aboutsummaryrefslogtreecommitdiff
path: root/libgo/runtime/proc.c
blob: 274ce01c0bf1d5b99c0c4641ba2354dcf41dbf22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

#include "config.h"

#ifdef HAVE_DL_ITERATE_PHDR
#include <link.h>
#endif

#include "runtime.h"
#include "arch.h"
#include "defs.h"

#ifdef USING_SPLIT_STACK

/* FIXME: These are not declared anywhere.  */

extern void __splitstack_getcontext(void *context[10]);

extern void __splitstack_setcontext(void *context[10]);

extern void *__splitstack_makecontext(size_t, void *context[10], size_t *);

extern void * __splitstack_resetcontext(void *context[10], size_t *);

extern void __splitstack_releasecontext(void *context[10]);

extern void *__splitstack_find(void *, void *, size_t *, void **, void **,
			       void **);

extern void __splitstack_block_signals (int *, int *);

extern void __splitstack_block_signals_context (void *context[10], int *,
						int *);

#endif

#ifndef PTHREAD_STACK_MIN
# define PTHREAD_STACK_MIN 8192
#endif

#if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK)
# define StackMin PTHREAD_STACK_MIN
#else
# define StackMin ((sizeof(char *) < 8) ? 2 * 1024 * 1024 : 4 * 1024 * 1024)
#endif

uintptr runtime_stacks_sys;

void gtraceback(G*)
  __asm__(GOSYM_PREFIX "runtime.gtraceback");

static void gscanstack(G*);

#ifdef __rtems__
#define __thread
#endif

__thread G *g __asm__(GOSYM_PREFIX "runtime.g");

#ifndef SETCONTEXT_CLOBBERS_TLS

static inline void
initcontext(void)
{
}

static inline void
fixcontext(__go_context_t *c __attribute__ ((unused)))
{
}

#else

# if defined(__x86_64__) && defined(__sun__)

// x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs
// register to that of the thread which called getcontext.  The effect
// is that the address of all __thread variables changes.  This bug
// also affects pthread_self() and pthread_getspecific.  We work
// around it by clobbering the context field directly to keep %fs the
// same.

static __thread greg_t fs;

static inline void
initcontext(void)
{
	ucontext_t c;

	getcontext(&c);
	fs = c.uc_mcontext.gregs[REG_FSBASE];
}

static inline void
fixcontext(ucontext_t* c)
{
	c->uc_mcontext.gregs[REG_FSBASE] = fs;
}

# elif defined(__NetBSD__)

// NetBSD has a bug: setcontext clobbers tlsbase, we need to save
// and restore it ourselves.

static __thread __greg_t tlsbase;

static inline void
initcontext(void)
{
	ucontext_t c;

	getcontext(&c);
	tlsbase = c.uc_mcontext._mc_tlsbase;
}

static inline void
fixcontext(ucontext_t* c)
{
	c->uc_mcontext._mc_tlsbase = tlsbase;
}

# elif defined(__sparc__)

static inline void
initcontext(void)
{
}

static inline void
fixcontext(ucontext_t *c)
{
	/* ??? Using 
	     register unsigned long thread __asm__("%g7");
	     c->uc_mcontext.gregs[REG_G7] = thread;
	   results in
	     error: variable ‘thread’ might be clobbered by \
		‘longjmp’ or ‘vfork’ [-Werror=clobbered]
	   which ought to be false, as %g7 is a fixed register.  */

	if (sizeof (c->uc_mcontext.gregs[REG_G7]) == 8)
		asm ("stx %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
	else
		asm ("st %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
}

# elif defined(_AIX)

static inline void
initcontext(void)
{
}

static inline void
fixcontext(ucontext_t* c)
{
	// Thread pointer is in r13, per 64-bit ABI.
	if (sizeof (c->uc_mcontext.jmp_context.gpr[13]) == 8)
		asm ("std 13, %0" : "=m"(c->uc_mcontext.jmp_context.gpr[13]));
}

# else

#  error unknown case for SETCONTEXT_CLOBBERS_TLS

# endif

#endif

// ucontext_arg returns a properly aligned ucontext_t value.  On some
// systems a ucontext_t value must be aligned to a 16-byte boundary.
// The g structure that has fields of type ucontext_t is defined in
// Go, and Go has no simple way to align a field to such a boundary.
// So we make the field larger in runtime2.go and pick an appropriate
// offset within the field here.
static __go_context_t*
ucontext_arg(uintptr_t* go_ucontext)
{
	uintptr_t p = (uintptr_t)go_ucontext;
	size_t align = __alignof__(__go_context_t);
	if(align > 16) {
		// We only ensured space for up to a 16 byte alignment
		// in libgo/go/runtime/runtime2.go.
		runtime_throw("required alignment of __go_context_t too large");
	}
	p = (p + align - 1) &~ (uintptr_t)(align - 1);
	return (__go_context_t*)p;
}

// We can not always refer to the TLS variables directly.  The
// compiler will call tls_get_addr to get the address of the variable,
// and it may hold it in a register across a call to schedule.  When
// we get back from the call we may be running in a different thread,
// in which case the register now points to the TLS variable for a
// different thread.  We use non-inlinable functions to avoid this
// when necessary.

G* runtime_g(void) __attribute__ ((noinline, no_split_stack));

G*
runtime_g(void)
{
	return g;
}

M* runtime_m(void) __attribute__ ((noinline, no_split_stack));

M*
runtime_m(void)
{
	if(g == nil)
		return nil;
	return g->m;
}

// Set g.
void
runtime_setg(G* gp)
{
	g = gp;
}

void runtime_newosproc(M *)
  __asm__(GOSYM_PREFIX "runtime.newosproc");

// Start a new thread.
void
runtime_newosproc(M *mp)
{
	pthread_attr_t attr;
	sigset_t clear, old;
	pthread_t tid;
	int tries;
	int ret;

	if(pthread_attr_init(&attr) != 0)
		runtime_throw("pthread_attr_init");
	if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0)
		runtime_throw("pthread_attr_setdetachstate");

	// Block signals during pthread_create so that the new thread
	// starts with signals disabled.  It will enable them in minit.
	sigfillset(&clear);

#ifdef SIGTRAP
	// Blocking SIGTRAP reportedly breaks gdb on Alpha GNU/Linux.
	sigdelset(&clear, SIGTRAP);
#endif

	sigemptyset(&old);
	pthread_sigmask(SIG_BLOCK, &clear, &old);

	for (tries = 0; tries < 20; tries++) {
		ret = pthread_create(&tid, &attr, runtime_mstart, mp);
		if (ret != EAGAIN) {
			break;
		}
		runtime_usleep((tries + 1) * 1000); // Milliseconds.
	}

	pthread_sigmask(SIG_SETMASK, &old, nil);

	if (ret != 0) {
		runtime_printf("pthread_create failed: %d\n", ret);
		runtime_throw("pthread_create");
	}

	if(pthread_attr_destroy(&attr) != 0)
		runtime_throw("pthread_attr_destroy");
}

// Switch context to a different goroutine.  This is like longjmp.
void runtime_gogo(G*) __attribute__ ((noinline));
void
runtime_gogo(G* newg)
{
#ifdef USING_SPLIT_STACK
	__splitstack_setcontext((void*)(&newg->stackcontext[0]));
#endif
	g = newg;
	newg->fromgogo = true;
	fixcontext(ucontext_arg(&newg->context[0]));
	__go_setcontext(ucontext_arg(&newg->context[0]));
	runtime_throw("gogo setcontext returned");
}

// Save context and call fn passing g as a parameter.  This is like
// setjmp.  Because getcontext always returns 0, unlike setjmp, we use
// g->fromgogo as a code.  It will be true if we got here via
// setcontext.  g == nil the first time this is called in a new m.
void runtime_mcall(FuncVal *) __attribute__ ((noinline));
void
runtime_mcall(FuncVal *fv)
{
	M *mp;
	G *gp;
#ifndef USING_SPLIT_STACK
	void *afterregs;
#endif

	// Ensure that all registers are on the stack for the garbage
	// collector.
	__builtin_unwind_init();
	flush_registers_to_secondary_stack();

	gp = g;
	mp = gp->m;
	if(gp == mp->g0)
		runtime_throw("runtime: mcall called on m->g0 stack");

	if(gp != nil) {

#ifdef USING_SPLIT_STACK
		__splitstack_getcontext((void*)(&gp->stackcontext[0]));
#else
		// We have to point to an address on the stack that is
		// below the saved registers.
		gp->gcnextsp = (uintptr)(&afterregs);
		gp->gcnextsp2 = (uintptr)(secondary_stack_pointer());
#endif
		gp->fromgogo = false;
		__go_getcontext(ucontext_arg(&gp->context[0]));

		// When we return from getcontext, we may be running
		// in a new thread.  That means that g may have
		// changed.  It is a global variables so we will
		// reload it, but the address of g may be cached in
		// our local stack frame, and that address may be
		// wrong.  Call the function to reload the value for
		// this thread.
		gp = runtime_g();
		mp = gp->m;

		if(gp->traceback != 0)
			gtraceback(gp);
		if(gp->scang != 0)
			gscanstack(gp);
	}
	if (gp == nil || !gp->fromgogo) {
#ifdef USING_SPLIT_STACK
		__splitstack_setcontext((void*)(&mp->g0->stackcontext[0]));
#endif
		mp->g0->entry = fv;
		mp->g0->param = gp;

		// It's OK to set g directly here because this case
		// can not occur if we got here via a setcontext to
		// the getcontext call just above.
		g = mp->g0;

		fixcontext(ucontext_arg(&mp->g0->context[0]));
		__go_setcontext(ucontext_arg(&mp->g0->context[0]));
		runtime_throw("runtime: mcall function returned");
	}
}

// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
//     M must have an associated P to execute Go code, however it can be
//     blocked or in a syscall w/o an associated P.
//
// Design doc at http://golang.org/s/go11sched.

extern G* allocg(void)
  __asm__ (GOSYM_PREFIX "runtime.allocg");

bool	runtime_isarchive;

extern void kickoff(void)
  __asm__(GOSYM_PREFIX "runtime.kickoff");
extern void minit(void)
  __asm__(GOSYM_PREFIX "runtime.minit");
extern void mstart1()
  __asm__(GOSYM_PREFIX "runtime.mstart1");
extern void stopm(void)
  __asm__(GOSYM_PREFIX "runtime.stopm");
extern void mexit(bool)
  __asm__(GOSYM_PREFIX "runtime.mexit");
extern void handoffp(P*)
  __asm__(GOSYM_PREFIX "runtime.handoffp");
extern void wakep(void)
  __asm__(GOSYM_PREFIX "runtime.wakep");
extern void stoplockedm(void)
  __asm__(GOSYM_PREFIX "runtime.stoplockedm");
extern void schedule(void)
  __asm__(GOSYM_PREFIX "runtime.schedule");
extern void execute(G*, bool)
  __asm__(GOSYM_PREFIX "runtime.execute");
extern void reentersyscall(uintptr, uintptr)
  __asm__(GOSYM_PREFIX "runtime.reentersyscall");
extern void reentersyscallblock(uintptr, uintptr)
  __asm__(GOSYM_PREFIX "runtime.reentersyscallblock");
extern G* gfget(P*)
  __asm__(GOSYM_PREFIX "runtime.gfget");
extern void acquirep(P*)
  __asm__(GOSYM_PREFIX "runtime.acquirep");
extern P* releasep(void)
  __asm__(GOSYM_PREFIX "runtime.releasep");
extern void incidlelocked(int32)
  __asm__(GOSYM_PREFIX "runtime.incidlelocked");
extern void globrunqput(G*)
  __asm__(GOSYM_PREFIX "runtime.globrunqput");
extern P* pidleget(void)
  __asm__(GOSYM_PREFIX "runtime.pidleget");
extern struct mstats* getMemstats(void)
  __asm__(GOSYM_PREFIX "runtime.getMemstats");

bool runtime_isstarted;

// Used to determine the field alignment.

struct field_align
{
  char c;
  Hchan *p;
};

void getTraceback(G*, G*) __asm__(GOSYM_PREFIX "runtime.getTraceback");

// getTraceback stores a traceback of gp in the g's traceback field
// and then returns to me.  We expect that gp's traceback is not nil.
// It works by saving me's current context, and checking gp's traceback field.
// If gp's traceback field is not nil, it starts running gp.
// In places where we call getcontext, we check the traceback field.
// If it is not nil, we collect a traceback, and then return to the
// goroutine stored in the traceback field, which is me.
void getTraceback(G* me, G* gp)
{
	M* holdm;

	holdm = gp->m;
	gp->m = me->m;

#ifdef USING_SPLIT_STACK
	__splitstack_getcontext((void*)(&me->stackcontext[0]));
#endif
	__go_getcontext(ucontext_arg(&me->context[0]));

	if (gp->traceback != 0) {
		runtime_gogo(gp);
	}

	gp->m = holdm;
}

// Do a stack trace of gp, and then restore the context to
// gp->traceback->gp.

void
gtraceback(G* gp)
{
	Traceback* traceback;

	traceback = (Traceback*)gp->traceback;
	gp->traceback = 0;
	traceback->c = runtime_callers(1, traceback->locbuf,
		sizeof traceback->locbuf / sizeof traceback->locbuf[0], false);
	runtime_gogo(traceback->gp);
}

void doscanstackswitch(G*, G*) __asm__(GOSYM_PREFIX "runtime.doscanstackswitch");

// Switch to gp and let it scan its stack.
// The first time gp->scang is set (to me). The second time here
// gp is done scanning, and has unset gp->scang, so we just return.
void
doscanstackswitch(G* me, G* gp)
{
	M* holdm;

	__go_assert(me->entry == nil);
	me->fromgogo = false;

	holdm = gp->m;
	gp->m = me->m;

#ifdef USING_SPLIT_STACK
	__splitstack_getcontext((void*)(&me->stackcontext[0]));
#endif
	__go_getcontext(ucontext_arg(&me->context[0]));

	if(me->entry != nil) {
		// Got here from mcall.
		// The stack scanning code may call systemstack, which calls
		// mcall, which calls setcontext.
		// Run the function, which at the end will switch back to gp.
		FuncVal *fv = me->entry;
		void (*pfn)(G*) = (void (*)(G*))fv->fn;
		G* gp1 = (G*)me->param;
		__go_assert(gp1 == gp);
		me->entry = nil;
		me->param = nil;
		__builtin_call_with_static_chain(pfn(gp1), fv);
		abort();
	}

	if (gp->scang != 0)
		runtime_gogo(gp);

	gp->m = holdm;
}

// Do a stack scan, then switch back to the g that triggers this scan.
// We come here from doscanstackswitch.
static void
gscanstack(G *gp)
{
	G *oldg, *oldcurg;

	oldg = (G*)gp->scang;
	oldcurg = oldg->m->curg;
	oldg->m->curg = gp;
	gp->scang = 0;

	doscanstack(gp, (void*)gp->scangcw);

	gp->scangcw = 0;
	oldg->m->curg = oldcurg;
	runtime_gogo(oldg);
}

// Called by pthread_create to start an M.
void*
runtime_mstart(void *arg)
{
	M* mp;
	G* gp;

	mp = (M*)(arg);
	gp = mp->g0;
	gp->m = mp;

	g = gp;

	gp->entry = nil;
	gp->param = nil;

	// We have to call minit before we call getcontext,
	// because getcontext will copy the signal mask.
	minit();

	initcontext();

	// Record top of stack for use by mcall.
	// Once we call schedule we're never coming back,
	// so other calls can reuse this stack space.
#ifdef USING_SPLIT_STACK
	__splitstack_getcontext((void*)(&gp->stackcontext[0]));
#else
	gp->gcinitialsp = &arg;
	// Setting gcstacksize to 0 is a marker meaning that gcinitialsp
	// is the top of the stack, not the bottom.
	gp->gcstacksize = 0;
	gp->gcnextsp = (uintptr)(&arg);
	gp->gcinitialsp2 = secondary_stack_pointer();
	gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2);
#endif

	// Save the currently active context.  This will return
	// multiple times via the setcontext call in mcall.
	__go_getcontext(ucontext_arg(&gp->context[0]));

	if(gp->traceback != 0) {
		// Got here from getTraceback.
		// I'm not sure this ever actually happens--getTraceback
		// may always go to the getcontext call in mcall.
		gtraceback(gp);
	}
	if(gp->scang != 0)
		// Got here from doscanswitch. Should not happen.
		runtime_throw("mstart with scang");

	if(gp->entry != nil) {
		// Got here from mcall.
		FuncVal *fv = gp->entry;
		void (*pfn)(G*) = (void (*)(G*))fv->fn;
		G* gp1 = (G*)gp->param;
		gp->entry = nil;
		gp->param = nil;
		__builtin_call_with_static_chain(pfn(gp1), fv);
		*(int*)0x21 = 0x21;
	}

	if(mp->exiting) {
		mexit(true);
		return nil;
	}

	// Initial call to getcontext--starting thread.

#ifdef USING_SPLIT_STACK
	{
		int dont_block_signals = 0;
		__splitstack_block_signals(&dont_block_signals, nil);
	}
#endif

	mstart1();

	// mstart1 does not return, but we need a return statement
	// here to avoid a compiler warning.
	return nil;
}

typedef struct CgoThreadStart CgoThreadStart;
struct CgoThreadStart
{
	M *m;
	G *g;
	uintptr *tls;
	void (*fn)(void);
};

void setGContext(void) __asm__ (GOSYM_PREFIX "runtime.setGContext");

// setGContext sets up a new goroutine context for the current g.
void
setGContext(void)
{
	int val;
	G *gp;

	initcontext();
	gp = g;
	gp->entry = nil;
	gp->param = nil;
#ifdef USING_SPLIT_STACK
	__splitstack_getcontext((void*)(&gp->stackcontext[0]));
	val = 0;
	__splitstack_block_signals(&val, nil);
#else
	gp->gcinitialsp = &val;
	gp->gcstack = 0;
	gp->gcstacksize = 0;
	gp->gcnextsp = (uintptr)(&val);
	gp->gcinitialsp2 = secondary_stack_pointer();
	gp->gcnextsp2 = (uintptr)(gp->gcinitialsp2);
#endif
	__go_getcontext(ucontext_arg(&gp->context[0]));

	if(gp->entry != nil) {
		// Got here from mcall.
		FuncVal *fv = gp->entry;
		void (*pfn)(G*) = (void (*)(G*))fv->fn;
		G* gp1 = (G*)gp->param;
		gp->entry = nil;
		gp->param = nil;
		__builtin_call_with_static_chain(pfn(gp1), fv);
		*(int*)0x22 = 0x22;
	}
}

void makeGContext(G*, byte*, uintptr)
	__asm__(GOSYM_PREFIX "runtime.makeGContext");

// makeGContext makes a new context for a g.
void
makeGContext(G* gp, byte* sp, uintptr spsize) {
	__go_context_t *uc;

	uc = ucontext_arg(&gp->context[0]);
	__go_getcontext(uc);
	__go_makecontext(uc, kickoff, sp, (size_t)spsize);
}

// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library and cgocall,
// not from the low-level system calls used by the runtime.
//
// Entersyscall cannot split the stack: the runtime_gosave must
// make g->sched refer to the caller's stack segment, because
// entersyscall is going to return immediately after.

void runtime_entersyscall() __attribute__ ((no_split_stack));
static void doentersyscall(uintptr, uintptr)
  __attribute__ ((no_split_stack, noinline));

void
runtime_entersyscall()
{
	// Save the registers in the g structure so that any pointers
	// held in registers will be seen by the garbage collector.
	if (!runtime_usestackmaps)
		__go_getcontext(ucontext_arg(&g->gcregs[0]));

	// Note that if this function does save any registers itself,
	// we might store the wrong value in the call to getcontext.
	// FIXME: This assumes that we do not need to save any
	// callee-saved registers to access the TLS variable g.  We
	// don't want to put the ucontext_t on the stack because it is
	// large and we can not split the stack here.
	doentersyscall((uintptr)runtime_getcallerpc(),
		       (uintptr)runtime_getcallersp());
}

static void
doentersyscall(uintptr pc, uintptr sp)
{
	// Leave SP around for GC and traceback.
#ifdef USING_SPLIT_STACK
	{
	  size_t gcstacksize;
	  g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize,
						   (void**)(&g->gcnextsegment),
						   (void**)(&g->gcnextsp),
						   &g->gcinitialsp));
	  g->gcstacksize = (uintptr)gcstacksize;
	}
#else
	{
		void *v;

		g->gcnextsp = (uintptr)(&v);
		g->gcnextsp2 = (uintptr)(secondary_stack_pointer());
	}
#endif

	reentersyscall(pc, sp);
}

static void doentersyscallblock(uintptr, uintptr)
  __attribute__ ((no_split_stack, noinline));

// The same as runtime_entersyscall(), but with a hint that the syscall is blocking.
void
runtime_entersyscallblock()
{
	// Save the registers in the g structure so that any pointers
	// held in registers will be seen by the garbage collector.
	if (!runtime_usestackmaps)
		__go_getcontext(ucontext_arg(&g->gcregs[0]));

	// See comment in runtime_entersyscall.
	doentersyscallblock((uintptr)runtime_getcallerpc(),
			    (uintptr)runtime_getcallersp());
}

static void
doentersyscallblock(uintptr pc, uintptr sp)
{
	// Leave SP around for GC and traceback.
#ifdef USING_SPLIT_STACK
	{
	  size_t gcstacksize;
	  g->gcstack = (uintptr)(__splitstack_find(nil, nil, &gcstacksize,
						   (void**)(&g->gcnextsegment),
						   (void**)(&g->gcnextsp),
						   &g->gcinitialsp));
	  g->gcstacksize = (uintptr)gcstacksize;
	}
#else
	{
		void *v;

		g->gcnextsp = (uintptr)(&v);
		g->gcnextsp2 = (uintptr)(secondary_stack_pointer());
	}
#endif

	reentersyscallblock(pc, sp);
}

// Allocate a new g, with a stack big enough for stacksize bytes.
G*
runtime_malg(bool allocatestack, bool signalstack, byte** ret_stack, uintptr* ret_stacksize)
{
	uintptr stacksize;
	G *newg;
	byte* unused_stack;
	uintptr unused_stacksize;
#ifdef USING_SPLIT_STACK
	int dont_block_signals = 0;
	size_t ss_stacksize;
#endif

	if (ret_stack == nil) {
		ret_stack = &unused_stack;
	}
	if (ret_stacksize == nil) {
		ret_stacksize = &unused_stacksize;
	}
	newg = allocg();
	if(allocatestack) {
		stacksize = StackMin;
		if(signalstack) {
			stacksize = 32 * 1024; // OS X wants >= 8K, GNU/Linux >= 2K
#ifdef SIGSTKSZ
			if(stacksize < SIGSTKSZ)
				stacksize = SIGSTKSZ;
#endif
		}

#ifdef USING_SPLIT_STACK
		*ret_stack = __splitstack_makecontext(stacksize,
						      (void*)(&newg->stackcontext[0]),
						      &ss_stacksize);
		*ret_stacksize = (uintptr)ss_stacksize;
		__splitstack_block_signals_context((void*)(&newg->stackcontext[0]),
						   &dont_block_signals, nil);
#else
                // In 64-bit mode, the maximum Go allocation space is
                // 128G.  Our stack size is 4M, which only permits 32K
                // goroutines.  In order to not limit ourselves,
                // allocate the stacks out of separate memory.  In
                // 32-bit mode, the Go allocation space is all of
                // memory anyhow.
		if(sizeof(void*) == 8) {
			void *p = runtime_sysAlloc(stacksize, &getMemstats()->stacks_sys);
			if(p == nil)
				runtime_throw("runtime: cannot allocate memory for goroutine stack");
			*ret_stack = (byte*)p;
		} else {
			*ret_stack = runtime_mallocgc(stacksize, nil, false);
			runtime_xadd(&runtime_stacks_sys, stacksize);
		}
		*ret_stacksize = (uintptr)stacksize;
		newg->gcinitialsp = *ret_stack;
		newg->gcstacksize = (uintptr)stacksize;
		newg->gcinitialsp2 = initial_secondary_stack_pointer(*ret_stack);
#endif
	}
	return newg;
}

void stackfree(G*)
  __asm__(GOSYM_PREFIX "runtime.stackfree");

// stackfree frees the stack of a g.
void
stackfree(G* gp)
{
#ifdef USING_SPLIT_STACK
  __splitstack_releasecontext((void*)(&gp->stackcontext[0]));
#else
  // If gcstacksize is 0, the stack is allocated by libc and will be
  // released when the thread exits. Otherwise, in 64-bit mode it was
  // allocated using sysAlloc and in 32-bit mode it was allocated
  // using garbage collected memory.
  if (gp->gcstacksize != 0) {
    if (sizeof(void*) == 8) {
      runtime_sysFree(gp->gcinitialsp, gp->gcstacksize, &getMemstats()->stacks_sys);
    }
    gp->gcinitialsp = nil;
    gp->gcstacksize = 0;
  }
#endif
}

void resetNewG(G*, void **, uintptr*)
  __asm__(GOSYM_PREFIX "runtime.resetNewG");

// Reset stack information for g pulled out of the cache to start a
// new goroutine.
void
resetNewG(G *newg, void **sp, uintptr *spsize)
{
#ifdef USING_SPLIT_STACK
  int dont_block_signals = 0;
  size_t ss_spsize;

  *sp = __splitstack_resetcontext((void*)(&newg->stackcontext[0]), &ss_spsize);
  *spsize = ss_spsize;
  __splitstack_block_signals_context((void*)(&newg->stackcontext[0]),
				     &dont_block_signals, nil);
#else
  *sp = newg->gcinitialsp;
  *spsize = newg->gcstacksize;
  if(*spsize == 0)
    runtime_throw("bad spsize in resetNewG");
  newg->gcnextsp = (uintptr)(*sp);
  newg->gcnextsp2 = (uintptr)(newg->gcinitialsp2);
#endif
}