1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
|
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
// Should be a built-in for unsafe.Pointer?
//go:nosplit
func add(p unsafe.Pointer, x uintptr) unsafe.Pointer {
return unsafe.Pointer(uintptr(p) + x)
}
// getg returns the pointer to the current g.
// The compiler rewrites calls to this function into instructions
// that fetch the g directly (from TLS or from the dedicated register).
func getg() *g
// mcall switches from the g to the g0 stack and invokes fn(g),
// where g is the goroutine that made the call.
// mcall saves g's current PC/SP in g->sched so that it can be restored later.
// It is up to fn to arrange for that later execution, typically by recording
// g in a data structure, causing something to call ready(g) later.
// mcall returns to the original goroutine g later, when g has been rescheduled.
// fn must not return at all; typically it ends by calling schedule, to let the m
// run other goroutines.
//
// mcall can only be called from g stacks (not g0, not gsignal).
//
// This must NOT be go:noescape: if fn is a stack-allocated closure,
// fn puts g on a run queue, and g executes before fn returns, the
// closure will be invalidated while it is still executing.
func mcall(fn func(*g))
// systemstack runs fn on a system stack.
//
// It is common to use a func literal as the argument, in order
// to share inputs and outputs with the code around the call
// to system stack:
//
// ... set up y ...
// systemstack(func() {
// x = bigcall(y)
// })
// ... use x ...
//
// For the gc toolchain this permits running a function that requires
// additional stack space in a context where the stack can not be
// split. For gccgo, however, stack splitting is not managed by the
// Go runtime. In effect, all stacks are system stacks. So this gccgo
// version just runs the function.
func systemstack(fn func()) {
fn()
}
func badsystemstack() {
throw("systemstack called from unexpected goroutine")
}
// memclr clears n bytes starting at ptr.
// in memclr_*.s
//go:noescape
func memclr(ptr unsafe.Pointer, n uintptr)
//go:linkname reflect_memclr reflect.memclr
func reflect_memclr(ptr unsafe.Pointer, n uintptr) {
memclr(ptr, n)
}
// memmove copies n bytes from "from" to "to".
//go:noescape
func memmove(to, from unsafe.Pointer, n uintptr)
//go:linkname reflect_memmove reflect.memmove
func reflect_memmove(to, from unsafe.Pointer, n uintptr) {
memmove(to, from, n)
}
//go:noescape
//extern __builtin_memcmp
func memcmp(a, b unsafe.Pointer, size uintptr) int32
// exported value for testing
var hashLoad = loadFactor
// in asm_*.s
func fastrand1() uint32
// in asm_*.s
//go:noescape
func memequal(a, b unsafe.Pointer, size uintptr) bool
// noescape hides a pointer from escape analysis. noescape is
// the identity function but escape analysis doesn't think the
// output depends on the input. noescape is inlined and currently
// compiles down to a single xor instruction.
// USE CAREFULLY!
//go:nosplit
func noescape(p unsafe.Pointer) unsafe.Pointer {
x := uintptr(p)
return unsafe.Pointer(x ^ 0)
}
func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32
//go:noescape
func jmpdefer(fv *funcval, argp uintptr)
func exit1(code int32)
func asminit()
func setg(gg *g)
func breakpoint()
// reflectcall calls fn with a copy of the n argument bytes pointed at by arg.
// After fn returns, reflectcall copies n-retoffset result bytes
// back into arg+retoffset before returning. If copying result bytes back,
// the caller should pass the argument frame type as argtype, so that
// call can execute appropriate write barriers during the copy.
// Package reflect passes a frame type. In package runtime, there is only
// one call that copies results back, in cgocallbackg1, and it does NOT pass a
// frame type, meaning there are no write barriers invoked. See that call
// site for justification.
func reflectcall(argtype *_type, fn, arg unsafe.Pointer, argsize uint32, retoffset uint32)
func procyield(cycles uint32)
type neverCallThisFunction struct{}
// goexit is the return stub at the top of every goroutine call stack.
// Each goroutine stack is constructed as if goexit called the
// goroutine's entry point function, so that when the entry point
// function returns, it will return to goexit, which will call goexit1
// to perform the actual exit.
//
// This function must never be called directly. Call goexit1 instead.
// gentraceback assumes that goexit terminates the stack. A direct
// call on the stack will cause gentraceback to stop walking the stack
// prematurely and if there are leftover stack barriers it may panic.
func goexit(neverCallThisFunction)
// publicationBarrier performs a store/store barrier (a "publication"
// or "export" barrier). Some form of synchronization is required
// between initializing an object and making that object accessible to
// another processor. Without synchronization, the initialization
// writes and the "publication" write may be reordered, allowing the
// other processor to follow the pointer and observe an uninitialized
// object. In general, higher-level synchronization should be used,
// such as locking or an atomic pointer write. publicationBarrier is
// for when those aren't an option, such as in the implementation of
// the memory manager.
//
// There's no corresponding barrier for the read side because the read
// side naturally has a data dependency order. All architectures that
// Go supports or seems likely to ever support automatically enforce
// data dependency ordering.
func publicationBarrier()
//go:noescape
func setcallerpc(argp unsafe.Pointer, pc uintptr)
// getcallerpc returns the program counter (PC) of its caller's caller.
// getcallersp returns the stack pointer (SP) of its caller's caller.
// For both, the argp must be a pointer to the caller's first function argument.
// The implementation may or may not use argp, depending on
// the architecture.
//
// For example:
//
// func f(arg1, arg2, arg3 int) {
// pc := getcallerpc(unsafe.Pointer(&arg1))
// sp := getcallersp(unsafe.Pointer(&arg1))
// }
//
// These two lines find the PC and SP immediately following
// the call to f (where f will return).
//
// The call to getcallerpc and getcallersp must be done in the
// frame being asked about. It would not be correct for f to pass &arg1
// to another function g and let g call getcallerpc/getcallersp.
// The call inside g might return information about g's caller or
// information about f's caller or complete garbage.
//
// The result of getcallersp is correct at the time of the return,
// but it may be invalidated by any subsequent call to a function
// that might relocate the stack in order to grow or shrink it.
// A general rule is that the result of getcallersp should be used
// immediately and can only be passed to nosplit functions.
//go:noescape
func getcallerpc(argp unsafe.Pointer) uintptr
//go:noescape
func getcallersp(argp unsafe.Pointer) uintptr
// argp used in Defer structs when there is no argp.
const _NoArgs = ^uintptr(0)
//go:linkname time_now time.now
func time_now() (sec int64, nsec int32)
// For gccgo, expose this for C callers.
//go:linkname unixnanotime runtime.unixnanotime
func unixnanotime() int64 {
sec, nsec := time_now()
return sec*1e9 + int64(nsec)
}
// round n up to a multiple of a. a must be a power of 2.
func round(n, a uintptr) uintptr {
return (n + a - 1) &^ (a - 1)
}
// checkASM returns whether assembly runtime checks have passed.
func checkASM() bool {
return true
}
// For gccgo this is in the C code.
func osyield()
// For gccgo this can be called directly.
//extern syscall
func syscall(trap uintptr, a1, a2, a3, a4, a5, a6 uintptr) uintptr
// throw crashes the program.
// For gccgo unless and until we port panic.go.
func throw(string)
// newobject allocates a new object.
// For gccgo unless and until we port malloc.go.
func newobject(*_type) unsafe.Pointer
// newarray allocates a new array of objects.
// For gccgo unless and until we port malloc.go.
func newarray(*_type, int) unsafe.Pointer
// funcPC returns the entry PC of the function f.
// It assumes that f is a func value. Otherwise the behavior is undefined.
// For gccgo here unless and until we port proc.go.
// Note that this differs from the gc implementation; the gc implementation
// adds sys.PtrSize to the address of the interface value, but GCC's
// alias analysis decides that that can not be a reference to the second
// field of the interface, and in some cases it drops the initialization
// of the second field as a dead store.
//go:nosplit
func funcPC(f interface{}) uintptr {
i := (*iface)(unsafe.Pointer(&f))
return **(**uintptr)(i.data)
}
// typedmemmove copies a typed value.
// For gccgo for now.
//go:nosplit
func typedmemmove(typ *_type, dst, src unsafe.Pointer) {
memmove(dst, src, typ.size)
}
// Temporary for gccgo until we port mbarrier.go.
//go:linkname typedslicecopy runtime.typedslicecopy
func typedslicecopy(typ *_type, dst, src slice) int {
n := dst.len
if n > src.len {
n = src.len
}
if n == 0 {
return 0
}
memmove(dst.array, src.array, uintptr(n)*typ.size)
return n
}
// Here for gccgo until we port malloc.go.
const (
_64bit = 1 << (^uintptr(0) >> 63) / 2
_MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*32
_MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1)
)
// Here for gccgo until we port malloc.go.
//extern runtime_mallocgc
func c_mallocgc(size uintptr, typ uintptr, flag uint32) unsafe.Pointer
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
flag := uint32(0)
if !needzero {
flag = 1 << 3
}
return c_mallocgc(size, uintptr(unsafe.Pointer(typ)), flag)
}
// Here for gccgo until we port mgc.go.
var writeBarrier struct {
enabled bool // compiler emits a check of this before calling write barrier
needed bool // whether we need a write barrier for current GC phase
cgo bool // whether we need a write barrier for a cgo check
alignme uint64 // guarantee alignment so that compiler can use a 32 or 64-bit load
}
// Here for gccgo until we port atomic_pointer.go and mgc.go.
//go:nosplit
func casp(ptr *unsafe.Pointer, old, new unsafe.Pointer) bool {
if !atomic.Casp1((*unsafe.Pointer)(noescape(unsafe.Pointer(ptr))), noescape(old), new) {
return false
}
return true
}
// Here for gccgo until we port lock_*.go.
func lock(l *mutex)
func unlock(l *mutex)
// Here for gccgo for netpoll and Solaris.
func errno() int
// Temporary for gccgo until we port proc.go.
func entersyscall(int32)
func entersyscallblock(int32)
func exitsyscall(int32)
func gopark(func(*g, unsafe.Pointer) bool, unsafe.Pointer, string, byte, int)
func goparkunlock(*mutex, string, byte, int)
func goready(*g, int)
// Temporary hack for gccgo until we port proc.go.
//go:nosplit
func acquireSudog() *sudog {
mp := acquirem()
pp := mp.p.ptr()
if len(pp.sudogcache) == 0 {
pp.sudogcache = append(pp.sudogcache, new(sudog))
}
n := len(pp.sudogcache)
s := pp.sudogcache[n-1]
pp.sudogcache[n-1] = nil
pp.sudogcache = pp.sudogcache[:n-1]
if s.elem != nil {
throw("acquireSudog: found s.elem != nil in cache")
}
releasem(mp)
return s
}
// Temporary hack for gccgo until we port proc.go.
//go:nosplit
func releaseSudog(s *sudog) {
if s.elem != nil {
throw("runtime: sudog with non-nil elem")
}
if s.selectdone != nil {
throw("runtime: sudog with non-nil selectdone")
}
if s.next != nil {
throw("runtime: sudog with non-nil next")
}
if s.prev != nil {
throw("runtime: sudog with non-nil prev")
}
if s.waitlink != nil {
throw("runtime: sudog with non-nil waitlink")
}
if s.c != nil {
throw("runtime: sudog with non-nil c")
}
gp := getg()
if gp.param != nil {
throw("runtime: releaseSudog with non-nil gp.param")
}
mp := acquirem() // avoid rescheduling to another P
pp := mp.p.ptr()
pp.sudogcache = append(pp.sudogcache, s)
releasem(mp)
}
// Temporary hack for gccgo until we port the garbage collector.
func typeBitsBulkBarrier(typ *_type, p, size uintptr) {}
// Here for gccgo until we port msize.go.
func roundupsize(uintptr) uintptr
// Here for gccgo until we port mgc.go.
func GC()
// Here for gccgo until we port proc.go.
var worldsema uint32 = 1
func stopTheWorldWithSema()
func startTheWorldWithSema()
// For gccgo to call from C code.
//go:linkname acquireWorldsema runtime.acquireWorldsema
func acquireWorldsema() {
semacquire(&worldsema, false)
}
// For gccgo to call from C code.
//go:linkname releaseWorldsema runtime.releaseWorldsema
func releaseWorldsema() {
semrelease(&worldsema)
}
// Here for gccgo until we port proc.go.
func stopTheWorld(reason string) {
semacquire(&worldsema, false)
getg().m.preemptoff = reason
getg().m.gcing = 1
systemstack(stopTheWorldWithSema)
}
// Here for gccgo until we port proc.go.
func startTheWorld() {
getg().m.gcing = 0
getg().m.locks++
systemstack(startTheWorldWithSema)
// worldsema must be held over startTheWorldWithSema to ensure
// gomaxprocs cannot change while worldsema is held.
semrelease(&worldsema)
getg().m.preemptoff = ""
getg().m.locks--
}
// For gccgo to call from C code, so that the C code and the Go code
// can share the memstats variable for now.
//go:linkname getMstats runtime.getMstats
func getMstats() *mstats {
return &memstats
}
// Temporary for gccgo until we port proc.go.
func setcpuprofilerate_m(hz int32)
// Temporary for gccgo until we port mem_GOOS.go.
func sysAlloc(n uintptr, sysStat *uint64) unsafe.Pointer
// Temporary for gccgo until we port proc.go, so that the C signal
// handler can call into cpuprof.
//go:linkname cpuprofAdd runtime.cpuprofAdd
func cpuprofAdd(stk []uintptr) {
cpuprof.add(stk)
}
// For gccgo until we port proc.go.
func Breakpoint()
func LockOSThread()
func UnlockOSThread()
func allm() *m
func allgs() []*g
//go:nosplit
func readgstatus(gp *g) uint32 {
return atomic.Load(&gp.atomicstatus)
}
// Temporary for gccgo until we port malloc.go
func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer
// Temporary for gccgo until we port mheap.go
func setprofilebucket(p unsafe.Pointer, b *bucket)
// Currently in proc.c.
func tracebackothers(*g)
// Temporary for gccgo until we port mgc.go.
func setgcpercent(int32) int32
//go:linkname setGCPercent runtime_debug.setGCPercent
func setGCPercent(in int32) (out int32) {
return setgcpercent(in)
}
// Temporary for gccgo until we port proc.go.
func setmaxthreads(int) int
//go:linkname setMaxThreads runtime_debug.setMaxThreads
func setMaxThreads(in int) (out int) {
return setmaxthreads(in)
}
// Temporary for gccgo until we port atomic_pointer.go.
//go:nosplit
func atomicstorep(ptr unsafe.Pointer, new unsafe.Pointer) {
atomic.StorepNoWB(noescape(ptr), new)
}
// Temporary for gccgo until we port mbarrier.go
func writebarrierptr(dst *uintptr, src uintptr) {
*dst = src
}
// Temporary for gccgo until we port malloc.go
var zerobase uintptr
//go:linkname getZerobase runtime.getZerobase
func getZerobase() *uintptr {
return &zerobase
}
// Temporary for gccgo until we port proc.go.
func needm()
func dropm()
func sigprof()
func mcount() int32
func gcount() int32
// Signal trampoline, written in C.
func sigtramp()
// The sa_handler field is generally hidden in a union, so use C accessors.
func getSigactionHandler(*_sigaction) uintptr
func setSigactionHandler(*_sigaction, uintptr)
// Retrieve fields from the siginfo_t and ucontext_t pointers passed
// to a signal handler using C, as they are often hidden in a union.
// Returns and, if available, PC where signal occurred.
func getSiginfo(*_siginfo_t, unsafe.Pointer) (sigaddr uintptr, sigpc uintptr)
// Implemented in C for gccgo.
func dumpregs(*_siginfo_t, unsafe.Pointer)
// Temporary for gccgo until we port panic.go.
func startpanic()
|