1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/sys"
"unsafe"
)
type mOS struct {
unused byte
}
func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32 {
return int32(syscall(_SYS_futex, uintptr(addr), uintptr(op), uintptr(val), uintptr(ts), uintptr(addr2), uintptr(val3)))
}
// Linux futex.
//
// futexsleep(uint32 *addr, uint32 val)
// futexwakeup(uint32 *addr)
//
// Futexsleep atomically checks if *addr == val and if so, sleeps on addr.
// Futexwakeup wakes up threads sleeping on addr.
// Futexsleep is allowed to wake up spuriously.
const (
_FUTEX_WAIT = 0
_FUTEX_WAKE = 1
)
// Atomically,
// if(*addr == val) sleep
// Might be woken up spuriously; that's allowed.
// Don't sleep longer than ns; ns < 0 means forever.
//go:nosplit
func futexsleep(addr *uint32, val uint32, ns int64) {
var ts timespec
// Some Linux kernels have a bug where futex of
// FUTEX_WAIT returns an internal error code
// as an errno. Libpthread ignores the return value
// here, and so can we: as it says a few lines up,
// spurious wakeups are allowed.
if ns < 0 {
futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0)
return
}
// It's difficult to live within the no-split stack limits here.
// On ARM and 386, a 64-bit divide invokes a general software routine
// that needs more stack than we can afford. So we use timediv instead.
// But on real 64-bit systems, where words are larger but the stack limit
// is not, even timediv is too heavy, and we really need to use just an
// ordinary machine instruction.
if sys.PtrSize == 8 {
ts.set_sec(ns / 1000000000)
ts.set_nsec(int32(ns % 1000000000))
} else {
ts.tv_nsec = 0
ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec)))))
}
futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0)
}
// If any procs are sleeping on addr, wake up at most cnt.
//go:nosplit
func futexwakeup(addr *uint32, cnt uint32) {
ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0)
if ret >= 0 {
return
}
// I don't know that futex wakeup can return
// EAGAIN or EINTR, but if it does, it would be
// safe to loop and call futex again.
systemstack(func() {
print("futexwakeup addr=", addr, " returned ", ret, "\n")
})
*(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006
}
const (
_AT_NULL = 0 // End of vector
_AT_PAGESZ = 6 // System physical page size
_AT_RANDOM = 25 // introduced in 2.6.29
)
func sysargs(argc int32, argv **byte) {
n := argc + 1
// skip over argv, envp to get to auxv
for argv_index(argv, n) != nil {
n++
}
// skip NULL separator
n++
// now argv+n is auxv
auxv := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*sys.PtrSize))
for i := 0; auxv[i] != _AT_NULL; i += 2 {
tag, val := auxv[i], auxv[i+1]
switch tag {
case _AT_RANDOM:
// The kernel provides a pointer to 16-bytes
// worth of random data.
startupRandomData = (*[16]byte)(unsafe.Pointer(val))[:]
case _AT_PAGESZ:
// Check that the true physical page size is
// compatible with the runtime's assumed
// physical page size.
if sys.PhysPageSize < val {
print("runtime: kernel page size (", val, ") is larger than runtime page size (", sys.PhysPageSize, ")\n")
exit(1)
}
if sys.PhysPageSize%val != 0 {
print("runtime: runtime page size (", sys.PhysPageSize, ") is not a multiple of kernel page size (", val, ")\n")
exit(1)
}
}
// Commented out for gccgo for now.
// archauxv(tag, val)
}
}
|