1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"fmt"
"runtime"
"testing"
)
var spanDesc = map[uintptr]struct {
pages uintptr
scav bool
}{
0xc0000000: {2, false},
0xc0006000: {1, false},
0xc0010000: {8, false},
0xc0022000: {7, false},
0xc0034000: {4, true},
0xc0040000: {5, false},
0xc0050000: {5, true},
0xc0060000: {5000, false},
}
// Wrap the Treap one more time because go:notinheap doesn't
// actually follow a structure across package boundaries.
//
//go:notinheap
type treap struct {
runtime.Treap
}
func maskMatchName(mask, match runtime.TreapIterType) string {
return fmt.Sprintf("%0*b-%0*b", runtime.TreapIterBits, uint8(mask), runtime.TreapIterBits, uint8(match))
}
func TestTreapFilter(t *testing.T) {
var iterTypes = [...]struct {
mask, match runtime.TreapIterType
filter runtime.TreapIterFilter // expected filter
}{
{0, 0, 0xf},
{runtime.TreapIterScav, 0, 0x5},
{runtime.TreapIterScav, runtime.TreapIterScav, 0xa},
{runtime.TreapIterScav | runtime.TreapIterHuge, runtime.TreapIterHuge, 0x4},
{runtime.TreapIterScav | runtime.TreapIterHuge, 0, 0x1},
{0, runtime.TreapIterScav, 0x0},
}
for _, it := range iterTypes {
t.Run(maskMatchName(it.mask, it.match), func(t *testing.T) {
if f := runtime.TreapFilter(it.mask, it.match); f != it.filter {
t.Fatalf("got %#x, want %#x", f, it.filter)
}
})
}
}
// This test ensures that the treap implementation in the runtime
// maintains all stated invariants after different sequences of
// insert, removeSpan, find, and erase. Invariants specific to the
// treap data structure are checked implicitly: after each mutating
// operation, treap-related invariants are checked for the entire
// treap.
func TestTreap(t *testing.T) {
// Set up a bunch of spans allocated into mheap_.
// Also, derive a set of typeCounts of each type of span
// according to runtime.TreapIterType so we can verify against
// them later.
spans := make([]runtime.Span, 0, len(spanDesc))
typeCounts := [1 << runtime.TreapIterBits][1 << runtime.TreapIterBits]int{}
for base, de := range spanDesc {
s := runtime.AllocSpan(base, de.pages, de.scav)
defer s.Free()
spans = append(spans, s)
for i := runtime.TreapIterType(0); i < 1<<runtime.TreapIterBits; i++ {
for j := runtime.TreapIterType(0); j < 1<<runtime.TreapIterBits; j++ {
if s.MatchesIter(i, j) {
typeCounts[i][j]++
}
}
}
}
t.Run("TypeCountsSanity", func(t *testing.T) {
// Just sanity check type counts for a few values.
check := func(mask, match runtime.TreapIterType, count int) {
tc := typeCounts[mask][match]
if tc != count {
name := maskMatchName(mask, match)
t.Fatalf("failed a sanity check for mask/match %s counts: got %d, wanted %d", name, tc, count)
}
}
check(0, 0, len(spanDesc))
check(runtime.TreapIterScav, 0, 6)
check(runtime.TreapIterScav, runtime.TreapIterScav, 2)
})
t.Run("Insert", func(t *testing.T) {
tr := treap{}
// Test just a very basic insert/remove for sanity.
tr.Insert(spans[0])
tr.RemoveSpan(spans[0])
})
t.Run("FindTrivial", func(t *testing.T) {
tr := treap{}
// Test just a very basic find operation for sanity.
tr.Insert(spans[0])
i := tr.Find(1)
if i.Span() != spans[0] {
t.Fatal("found unknown span in treap")
}
tr.RemoveSpan(spans[0])
})
t.Run("FindFirstFit", func(t *testing.T) {
// Run this 10 times, recreating the treap each time.
// Because of the non-deterministic structure of a treap,
// we'll be able to test different structures this way.
for i := 0; i < 10; i++ {
tr := runtime.Treap{}
for _, s := range spans {
tr.Insert(s)
}
i := tr.Find(5)
if i.Span().Base() != 0xc0010000 {
t.Fatalf("expected span at lowest address which could fit 5 pages, instead found span at %x", i.Span().Base())
}
for _, s := range spans {
tr.RemoveSpan(s)
}
}
})
t.Run("Iterate", func(t *testing.T) {
for mask := runtime.TreapIterType(0); mask < 1<<runtime.TreapIterBits; mask++ {
for match := runtime.TreapIterType(0); match < 1<<runtime.TreapIterBits; match++ {
iterName := maskMatchName(mask, match)
t.Run(iterName, func(t *testing.T) {
t.Run("StartToEnd", func(t *testing.T) {
// Ensure progressing an iterator actually goes over the whole treap
// from the start and that it iterates over the elements in order.
// Furthermore, ensure that it only iterates over the relevant parts
// of the treap.
// Finally, ensures that Start returns a valid iterator.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
nspans := 0
lastBase := uintptr(0)
for i := tr.Start(mask, match); i.Valid(); i = i.Next() {
nspans++
if lastBase > i.Span().Base() {
t.Fatalf("not iterating in correct order: encountered base %x before %x", lastBase, i.Span().Base())
}
lastBase = i.Span().Base()
if !i.Span().MatchesIter(mask, match) {
t.Fatalf("found non-matching span while iteration over mask/match %s: base %x", iterName, i.Span().Base())
}
}
if nspans != typeCounts[mask][match] {
t.Fatal("failed to iterate forwards over full treap")
}
for _, s := range spans {
tr.RemoveSpan(s)
}
})
t.Run("EndToStart", func(t *testing.T) {
// See StartToEnd tests.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
nspans := 0
lastBase := ^uintptr(0)
for i := tr.End(mask, match); i.Valid(); i = i.Prev() {
nspans++
if lastBase < i.Span().Base() {
t.Fatalf("not iterating in correct order: encountered base %x before %x", lastBase, i.Span().Base())
}
lastBase = i.Span().Base()
if !i.Span().MatchesIter(mask, match) {
t.Fatalf("found non-matching span while iteration over mask/match %s: base %x", iterName, i.Span().Base())
}
}
if nspans != typeCounts[mask][match] {
t.Fatal("failed to iterate backwards over full treap")
}
for _, s := range spans {
tr.RemoveSpan(s)
}
})
})
}
}
t.Run("Prev", func(t *testing.T) {
// Test the iterator invariant that i.prev().next() == i.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
i := tr.Start(0, 0).Next().Next()
p := i.Prev()
if !p.Valid() {
t.Fatal("i.prev() is invalid")
}
if p.Next().Span() != i.Span() {
t.Fatal("i.prev().next() != i")
}
for _, s := range spans {
tr.RemoveSpan(s)
}
})
t.Run("Next", func(t *testing.T) {
// Test the iterator invariant that i.next().prev() == i.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
i := tr.Start(0, 0).Next().Next()
n := i.Next()
if !n.Valid() {
t.Fatal("i.next() is invalid")
}
if n.Prev().Span() != i.Span() {
t.Fatal("i.next().prev() != i")
}
for _, s := range spans {
tr.RemoveSpan(s)
}
})
})
t.Run("EraseOne", func(t *testing.T) {
// Test that erasing one iterator correctly retains
// all relationships between elements.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
i := tr.Start(0, 0).Next().Next().Next()
s := i.Span()
n := i.Next()
p := i.Prev()
tr.Erase(i)
if n.Prev().Span() != p.Span() {
t.Fatal("p, n := i.Prev(), i.Next(); n.prev() != p after i was erased")
}
if p.Next().Span() != n.Span() {
t.Fatal("p, n := i.Prev(), i.Next(); p.next() != n after i was erased")
}
tr.Insert(s)
for _, s := range spans {
tr.RemoveSpan(s)
}
})
t.Run("EraseAll", func(t *testing.T) {
// Test that erasing iterators actually removes nodes from the treap.
tr := treap{}
for _, s := range spans {
tr.Insert(s)
}
for i := tr.Start(0, 0); i.Valid(); {
n := i.Next()
tr.Erase(i)
i = n
}
if size := tr.Size(); size != 0 {
t.Fatalf("should have emptied out treap, %d spans left", size)
}
})
}
|