aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/runtime/ffi.go
blob: 86ce5b85d046aee89c9de2c4f72fa3309f82252b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Only build this file if libffi is supported.

//go:build libffi
// +build libffi

package runtime

import "unsafe"

// This file contains the code that converts a Go type to an FFI type.
// This has to be written in Go because it allocates memory in the Go heap.

// C functions to return pointers to libffi variables.

func ffi_type_pointer() *__ffi_type
func ffi_type_sint8() *__ffi_type
func ffi_type_sint16() *__ffi_type
func ffi_type_sint32() *__ffi_type
func ffi_type_sint64() *__ffi_type
func ffi_type_uint8() *__ffi_type
func ffi_type_uint16() *__ffi_type
func ffi_type_uint32() *__ffi_type
func ffi_type_uint64() *__ffi_type
func ffi_type_float() *__ffi_type
func ffi_type_double() *__ffi_type
func ffi_supports_complex() bool
func ffi_type_complex_float() *__ffi_type
func ffi_type_complex_double() *__ffi_type
func ffi_type_void() *__ffi_type

// C functions defined in libffi.

//extern ffi_prep_cif
func ffi_prep_cif(*_ffi_cif, _ffi_abi, uint32, *__ffi_type, **__ffi_type) _ffi_status

// ffiFuncToCIF is called from C code.
//go:linkname ffiFuncToCIF

// ffiFuncToCIF builds an _ffi_cif struct for function described by ft.
func ffiFuncToCIF(ft *functype, isInterface bool, isMethod bool, cif *_ffi_cif) {
	nparams := len(ft.in)
	nargs := nparams
	if isInterface {
		nargs++
	}
	args := make([]*__ffi_type, nargs)
	i := 0
	off := 0
	if isInterface {
		args[0] = ffi_type_pointer()
		off = 1
	} else if isMethod {
		args[0] = ffi_type_pointer()
		i = 1
	}
	for ; i < nparams; i++ {
		args[i+off] = typeToFFI(ft.in[i])
	}

	rettype := funcReturnFFI(ft)

	var pargs **__ffi_type
	if len(args) > 0 {
		pargs = &args[0]
	}
	status := ffi_prep_cif(cif, _FFI_DEFAULT_ABI, uint32(nargs), rettype, pargs)
	if status != _FFI_OK {
		throw("ffi_prep_cif failed")
	}
}

// funcReturnFFI returns the FFI definition of the return type of ft.
func funcReturnFFI(ft *functype) *__ffi_type {
	c := len(ft.out)
	if c == 0 {
		return ffi_type_void()
	}

	// Compile a function that returns a zero-sized value as
	// though it returns void. This works around a problem in
	// libffi: it can't represent a zero-sized value.
	var size uintptr
	for _, v := range ft.out {
		size += v.size
	}
	if size == 0 {
		return ffi_type_void()
	}

	if c == 1 {
		return typeToFFI(ft.out[0])
	}

	elements := make([]*__ffi_type, c+1)
	for i, v := range ft.out {
		elements[i] = typeToFFI(v)
	}
	elements[c] = nil

	return &__ffi_type{
		_type:    _FFI_TYPE_STRUCT,
		elements: &elements[0],
	}
}

// typeToFFI returns the __ffi_type for a Go type.
func typeToFFI(typ *_type) *__ffi_type {
	switch typ.kind & kindMask {
	case kindBool:
		switch unsafe.Sizeof(false) {
		case 1:
			return ffi_type_uint8()
		case 4:
			return ffi_type_uint32()
		default:
			throw("bad bool size")
			return nil
		}
	case kindInt:
		return intToFFI()
	case kindInt8:
		return ffi_type_sint8()
	case kindInt16:
		return ffi_type_sint16()
	case kindInt32:
		return ffi_type_sint32()
	case kindInt64:
		return ffi_type_sint64()
	case kindUint:
		switch unsafe.Sizeof(uint(0)) {
		case 4:
			return ffi_type_uint32()
		case 8:
			return ffi_type_uint64()
		default:
			throw("bad uint size")
			return nil
		}
	case kindUint8:
		return ffi_type_uint8()
	case kindUint16:
		return ffi_type_uint16()
	case kindUint32:
		return ffi_type_uint32()
	case kindUint64:
		return ffi_type_uint64()
	case kindUintptr:
		switch unsafe.Sizeof(uintptr(0)) {
		case 4:
			return ffi_type_uint32()
		case 8:
			return ffi_type_uint64()
		default:
			throw("bad uinptr size")
			return nil
		}
	case kindFloat32:
		return ffi_type_float()
	case kindFloat64:
		return ffi_type_double()
	case kindComplex64:
		if ffi_supports_complex() {
			return ffi_type_complex_float()
		} else {
			return complexToFFI(ffi_type_float())
		}
	case kindComplex128:
		if ffi_supports_complex() {
			return ffi_type_complex_double()
		} else {
			return complexToFFI(ffi_type_double())
		}
	case kindArray:
		return arrayToFFI((*arraytype)(unsafe.Pointer(typ)))
	case kindChan, kindFunc, kindMap, kindPtr, kindUnsafePointer:
		// These types are always simple pointers, and for FFI
		// purposes nothing else matters.
		return ffi_type_pointer()
	case kindInterface:
		return interfaceToFFI()
	case kindSlice:
		return sliceToFFI((*slicetype)(unsafe.Pointer(typ)))
	case kindString:
		return stringToFFI()
	case kindStruct:
		return structToFFI((*structtype)(unsafe.Pointer(typ)))
	default:
		throw("unknown type kind")
		return nil
	}
}

// interfaceToFFI returns an ffi_type for a Go interface type.
// This is used for both empty and non-empty interface types.
func interfaceToFFI() *__ffi_type {
	elements := make([]*__ffi_type, 3)
	elements[0] = ffi_type_pointer()
	elements[1] = elements[0]
	elements[2] = nil
	return &__ffi_type{
		_type:    _FFI_TYPE_STRUCT,
		elements: &elements[0],
	}
}

// stringToFFI returns an ffi_type for a Go string type.
func stringToFFI() *__ffi_type {
	elements := make([]*__ffi_type, 3)
	elements[0] = ffi_type_pointer()
	elements[1] = intToFFI()
	elements[2] = nil
	return &__ffi_type{
		_type:    _FFI_TYPE_STRUCT,
		elements: &elements[0],
	}
}

// structToFFI returns an ffi_type for a Go struct type.
func structToFFI(typ *structtype) *__ffi_type {
	c := len(typ.fields)
	if typ.typ.kind&kindDirectIface != 0 {
		return ffi_type_pointer()
	}

	fields := make([]*__ffi_type, 0, c+1)
	checkPad := false
	lastzero := false
	sawnonzero := false
	for i, v := range typ.fields {
		// Skip zero-sized fields; they confuse libffi,
		// and there is no value to pass in any case.
		// We do have to check whether the alignment of the
		// zero-sized field introduces any padding for the
		// next field.
		if v.typ.size == 0 {
			checkPad = true
			if v.name == nil || *v.name != "_" {
				lastzero = true
			}
			continue
		}
		lastzero = false
		sawnonzero = true

		if checkPad {
			off := uintptr(0)
			for j := i - 1; j >= 0; j-- {
				if typ.fields[j].typ.size > 0 {
					off = typ.fields[j].offset() + typ.fields[j].typ.size
					break
				}
			}
			off += uintptr(v.typ.align) - 1
			off &^= uintptr(v.typ.align) - 1
			if off != v.offset() {
				fields = append(fields, padFFI(v.offset()-off))
			}
			checkPad = false
		}

		fields = append(fields, typeToFFI(v.typ))
	}

	if !sawnonzero {
		return emptyStructToFFI()
	}

	if lastzero {
		// The compiler adds one byte padding to non-empty struct ending
		// with a zero-sized field (types.cc:get_backend_struct_fields).
		// Add this padding to the FFI type.
		fields = append(fields, ffi_type_uint8())
	}

	fields = append(fields, nil)

	return &__ffi_type{
		_type:    _FFI_TYPE_STRUCT,
		elements: &fields[0],
	}
}

// sliceToFFI returns an ffi_type for a Go slice type.
func sliceToFFI(typ *slicetype) *__ffi_type {
	elements := make([]*__ffi_type, 4)
	elements[0] = ffi_type_pointer()
	elements[1] = intToFFI()
	elements[2] = elements[1]
	elements[3] = nil
	return &__ffi_type{
		_type:    _FFI_TYPE_STRUCT,
		elements: &elements[0],
	}
}

// complexToFFI returns an ffi_type for a Go complex type.
// This is only used if libffi does not support complex types internally
// for this target.
func complexToFFI(ffiFloatType *__ffi_type) *__ffi_type {
	elements := make([]*__ffi_type, 3)
	elements[0] = ffiFloatType
	elements[1] = ffiFloatType
	elements[2] = nil
	return &__ffi_type{
		_type:    _FFI_TYPE_STRUCT,
		elements: &elements[0],
	}
}

// arrayToFFI returns an ffi_type for a Go array type.
func arrayToFFI(typ *arraytype) *__ffi_type {
	if typ.len == 0 {
		return emptyStructToFFI()
	}
	if typ.typ.kind&kindDirectIface != 0 {
		return ffi_type_pointer()
	}
	elements := make([]*__ffi_type, typ.len+1)
	et := typeToFFI(typ.elem)
	for i := uintptr(0); i < typ.len; i++ {
		elements[i] = et
	}
	elements[typ.len] = nil
	return &__ffi_type{
		_type:    _FFI_TYPE_STRUCT,
		elements: &elements[0],
	}
}

// intToFFI returns an ffi_type for the Go int type.
func intToFFI() *__ffi_type {
	switch unsafe.Sizeof(0) {
	case 4:
		return ffi_type_sint32()
	case 8:
		return ffi_type_sint64()
	default:
		throw("bad int size")
		return nil
	}
}

// emptyStructToFFI returns an ffi_type for an empty struct.
// The libffi library won't accept a struct with no fields.
func emptyStructToFFI() *__ffi_type {
	elements := make([]*__ffi_type, 2)
	elements[0] = ffi_type_void()
	elements[1] = nil
	return &__ffi_type{
		_type:    _FFI_TYPE_STRUCT,
		elements: &elements[0],
	}
}

// padFFI returns a padding field of the given size
func padFFI(size uintptr) *__ffi_type {
	elements := make([]*__ffi_type, size+1)
	for i := uintptr(0); i < size; i++ {
		elements[i] = ffi_type_uint8()
	}
	elements[size] = nil
	return &__ffi_type{
		_type:    _FFI_TYPE_STRUCT,
		elements: &elements[0],
	}
}

//go:linkname makeCIF reflect.makeCIF

// makeCIF is used by the reflect package to allocate a CIF.
func makeCIF(ft *functype) *_ffi_cif {
	cif := new(_ffi_cif)
	ffiFuncToCIF(ft, false, false, cif)
	return cif
}