aboutsummaryrefslogtreecommitdiff
path: root/libgo/runtime/time.goc
blob: 220629be496fc79de428489e5687057225988764 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Time-related runtime and pieces of package time.

package time

#include <sys/time.h>

#include "runtime.h"
#include "defs.h"
#include "arch.h"
#include "malloc.h"
#include "race.h"

enum {
	debug = 0,
};

static Timers timers;
static void addtimer(Timer*);
static void dumptimers(const char*);

// nacl fake time support. 
int64 runtime_timens;

// Package time APIs.
// Godoc uses the comments in package time, not these.

// time.now is implemented in assembly.

// runtimeNano returns the current value of the runtime clock in nanoseconds.
func runtimeNano() (ns int64) {
	ns = runtime_nanotime();
}

// Sleep puts the current goroutine to sleep for at least ns nanoseconds.
func Sleep(ns int64) {
	runtime_tsleep(ns, "sleep");
}

// startTimer adds t to the timer heap.
func startTimer(t *Timer) {
	if(raceenabled)
		runtime_racerelease(t);
	runtime_addtimer(t);
}

// stopTimer removes t from the timer heap if it is there.
// It returns true if t was removed, false if t wasn't even there.
func stopTimer(t *Timer) (stopped bool) {
	stopped = runtime_deltimer(t);
}

// C runtime.

int64 runtime_unixnanotime(void)
{
	struct time_now_ret r;

	r = now();
	return r.sec*1000000000 + r.nsec;
}

static void timerproc(void*);
static void siftup(int32);
static void siftdown(int32);

// Ready the goroutine e.data.
static void
ready(int64 now, Eface e)
{
	USED(now);

	runtime_ready(e.__object);
}

static FuncVal readyv = {(void(*)(void))ready};

// Put the current goroutine to sleep for ns nanoseconds.
void
runtime_tsleep(int64 ns, const char *reason)
{
	G* g;
	Timer t;

	g = runtime_g();

	if(ns <= 0)
		return;

	t.when = runtime_nanotime() + ns;
	t.period = 0;
	t.fv = &readyv;
	t.arg.__object = g;
	runtime_lock(&timers);
	addtimer(&t);
	runtime_parkunlock(&timers, reason);
}

void
runtime_addtimer(Timer *t)
{
	runtime_lock(&timers);
	addtimer(t);
	runtime_unlock(&timers);
}

// Add a timer to the heap and start or kick the timer proc
// if the new timer is earlier than any of the others.
static void
addtimer(Timer *t)
{
	int32 n;
	Timer **nt;

	// when must never be negative; otherwise timerproc will overflow
	// during its delta calculation and never expire other timers.
	if(t->when < 0)
		t->when = (int64)((1ULL<<63)-1);

	if(timers.len >= timers.cap) {
		// Grow slice.
		n = 16;
		if(n <= timers.cap)
			n = timers.cap*3 / 2;
		nt = runtime_malloc(n*sizeof nt[0]);
		runtime_memmove(nt, timers.t, timers.len*sizeof nt[0]);
		runtime_free(timers.t);
		timers.t = nt;
		timers.cap = n;
	}
	t->i = timers.len++;
	timers.t[t->i] = t;
	siftup(t->i);
	if(t->i == 0) {
		// siftup moved to top: new earliest deadline.
		if(timers.sleeping) {
			timers.sleeping = false;
			runtime_notewakeup(&timers.waitnote);
		}
		if(timers.rescheduling) {
			timers.rescheduling = false;
			runtime_ready(timers.timerproc);
		}
	}
	if(timers.timerproc == nil) {
		timers.timerproc = __go_go(timerproc, nil);
		timers.timerproc->issystem = true;
	}
	if(debug)
		dumptimers("addtimer");
}

// Used to force a dereference before the lock is acquired.
static int32 gi;

// Delete timer t from the heap.
// Do not need to update the timerproc:
// if it wakes up early, no big deal.
bool
runtime_deltimer(Timer *t)
{
	int32 i;

	// Dereference t so that any panic happens before the lock is held.
	// Discard result, because t might be moving in the heap.
	i = t->i;
	gi = i;

	runtime_lock(&timers);

	// t may not be registered anymore and may have
	// a bogus i (typically 0, if generated by Go).
	// Verify it before proceeding.
	i = t->i;
	if(i < 0 || i >= timers.len || timers.t[i] != t) {
		runtime_unlock(&timers);
		return false;
	}

	timers.len--;
	if(i == timers.len) {
		timers.t[i] = nil;
	} else {
		timers.t[i] = timers.t[timers.len];
		timers.t[timers.len] = nil;
		timers.t[i]->i = i;
		siftup(i);
		siftdown(i);
	}
	if(debug)
		dumptimers("deltimer");
	runtime_unlock(&timers);
	return true;
}

// Timerproc runs the time-driven events.
// It sleeps until the next event in the timers heap.
// If addtimer inserts a new earlier event, addtimer
// wakes timerproc early.
static void
timerproc(void* dummy __attribute__ ((unused)))
{
	int64 delta, now;
	Timer *t;
	FuncVal *fv;
	void (*f)(int64, Eface);
	Eface arg;

	for(;;) {
		runtime_lock(&timers);
		timers.sleeping = false;
		now = runtime_nanotime();
		for(;;) {
			if(timers.len == 0) {
				delta = -1;
				break;
			}
			t = timers.t[0];
			delta = t->when - now;
			if(delta > 0)
				break;
			if(t->period > 0) {
				// leave in heap but adjust next time to fire
				t->when += t->period * (1 + -delta/t->period);
				siftdown(0);
			} else {
				// remove from heap
				timers.t[0] = timers.t[--timers.len];
				timers.t[0]->i = 0;
				siftdown(0);
				t->i = -1;  // mark as removed
			}
			fv = t->fv;
			f = (void*)t->fv->fn;
			arg = t->arg;
			runtime_unlock(&timers);
			if(raceenabled)
				runtime_raceacquire(t);
			__go_set_closure(fv);
			f(now, arg);

			// clear f and arg to avoid leak while sleeping for next timer
			f = nil;
			USED(f);
			arg.__type_descriptor = nil;
			arg.__object = nil;
			USED(&arg);

			runtime_lock(&timers);
		}
		if(delta < 0) {
			// No timers left - put goroutine to sleep.
			timers.rescheduling = true;
			runtime_g()->isbackground = true;
			runtime_parkunlock(&timers, "timer goroutine (idle)");
			runtime_g()->isbackground = false;
			continue;
		}
		// At least one timer pending.  Sleep until then.
		timers.sleeping = true;
		runtime_noteclear(&timers.waitnote);
		runtime_unlock(&timers);
		runtime_notetsleepg(&timers.waitnote, delta);
	}
}

// heap maintenance algorithms.

static void
siftup(int32 i)
{
	int32 p;
	int64 when;
	Timer **t, *tmp;

	t = timers.t;
	when = t[i]->when;
	tmp = t[i];
	while(i > 0) {
		p = (i-1)/4;  // parent
		if(when >= t[p]->when)
			break;
		t[i] = t[p];
		t[i]->i = i;
		t[p] = tmp;
		tmp->i = p;
		i = p;
	}
}

static void
siftdown(int32 i)
{
	int32 c, c3, len;
	int64 when, w, w3;
	Timer **t, *tmp;

	t = timers.t;
	len = timers.len;
	when = t[i]->when;
	tmp = t[i];
	for(;;) {
		c = i*4 + 1;  // left child
		c3 = c + 2;  // mid child
		if(c >= len) {
			break;
		}
		w = t[c]->when;
		if(c+1 < len && t[c+1]->when < w) {
			w = t[c+1]->when;
			c++;
		}
		if(c3 < len) {
			w3 = t[c3]->when;
			if(c3+1 < len && t[c3+1]->when < w3) {
				w3 = t[c3+1]->when;
				c3++;
			}
			if(w3 < w) {
				w = w3;
				c = c3;
			}
		}
		if(w >= when)
			break;
		t[i] = t[c];
		t[i]->i = i;
		t[c] = tmp;
		tmp->i = c;
		i = c;
	}
}

static void
dumptimers(const char *msg)
{
	Timer *t;
	int32 i;

	runtime_printf("timers: %s\n", msg);
	for(i = 0; i < timers.len; i++) {
		t = timers.t[i];
		runtime_printf("\t%d\t%p:\ti %d when %D period %D fn %p\n",
				i, t, t->i, t->when, t->period, t->fv->fn);
	}
	runtime_printf("\n");
}

void
runtime_time_scan(struct Workbuf** wbufp, void (*enqueue1)(struct Workbuf**, Obj))
{
	enqueue1(wbufp, (Obj){(byte*)&timers, sizeof timers, 0});
}