aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/runtime/iface.go
blob: f702132ce540a7a6c847d9a3ce4c3fdd55688b7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

package runtime

import (
	"internal/goarch"
	"runtime/internal/atomic"
	"unsafe"
)

// For gccgo, use go:linkname to export compiler-called functions.
//
//go:linkname requireitab
//go:linkname assertitab
//go:linkname panicdottype
//go:linkname ifaceE2E2
//go:linkname ifaceI2E2
//go:linkname ifaceE2I2
//go:linkname ifaceI2I2
//go:linkname ifaceE2T2P
//go:linkname ifaceI2T2P
//go:linkname ifaceE2T2
//go:linkname ifaceI2T2
//go:linkname ifaceT2Ip
// Temporary for C code to call:
//go:linkname getitab

// The gccgo itab structure is different than the gc one.
//
// Both gccgo and gc represent empty interfaces the same way:
// a two field struct, where the first field points to a type descriptor
// (a *_type) and the second field is the data pointer.
//
// Non-empty interfaces are also two-field structs, and the second
// field is the data pointer. However, for gccgo, the first field, the
// itab field, is different. The itab field points to the interface
// method table, which is the implemention of a specific interface
// type for a specific dynamic non-interface type.  An interface
// method table is a list of pointer values. The first pointer is the
// type descriptor (a *_type) for the dynamic type. The subsequent
// pointers are pointers to function code, which implement the methods
// required by the interface. The pointers are sorted by name.
//
// The method pointers in the itab are C function pointers, not Go
// function pointers; they may be called directly, and they have no
// closures. The receiver is always passed as a pointer, and it is
// always the same pointer stored in the interface value. A value
// method starts by copying the receiver value out of the pointer into
// a local variable.
//
// A method call on an interface value is by definition calling a
// method at a known index m in the list of methods. Given a non-empty
// interface value i, the call i.m(args) looks like
//     i.itab[m+1](i.iface, args)

// Both an empty interface and a non-empty interface have a data
// pointer field. The meaning of this field is determined by the
// kindDirectIface bit in the `kind` field of the type descriptor of
// the value stored in the interface. If kindDirectIface is set, then
// the data pointer field in the interface value is exactly the value
// stored in the interface. Otherwise, the data pointer field is a
// pointer to memory that holds the value. It follows from this that
// kindDirectIface can only be set for a type whose representation is
// simply a pointer. In the current gccgo implementation, this is set
// for types that are pointer-shaped, including unsafe.Pointer, channels,
// maps, functions, single-field structs and single-element arrays whose
// single field is simply a pointer-shaped type.

// For a nil interface value both fields in the interface struct are nil.

// itabs are statically allocated or persistently allocated. They are
// never freed. For itabs allocated at run time, they are cached in
// itabTable, so we reuse the same itab for the same (interface, concrete)
// type pair. The gc runtime prepopulates the cache with statically
// allocated itabs. Currently we don't do that as we don't have a way to
// find all the statically allocated itabs.

const itabInitSize = 512

var (
	itabLock      mutex                               // lock for accessing itab table
	itabTable     = &itabTableInit                    // pointer to current table
	itabTableInit = itabTableType{size: itabInitSize} // starter table
)

// Cache entry type of itab table.
// For gccgo, this is not the data type we used in the interface header.
type itab struct {
	inter   *interfacetype
	methods [2]unsafe.Pointer // method table. variable sized. first entry is the type descriptor.
}

func (m *itab) _type() *_type {
	return (*_type)(m.methods[0])
}

// Note: change the formula in the mallocgc call in itabAdd if you change these fields.
type itabTableType struct {
	size    uintptr             // length of entries array. Always a power of 2.
	count   uintptr             // current number of filled entries.
	entries [itabInitSize]*itab // really [size] large
}

func itabHashFunc(inter *interfacetype, typ *_type) uintptr {
	// compiler has provided some good hash codes for us.
	return uintptr(inter.typ.hash ^ typ.hash)
}

// find finds the given interface/type pair in t.
// Returns nil if the given interface/type pair isn't present.
func (t *itabTableType) find(inter *interfacetype, typ *_type) *itab {
	// Implemented using quadratic probing.
	// Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k.
	// We're guaranteed to hit all table entries using this probe sequence.
	mask := t.size - 1
	h := itabHashFunc(inter, typ) & mask
	for i := uintptr(1); ; i++ {
		p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize))
		// Use atomic read here so if we see m != nil, we also see
		// the initializations of the fields of m.
		// m := *p
		m := (*itab)(atomic.Loadp(unsafe.Pointer(p)))
		if m == nil {
			return nil
		}
		if m.inter == inter && m._type() == typ {
			return m
		}
		h += i
		h &= mask
	}
}

// itabAdd adds the given itab to the itab hash table.
// itabLock must be held.
func itabAdd(m *itab) {
	// Bugs can lead to calling this while mallocing is set,
	// typically because this is called while panicing.
	// Crash reliably, rather than only when we need to grow
	// the hash table.
	if getg().m.mallocing != 0 {
		throw("malloc deadlock")
	}

	t := itabTable
	if t.count >= 3*(t.size/4) { // 75% load factor
		// Grow hash table.
		// t2 = new(itabTableType) + some additional entries
		// We lie and tell malloc we want pointer-free memory because
		// all the pointed-to values are not in the heap.
		t2 := (*itabTableType)(mallocgc((2+2*t.size)*goarch.PtrSize, nil, true))
		t2.size = t.size * 2

		// Copy over entries.
		// Note: while copying, other threads may look for an itab and
		// fail to find it. That's ok, they will then try to get the itab lock
		// and as a consequence wait until this copying is complete.
		iterate_itabs(t2.add)
		if t2.count != t.count {
			throw("mismatched count during itab table copy")
		}
		// Publish new hash table. Use an atomic write: see comment in getitab.
		atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2))
		// Adopt the new table as our own.
		t = itabTable
		// Note: the old table can be GC'ed here.
	}
	t.add(m)
}

// add adds the given itab to itab table t.
// itabLock must be held.
func (t *itabTableType) add(m *itab) {
	// See comment in find about the probe sequence.
	// Insert new itab in the first empty spot in the probe sequence.
	mask := t.size - 1
	h := itabHashFunc(m.inter, m._type()) & mask
	for i := uintptr(1); ; i++ {
		p := (**itab)(add(unsafe.Pointer(&t.entries), h*goarch.PtrSize))
		m2 := *p
		if m2 == m {
			// A given itab may be used in more than one module
			// and thanks to the way global symbol resolution works, the
			// pointed-to itab may already have been inserted into the
			// global 'hash'.
			return
		}
		if m2 == nil {
			// Use atomic write here so if a reader sees m, it also
			// sees the correctly initialized fields of m.
			// NoWB is ok because m is not in heap memory.
			// *p = m
			atomic.StorepNoWB(unsafe.Pointer(p), unsafe.Pointer(m))
			t.count++
			return
		}
		h += i
		h &= mask
	}
}

// init fills in the m.methods array with all the code pointers for
// the m.inter/m._type pair. If the type does not implement the interface,
// it sets m.methods[1] to nil and returns the name of an interface function that is missing.
// It is ok to call this multiple times on the same m, even concurrently.
func (m *itab) init() string {
	inter := m.inter
	typ := m._type()
	ni := len(inter.methods) + 1
	methods := (*[1 << 16]unsafe.Pointer)(unsafe.Pointer(&m.methods[0]))[:ni:ni]
	var m1 unsafe.Pointer

	ri := 0
	for li := range inter.methods {
		lhsMethod := &inter.methods[li]
		var rhsMethod *method

		for {
			if ri >= len(typ.methods) {
				m.methods[1] = nil
				return *lhsMethod.name
			}

			rhsMethod = &typ.methods[ri]
			if (lhsMethod.name == rhsMethod.name || *lhsMethod.name == *rhsMethod.name) &&
				(lhsMethod.pkgPath == rhsMethod.pkgPath || *lhsMethod.pkgPath == *rhsMethod.pkgPath) {
				break
			}

			ri++
		}

		if !eqtype(lhsMethod.typ, rhsMethod.mtyp) {
			m.methods[1] = nil
			return *lhsMethod.name
		}

		if li == 0 {
			m1 = rhsMethod.tfn // we'll set m.methods[1] at the end
		} else {
			methods[li+1] = rhsMethod.tfn
		}
		ri++
	}
	m.methods[1] = m1
	return ""
}

func iterate_itabs(fn func(*itab)) {
	// Note: only runs during stop the world or with itabLock held,
	// so no other locks/atomics needed.
	t := itabTable
	for i := uintptr(0); i < t.size; i++ {
		m := *(**itab)(add(unsafe.Pointer(&t.entries), i*goarch.PtrSize))
		if m != nil {
			fn(m)
		}
	}
}

// Return the interface method table for a value of type rhs converted
// to an interface of type lhs.
func getitab(lhs, rhs *_type, canfail bool) unsafe.Pointer {
	if rhs == nil {
		return nil
	}

	if lhs.kind&kindMask != kindInterface {
		throw("getitab called for non-interface type")
	}

	lhsi := (*interfacetype)(unsafe.Pointer(lhs))

	if len(lhsi.methods) == 0 {
		throw("getitab called for empty interface type")
	}

	if rhs.uncommontype == nil || len(rhs.methods) == 0 {
		if canfail {
			return nil
		}
		panic(&TypeAssertionError{nil, rhs, lhs, *lhsi.methods[0].name})
	}

	var m *itab

	// First, look in the existing table to see if we can find the itab we need.
	// This is by far the most common case, so do it without locks.
	// Use atomic to ensure we see any previous writes done by the thread
	// that updates the itabTable field (with atomic.Storep in itabAdd).
	t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable)))
	if m = t.find(lhsi, rhs); m != nil {
		goto finish
	}

	// Not found.  Grab the lock and try again.
	lockInit(&itabLock, lockRankItab)
	lock(&itabLock)
	if m = itabTable.find(lhsi, rhs); m != nil {
		unlock(&itabLock)
		goto finish
	}

	// Entry doesn't exist yet. Make a new entry & add it.
	m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(lhsi.methods)-1)*goarch.PtrSize, 0, &memstats.other_sys))
	m.inter = lhsi
	m.methods[0] = unsafe.Pointer(rhs)
	m.init()
	itabAdd(m)
	unlock(&itabLock)
finish:
	if m.methods[1] != nil {
		return unsafe.Pointer(&m.methods[0])
	}
	if canfail {
		return nil
	}
	// this can only happen if the conversion
	// was already done once using the , ok form
	// and we have a cached negative result.
	// The cached result doesn't record which
	// interface function was missing, so initialize
	// the itab again to get the missing function name.
	panic(&TypeAssertionError{nil, rhs, lhs, m.init()})
}

// Return the interface method table for a value of type rhs converted
// to an interface of type lhs.  Panics if the conversion is impossible.
func requireitab(lhs, rhs *_type) unsafe.Pointer {
	return getitab(lhs, rhs, false)
}

// Return the interface method table for a value of type rhs converted
// to an interface of type lhs.  Panics if the conversion is
// impossible or if the rhs type is nil.
func assertitab(lhs, rhs *_type) unsafe.Pointer {
	if rhs == nil {
		panic(&TypeAssertionError{nil, nil, lhs, ""})
	}

	if lhs.kind&kindMask != kindInterface {
		throw("assertitab called for non-interface type")
	}

	lhsi := (*interfacetype)(unsafe.Pointer(lhs))

	if len(lhsi.methods) == 0 {
		return unsafe.Pointer(rhs)
	}

	return getitab(lhs, rhs, false)
}

// panicdottype is called when doing an i.(T) conversion and the conversion fails.
func panicdottype(lhs, rhs, inter *_type) {
	panic(&TypeAssertionError{inter, rhs, lhs, ""})
}

// Convert an empty interface to an empty interface, for a comma-ok
// type assertion.
func ifaceE2E2(e eface) (eface, bool) {
	return e, e._type != nil
}

// Convert a non-empty interface to an empty interface, for a comma-ok
// type assertion.
func ifaceI2E2(i iface) (eface, bool) {
	if i.tab == nil {
		return eface{nil, nil}, false
	} else {
		return eface{*(**_type)(i.tab), i.data}, true
	}
}

// Convert an empty interface to a non-empty interface, for a comma-ok
// type assertion.
func ifaceE2I2(inter *_type, e eface) (iface, bool) {
	if e._type == nil {
		return iface{nil, nil}, false
	} else {
		itab := getitab(inter, e._type, true)
		if itab == nil {
			return iface{nil, nil}, false
		} else {
			return iface{itab, e.data}, true
		}
	}
}

// Convert a non-empty interface to a non-empty interface, for a
// comma-ok type assertion.
func ifaceI2I2(inter *_type, i iface) (iface, bool) {
	if i.tab == nil {
		return iface{nil, nil}, false
	} else {
		itab := getitab(inter, *(**_type)(i.tab), true)
		if itab == nil {
			return iface{nil, nil}, false
		} else {
			return iface{itab, i.data}, true
		}
	}
}

// Convert an empty interface to a pointer non-interface type.
func ifaceE2T2P(t *_type, e eface) (unsafe.Pointer, bool) {
	if !eqtype(t, e._type) {
		return nil, false
	} else {
		return e.data, true
	}
}

// Convert a non-empty interface to a pointer non-interface type.
func ifaceI2T2P(t *_type, i iface) (unsafe.Pointer, bool) {
	if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) {
		return nil, false
	} else {
		return i.data, true
	}
}

// Convert an empty interface to a non-pointer non-interface type.
func ifaceE2T2(t *_type, e eface, ret unsafe.Pointer) bool {
	if !eqtype(t, e._type) {
		typedmemclr(t, ret)
		return false
	} else {
		if isDirectIface(t) {
			*(*unsafe.Pointer)(ret) = e.data
		} else {
			typedmemmove(t, ret, e.data)
		}
		return true
	}
}

// Convert a non-empty interface to a non-pointer non-interface type.
func ifaceI2T2(t *_type, i iface, ret unsafe.Pointer) bool {
	if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) {
		typedmemclr(t, ret)
		return false
	} else {
		if isDirectIface(t) {
			*(*unsafe.Pointer)(ret) = i.data
		} else {
			typedmemmove(t, ret, i.data)
		}
		return true
	}
}

// Return whether we can convert a type to an interface type.
func ifaceT2Ip(to, from *_type) bool {
	if from == nil {
		return false
	}

	if to.kind&kindMask != kindInterface {
		throw("ifaceT2Ip called with non-interface type")
	}
	toi := (*interfacetype)(unsafe.Pointer(to))

	if from.uncommontype == nil || len(from.methods) == 0 {
		return len(toi.methods) == 0
	}

	ri := 0
	for li := range toi.methods {
		toMethod := &toi.methods[li]
		var fromMethod *method
		for {
			if ri >= len(from.methods) {
				return false
			}

			fromMethod = &from.methods[ri]
			if (toMethod.name == fromMethod.name || *toMethod.name == *fromMethod.name) &&
				(toMethod.pkgPath == fromMethod.pkgPath || *toMethod.pkgPath == *fromMethod.pkgPath) {
				break
			}

			ri++
		}

		if !eqtype(fromMethod.mtyp, toMethod.typ) {
			return false
		}

		ri++
	}

	return true
}

//go:linkname reflect_ifaceE2I reflect.ifaceE2I
func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
	t := e._type
	if t == nil {
		panic(TypeAssertionError{nil, nil, &inter.typ, ""})
	}
	dst.tab = requireitab((*_type)(unsafe.Pointer(inter)), t)
	dst.data = e.data
}

//go:linkname reflectlite_ifaceE2I internal_1reflectlite.ifaceE2I
func reflectlite_ifaceE2I(inter *interfacetype, e eface, dst *iface) {
	t := e._type
	if t == nil {
		panic(TypeAssertionError{nil, nil, &inter.typ, ""})
	}
	dst.tab = requireitab((*_type)(unsafe.Pointer(inter)), t)
	dst.data = e.data
}

// staticuint64s is used to avoid allocating in convTx for small integer values.
var staticuint64s = [...]uint64{
	0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
	0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
	0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
	0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
	0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
	0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
	0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
	0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
	0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
	0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
	0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
	0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
	0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
	0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
	0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
	0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
	0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
	0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
	0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
	0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
	0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
	0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
	0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
	0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
	0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
	0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
	0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
	0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
	0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
	0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
	0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff,
}