description}:
If set to @code{TRUE}, the runtime displays the same information to
@code{stderr} as shown by the @code{omp_display_env} routine invoked with
@var{verbose} argument set to @code{false}.  If set to @code{VERBOSE}, the same
information is shown as invoking the routine with @var{verbose} set to
@code{true}. If unset or set to @code{FALSE}, this information is not shown.
The result for any other value is unspecified.

@item @emph{See also}:
@ref{omp_display_env}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.12
@end table



@node OMP_DEFAULT_DEVICE
@section @env{OMP_DEFAULT_DEVICE} -- Set the device used in target regions
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{default-device-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Set to choose the device which is used in a @code{target} region, unless the
value is overridden by @code{omp_set_default_device} or by a @code{device}
clause.  The value shall be the nonnegative device number. If no device with
the given device number exists, the code is executed on the host.  If unset,
@env{OMP_TARGET_OFFLOAD} is @code{mandatory} and no non-host devices are
available, it is set to @code{omp_invalid_device}.  Otherwise, if unset,
device number 0 is used.


@item @emph{See also}:
@ref{omp_get_default_device}, @ref{omp_set_default_device},
@ref{OMP_TARGET_OFFLOAD}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.2}, Section 21.2.7
@end table



@node OMP_DYNAMIC
@section @env{OMP_DYNAMIC} -- Dynamic adjustment of threads
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{dyn-var}
@item @emph{Scope:} global
@item @emph{Description}:
Enable or disable the dynamic adjustment of the number of threads 
within a team.  The value of this environment variable shall be 
@code{TRUE} or @code{FALSE}.  If undefined, dynamic adjustment is
disabled by default.

@item @emph{See also}:
@ref{omp_set_dynamic}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.3
@end table



@node OMP_MAX_ACTIVE_LEVELS
@section @env{OMP_MAX_ACTIVE_LEVELS} -- Set the maximum number of nested parallel regions
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{max-active-levels-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Specifies the initial value for the maximum number of nested parallel
regions.  The value of this variable shall be a positive integer.
If undefined, then if @env{OMP_NESTED} is defined and set to true, or
if @env{OMP_NUM_THREADS} or @env{OMP_PROC_BIND} are defined and set to
a list with more than one item, the maximum number of nested parallel
regions is initialized to the largest number supported, otherwise
it is set to one.

@item @emph{See also}:
@ref{omp_set_max_active_levels}, @ref{OMP_NESTED}, @ref{OMP_PROC_BIND},
@ref{OMP_NUM_THREADS}


@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.9
@end table



@node OMP_MAX_TASK_PRIORITY
@section @env{OMP_MAX_TASK_PRIORITY} -- Set the maximum priority
number that can be set for a task.
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{max-task-priority-var}
@item @emph{Scope:} global
@item @emph{Description}:
Specifies the initial value for the maximum priority value that can be
set for a task.  The value of this variable shall be a non-negative
integer, and zero is allowed.  If undefined, the default priority is
0.

@item @emph{See also}:
@ref{omp_get_max_task_priority}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.14
@end table



@node OMP_NESTED
@section @env{OMP_NESTED} -- Nested parallel regions
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{ICV:} @var{max-active-levels-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Enable or disable nested parallel regions, i.e., whether team members
are allowed to create new teams.  The value of this environment variable 
shall be @code{TRUE} or @code{FALSE}.  If set to @code{TRUE}, the number
of maximum active nested regions supported is by default set to the
maximum supported, otherwise it is set to one.  If
@env{OMP_MAX_ACTIVE_LEVELS} is defined, its setting overrides this
setting.  If both are undefined, nested parallel regions are enabled if
@env{OMP_NUM_THREADS} or @env{OMP_PROC_BINDS} are defined to a list with
more than one item, otherwise they are disabled by default.

Note that the @code{OMP_NESTED} environment variable was deprecated in
the OpenMP specification 5.2 in favor of @code{OMP_MAX_ACTIVE_LEVELS}.

@item @emph{See also}:
@ref{omp_set_max_active_levels}, @ref{omp_set_nested},
@ref{OMP_MAX_ACTIVE_LEVELS}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.6
@end table



@node OMP_NUM_TEAMS
@section @env{OMP_NUM_TEAMS} -- Specifies the number of teams to use by teams region
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{nteams-var}
@item @emph{Scope:} device
@item @emph{Description}:
Specifies the upper bound for number of teams to use in teams regions
without explicit @code{num_teams} clause.  The value of this variable shall
be a positive integer.  If undefined it defaults to 0 which means
implementation defined upper bound.

@item @emph{See also}:
@ref{omp_set_num_teams}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 6.23
@end table



@node OMP_NUM_THREADS
@section @env{OMP_NUM_THREADS} -- Specifies the number of threads to use
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{ICV:} @var{nthreads-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Specifies the default number of threads to use in parallel regions.  The 
value of this variable shall be a comma-separated list of positive integers;
the value specifies the number of threads to use for the corresponding nested
level.  Specifying more than one item in the list automatically enables
nesting by default.  If undefined one thread per CPU is used.

When a list with more than value is specified, it also affects the
@var{max-active-levels-var} ICV as described in @ref{OMP_MAX_ACTIVE_LEVELS}.

@item @emph{See also}:
@ref{omp_set_num_threads}, @ref{OMP_MAX_ACTIVE_LEVELS}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.2
@end table



@node OMP_PROC_BIND
@section @env{OMP_PROC_BIND} -- Whether threads may be moved between CPUs
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{bind-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Specifies whether threads may be moved between processors.  If set to
@code{TRUE}, OpenMP threads should not be moved; if set to @code{FALSE}
they may be moved.  Alternatively, a comma separated list with the
values @code{PRIMARY}, @code{MASTER}, @code{CLOSE} and @code{SPREAD} can
be used to specify the thread affinity policy for the corresponding nesting
level.  With @code{PRIMARY} and @code{MASTER} the worker threads are in the
same place partition as the primary thread.  With @code{CLOSE} those are
kept close to the primary thread in contiguous place partitions.  And
with @code{SPREAD} a sparse distribution
across the place partitions is used.  Specifying more than one item in the
list automatically enables nesting by default.

When a list is specified, it also affects the @var{max-active-levels-var} ICV
as described in @ref{OMP_MAX_ACTIVE_LEVELS}.

When undefined, @env{OMP_PROC_BIND} defaults to @code{TRUE} when
@env{OMP_PLACES} or @env{GOMP_CPU_AFFINITY} is set and @code{FALSE} otherwise.

@item @emph{See also}:
@ref{omp_get_proc_bind}, @ref{GOMP_CPU_AFFINITY}, @ref{OMP_PLACES},
@ref{OMP_MAX_ACTIVE_LEVELS}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.4
@end table



@node OMP_PLACES
@section @env{OMP_PLACES} -- Specifies on which CPUs the threads should be placed
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{place-partition-var}
@item @emph{Scope:} implicit tasks
@item @emph{Description}:
The thread placement can be either specified using an abstract name or by an
explicit list of the places.  The abstract names @code{threads}, @code{cores},
@code{sockets}, @code{ll_caches} and @code{numa_domains} can be optionally
followed by a positive number in parentheses, which denotes the how many places
shall be created.  With @code{threads} each place corresponds to a single
hardware thread; @code{cores} to a single core with the corresponding number of
hardware threads; with @code{sockets} the place corresponds to a single
socket; with @code{ll_caches} to a set of cores that shares the last level
cache on the device; and @code{numa_domains} to a set of cores for which their
closest memory on the device is the same memory and at a similar distance from
the cores.  The resulting placement can be shown by setting the
@env{OMP_DISPLAY_ENV} environment variable.

Alternatively, the placement can be specified explicitly as comma-separated
list of places.  A place is specified by set of nonnegative numbers in curly
braces, denoting the hardware threads.  The curly braces can be omitted
when only a single number has been specified.  The hardware threads
belonging to a place can either be specified as comma-separated list of
nonnegative thread numbers or using an interval.  Multiple places can also be
either specified by a comma-separated list of places or by an interval.  To
specify an interval, a colon followed by the count is placed after
the hardware thread number or the place.  Optionally, the length can be
followed by a colon and the stride number -- otherwise a unit stride is
assumed.  Placing an exclamation mark (@code{!}) directly before a curly
brace or numbers inside the curly braces (excluding intervals)
excludes those hardware threads.

For instance, the following specifies the same places list:
@code{"@{0,1,2@}, @{3,4,6@}, @{7,8,9@}, @{10,11,12@}"};
@code{"@{0:3@}, @{3:3@}, @{7:3@}, @{10:3@}"}; and @code{"@{0:2@}:4:3"}.

If @env{OMP_PLACES} and @env{GOMP_CPU_AFFINITY} are unset and
@env{OMP_PROC_BIND} is either unset or @code{false}, threads may be moved
between CPUs following no placement policy.

@item @emph{See also}:
@ref{OMP_PROC_BIND}, @ref{GOMP_CPU_AFFINITY}, @ref{omp_get_proc_bind},
@ref{OMP_DISPLAY_ENV}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.5
@end table



@node OMP_STACKSIZE
@section @env{OMP_STACKSIZE} -- Set default thread stack size
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{stacksize-var}
@item @emph{Scope:} device
@item @emph{Description}:
Set the default thread stack size in kilobytes, unless the number
is suffixed by @code{B}, @code{K}, @code{M} or @code{G}, in which
case the size is, respectively, in bytes, kilobytes, megabytes
or gigabytes.  This is different from @code{pthread_attr_setstacksize}
which gets the number of bytes as an argument.  If the stack size cannot
be set due to system constraints, an error is reported and the initial
stack size is left unchanged.  If undefined, the stack size is system
dependent.

@item @emph{See also}:
@ref{GOMP_STACKSIZE}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.7
@end table



@node OMP_SCHEDULE
@section @env{OMP_SCHEDULE} -- How threads are scheduled
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{ICV:} @var{run-sched-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Allows to specify @code{schedule type} and @code{chunk size}. 
The value of the variable shall have the form: @code{type[,chunk]} where
@code{type} is one of @code{static}, @code{dynamic}, @code{guided} or @code{auto}
The optional @code{chunk} size shall be a positive integer.  If undefined,
dynamic scheduling and a chunk size of 1 is used.

@item @emph{See also}:
@ref{omp_set_schedule}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Sections 2.7.1.1 and 4.1
@end table



@node OMP_TARGET_OFFLOAD
@section @env{OMP_TARGET_OFFLOAD} -- Controls offloading behavior
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{ICV:} @var{target-offload-var}
@item @emph{Scope:} global
@item @emph{Description}:
Specifies the behavior with regard to offloading code to a device.  This
variable can be set to one of three values - @code{MANDATORY}, @code{DISABLED}
or @code{DEFAULT}.

If set to @code{MANDATORY}, the program terminates with an error if
any device construct or device memory routine uses a device that is unavailable
or not supported by the implementation, or uses a non-conforming device number.
If set to @code{DISABLED}, then offloading is disabled and all code runs on
the host. If set to @code{DEFAULT}, the program tries offloading to the
device first, then falls back to running code on the host if it cannot.

If undefined, then the program behaves as if @code{DEFAULT} was set.

Note: Even with @code{MANDATORY}, no run-time termination is performed when
the device number in a @code{device} clause or argument to a device memory
routine is for host, which includes using the device number in the
@var{default-device-var} ICV.  However, the initial value of
the @var{default-device-var} ICV is affected by @code{MANDATORY}.

@item @emph{See also}:
@ref{OMP_DEFAULT_DEVICE}

@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.2}, Section 21.2.8
@end table



@node OMP_TEAMS_THREAD_LIMIT
@section @env{OMP_TEAMS_THREAD_LIMIT} -- Set the maximum number of threads imposed by teams
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{teams-thread-limit-var}
@item @emph{Scope:} device
@item @emph{Description}:
Specifies an upper bound for the number of threads to use by each contention
group created by a teams construct without explicit @code{thread_limit}
clause.  The value of this variable shall be a positive integer.  If undefined,
the value of 0 is used which stands for an implementation defined upper
limit.

@item @emph{See also}:
@ref{OMP_THREAD_LIMIT}, @ref{omp_set_teams_thread_limit}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v5.1}, Section 6.24
@end table



@node OMP_THREAD_LIMIT
@section @env{OMP_THREAD_LIMIT} -- Set the maximum number of threads
@cindex Environment Variable
@table @asis
@item @emph{ICV:} @var{thread-limit-var}
@item @emph{Scope:} data environment
@item @emph{Description}:
Specifies the number of threads to use for the whole program.  The
value of this variable shall be a positive integer.  If undefined,
the number of threads is not limited.

@item @emph{See also}:
@ref{OMP_NUM_THREADS}, @ref{omp_get_thread_limit}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.10
@end table



@node OMP_WAIT_POLICY
@section @env{OMP_WAIT_POLICY} -- How waiting threads are handled
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Specifies whether waiting threads should be active or passive.  If
the value is @code{PASSIVE}, waiting threads should not consume CPU
power while waiting; while the value is @code{ACTIVE} specifies that
they should.  If undefined, threads wait actively for a short time
before waiting passively.

@item @emph{See also}:
@ref{GOMP_SPINCOUNT}

@item @emph{Reference}: 
@uref{https://www.openmp.org, OpenMP specification v4.5}, Section 4.8
@end table



@node GOMP_CPU_AFFINITY
@section @env{GOMP_CPU_AFFINITY} -- Bind threads to specific CPUs
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Binds threads to specific CPUs.  The variable should contain a space-separated
or comma-separated list of CPUs.  This list may contain different kinds of 
entries: either single CPU numbers in any order, a range of CPUs (M-N) 
or a range with some stride (M-N:S).  CPU numbers are zero based.  For example,
@code{GOMP_CPU_AFFINITY="0 3 1-2 4-15:2"} binds the initial thread
to CPU 0, the second to CPU 3, the third to CPU 1, the fourth to 
CPU 2, the fifth to CPU 4, the sixth through tenth to CPUs 6, 8, 10, 12,
and 14 respectively and then starts assigning back from the beginning of
the list.  @code{GOMP_CPU_AFFINITY=0} binds all threads to CPU 0.

There is no libgomp library routine to determine whether a CPU affinity
specification is in effect.  As a workaround, language-specific library 
functions, e.g., @code{getenv} in C or @code{GET_ENVIRONMENT_VARIABLE} in 
Fortran, may be used to query the setting of the @code{GOMP_CPU_AFFINITY} 
environment variable.  A defined CPU affinity on startup cannot be changed 
or disabled during the runtime of the application.

If both @env{GOMP_CPU_AFFINITY} and @env{OMP_PROC_BIND} are set,
@env{OMP_PROC_BIND} has a higher precedence.  If neither has been set and
@env{OMP_PROC_BIND} is unset, or when @env{OMP_PROC_BIND} is set to
@code{FALSE}, the host system handles the assignment of threads to CPUs.

@item @emph{See also}:
@ref{OMP_PLACES}, @ref{OMP_PROC_BIND}
@end table



@node GOMP_DEBUG
@section @env{GOMP_DEBUG} -- Enable debugging output
@cindex Environment Variable
@table @asis
@item @emph{Description}:
Enable debugging output.  The variable should be set to @code{0}
(disabled, also the default if not set), or @code{1} (enabled).

If enabled, some debugging output is printed during execution.
This is currently not specified in more detail, and subject to change.
@end table



@node GOMP_STACKSIZE
@section @env{GOMP_STACKSIZE} -- Set default thread stack size
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Set the default thread stack size in kilobytes.  This is different from
@code{pthread_attr_setstacksize} which gets the number of bytes as an 
argument.  If the stack size cannot be set due to system constraints, an 
error is reported and the initial stack size is left unchanged.  If undefined,
the stack size is system dependent.

@item @emph{See also}:
@ref{OMP_STACKSIZE}

@item @emph{Reference}: 
@uref{https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00493.html,
GCC Patches Mailinglist}, 
@uref{https://gcc.gnu.org/ml/gcc-patches/2006-06/msg00496.html,
GCC Patches Mailinglist}
@end table



@node GOMP_SPINCOUNT
@section @env{GOMP_SPINCOUNT} -- Set the busy-wait spin count
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
Determines how long a threads waits actively with consuming CPU power
before waiting passively without consuming CPU power.  The value may be
either @code{INFINITE}, @code{INFINITY} to always wait actively or an
integer which gives the number of spins of the busy-wait loop.  The
integer may optionally be followed by the following suffixes acting
as multiplication factors: @code{k} (kilo, thousand), @code{M} (mega,
million), @code{G} (giga, billion), or @code{T} (tera, trillion).
If undefined, 0 is used when @env{OMP_WAIT_POLICY} is @code{PASSIVE},
300,000 is used when @env{OMP_WAIT_POLICY} is undefined and
30 billion is used when @env{OMP_WAIT_POLICY} is @code{ACTIVE}.
If there are more OpenMP threads than available CPUs, 1000 and 100
spins are used for @env{OMP_WAIT_POLICY} being @code{ACTIVE} or
undefined, respectively; unless the @env{GOMP_SPINCOUNT} is lower
or @env{OMP_WAIT_POLICY} is @code{PASSIVE}.

@item @emph{See also}:
@ref{OMP_WAIT_POLICY}
@end table



@node GOMP_RTEMS_THREAD_POOLS
@section @env{GOMP_RTEMS_THREAD_POOLS} -- Set the RTEMS specific thread pools
@cindex Environment Variable
@cindex Implementation specific setting
@table @asis
@item @emph{Description}:
This environment variable is only used on the RTEMS real-time operating system.
It determines the scheduler instance specific thread pools.  The format for
@env{GOMP_RTEMS_THREAD_POOLS} is a list of optional
@code{<thread-pool-count>[$<priority>]@@<scheduler-name>} configurations
separated by @code{:} where:
@itemize @bullet
@item @code{<thread-pool-count>} is the thread pool count for this scheduler
instance.
@item @code{$<priority>} is an optional priority for the worker threads of a
thread pool according to @code{pthread_setschedparam}.  In case a priority
value is omitted, then a worker thread inherits the priority of the OpenMP
primary thread that created it.  The priority of the worker thread is not
changed after creation, even if a new OpenMP primary thread using the worker has
a different priority.
@item @code{@@<scheduler-name>} is the scheduler instance name according to the
RTEMS application configuration.
@end itemize
In case no thread pool configuration is specified for a scheduler instance,
then each OpenMP primary thread of this scheduler instance uses its own
dynamically allocated thread pool.  To limit the worker thread count of the
thread pools, each OpenMP primary thread must call @code{omp_set_num_threads}.
@item @emph{Example}:
Lets suppose we have three scheduler instances @code{IO}, @code{WRK0}, and
@code{WRK1} with @env{GOMP_RTEMS_THREAD_POOLS} set to
@code{"1@@WRK0:3$4@@WRK1"}.  Then there are no thread pool restrictions for
scheduler instance @code{IO}.  In the scheduler instance @code{WRK0} there is
one thread pool available.  Since no priority is specified for this scheduler
instance, the worker thread inherits the priority of the OpenMP primary thread
that created it.  In the scheduler instance @code{WRK1} there are three thread
pools available and their worker threads run at priority four.
@end table



@c ---------------------------------------------------------------------
@c Enabling OpenACC
@c ---------------------------------------------------------------------

@node Enabling OpenACC
@chapter Enabling OpenACC

To activate the OpenACC extensions for C/C++ and Fortran, the compile-time 
flag @option{-fopenacc} must be specified.  This enables the OpenACC directive
@samp{#pragma acc} in C/C++ and, in Fortran, the @samp{!$acc} sentinel in free
source form and the @samp{c$acc}, @samp{*$acc} and @samp{!$acc} sentinels in
fixed source form.  The flag also arranges for automatic linking of the OpenACC
runtime library (@ref{OpenACC Runtime Library Routines}).

See @uref{https://gcc.gnu.org/wiki/OpenACC} for more information.

A complete description of all OpenACC directives accepted may be found in 
the @uref{https://www.openacc.org, OpenACC} Application Programming
Interface manual, version 2.6.



@c ---------------------------------------------------------------------
@c OpenACC Runtime Library Routines
@c ---------------------------------------------------------------------

@node OpenACC Runtime Library Routines
@chapter OpenACC Runtime Library Routines

The runtime routines described here are defined by section 3 of the OpenACC
specifications in version 2.6.
They have C linkage, and do not throw exceptions.
Generally, they are available only for the host, with the exception of
@code{acc_on_device}, which is available for both the host and the
acceleration device.

@menu
* acc_get_num_devices::         Get number of devices for the given device
                                type.
* acc_set_device_type::         Set type of device accelerator to use.
* acc_get_device_type::         Get type of device accelerator to be used.
* acc_set_device_num::          Set device number to use.
* acc_get_device_num::          Get device number to be used.
* acc_get_property::            Get device property.
* acc_async_test::              Tests for completion of a specific asynchronous
                                operation.
* acc_async_test_all::          Tests for completion of all asynchronous
                                operations.
* acc_wait::                    Wait for completion of a specific asynchronous
                                operation.
* acc_wait_all::                Waits for completion of all asynchronous
                                operations.
* acc_wait_all_async::          Wait for completion of all asynchronous
                                operations.
* acc_wait_async::              Wait for completion of asynchronous operations.
* acc_init::                    Initialize runtime for a specific device type.
* acc_shutdown::                Shuts down the runtime for a specific device
                                type.
* acc_on_device::               Whether executing on a particular device
* acc_malloc::                  Allocate device memory.
* acc_free::                    Free device memory.
* acc_copyin::                  Allocate device memory and copy host memory to
                                it.
* acc_present_or_copyin::       If the data is not present on the device,
                                allocate device memory and copy from host
                                memory.
* acc_create::                  Allocate device memory and map it to host
                                memory.
* acc_present_or_create::       If the data is not present on the device,
                                allocate device memory and map it to host
                                memory.
* acc_copyout::                 Copy device memory to host memory.
* acc_delete::                  Free device memory.
* acc_update_device::           Update device memory from mapped host memory.
* acc_update_self::             Update host memory from mapped device memory.
* acc_map_data::                Map previously allocated device memory to host
                                memory.
* acc_unmap_data::              Unmap device memory from host memory.
* acc_deviceptr::               Get device pointer associated with specific
                                host address.
* acc_hostptr::                 Get host pointer associated with specific
                                device address.
* acc_is_present::              Indicate whether host variable / array is
                                present on device.
* acc_memcpy_to_device::        Copy host memory to device memory.
* acc_memcpy_from_device::      Copy device memory to host memory.
* acc_attach::                  Let device pointer point to device-pointer target.
* acc_detach::                  Let device pointer point to host-pointer target.

API routines for target platforms.

* acc_get_current_cuda_device:: Get CUDA device handle.
* acc_get_current_cuda_context::Get CUDA context handle.
* acc_get_cuda_stream::         Get CUDA stream handle.
* acc_set_cuda_stream::         Set CUDA stream handle.

API routines for the OpenACC Profiling Interface.

* acc_prof_register::           Register callbacks.
* acc_prof_unregister::         Unregister callbacks.
* acc_prof_lookup::             Obtain inquiry functions.
* acc_register_library::        Library registration.
@end menu



@node acc_get_num_devices
@section @code{acc_get_num_devices} -- Get number of devices for given device type
@table @asis
@item @emph{Description}
This function returns a value indicating the number of devices available
for the device type specified in @var{devicetype}. 

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_get_num_devices(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{integer function acc_get_num_devices(devicetype)}
@item                  @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.1.
@end table



@node acc_set_device_type
@section @code{acc_set_device_type} -- Set type of device accelerator to use.
@table @asis
@item @emph{Description}
This function indicates to the runtime library which device type, specified
in @var{devicetype}, to use when executing a parallel or kernels region. 

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_set_device_type(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_set_device_type(devicetype)}
@item                   @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.2.
@end table



@node acc_get_device_type
@section @code{acc_get_device_type} -- Get type of device accelerator to be used.
@table @asis
@item @emph{Description}
This function returns what device type will be used when executing a
parallel or kernels region.

This function returns @code{acc_device_none} if
@code{acc_get_device_type} is called from
@code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
callbacks of the OpenACC Profiling Interface (@ref{OpenACC Profiling
Interface}), that is, if the device is currently being initialized.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_device_t acc_get_device_type(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_get_device_type(void)}
@item                  @tab @code{integer(kind=acc_device_kind) acc_get_device_type}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.3.
@end table



@node acc_set_device_num
@section @code{acc_set_device_num} -- Set device number to use.
@table @asis
@item @emph{Description}
This function will indicate to the runtime which device number,
specified by @var{devicenum}, associated with the specified device
type @var{devicetype}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_set_device_num(int devicenum, acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_set_device_num(devicenum, devicetype)}
@item                   @tab @code{integer devicenum}
@item                   @tab @code{integer(kind=acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.4.
@end table



@node acc_get_device_num
@section @code{acc_get_device_num} -- Get device number to be used.
@table @asis
@item @emph{Description}
This function returns which device number associated with the specified device
type @var{devicetype}, will be used when executing a parallel or kernels
region.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_get_device_num(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_get_device_num(devicetype)}
@item                   @tab @code{integer(kind=acc_device_kind) devicetype}
@item                   @tab @code{integer acc_get_device_num}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.5.
@end table



@node acc_get_property
@section @code{acc_get_property} -- Get device property.
@cindex acc_get_property
@cindex acc_get_property_string
@table @asis
@item @emph{Description}
These routines return the value of the specified @var{property} for the
device being queried according to @var{devicenum} and @var{devicetype}.
Integer-valued and string-valued properties are returned by
@code{acc_get_property} and @code{acc_get_property_string} respectively.
The Fortran @code{acc_get_property_string} subroutine returns the string
retrieved in its fourth argument while the remaining entry points are
functions, which pass the return value as their result.

Note for Fortran, only: the OpenACC technical committee corrected and, hence,
modified the interface introduced in OpenACC 2.6.  The kind-value parameter
@code{acc_device_property} has been renamed to @code{acc_device_property_kind}
for consistency and the return type of the @code{acc_get_property} function is
now a @code{c_size_t} integer instead of a @code{acc_device_property} integer.
The parameter @code{acc_device_property} is still provided,
but might be removed in a future version of GCC.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{size_t acc_get_property(int devicenum, acc_device_t devicetype, acc_device_property_t property);}
@item @emph{Prototype}: @tab @code{const char *acc_get_property_string(int devicenum, acc_device_t devicetype, acc_device_property_t property);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_get_property(devicenum, devicetype, property)}
@item @emph{Interface}: @tab @code{subroutine acc_get_property_string(devicenum, devicetype, property, string)}
@item                   @tab @code{use ISO_C_Binding, only: c_size_t}
@item                   @tab @code{integer devicenum}
@item                   @tab @code{integer(kind=acc_device_kind) devicetype}
@item                   @tab @code{integer(kind=acc_device_property_kind) property}
@item                   @tab @code{integer(kind=c_size_t) acc_get_property}
@item                   @tab @code{character(*) string}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.6.
@end table



@node acc_async_test
@section @code{acc_async_test} -- Test for completion of a specific asynchronous operation.
@table @asis
@item @emph{Description}
This function tests for completion of the asynchronous operation specified
in @var{arg}. In C/C++, a non-zero value is returned to indicate
the specified asynchronous operation has completed while Fortran returns
@code{true}. If the asynchronous operation has not completed, C/C++ returns
zero and Fortran returns @code{false}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_async_test(int arg);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_async_test(arg)}
@item                   @tab @code{integer(kind=acc_handle_kind) arg}
@item                   @tab @code{logical acc_async_test}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.9.
@end table



@node acc_async_test_all
@section @code{acc_async_test_all} -- Tests for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function tests for completion of all asynchronous operations.
In C/C++, a non-zero value is returned to indicate all asynchronous
operations have completed while Fortran returns @code{true}. If
any asynchronous operation has not completed, C/C++ returns zero and
Fortran returns @code{false}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_async_test_all(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_async_test()}
@item                   @tab @code{logical acc_get_device_num}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.10.
@end table



@node acc_wait
@section @code{acc_wait} -- Wait for completion of a specific asynchronous operation.
@table @asis
@item @emph{Description}
This function waits for completion of the asynchronous operation
specified in @var{arg}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait(arg);}
@item @emph{Prototype (OpenACC 1.0 compatibility)}: @tab @code{acc_async_wait(arg);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait(arg)}
@item                   @tab @code{integer(acc_handle_kind) arg}
@item @emph{Interface (OpenACC 1.0 compatibility)}: @tab @code{subroutine acc_async_wait(arg)}
@item                                               @tab @code{integer(acc_handle_kind) arg}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.11.
@end table



@node acc_wait_all
@section @code{acc_wait_all} -- Waits for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function waits for the completion of all asynchronous operations.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_all(void);}
@item @emph{Prototype (OpenACC 1.0 compatibility)}: @tab @code{acc_async_wait_all(void);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_all()}
@item @emph{Interface (OpenACC 1.0 compatibility)}: @tab @code{subroutine acc_async_wait_all()}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.13.
@end table



@node acc_wait_all_async
@section @code{acc_wait_all_async} -- Wait for completion of all asynchronous operations.
@table @asis
@item @emph{Description}
This function enqueues a wait operation on the queue @var{async} for any
and all asynchronous operations that have been previously enqueued on
any queue.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_all_async(int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_all_async(async)}
@item                   @tab @code{integer(acc_handle_kind) async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.14.
@end table



@node acc_wait_async
@section @code{acc_wait_async} -- Wait for completion of asynchronous operations.
@table @asis
@item @emph{Description}
This function enqueues a wait operation on queue @var{async} for any and all
asynchronous operations enqueued on queue @var{arg}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_wait_async(int arg, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_wait_async(arg, async)}
@item                   @tab @code{integer(acc_handle_kind) arg, async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.12.
@end table



@node acc_init
@section @code{acc_init} -- Initialize runtime for a specific device type.
@table @asis
@item @emph{Description}
This function initializes the runtime for the device type specified in
@var{devicetype}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_init(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_init(devicetype)}
@item                   @tab @code{integer(acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.7.
@end table



@node acc_shutdown
@section @code{acc_shutdown} -- Shuts down the runtime for a specific device type.
@table @asis
@item @emph{Description}
This function shuts down the runtime for the device type specified in
@var{devicetype}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_shutdown(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_shutdown(devicetype)}
@item                   @tab @code{integer(acc_device_kind) devicetype}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.8.
@end table



@node acc_on_device
@section @code{acc_on_device} -- Whether executing on a particular device
@table @asis
@item @emph{Description}:
This function returns whether the program is executing on a particular
device specified in @var{devicetype}. In C/C++ a non-zero value is
returned to indicate the device is executing on the specified device type.
In Fortran, @code{true} is returned. If the program is not executing
on the specified device type C/C++ returns zero, while Fortran
returns @code{false}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_on_device(acc_device_t devicetype);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_on_device(devicetype)}
@item                   @tab @code{integer(acc_device_kind) devicetype}
@item                   @tab @code{logical acc_on_device}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.17.
@end table



@node acc_malloc
@section @code{acc_malloc} -- Allocate device memory.
@table @asis
@item @emph{Description}
This function allocates @var{bytes} bytes of device memory. It returns
the device address of the allocated memory.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{d_void* acc_malloc(size_t bytes);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function acc_malloc(bytes)}
@item                   @tab @code{integer(c_size_t), value :: bytes}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.18.  @uref{https://www.openacc.org, openacc specification v3.3}, section
3.2.16.
@end table



@node acc_free
@section @code{acc_free} -- Free device memory.
@table @asis
@item @emph{Description}
Free previously allocated device memory at the device address @code{data_dev}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_free(d_void *data_dev);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_free(data_dev)}
@item                   @tab @code{type(c_ptr), value :: data_dev}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.19.  @uref{https://www.openacc.org, openacc specification v3.3}, section
3.2.17.
@end table



@node acc_copyin
@section @code{acc_copyin} -- Allocate device memory and copy host memory to it.
@table @asis
@item @emph{Description}
In C/C++, this function allocates @var{len} bytes of device memory
and maps it to the specified host address in @var{a}. The device
address of the newly allocated device memory is returned.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a
variable or array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_copyin(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{void *acc_copyin_async(h_void *a, size_t len, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_copyin(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_copyin(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_copyin_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyin_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.20.
@end table



@node acc_present_or_copyin
@section @code{acc_present_or_copyin} -- If the data is not present on the device, allocate device memory and copy from host memory.
@table @asis
@item @emph{Description}
This function tests if the host data specified by @var{a} and of length
@var{len} is present or not. If it is not present, device memory
is allocated and the host memory copied. The device address of
the newly allocated device memory is returned.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

Note that @code{acc_present_or_copyin} and @code{acc_pcopyin} exist for
backward compatibility with OpenACC 2.0; use @ref{acc_copyin} instead.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_present_or_copyin(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{void *acc_pcopyin(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_present_or_copyin(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_present_or_copyin(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_pcopyin(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_pcopyin(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.20.
@end table



@node acc_create
@section @code{acc_create} -- Allocate device memory and map it to host memory.
@table @asis
@item @emph{Description}
This function allocates device memory and maps it to host memory specified
by the host address @var{a} with a length of @var{len} bytes. In C/C++,
the function returns the device address of the allocated device memory.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_create(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{void *acc_create_async(h_void *a, size_t len, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_create(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_create(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_create_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_create_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.21.
@end table



@node acc_present_or_create
@section @code{acc_present_or_create} -- If the data is not present on the device, allocate device memory and map it to host memory.
@table @asis
@item @emph{Description}
This function tests if the host data specified by @var{a} and of length
@var{len} is present or not. If it is not present, device memory
is allocated and mapped to host memory. In C/C++, the device address
of the newly allocated device memory is returned.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

Note that @code{acc_present_or_create} and @code{acc_pcreate} exist for
backward compatibility with OpenACC 2.0; use @ref{acc_create} instead.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_present_or_create(h_void *a, size_t len)}
@item @emph{Prototype}: @tab @code{void *acc_pcreate(h_void *a, size_t len)}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_present_or_create(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_present_or_create(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_pcreate(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_pcreate(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.21.
@end table



@node acc_copyout
@section @code{acc_copyout} -- Copy device memory to host memory.
@table @asis
@item @emph{Description}
This function copies mapped device memory to host memory which is specified
by host address @var{a} for a length @var{len} bytes in C/C++.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_copyout(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_copyout_async(h_void *a, size_t len, int async);}
@item @emph{Prototype}: @tab @code{acc_copyout_finalize(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_copyout_finalize_async(h_void *a, size_t len, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_copyout(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_copyout(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_copyout_finalize_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.22.
@end table



@node acc_delete
@section @code{acc_delete} -- Free device memory.
@table @asis
@item @emph{Description}
This function frees previously allocated device memory specified by
the device address @var{a} and the length of @var{len} bytes.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_delete(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_delete_async(h_void *a, size_t len, int async);}
@item @emph{Prototype}: @tab @code{acc_delete_finalize(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_delete_finalize_async(h_void *a, size_t len, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_delete(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_delete(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_delete_finalize(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_delete_finalize(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async_finalize(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_delete_async_finalize(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.23.
@end table



@node acc_update_device
@section @code{acc_update_device} -- Update device memory from mapped host memory.
@table @asis
@item @emph{Description}
This function updates the device copy from the previously mapped host memory.
The host memory is specified with the host address @var{a} and a length of
@var{len} bytes.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_update_device(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_update_device(h_void *a, size_t len, async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_update_device(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_update_device(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_update_device_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_update_device_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.24.
@end table



@node acc_update_self
@section @code{acc_update_self} -- Update host memory from mapped device memory.
@table @asis
@item @emph{Description}
This function updates the host copy from the previously mapped device memory.
The host memory is specified with the host address @var{a} and a length of
@var{len} bytes.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_update_self(h_void *a, size_t len);}
@item @emph{Prototype}: @tab @code{acc_update_self_async(h_void *a, size_t len, int async);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_update_self(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item @emph{Interface}: @tab @code{subroutine acc_update_self(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item @emph{Interface}: @tab @code{subroutine acc_update_self_async(a, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@item @emph{Interface}: @tab @code{subroutine acc_update_self_async(a, len, async)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{integer(acc_handle_kind) :: async}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.25.
@end table



@node acc_map_data
@section @code{acc_map_data} -- Map previously allocated device memory to host memory.
@table @asis
@item @emph{Description}
This function maps previously allocated device and host memory. The device
memory is specified with the device address @var{data_dev}. The host memory is
specified with the host address @var{data_arg} and a length of @var{bytes}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_map_data(h_void *data_arg, d_void *data_dev, size_t bytes);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_map_data(data_arg, data_dev, bytes)}
@item                   @tab @code{type(*), dimension(*) :: data_arg}
@item                   @tab @code{type(c_ptr), value :: data_dev}
@item                   @tab @code{integer(c_size_t), value :: bytes}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.26.  @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.21.
@end table



@node acc_unmap_data
@section @code{acc_unmap_data} -- Unmap device memory from host memory.
@table @asis
@item @emph{Description}
This function unmaps previously mapped device and host memory. The latter
specified by @var{data_arg}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_unmap_data(h_void *data_arg);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_unmap_data(data_arg)}
@item                   @tab @code{type(*), dimension(*) :: data_arg}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.27. @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.22.
@end table



@node acc_deviceptr
@section @code{acc_deviceptr} -- Get device pointer associated with specific host address.
@table @asis
@item @emph{Description}
This function returns the device address that has been mapped to the
host address specified by @var{data_arg}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_deviceptr(h_void *data_arg);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function acc_deviceptr(data_arg)}
@item                   @tab @code{type(*), dimension(*) :: data_arg}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.28.  @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.23.
@end table



@node acc_hostptr
@section @code{acc_hostptr} -- Get host pointer associated with specific device address.
@table @asis
@item @emph{Description}
This function returns the host address that has been mapped to the
device address specified by @var{data_dev}.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_hostptr(d_void *data_dev);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{type(c_ptr) function acc_hostptr(data_dev)}
@item                   @tab @code{type(c_ptr), value :: data_dev}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.29.  @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.24.
@end table



@node acc_is_present
@section @code{acc_is_present} -- Indicate whether host variable / array is present on device.
@table @asis
@item @emph{Description}
This function indicates whether the specified host address in @var{a} and a
length of @var{len} bytes is present on the device. In C/C++, a non-zero
value is returned to indicate the presence of the mapped memory on the
device. A zero is returned to indicate the memory is not mapped on the
device.

In Fortran, two (2) forms are supported. In the first form, @var{a} specifies
a contiguous array section. The second form @var{a} specifies a variable or
array element and @var{len} specifies the length in bytes. If the host
memory is mapped to device memory, then a @code{true} is returned. Otherwise,
a @code{false} is return to indicate the mapped memory is not present.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_is_present(h_void *a, size_t len);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{function acc_is_present(a)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{logical acc_is_present}
@item @emph{Interface}: @tab @code{function acc_is_present(a, len)}
@item                   @tab @code{type, dimension(:[,:]...) :: a}
@item                   @tab @code{integer len}
@item                   @tab @code{logical acc_is_present}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.30.
@end table



@node acc_memcpy_to_device
@section @code{acc_memcpy_to_device} -- Copy host memory to device memory.
@table @asis
@item @emph{Description}
This function copies host memory specified by host address of
@var{data_host_src} to device memory specified by the device address
@var{data_dev_dest} for a length of @var{bytes} bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_memcpy_to_device(d_void* data_dev_dest,}
@item                   @tab @code{h_void* data_host_src, size_t bytes);}
@item @emph{Prototype}: @tab @code{void acc_memcpy_to_device_async(d_void* data_dev_dest,}
@item                   @tab @code{h_void* data_host_src, size_t bytes, int async_arg);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_memcpy_to_device(data_dev_dest, &}
@item                   @tab @code{data_host_src, bytes)}
@item @emph{Interface}: @tab @code{subroutine acc_memcpy_to_device_async(data_dev_dest, &}
@item                   @tab @code{data_host_src, bytes, async_arg)}
@item                   @tab @code{type(c_ptr), value :: data_dev_dest}
@item                   @tab @code{type(*), dimension(*) :: data_host_src}
@item                   @tab @code{integer(c_size_t), value :: bytes}
@item                   @tab @code{integer(acc_handle_kind), value :: async_arg}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.31  @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.26.
@end table



@node acc_memcpy_from_device
@section @code{acc_memcpy_from_device} -- Copy device memory to host memory.
@table @asis
@item @emph{Description}
This function copies device memory specified by device address of
@var{data_dev_src} to host memory specified by the host address
@var{data_host_dest} for a length of @var{bytes} bytes.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_memcpy_from_device(h_void* data_host_dest,}
@item                   @tab @code{d_void* data_dev_src, size_t bytes);}
@item @emph{Prototype}: @tab @code{void acc_memcpy_from_device_async(h_void* data_host_dest,}
@item                   @tab @code{d_void* data_dev_src, size_t bytes, int async_arg);}
@end multitable

@item @emph{Fortran}:
@multitable @columnfractions .20 .80
@item @emph{Interface}: @tab @code{subroutine acc_memcpy_from_device(data_host_dest, &}
@item                   @tab @code{data_dev_src, bytes)}
@item @emph{Interface}: @tab @code{subroutine acc_memcpy_from_device_async(data_host_dest, &}
@item                   @tab @code{data_dev_src, bytes, async_arg)}
@item                   @tab @code{type(*), dimension(*) :: data_host_dest}
@item                   @tab @code{type(c_ptr), value :: data_dev_src}
@item                   @tab @code{integer(c_size_t), value :: bytes}
@item                   @tab @code{integer(acc_handle_kind), value :: async_arg}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.32.  @uref{https://www.openacc.org, OpenACC specification v3.3}, section
3.2.27.
@end table



@node acc_attach
@section @code{acc_attach} -- Let device pointer point to device-pointer target.
@table @asis
@item @emph{Description}
This function updates a pointer on the device from pointing to a host-pointer
address to pointing to the corresponding device data.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_attach(h_void **ptr_addr);}
@item @emph{Prototype}: @tab @code{void acc_attach_async(h_void **ptr_addr, int async);}
@end multitable

@c @item @emph{Fortran}:
@c @multitable @columnfractions .20 .80
@c @item @emph{Interface}: @tab @code{subroutine acc_attach(ptr_addr)}
@c @item @emph{Interface}: @tab @code{subroutine acc_attach_async(ptr_addr, async_arg)}
@c @item                   @tab @code{type(*), dimension(..) :: ptr_addr}
@c @item                   @tab @code{integer(acc_handle_kind), value :: async_arg}
@c @end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.34.
@c  @uref{https://www.openacc.org, OpenACC specification v3.3}, section
@c 3.2.29.
@end table



@node acc_detach
@section @code{acc_detach} -- Let device pointer point to host-pointer target.
@table @asis
@item @emph{Description}
This function updates a pointer on the device from pointing to a device-pointer
address to pointing to the corresponding host data.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_detach(h_void **ptr_addr);}
@item @emph{Prototype}: @tab @code{void acc_detach_async(h_void **ptr_addr, int async);}
@item @emph{Prototype}: @tab @code{void acc_detach_finalize(h_void **ptr_addr);}
@item @emph{Prototype}: @tab @code{void acc_detach_finalize_async(h_void **ptr_addr, int async);}
@end multitable

@c @item @emph{Fortran}:
@c @multitable @columnfractions .20 .80
@c @item @emph{Interface}: @tab @code{subroutine acc_detach(ptr_addr)}
@c @item @emph{Interface}: @tab @code{subroutine acc_detach_async(ptr_addr, async_arg)}
@c @item @emph{Interface}: @tab @code{subroutine acc_detach_finalize(ptr_addr)}
@c @item @emph{Interface}: @tab @code{subroutine acc_detach_finalize_async(ptr_addr, async_arg)}
@c @item                   @tab @code{type(*), dimension(..) :: ptr_addr}
@c @item                   @tab @code{integer(acc_handle_kind), value :: async_arg}
@c @end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
3.2.35.
@c  @uref{https://www.openacc.org, OpenACC specification v3.3}, section
@c 3.2.29.
@end table



@node acc_get_current_cuda_device
@section @code{acc_get_current_cuda_device} -- Get CUDA device handle.
@table @asis
@item @emph{Description}
This function returns the CUDA device handle. This handle is the same
as used by the CUDA Runtime or Driver API's.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_get_current_cuda_device(void);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.1.
@end table



@node acc_get_current_cuda_context
@section @code{acc_get_current_cuda_context} -- Get CUDA context handle.
@table @asis
@item @emph{Description}
This function returns the CUDA context handle. This handle is the same
as used by the CUDA Runtime or Driver API's.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_get_current_cuda_context(void);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.2.
@end table



@node acc_get_cuda_stream
@section @code{acc_get_cuda_stream} -- Get CUDA stream handle.
@table @asis
@item @emph{Description}
This function returns the CUDA stream handle for the queue @var{async}.
This handle is the same as used by the CUDA Runtime or Driver API's.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void *acc_get_cuda_stream(int async);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.3.
@end table



@node acc_set_cuda_stream
@section @code{acc_set_cuda_stream} -- Set CUDA stream handle.
@table @asis
@item @emph{Description}
This function associates the stream handle specified by @var{stream} with
the queue @var{async}.

This cannot be used to change the stream handle associated with
@code{acc_async_sync}.

The return value is not specified.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{int acc_set_cuda_stream(int async, void *stream);}
@end multitable

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
A.2.1.4.
@end table



@node acc_prof_register
@section @code{acc_prof_register} -- Register callbacks.
@table @asis
@item @emph{Description}:
This function registers callbacks.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_prof_register (acc_event_t, acc_prof_callback, acc_register_t);}
@end multitable

@item @emph{See also}:
@ref{OpenACC Profiling Interface}

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table



@node acc_prof_unregister
@section @code{acc_prof_unregister} -- Unregister callbacks.
@table @asis
@item @emph{Description}:
This function unregisters callbacks.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_prof_unregister (acc_event_t, acc_prof_callback, acc_register_t);}
@end multitable

@item @emph{See also}:
@ref{OpenACC Profiling Interface}

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table



@node acc_prof_lookup
@section @code{acc_prof_lookup} -- Obtain inquiry functions.
@table @asis
@item @emph{Description}:
Function to obtain inquiry functions.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{acc_query_fn acc_prof_lookup (const char *);}
@end multitable

@item @emph{See also}:
@ref{OpenACC Profiling Interface}

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table



@node acc_register_library
@section @code{acc_register_library} -- Library registration.
@table @asis
@item @emph{Description}:
Function for library registration.

@item @emph{C/C++}:
@multitable @columnfractions .20 .80
@item @emph{Prototype}: @tab @code{void acc_register_library (acc_prof_reg, acc_prof_reg, acc_prof_lookup_func);}
@end multitable

@item @emph{See also}:
@ref{OpenACC Profiling Interface}, @ref{ACC_PROFLIB}

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
5.3.
@end table



@c ---------------------------------------------------------------------
@c OpenACC Environment Variables
@c ---------------------------------------------------------------------

@node OpenACC Environment Variables
@chapter OpenACC Environment Variables

The variables @env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM}
are defined by section 4 of the OpenACC specification in version 2.0.
The variable @env{ACC_PROFLIB}
is defined by section 4 of the OpenACC specification in version 2.6.

@menu
* ACC_DEVICE_TYPE::
* ACC_DEVICE_NUM::
* ACC_PROFLIB::
@end menu



@node ACC_DEVICE_TYPE
@section @code{ACC_DEVICE_TYPE}
@table @asis
@item @emph{Description}:
Control the default device type to use when executing compute regions.
If unset, the code can be run on any device type, favoring a non-host
device type.

Supported values in GCC (if compiled in) are
@itemize
@item @code{host}
@item @code{nvidia}
@item @code{radeon}
@end itemize
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
4.1.
@end table



@node ACC_DEVICE_NUM
@section @code{ACC_DEVICE_NUM}
@table @asis
@item @emph{Description}:
Control which device, identified by device number, is the default device.
The value must be a nonnegative integer less than the number of devices.
If unset, device number zero is used.
@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
4.2.
@end table



@node ACC_PROFLIB
@section @code{ACC_PROFLIB}
@table @asis
@item @emph{Description}:
Semicolon-separated list of dynamic libraries that are loaded as profiling
libraries.  Each library must provide at least the @code{acc_register_library}
routine.  Each library file is found as described by the documentation of
@code{dlopen} of your operating system.
@item @emph{See also}:
@ref{acc_register_library}, @ref{OpenACC Profiling Interface}

@item @emph{Reference}:
@uref{https://www.openacc.org, OpenACC specification v2.6}, section
4.3.
@end table



@c ---------------------------------------------------------------------
@c CUDA Streams Usage
@c ---------------------------------------------------------------------

@node CUDA Streams Usage
@chapter CUDA Streams Usage

This applies to the @code{nvptx} plugin only.

The library provides elements that perform asynchronous movement of
data and asynchronous operation of computing constructs.  This
asynchronous functionality is implemented by making use of CUDA
streams@footnote{See "Stream Management" in "CUDA Driver API",
TRM-06703-001, Version 5.5, for additional information}.

The primary means by that the asynchronous functionality is accessed
is through the use of those OpenACC directives which make use of the
@code{async} and @code{wait} clauses.  When the @code{async} clause is
first used with a directive, it creates a CUDA stream.  If an
@code{async-argument} is used with the @code{async} clause, then the
stream is associated with the specified @code{async-argument}.

Following the creation of an association between a CUDA stream and the
@code{async-argument} of an @code{async} clause, both the @code{wait}
clause and the @code{wait} directive can be used.  When either the
clause or directive is used after stream creation, it creates a
rendezvous point whereby execution waits until all operations
associated with the @code{async-argument}, that is, stream, have
completed.

Normally, the management of the streams that are created as a result of
using the @code{async} clause, is done without any intervention by the
caller.  This implies the association between the @code{async-argument}
and the CUDA stream is maintained for the lifetime of the program.
However, this association can be changed through the use of the library
function @code{acc_set_cuda_stream}.  When the function
@code{acc_set_cuda_stream} is called, the CUDA stream that was
originally associated with the @code{async} clause is destroyed.
Caution should be taken when changing the association as subsequent
references to the @code{async-argument} refer to a different
CUDA stream.



@c ---------------------------------------------------------------------
@c OpenACC Library Interoperability
@c ---------------------------------------------------------------------

@node OpenACC Library Interoperability
@chapter OpenACC Library Interoperability

@section Introduction

The OpenACC library uses the CUDA Driver API, and may interact with
programs that use the Runtime library directly, or another library
based on the Runtime library, e.g., CUBLAS@footnote{See section 2.26,
"Interactions with the CUDA Driver API" in
"CUDA Runtime API", Version 5.5, and section 2.27, "VDPAU
Interoperability", in "CUDA Driver API", TRM-06703-001, Version 5.5,
for additional information on library interoperability.}.
This chapter describes the use cases and what changes are
required in order to use both the OpenACC library and the CUBLAS and Runtime
libraries within a program.

@section First invocation: NVIDIA CUBLAS library API

In this first use case (see below), a function in the CUBLAS library is called
prior to any of the functions in the OpenACC library. More specifically, the
function @code{cublasCreate()}.

When invoked, the function initializes the library and allocates the
hardware resources on the host and the device on behalf of the caller. Once
the initialization and allocation has completed, a handle is returned to the
caller. The OpenACC library also requires initialization and allocation of
hardware resources. Since the CUBLAS library has already allocated the
hardware resources for the device, all that is left to do is to initialize
the OpenACC library and acquire the hardware resources on the host.

Prior to calling the OpenACC function that initializes the library and
allocate the host hardware resources, you need to acquire the device number
that was allocated during the call to @code{cublasCreate()}. The invoking of the
runtime library function @code{cudaGetDevice()} accomplishes this. Once
acquired, the device number is passed along with the device type as
parameters to the OpenACC library function @code{acc_set_device_num()}.

Once the call to @code{acc_set_device_num()} has completed, the OpenACC
library uses the  context that was created during the call to
@code{cublasCreate()}. In other words, both libraries share the
same context.

@smallexample
    /* Create the handle */
    s = cublasCreate(&h);
    if (s != CUBLAS_STATUS_SUCCESS)
    @{
        fprintf(stderr, "cublasCreate failed %d\n", s);
        exit(EXIT_FAILURE);
    @}

    /* Get the device number */
    e = cudaGetDevice(&dev);
    if (e != cudaSuccess)
    @{
        fprintf(stderr, "cudaGetDevice failed %d\n", e);
        exit(EXIT_FAILURE);
    @}

    /* Initialize OpenACC library and use device 'dev' */
    acc_set_device_num(dev, acc_device_nvidia);

@end smallexample
@center Use Case 1 

@section First invocation: OpenACC library API

In this second use case (see below), a function in the OpenACC library is
called prior to any of the functions in the CUBLAS library. More specifically,
the function @code{acc_set_device_num()}.

In the use case presented here, the function @code{acc_set_device_num()}
is used to both initialize the OpenACC library and allocate the hardware
resources on the host and the device. In the call to the function, the
call parameters specify which device to use and what device
type to use, i.e., @code{acc_device_nvidia}. It should be noted that this
is but one method to initialize the OpenACC library and allocate the
appropriate hardware resources. Other methods are available through the
use of environment variables and these is discussed in the next section.

Once the call to @code{acc_set_device_num()} has completed, other OpenACC
functions can be called as seen with multiple calls being made to
@code{acc_copyin()}. In addition, calls can be made to functions in the
CUBLAS library. In the use case a call to @code{cublasCreate()} is made
subsequent to the calls to @code{acc_copyin()}.
As seen in the previous use case, a call to @code{cublasCreate()}
initializes the CUBLAS library and allocates the hardware resources on the
host and the device.  However, since the device has already been allocated,
@code{cublasCreate()} only initializes the CUBLAS library and allocates
the appropriate hardware resources on the host. The context that was created
as part of the OpenACC initialization is shared with the CUBLAS library,
similarly to the first use case.

@smallexample
    dev = 0;

    acc_set_device_num(dev, acc_device_nvidia);

    /* Copy the first set to the device */
    d_X = acc_copyin(&h_X[0], N * sizeof (float));
    if (d_X == NULL)
    @{ 
        fprintf(stderr, "copyin error h_X\n");
        exit(EXIT_FAILURE);
    @}

    /* Copy the second set to the device */
    d_Y = acc_copyin(&h_Y1[0], N * sizeof (float));
    if (d_Y == NULL)
    @{ 
        fprintf(stderr, "copyin error h_Y1\n");
        exit(EXIT_FAILURE);
    @}

    /* Create the handle */
    s = cublasCreate(&h);
    if (s != CUBLAS_STATUS_SUCCESS)
    @{
        fprintf(stderr, "cublasCreate failed %d\n", s);
        exit(EXIT_FAILURE);
    @}

    /* Perform saxpy using CUBLAS library function */
    s = cublasSaxpy(h, N, &alpha, d_X, 1, d_Y, 1);
    if (s != CUBLAS_STATUS_SUCCESS)
    @{
        fprintf(stderr, "cublasSaxpy failed %d\n", s);
        exit(EXIT_FAILURE);
    @}

    /* Copy the results from the device */
    acc_memcpy_from_device(&h_Y1[0], d_Y, N * sizeof (float));

@end smallexample
@center Use Case 2

@section OpenACC library and environment variables

There are two environment variables associated with the OpenACC library
that may be used to control the device type and device number:
@env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM}, respectively. These two
environment variables can be used as an alternative to calling
@code{acc_set_device_num()}. As seen in the second use case, the device
type and device number were specified using @code{acc_set_device_num()}.
If however, the aforementioned environment variables were set, then the
call to @code{acc_set_device_num()} would not be required.


The use of the environment variables is only relevant when an OpenACC function
is called prior to a call to @code{cudaCreate()}. If @code{cudaCreate()}
is called prior to a call to an OpenACC function, then you must call
@code{acc_set_device_num()}@footnote{More complete information
about @env{ACC_DEVICE_TYPE} and @env{ACC_DEVICE_NUM} can be found in
sections 4.1 and 4.2 of the @uref{https://www.openacc.org, OpenACC}
Application Programming Interfaceā€¯, Version 2.6.}



@c ---------------------------------------------------------------------
@c OpenACC Profiling Interface
@c ---------------------------------------------------------------------

@node OpenACC Profiling Interface
@chapter OpenACC Profiling Interface

@section Implementation Status and Implementation-Defined Behavior

We're implementing the OpenACC Profiling Interface as defined by the
OpenACC 2.6 specification.  We're clarifying some aspects here as
@emph{implementation-defined behavior}, while they're still under
discussion within the OpenACC Technical Committee.

This implementation is tuned to keep the performance impact as low as
possible for the (very common) case that the Profiling Interface is
not enabled.  This is relevant, as the Profiling Interface affects all
the @emph{hot} code paths (in the target code, not in the offloaded
code).  Users of the OpenACC Profiling Interface can be expected to
understand that performance is impacted to some degree once the
Profiling Interface is enabled: for example, because of the
@emph{runtime} (libgomp) calling into a third-party @emph{library} for
every event that has been registered.

We're not yet accounting for the fact that @cite{OpenACC events may
occur during event processing}.
We just handle one case specially, as required by CUDA 9.0
@command{nvprof}, that @code{acc_get_device_type}
(@ref{acc_get_device_type})) may be called from
@code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
callbacks.

We're not yet implementing initialization via a
@code{acc_register_library} function that is either statically linked
in, or dynamically via @env{LD_PRELOAD}.
Initialization via @code{acc_register_library} functions dynamically
loaded via the @env{ACC_PROFLIB} environment variable does work, as
does directly calling @code{acc_prof_register},
@code{acc_prof_unregister}, @code{acc_prof_lookup}.

As currently there are no inquiry functions defined, calls to
@code{acc_prof_lookup} always returns @code{NULL}.

There aren't separate @emph{start}, @emph{stop} events defined for the
event types @code{acc_ev_create}, @code{acc_ev_delete},
@code{acc_ev_alloc}, @code{acc_ev_free}.  It's not clear if these
should be triggered before or after the actual device-specific call is
made.  We trigger them after.

Remarks about data provided to callbacks:

@table @asis

@item @code{acc_prof_info.event_type}
It's not clear if for @emph{nested} event callbacks (for example,
@code{acc_ev_enqueue_launch_start} as part of a parent compute
construct), this should be set for the nested event
(@code{acc_ev_enqueue_launch_start}), or if the value of the parent
construct should remain (@code{acc_ev_compute_construct_start}).  In
this implementation, the value generally corresponds to the
innermost nested event type.

@item @code{acc_prof_info.device_type}
@itemize

@item
For @code{acc_ev_compute_construct_start}, and in presence of an
@code{if} clause with @emph{false} argument, this still refers to
the offloading device type.
It's not clear if that's the expected behavior.

@item
Complementary to the item before, for
@code{acc_ev_compute_construct_end}, this is set to
@code{acc_device_host} in presence of an @code{if} clause with
@emph{false} argument.
It's not clear if that's the expected behavior.

@end itemize

@item @code{acc_prof_info.thread_id}
Always @code{-1}; not yet implemented.

@item @code{acc_prof_info.async}
@itemize

@item
Not yet implemented correctly for
@code{acc_ev_compute_construct_start}.

@item
In a compute construct, for host-fallback
execution/@code{acc_device_host} it always is
@code{acc_async_sync}.
It is unclear if that is the expected behavior.

@item
For @code{acc_ev_device_init_start} and @code{acc_ev_device_init_end},
it will always be @code{acc_async_sync}.
It is unclear if that is the expected behavior.

@end itemize

@item @code{acc_prof_info.async_queue}
There is no @cite{limited number of asynchronous queues} in libgomp.
This always has the same value as @code{acc_prof_info.async}.

@item @code{acc_prof_info.src_file}
Always @code{NULL}; not yet implemented.

@item @code{acc_prof_info.func_name}
Always @code{NULL}; not yet implemented.

@item @code{acc_prof_info.line_no}
Always @code{-1}; not yet implemented.

@item @code{acc_prof_info.end_line_no}
Always @code{-1}; not yet implemented.

@item @code{acc_prof_info.func_line_no}
Always @code{-1}; not yet implemented.

@item @code{acc_prof_info.func_end_line_no}
Always @code{-1}; not yet implemented.

@item @code{acc_event_info.event_type}, @code{acc_event_info.*.event_type}
Relating to @code{acc_prof_info.event_type} discussed above, in this
implementation, this will always be the same value as
@code{acc_prof_info.event_type}.

@item @code{acc_event_info.*.parent_construct}
@itemize

@item
Will be @code{acc_construct_parallel} for all OpenACC compute
constructs as well as many OpenACC Runtime API calls; should be the
one matching the actual construct, or
@code{acc_construct_runtime_api}, respectively.

@item
Will be @code{acc_construct_enter_data} or
@code{acc_construct_exit_data} when processing variable mappings
specified in OpenACC @emph{declare} directives; should be
@code{acc_construct_declare}.

@item
For implicit @code{acc_ev_device_init_start},
@code{acc_ev_device_init_end}, and explicit as well as implicit
@code{acc_ev_alloc}, @code{acc_ev_free},
@code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end},
@code{acc_ev_enqueue_download_start}, and
@code{acc_ev_enqueue_download_end}, will be
@code{acc_construct_parallel}; should reflect the real parent
construct.

@end itemize

@item @code{acc_event_info.*.implicit}
For @code{acc_ev_alloc}, @code{acc_ev_free},
@code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end},
@code{acc_ev_enqueue_download_start}, and
@code{acc_ev_enqueue_download_end}, this currently will be @code{1}
also for explicit usage.

@item @code{acc_event_info.data_event.var_name}
Always @code{NULL}; not yet implemented.

@item @code{acc_event_info.data_event.host_ptr}
For @code{acc_ev_alloc}, and @code{acc_ev_free}, this is always
@code{NULL}.

@item @code{typedef union acc_api_info}
@dots{} as printed in @cite{5.2.3. Third Argument: API-Specific
Information}.  This should obviously be @code{typedef @emph{struct}
acc_api_info}.

@item @code{acc_api_info.device_api}
Possibly not yet implemented correctly for
@code{acc_ev_compute_construct_start},
@code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}:
will always be @code{acc_device_api_none} for these event types.
For @code{acc_ev_enter_data_start}, it will be
@code{acc_device_api_none} in some cases.

@item @code{acc_api_info.device_type}
Always the same as @code{acc_prof_info.device_type}.

@item @code{acc_api_info.vendor}
Always @code{-1}; not yet implemented.

@item @code{acc_api_info.device_handle}
Always @code{NULL}; not yet implemented.

@item @code{acc_api_info.context_handle}
Always @code{NULL}; not yet implemented.

@item @code{acc_api_info.async_handle}
Always @code{NULL}; not yet implemented.

@end table

Remarks about certain event types:

@table @asis

@item @code{acc_ev_device_init_start}, @code{acc_ev_device_init_end}
@itemize

@item
@c See 'DEVICE_INIT_INSIDE_COMPUTE_CONSTRUCT' in
@c 'libgomp.oacc-c-c++-common/acc_prof-kernels-1.c',
@c 'libgomp.oacc-c-c++-common/acc_prof-parallel-1.c'.
When a compute construct triggers implicit
@code{acc_ev_device_init_start} and @code{acc_ev_device_init_end}
events, they currently aren't @emph{nested within} the corresponding
@code{acc_ev_compute_construct_start} and
@code{acc_ev_compute_construct_end}, but they're currently observed
@emph{before} @code{acc_ev_compute_construct_start}.
It's not clear what to do: the standard asks us provide a lot of
details to the @code{acc_ev_compute_construct_start} callback, without
(implicitly) initializing a device before?

@item
Callbacks for these event types will not be invoked for calls to the
@code{acc_set_device_type} and @code{acc_set_device_num} functions.
It's not clear if they should be.

@end itemize

@item @code{acc_ev_enter_data_start}, @code{acc_ev_enter_data_end}, @code{acc_ev_exit_data_start}, @code{acc_ev_exit_data_end}
@itemize

@item
Callbacks for these event types will also be invoked for OpenACC
@emph{host_data} constructs.
It's not clear if they should be.

@item
Callbacks for these event types will also be invoked when processing
variable mappings specified in OpenACC @emph{declare} directives.
It's not clear if they should be.

@end itemize

@end table

Callbacks for the following event types will be invoked, but dispatch
and information provided therein has not yet been thoroughly reviewed:

@itemize
@item @code{acc_ev_alloc}
@item @code{acc_ev_free}
@item @code{acc_ev_update_start}, @code{acc_ev_update_end}
@item @code{acc_ev_enqueue_upload_start}, @code{acc_ev_enqueue_upload_end}
@item @code{acc_ev_enqueue_download_start}, @code{acc_ev_enqueue_download_end}
@end itemize

During device initialization, and finalization, respectively,
callbacks for the following event types will not yet be invoked:

@itemize
@item @code{acc_ev_alloc}
@item @code{acc_ev_free}
@end itemize

Callbacks for the following event types have not yet been implemented,
so currently won't be invoked:

@itemize
@item @code{acc_ev_device_shutdown_start}, @code{acc_ev_device_shutdown_end}
@item @code{acc_ev_runtime_shutdown}
@item @code{acc_ev_create}, @code{acc_ev_delete}
@item @code{acc_ev_wait_start}, @code{acc_ev_wait_end}
@end itemize

For the following runtime library functions, not all expected
callbacks will be invoked (mostly concerning implicit device
initialization):

@itemize
@item @code{acc_get_num_devices}
@item @code{acc_set_device_type}
@item @code{acc_get_device_type}
@item @code{acc_set_device_num}
@item @code{acc_get_device_num}
@item @code{acc_init}
@item @code{acc_shutdown}
@end itemize

Aside from implicit device initialization, for the following runtime
library functions, no callbacks will be invoked for shared-memory
offloading devices (it's not clear if they should be):

@itemize
@item @code{acc_malloc}
@item @code{acc_free}
@item @code{acc_copyin}, @code{acc_present_or_copyin}, @code{acc_copyin_async}
@item @code{acc_create}, @code{acc_present_or_create}, @code{acc_create_async}
@item @code{acc_copyout}, @code{acc_copyout_async}, @code{acc_copyout_finalize}, @code{acc_copyout_finalize_async}
@item @code{acc_delete}, @code{acc_delete_async}, @code{acc_delete_finalize}, @code{acc_delete_finalize_async}
@item @code{acc_update_device}, @code{acc_update_device_async}
@item @code{acc_update_self}, @code{acc_update_self_async}
@item @code{acc_map_data}, @code{acc_unmap_data}
@item @code{acc_memcpy_to_device}, @code{acc_memcpy_to_device_async}
@item @code{acc_memcpy_from_device}, @code{acc_memcpy_from_device_async}
@end itemize

@c ---------------------------------------------------------------------
@c OpenMP-Implementation Specifics
@c ---------------------------------------------------------------------

@node OpenMP-Implementation Specifics
@chapter OpenMP-Implementation Specifics

@menu
* Implementation-defined ICV Initialization::
* OpenMP Context Selectors::
* Memory allocation::
@end menu

@node Implementation-defined ICV Initialization
@section Implementation-defined ICV Initialization
@cindex Implementation specific setting

@multitable @columnfractions .30 .70
@item @var{affinity-format-var} @tab See @ref{OMP_AFFINITY_FORMAT}.
@item @var{def-allocator-var} @tab See @ref{OMP_ALLOCATOR}.
@item @var{max-active-levels-var} @tab See @ref{OMP_MAX_ACTIVE_LEVELS}.
@item @var{dyn-var} @tab See @ref{OMP_DYNAMIC}.
@item @var{nthreads-var} @tab See @ref{OMP_NUM_THREADS}.
@item @var{num-devices-var} @tab Number of non-host devices found
by GCC's run-time library
@item @var{num-procs-var} @tab The number of CPU cores on the
initial device, except that affinity settings might lead to a
smaller number.  On non-host devices, the value of the
@var{nthreads-var} ICV.
@item @var{place-partition-var} @tab See @ref{OMP_PLACES}.
@item @var{run-sched-var} @tab See @ref{OMP_SCHEDULE}.
@item @var{stacksize-var} @tab See @ref{OMP_STACKSIZE}.
@item @var{thread-limit-var} @tab See @ref{OMP_TEAMS_THREAD_LIMIT}
@item @var{wait-policy-var} @tab See @ref{OMP_WAIT_POLICY} and
@ref{GOMP_SPINCOUNT}
@end multitable

@node OpenMP Context Selectors
@section OpenMP Context Selectors

@code{vendor} is always @code{gnu}. References are to the GCC manual.

@c NOTE: Only the following selectors have been implemented. To add
@c additional traits for target architecture, TARGET_OMP_DEVICE_KIND_ARCH_ISA
@c has to be implemented; cf. also PR target/105640.
@c For offload devices, add *additionally* gcc/config/*/t-omp-device.

For the host compiler, @code{kind} always matches @code{host}; for the
offloading architectures AMD GCN and Nvidia PTX, @code{kind} always matches
@code{gpu}.  For the x86 family of computers, AMD GCN and Nvidia PTX
the following traits are supported in addition; while OpenMP is supported
on more architectures, GCC currently does not match any @code{arch} or
@code{isa} traits for those.

@multitable @columnfractions .65 .30
@headitem @code{arch} @tab @code{isa}
@item @code{x86}, @code{x86_64}, @code{i386}, @code{i486},
      @code{i586}, @code{i686}, @code{ia32}
      @tab See @code{-m...} flags in ``x86 Options'' (without @code{-m})
@item @code{amdgcn}, @code{gcn}
      @tab See @code{-march=} in ``AMD GCN Options''@footnote{Additionally,
      @code{gfx803} is supported as an alias for @code{fiji}.}
@item @code{nvptx}, @code{nvptx64}
      @tab See @code{-march=} in ``Nvidia PTX Options''
@end multitable

@node Memory allocation
@section Memory allocation

The description below applies to:

@itemize
@item Explicit use of the OpenMP API routines, see
      @ref{Memory Management Routines}.
@item The @code{allocate} clause, except when the @code{allocator} modifier is a
      constant expression with value @code{omp_default_mem_alloc} and no
      @code{align} modifier has been specified. (In that case, the normal
      @code{malloc} allocation is used.)
@item Using the @code{allocate} directive for automatic/stack variables, except
      when the @code{allocator} clause is a constant expression with value
      @code{omp_default_mem_alloc} and no @code{align} clause has been
      specified. (In that case, the normal allocation is used: stack allocation
      and, sometimes for Fortran, also @code{malloc} [depending on flags such as
      @option{-fstack-arrays}].)
@item Using the @code{allocate} directive for variable in static memory is
      currently not supported (compile time error).
@item In Fortran, the @code{allocators} directive and the executable
      @code{allocate} directive for Fortran pointers and allocatables is
      supported, but requires that files containing those directives has to be
      compiled with @option{-fopenmp-allocators}.  Additionally, all files that
      might explicitly or implicitly deallocate memory allocated that way must
      also be compiled with that option.
@end itemize

For the available predefined allocators and, as applicable, their associated
predefined memory spaces and for the available traits and their default values,
see @ref{OMP_ALLOCATOR}.  Predefined allocators without an associated memory
space use the @code{omp_default_mem_space} memory space.

For the memory spaces, the following applies:
@itemize
@item @code{omp_default_mem_space} is supported
@item @code{omp_const_mem_space} maps to @code{omp_default_mem_space}
@item @code{omp_low_lat_mem_space} is only available on supported devices,
      and maps to @code{omp_default_mem_space} otherwise.
@item @code{omp_large_cap_mem_space} maps to @code{omp_default_mem_space},
      unless the memkind library is available
@item @code{omp_high_bw_mem_space} maps to @code{omp_default_mem_space},
      unless the memkind library is available
@end itemize

On Linux systems, where the @uref{https://github.com/memkind/memkind, memkind
library} (@code{libmemkind.so.0}) is available at runtime, it is used when
creating memory allocators requesting

@itemize
@item the memory space @code{omp_high_bw_mem_space}
@item the memory space @code{omp_large_cap_mem_space}
@item the @code{partition} trait @code{interleaved}; note that for
      @code{omp_large_cap_mem_space} the allocation will not be interleaved
@end itemize

On Linux systems, where the @uref{https://github.com/numactl/numactl, numa
library} (@code{libnuma.so.1}) is available at runtime, it used when creating
memory allocators requesting

@itemize
@item the @code{partition} trait @code{nearest}, except when both the
libmemkind library is available and the memory space is either
@code{omp_large_cap_mem_space} or @code{omp_high_bw_mem_space}
@end itemize

Note that the numa library will round up the allocation size to a multiple of
the system page size; therefore, consider using it only with large data or
by sharing allocations via the @code{pool_size} trait.  Furthermore, the Linux
kernel does not guarantee that an allocation will always be on the nearest NUMA
node nor that after reallocation the same node will be used.  Note additionally
that, on Linux, the default setting of the memory placement policy is to use the
current node; therefore, unless the memory placement policy has been overridden,
the @code{partition} trait @code{environment} (the default) will be effectively
a @code{nearest} allocation.

Additional notes regarding the traits:
@itemize
@item The @code{pinned} trait is supported on Linux hosts, but is subject to
      the OS @code{ulimit}/@code{rlimit} locked memory settings.
@item The default for the @code{pool_size} trait is no pool and for every
      (re)allocation the associated library routine is called, which might
      internally use a memory pool.
@item For the @code{partition} trait, the partition part size will be the same
      as the requested size (i.e. @code{interleaved} or @code{blocked} has no
      effect), except for @code{interleaved} when the memkind library is
      available.  Furthermore, for @code{nearest} and unless the numa library
      is available, the memory might not be on the same NUMA node as thread
      that allocated the memory; on Linux, this is in particular the case when
      the memory placement policy is set to preferred.
@item The @code{access} trait has no effect such that memory is always
      accessible by all threads.
@item The @code{sync_hint} trait has no effect.
@end itemize

See also:
@ref{Offload-Target Specifics}

@c ---------------------------------------------------------------------
@c Offload-Target Specifics
@c ---------------------------------------------------------------------

@node Offload-Target Specifics
@chapter Offload-Target Specifics

The following sections present notes on the offload-target specifics

@menu
* AMD Radeon::
* nvptx::
@end menu

@node AMD Radeon
@section AMD Radeon (GCN)

On the hardware side, there is the hierarchy (fine to coarse):
@itemize
@item work item (thread)
@item wavefront
@item work group
@item compute unit (CU)
@end itemize

All OpenMP and OpenACC levels are used, i.e.
@itemize
@item OpenMP's simd and OpenACC's vector map to work items (thread)
@item OpenMP's threads (``parallel'') and OpenACC's workers map
      to wavefronts
@item OpenMP's teams and OpenACC's gang use a threadpool with the
      size of the number of teams or gangs, respectively.
@end itemize

The used sizes are
@itemize
@item Number of teams is the specified @code{num_teams} (OpenMP) or
      @code{num_gangs} (OpenACC) or otherwise the number of CU. It is limited
      by two times the number of CU.
@item Number of wavefronts is 4 for gfx900 and 16 otherwise;
      @code{num_threads} (OpenMP) and @code{num_workers} (OpenACC)
      overrides this if smaller.
@item The wavefront has 102 scalars and 64 vectors
@item Number of workitems is always 64
@item The hardware permits maximally 40 workgroups/CU and
      16 wavefronts/workgroup up to a limit of 40 wavefronts in total per CU.
@item 80 scalars registers and 24 vector registers in non-kernel functions
      (the chosen procedure-calling API).
@item For the kernel itself: as many as register pressure demands (number of
      teams and number of threads, scaled down if registers are exhausted)
@end itemize

The implementation remark:
@itemize
@item I/O within OpenMP target regions and OpenACC compute regions is supported
      using the C library @code{printf} functions and the Fortran
      @code{print}/@code{write} statements.
@item Reverse offload regions (i.e. @code{target} regions with
      @code{device(ancestor:1)}) are processed serially per @code{target} region
      such that the next reverse offload region is only executed after the previous
      one returned.
@item OpenMP code that has a @code{requires} directive with
      @code{unified_shared_memory} is only supported if all AMD GPUs have the
      @code{HSA_AMD_SYSTEM_INFO_SVM_ACCESSIBLE_BY_DEFAULT} property; for
      discrete GPUs, this may require setting the @code{HSA_XNACK} environment
      variable to @samp{1}; for systems with both an APU and a discrete GPU that
      does not support XNACK, consider using @code{ROCR_VISIBLE_DEVICES} to
      enable only the APU.  If not supported, all AMD GPU devices are removed
      from the list of available devices (``host fallback'').
@item The available stack size can be changed using the @code{GCN_STACK_SIZE}
      environment variable; the default is 32 kiB per thread.
@item Low-latency memory (@code{omp_low_lat_mem_space}) is supported when the
      the @code{access} trait is set to @code{cgroup}.  The default pool size
      is automatically scaled to share the 64 kiB LDS memory between the number
      of teams configured to run on each compute-unit, but may be adjusted at
      runtime by setting environment variable
      @code{GOMP_GCN_LOWLAT_POOL=@var{bytes}}.
@item @code{omp_low_lat_mem_alloc} cannot be used with true low-latency memory
      because the definition implies the @code{omp_atv_all} trait; main
      graphics memory is used instead.
@item @code{omp_cgroup_mem_alloc}, @code{omp_pteam_mem_alloc}, and
      @code{omp_thread_mem_alloc}, all use low-latency memory as first
      preference, and fall back to main graphics memory when the low-latency
      pool is exhausted.
@end itemize



@node nvptx
@section nvptx

On the hardware side, there is the hierarchy (fine to coarse):
@itemize
@item thread
@item warp
@item thread block
@item streaming multiprocessor
@end itemize

All OpenMP and OpenACC levels are used, i.e.
@itemize
@item OpenMP's simd and OpenACC's vector map to threads
@item OpenMP's threads (``parallel'') and OpenACC's workers map to warps
@item OpenMP's teams and OpenACC's gang use a threadpool with the
      size of the number of teams or gangs, respectively.
@end itemize

The used sizes are
@itemize
@item The @code{warp_size} is always 32
@item CUDA kernel launched: @code{dim=@{#teams,1,1@}, blocks=@{#threads,warp_size,1@}}.
@item The number of teams is limited by the number of blocks the device can
      host simultaneously.
@end itemize

Additional information can be obtained by setting the environment variable to
@code{GOMP_DEBUG=1} (very verbose; grep for @code{kernel.*launch} for launch
parameters).

GCC generates generic PTX ISA code, which is just-in-time compiled by CUDA,
which caches the JIT in the user's directory (see CUDA documentation; can be
tuned by the environment variables @code{CUDA_CACHE_@{DISABLE,MAXSIZE,PATH@}}.

Note: While PTX ISA is generic, the @code{-mptx=} and @code{-march=} commandline
options still affect the used PTX ISA code and, thus, the requirements on
CUDA version and hardware.

The implementation remark:
@itemize
@item I/O within OpenMP target regions and OpenACC compute regions is supported
      using the C library @code{printf} functions.
      Additionally, the Fortran @code{print}/@code{write} statements are
      supported within OpenMP target regions, but not yet within OpenACC compute
      regions.  @c The latter needs 'GOMP_NVPTX_NATIVE_GPU_THREAD_STACK_SIZE'.
@item Compilation OpenMP code that contains @code{requires reverse_offload}
      requires at least @code{-march=sm_35}, compiling for @code{-march=sm_30}
      is not supported.
@item For code containing reverse offload (i.e. @code{target} regions with
      @code{device(ancestor:1)}), there is a slight performance penalty
      for @emph{all} target regions, consisting mostly of shutdown delay
      Per device, reverse offload regions are processed serially such that
      the next reverse offload region is only executed after the previous
      one returned.
@item OpenMP code that has a @code{requires} directive with
      @code{unified_shared_memory} runs on nvptx devices if and only if
      all of those support the @code{pageableMemoryAccess} property;@footnote{
      @uref{https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements}}
      otherwise, all nvptx device are removed from the list of available
      devices (``host fallback'').
@item The default per-warp stack size is 128 kiB; see also @code{-msoft-stack}
      in the GCC manual.
@item The OpenMP routines @code{omp_target_memcpy_rect} and
      @code{omp_target_memcpy_rect_async} and the @code{target update}
      directive for non-contiguous list items will use the 2D and 3D
      memory-copy functions of the CUDA library.  Higher dimensions will
      call those functions in a loop and are therefore supported.
@item Low-latency memory (@code{omp_low_lat_mem_space}) is supported when the
      the @code{access} trait is set to @code{cgroup}, the ISA is at least
      @code{sm_53}, and the PTX version is at least 4.1.  The default pool size
      is 8 kiB per team, but may be adjusted at runtime by setting environment
      variable @code{GOMP_NVPTX_LOWLAT_POOL=@var{bytes}}.  The maximum value is
      limited by the available hardware, and care should be taken that the
      selected pool size does not unduly limit the number of teams that can
      run simultaneously.
@item @code{omp_low_lat_mem_alloc} cannot be used with true low-latency memory
      because the definition implies the @code{omp_atv_all} trait; main
      graphics memory is used instead.
@item @code{omp_cgroup_mem_alloc}, @code{omp_pteam_mem_alloc}, and
      @code{omp_thread_mem_alloc}, all use low-latency memory as first
      preference, and fall back to main graphics memory when the low-latency
      pool is exhausted.
@end itemize


@c ---------------------------------------------------------------------
@c The libgomp ABI
@c ---------------------------------------------------------------------

@node The libgomp ABI
@chapter The libgomp ABI

The following sections present notes on the external ABI as 
presented by libgomp.  Only maintainers should need them.

@menu
* Implementing MASTER construct::
* Implementing CRITICAL construct::
* Implementing ATOMIC construct::
* Implementing FLUSH construct::
* Implementing BARRIER construct::
* Implementing THREADPRIVATE construct::
* Implementing PRIVATE clause::
* Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses::
* Implementing REDUCTION clause::
* Implementing PARALLEL construct::
* Implementing FOR construct::
* Implementing ORDERED construct::
* Implementing SECTIONS construct::
* Implementing SINGLE construct::
* Implementing OpenACC's PARALLEL construct::
@end menu


@node Implementing MASTER construct
@section Implementing MASTER construct

@smallexample
if (omp_get_thread_num () == 0)
  block
@end smallexample

Alternately, we generate two copies of the parallel subfunction
and only include this in the version run by the primary thread.
Surely this is not worthwhile though...



@node Implementing CRITICAL construct
@section Implementing CRITICAL construct

Without a specified name,

@smallexample
  void GOMP_critical_start (void);
  void GOMP_critical_end (void);
@end smallexample

so that we don't get COPY relocations from libgomp to the main
application.

With a specified name, use omp_set_lock and omp_unset_lock with
name being transformed into a variable declared like

@smallexample
  omp_lock_t gomp_critical_user_<name> __attribute__((common))
@end smallexample

Ideally the ABI would specify that all zero is a valid unlocked
state, and so we wouldn't need to initialize this at
startup.



@node Implementing ATOMIC construct
@section Implementing ATOMIC construct

The target should implement the @code{__sync} builtins.

Failing that we could add

@smallexample
  void GOMP_atomic_enter (void)
  void GOMP_atomic_exit (void)
@end smallexample

which reuses the regular lock code, but with yet another lock
object private to the library.



@node Implementing FLUSH construct
@section Implementing FLUSH construct

Expands to the @code{__sync_synchronize} builtin.



@node Implementing BARRIER construct
@section Implementing BARRIER construct

@smallexample
  void GOMP_barrier (void)
@end smallexample


@node Implementing THREADPRIVATE construct
@section Implementing THREADPRIVATE construct

In _most_ cases we can map this directly to @code{__thread}.  Except
that OMP allows constructors for C++ objects.  We can either
refuse to support this (how often is it used?) or we can 
implement something akin to .ctors.

Even more ideally, this ctor feature is handled by extensions
to the main pthreads library.  Failing that, we can have a set
of entry points to register ctor functions to be called.



@node Implementing PRIVATE clause
@section Implementing PRIVATE clause

In association with a PARALLEL, or within the lexical extent
of a PARALLEL block, the variable becomes a local variable in
the parallel subfunction.

In association with FOR or SECTIONS blocks, create a new
automatic variable within the current function.  This preserves
the semantic of new variable creation.



@node Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses
@section Implementing FIRSTPRIVATE LASTPRIVATE COPYIN and COPYPRIVATE clauses

This seems simple enough for PARALLEL blocks.  Create a private 
struct for communicating between the parent and subfunction.
In the parent, copy in values for scalar and "small" structs;
copy in addresses for others TREE_ADDRESSABLE types.  In the 
subfunction, copy the value into the local variable.

It is not clear what to do with bare FOR or SECTION blocks.
The only thing I can figure is that we do something like:

@smallexample
#pragma omp for firstprivate(x) lastprivate(y)
for (int i = 0; i < n; ++i)
  body;
@end smallexample

which becomes

@smallexample
@{
  int x = x, y;

  // for stuff

  if (i == n)
    y = y;
@}
@end smallexample

where the "x=x" and "y=y" assignments actually have different
uids for the two variables, i.e. not something you could write
directly in C.  Presumably this only makes sense if the "outer"
x and y are global variables.

COPYPRIVATE would work the same way, except the structure 
broadcast would have to happen via SINGLE machinery instead.



@node Implementing REDUCTION clause
@section Implementing REDUCTION clause

The private struct mentioned in the previous section should have 
a pointer to an array of the type of the variable, indexed by the 
thread's @var{team_id}.  The thread stores its final value into the 
array, and after the barrier, the primary thread iterates over the
array to collect the values.


@node Implementing PARALLEL construct
@section Implementing PARALLEL construct

@smallexample
  #pragma omp parallel
  @{
    body;
  @}
@end smallexample

becomes

@smallexample
  void subfunction (void *data)
  @{
    use data;
    body;
  @}

  setup data;
  GOMP_parallel_start (subfunction, &data, num_threads);
  subfunction (&data);
  GOMP_parallel_end ();
@end smallexample

@smallexample
  void GOMP_parallel_start (void (*fn)(void *), void *data, unsigned num_threads)
@end smallexample

The @var{FN} argument is the subfunction to be run in parallel.

The @var{DATA} argument is a pointer to a structure used to 
communicate data in and out of the subfunction, as discussed
above with respect to FIRSTPRIVATE et al.

The @var{NUM_THREADS} argument is 1 if an IF clause is present
and false, or the value of the NUM_THREADS clause, if
present, or 0.

The function needs to create the appropriate number of
threads and/or launch them from the dock.  It needs to
create the team structure and assign team ids.

@smallexample
  void GOMP_parallel_end (void)
@end smallexample

Tears down the team and returns us to the previous @code{omp_in_parallel()} state.



@node Implementing FOR construct
@section Implementing FOR construct

@smallexample
  #pragma omp parallel for
  for (i = lb; i <= ub; i++)
    body;
@end smallexample

becomes

@smallexample
  void subfunction (void *data)
  @{
    long _s0, _e0;
    while (GOMP_loop_static_next (&_s0, &_e0))
    @{
      long _e1 = _e0, i;
      for (i = _s0; i < _e1; i++)
        body;
    @}
    GOMP_loop_end_nowait ();
  @}

  GOMP_parallel_loop_static (subfunction, NULL, 0, lb, ub+1, 1, 0);
  subfunction (NULL);
  GOMP_parallel_end ();
@end smallexample

@smallexample
  #pragma omp for schedule(runtime)
  for (i = 0; i < n; i++)
    body;
@end smallexample

becomes

@smallexample
  @{
    long i, _s0, _e0;
    if (GOMP_loop_runtime_start (0, n, 1, &_s0, &_e0))
      do @{
        long _e1 = _e0;
        for (i = _s0, i < _e0; i++)
          body;
      @} while (GOMP_loop_runtime_next (&_s0, _&e0));
    GOMP_loop_end ();
  @}
@end smallexample

Note that while it looks like there is trickiness to propagating
a non-constant STEP, there isn't really.  We're explicitly allowed
to evaluate it as many times as we want, and any variables involved
should automatically be handled as PRIVATE or SHARED like any other
variables.  So the expression should remain evaluable in the 
subfunction.  We can also pull it into a local variable if we like,
but since its supposed to remain unchanged, we can also not if we like.

If we have SCHEDULE(STATIC), and no ORDERED, then we ought to be
able to get away with no work-sharing context at all, since we can
simply perform the arithmetic directly in each thread to divide up
the iterations.  Which would mean that we wouldn't need to call any
of these routines.

There are separate routines for handling loops with an ORDERED
clause.  Bookkeeping for that is non-trivial...



@node Implementing ORDERED construct
@section Implementing ORDERED construct

@smallexample
  void GOMP_ordered_start (void)
  void GOMP_ordered_end (void)
@end smallexample



@node Implementing SECTIONS construct
@section Implementing SECTIONS construct

A block as 

@smallexample
  #pragma omp sections
  @{
    #pragma omp section
    stmt1;
    #pragma omp section
    stmt2;
    #pragma omp section
    stmt3;
  @}
@end smallexample

becomes

@smallexample
  for (i = GOMP_sections_start (3); i != 0; i = GOMP_sections_next ())
    switch (i)
      @{
      case 1:
        stmt1;
        break;
      case 2:
        stmt2;
        break;
      case 3:
        stmt3;
        break;
      @}
  GOMP_barrier ();
@end smallexample


@node Implementing SINGLE construct
@section Implementing SINGLE construct

A block like 

@smallexample
  #pragma omp single
  @{
    body;
  @}
@end smallexample

becomes

@smallexample
  if (GOMP_single_start ())
    body;
  GOMP_barrier ();
@end smallexample

while 

@smallexample
  #pragma omp single copyprivate(x)
    body;
@end smallexample

becomes

@smallexample
  datap = GOMP_single_copy_start ();
  if (datap == NULL)
    @{
      body;
      data.x = x;
      GOMP_single_copy_end (&data);
    @}
  else
    x = datap->x;
  GOMP_barrier ();
@end smallexample



@node Implementing OpenACC's PARALLEL construct
@section Implementing OpenACC's PARALLEL construct

@smallexample
  void GOACC_parallel ()
@end smallexample



@c ---------------------------------------------------------------------
@c Reporting Bugs
@c ---------------------------------------------------------------------

@node Reporting Bugs
@chapter Reporting Bugs

Bugs in the GNU Offloading and Multi Processing Runtime Library should
be reported via @uref{https://gcc.gnu.org/bugzilla/, Bugzilla}.  Please add
"openacc", or "openmp", or both to the keywords field in the bug
report, as appropriate.



@c ---------------------------------------------------------------------
@c GNU General Public License
@c ---------------------------------------------------------------------

@include gpl_v3.texi



@c ---------------------------------------------------------------------
@c GNU Free Documentation License
@c ---------------------------------------------------------------------

@include fdl.texi



@c ---------------------------------------------------------------------
@c Funding Free Software
@c ---------------------------------------------------------------------

@include funding.texi

@c ---------------------------------------------------------------------
@c Index
@c ---------------------------------------------------------------------

@node Library Index
@unnumbered Library Index

@printindex cp

@bye