aboutsummaryrefslogtreecommitdiff
path: root/libgo/go/math/rand/rand.go
blob: dd8d43cca1c18d81fd57419d802aa7e29c96d790 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// Package rand implements pseudo-random number generators.
//
// Random numbers are generated by a Source. Top-level functions, such as
// Float64 and Int, use a default shared Source that produces a deterministic
// sequence of values each time a program is run. Use the Seed function to
// initialize the default Source if different behavior is required for each run.
// The default Source is safe for concurrent use by multiple goroutines.
//
// For random numbers suitable for security-sensitive work, see the crypto/rand
// package.
package rand

import "sync"

// A Source represents a source of uniformly-distributed
// pseudo-random int64 values in the range [0, 1<<63).
type Source interface {
	Int63() int64
	Seed(seed int64)
}

// NewSource returns a new pseudo-random Source seeded with the given value.
func NewSource(seed int64) Source {
	var rng rngSource
	rng.Seed(seed)
	return &rng
}

// A Rand is a source of random numbers.
type Rand struct {
	src Source

	// readVal contains remainder of 63-bit integer used for bytes
	// generation during most recent Read call.
	// It is saved so next Read call can start where the previous
	// one finished.
	readVal int64
	// readPos indicates the number of low-order bytes of readVal
	// that are still valid.
	readPos int8
}

// New returns a new Rand that uses random values from src
// to generate other random values.
func New(src Source) *Rand { return &Rand{src: src} }

// Seed uses the provided seed value to initialize the generator to a deterministic state.
// Seed should not be called concurrently with any other Rand method.
func (r *Rand) Seed(seed int64) {
	if lk, ok := r.src.(*lockedSource); ok {
		lk.seedPos(seed, &r.readPos)
		return
	}

	r.src.Seed(seed)
	r.readPos = 0
}

// Int63 returns a non-negative pseudo-random 63-bit integer as an int64.
func (r *Rand) Int63() int64 { return r.src.Int63() }

// Uint32 returns a pseudo-random 32-bit value as a uint32.
func (r *Rand) Uint32() uint32 { return uint32(r.Int63() >> 31) }

// Int31 returns a non-negative pseudo-random 31-bit integer as an int32.
func (r *Rand) Int31() int32 { return int32(r.Int63() >> 32) }

// Int returns a non-negative pseudo-random int.
func (r *Rand) Int() int {
	u := uint(r.Int63())
	return int(u << 1 >> 1) // clear sign bit if int == int32
}

// Int63n returns, as an int64, a non-negative pseudo-random number in [0,n).
// It panics if n <= 0.
func (r *Rand) Int63n(n int64) int64 {
	if n <= 0 {
		panic("invalid argument to Int63n")
	}
	if n&(n-1) == 0 { // n is power of two, can mask
		return r.Int63() & (n - 1)
	}
	max := int64((1 << 63) - 1 - (1<<63)%uint64(n))
	v := r.Int63()
	for v > max {
		v = r.Int63()
	}
	return v % n
}

// Int31n returns, as an int32, a non-negative pseudo-random number in [0,n).
// It panics if n <= 0.
func (r *Rand) Int31n(n int32) int32 {
	if n <= 0 {
		panic("invalid argument to Int31n")
	}
	if n&(n-1) == 0 { // n is power of two, can mask
		return r.Int31() & (n - 1)
	}
	max := int32((1 << 31) - 1 - (1<<31)%uint32(n))
	v := r.Int31()
	for v > max {
		v = r.Int31()
	}
	return v % n
}

// Intn returns, as an int, a non-negative pseudo-random number in [0,n).
// It panics if n <= 0.
func (r *Rand) Intn(n int) int {
	if n <= 0 {
		panic("invalid argument to Intn")
	}
	if n <= 1<<31-1 {
		return int(r.Int31n(int32(n)))
	}
	return int(r.Int63n(int64(n)))
}

// Float64 returns, as a float64, a pseudo-random number in [0.0,1.0).
func (r *Rand) Float64() float64 {
	// A clearer, simpler implementation would be:
	//	return float64(r.Int63n(1<<53)) / (1<<53)
	// However, Go 1 shipped with
	//	return float64(r.Int63()) / (1 << 63)
	// and we want to preserve that value stream.
	//
	// There is one bug in the value stream: r.Int63() may be so close
	// to 1<<63 that the division rounds up to 1.0, and we've guaranteed
	// that the result is always less than 1.0.
	//
	// We tried to fix this by mapping 1.0 back to 0.0, but since float64
	// values near 0 are much denser than near 1, mapping 1 to 0 caused
	// a theoretically significant overshoot in the probability of returning 0.
	// Instead of that, if we round up to 1, just try again.
	// Getting 1 only happens 1/2⁵³ of the time, so most clients
	// will not observe it anyway.
again:
	f := float64(r.Int63()) / (1 << 63)
	if f == 1 {
		goto again // resample; this branch is taken O(never)
	}
	return f
}

// Float32 returns, as a float32, a pseudo-random number in [0.0,1.0).
func (r *Rand) Float32() float32 {
	// Same rationale as in Float64: we want to preserve the Go 1 value
	// stream except we want to fix it not to return 1.0
	// This only happens 1/2²⁴ of the time (plus the 1/2⁵³ of the time in Float64).
again:
	f := float32(r.Float64())
	if f == 1 {
		goto again // resample; this branch is taken O(very rarely)
	}
	return f
}

// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n).
func (r *Rand) Perm(n int) []int {
	m := make([]int, n)
	// In the following loop, the iteration when i=0 always swaps m[0] with m[0].
	// A change to remove this useless iteration is to assign 1 to i in the init
	// statement. But Perm also effects r. Making this change will affect
	// the final state of r. So this change can't be made for compatibility
	// reasons for Go 1.
	for i := 0; i < n; i++ {
		j := r.Intn(i + 1)
		m[i] = m[j]
		m[j] = i
	}
	return m
}

// Read generates len(p) random bytes and writes them into p. It
// always returns len(p) and a nil error.
// Read should not be called concurrently with any other Rand method.
func (r *Rand) Read(p []byte) (n int, err error) {
	if lk, ok := r.src.(*lockedSource); ok {
		return lk.read(p, &r.readVal, &r.readPos)
	}
	return read(p, r.Int63, &r.readVal, &r.readPos)
}

func read(p []byte, int63 func() int64, readVal *int64, readPos *int8) (n int, err error) {
	pos := *readPos
	val := *readVal
	for n = 0; n < len(p); n++ {
		if pos == 0 {
			val = int63()
			pos = 7
		}
		p[n] = byte(val)
		val >>= 8
		pos--
	}
	*readPos = pos
	*readVal = val
	return
}

/*
 * Top-level convenience functions
 */

var globalRand = New(&lockedSource{src: NewSource(1)})

// Seed uses the provided seed value to initialize the default Source to a
// deterministic state. If Seed is not called, the generator behaves as
// if seeded by Seed(1). Seed values that have the same remainder when
// divided by 2^31-1 generate the same pseudo-random sequence.
// Seed, unlike the Rand.Seed method, is safe for concurrent use.
func Seed(seed int64) { globalRand.Seed(seed) }

// Int63 returns a non-negative pseudo-random 63-bit integer as an int64
// from the default Source.
func Int63() int64 { return globalRand.Int63() }

// Uint32 returns a pseudo-random 32-bit value as a uint32
// from the default Source.
func Uint32() uint32 { return globalRand.Uint32() }

// Int31 returns a non-negative pseudo-random 31-bit integer as an int32
// from the default Source.
func Int31() int32 { return globalRand.Int31() }

// Int returns a non-negative pseudo-random int from the default Source.
func Int() int { return globalRand.Int() }

// Int63n returns, as an int64, a non-negative pseudo-random number in [0,n)
// from the default Source.
// It panics if n <= 0.
func Int63n(n int64) int64 { return globalRand.Int63n(n) }

// Int31n returns, as an int32, a non-negative pseudo-random number in [0,n)
// from the default Source.
// It panics if n <= 0.
func Int31n(n int32) int32 { return globalRand.Int31n(n) }

// Intn returns, as an int, a non-negative pseudo-random number in [0,n)
// from the default Source.
// It panics if n <= 0.
func Intn(n int) int { return globalRand.Intn(n) }

// Float64 returns, as a float64, a pseudo-random number in [0.0,1.0)
// from the default Source.
func Float64() float64 { return globalRand.Float64() }

// Float32 returns, as a float32, a pseudo-random number in [0.0,1.0)
// from the default Source.
func Float32() float32 { return globalRand.Float32() }

// Perm returns, as a slice of n ints, a pseudo-random permutation of the integers [0,n)
// from the default Source.
func Perm(n int) []int { return globalRand.Perm(n) }

// Read generates len(p) random bytes from the default Source and
// writes them into p. It always returns len(p) and a nil error.
// Read, unlike the Rand.Read method, is safe for concurrent use.
func Read(p []byte) (n int, err error) { return globalRand.Read(p) }

// NormFloat64 returns a normally distributed float64 in the range
// [-math.MaxFloat64, +math.MaxFloat64] with
// standard normal distribution (mean = 0, stddev = 1)
// from the default Source.
// To produce a different normal distribution, callers can
// adjust the output using:
//
//  sample = NormFloat64() * desiredStdDev + desiredMean
//
func NormFloat64() float64 { return globalRand.NormFloat64() }

// ExpFloat64 returns an exponentially distributed float64 in the range
// (0, +math.MaxFloat64] with an exponential distribution whose rate parameter
// (lambda) is 1 and whose mean is 1/lambda (1) from the default Source.
// To produce a distribution with a different rate parameter,
// callers can adjust the output using:
//
//  sample = ExpFloat64() / desiredRateParameter
//
func ExpFloat64() float64 { return globalRand.ExpFloat64() }

type lockedSource struct {
	lk  sync.Mutex
	src Source
}

func (r *lockedSource) Int63() (n int64) {
	r.lk.Lock()
	n = r.src.Int63()
	r.lk.Unlock()
	return
}

func (r *lockedSource) Seed(seed int64) {
	r.lk.Lock()
	r.src.Seed(seed)
	r.lk.Unlock()
}

// seedPos implements Seed for a lockedSource without a race condiiton.
func (r *lockedSource) seedPos(seed int64, readPos *int8) {
	r.lk.Lock()
	r.src.Seed(seed)
	*readPos = 0
	r.lk.Unlock()
}

// read implements Read for a lockedSource without a race condition.
func (r *lockedSource) read(p []byte, readVal *int64, readPos *int8) (n int, err error) {
	r.lk.Lock()
	n, err = read(p, r.src.Int63, readVal, readPos)
	r.lk.Unlock()
	return
}