1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package big
import (
"fmt"
"math"
"math/rand"
"runtime"
"testing"
)
// TestFloatSqrt64 tests that Float.Sqrt of numbers with 53bit mantissa
// behaves like float math.Sqrt.
func TestFloatSqrt64(t *testing.T) {
// This test fails for gccgo on 386 with a one ULP difference,
// presumably due to the use of extended precision floating
// point.
if runtime.Compiler == "gccgo" && runtime.GOARCH == "386" {
t.Skip("skipping on gccgo for 386; gets a one ULP difference")
}
for i := 0; i < 1e5; i++ {
if i == 1e2 && testing.Short() {
break
}
r := rand.Float64()
got := new(Float).SetPrec(53)
got.Sqrt(NewFloat(r))
want := NewFloat(math.Sqrt(r))
if got.Cmp(want) != 0 {
t.Fatalf("Sqrt(%g) =\n got %g;\nwant %g", r, got, want)
}
}
}
func TestFloatSqrt(t *testing.T) {
for _, test := range []struct {
x string
want string
}{
// Test values were generated on Wolfram Alpha using query
// 'sqrt(N) to 350 digits'
// 350 decimal digits give up to 1000 binary digits.
{"0.03125", "0.17677669529663688110021109052621225982120898442211850914708496724884155980776337985629844179095519659187673077886403712811560450698134215158051518713749197892665283324093819909447499381264409775757143376369499645074628431682460775184106467733011114982619404115381053858929018135497032545349940642599871090667456829147610370507757690729404938184321879"},
{"0.125", "0.35355339059327376220042218105242451964241796884423701829416993449768311961552675971259688358191039318375346155772807425623120901396268430316103037427498395785330566648187639818894998762528819551514286752738999290149256863364921550368212935466022229965238808230762107717858036270994065090699881285199742181334913658295220741015515381458809876368643757"},
{"0.5", "0.70710678118654752440084436210484903928483593768847403658833986899536623923105351942519376716382078636750692311545614851246241802792536860632206074854996791570661133296375279637789997525057639103028573505477998580298513726729843100736425870932044459930477616461524215435716072541988130181399762570399484362669827316590441482031030762917619752737287514"},
{"2.0", "1.4142135623730950488016887242096980785696718753769480731766797379907324784621070388503875343276415727350138462309122970249248360558507372126441214970999358314132226659275055927557999505011527820605714701095599716059702745345968620147285174186408891986095523292304843087143214508397626036279952514079896872533965463318088296406206152583523950547457503"},
{"3.0", "1.7320508075688772935274463415058723669428052538103806280558069794519330169088000370811461867572485756756261414154067030299699450949989524788116555120943736485280932319023055820679748201010846749232650153123432669033228866506722546689218379712270471316603678615880190499865373798593894676503475065760507566183481296061009476021871903250831458295239598"},
{"4.0", "2.0"},
{"1p512", "1p256"},
{"4p1024", "2p512"},
{"9p2048", "3p1024"},
{"1p-1024", "1p-512"},
{"4p-2048", "2p-1024"},
{"9p-4096", "3p-2048"},
} {
for _, prec := range []uint{24, 53, 64, 65, 100, 128, 129, 200, 256, 400, 600, 800, 1000} {
x := new(Float).SetPrec(prec)
x.Parse(test.x, 10)
got := new(Float).SetPrec(prec).Sqrt(x)
want := new(Float).SetPrec(prec)
want.Parse(test.want, 10)
if got.Cmp(want) != 0 {
t.Errorf("prec = %d, Sqrt(%v) =\ngot %g;\nwant %g",
prec, test.x, got, want)
}
// Square test.
// If got holds the square root of x to precision p, then
// got = √x + k
// for some k such that |k| < 2**(-p). Thus,
// got² = (√x + k)² = x + 2k√n + k²
// and the error must satisfy
// err = |got² - x| ≈ | 2k√n | < 2**(-p+1)*√n
// Ignoring the k² term for simplicity.
// err = |got² - x|
// (but do intermediate steps with 32 guard digits to
// avoid introducing spurious rounding-related errors)
sq := new(Float).SetPrec(prec+32).Mul(got, got)
diff := new(Float).Sub(sq, x)
err := diff.Abs(diff).SetPrec(prec)
// maxErr = 2**(-p+1)*√x
one := new(Float).SetPrec(prec).SetInt64(1)
maxErr := new(Float).Mul(new(Float).SetMantExp(one, -int(prec)+1), got)
if err.Cmp(maxErr) >= 0 {
t.Errorf("prec = %d, Sqrt(%v) =\ngot err %g;\nwant maxErr %g",
prec, test.x, err, maxErr)
}
}
}
}
func TestFloatSqrtSpecial(t *testing.T) {
for _, test := range []struct {
x *Float
want *Float
}{
{NewFloat(+0), NewFloat(+0)},
{NewFloat(-0), NewFloat(-0)},
{NewFloat(math.Inf(+1)), NewFloat(math.Inf(+1))},
} {
got := new(Float).Sqrt(test.x)
if got.neg != test.want.neg || got.form != test.want.form {
t.Errorf("Sqrt(%v) = %v (neg: %v); want %v (neg: %v)",
test.x, got, got.neg, test.want, test.want.neg)
}
}
}
// Benchmarks
func BenchmarkFloatSqrt(b *testing.B) {
for _, prec := range []uint{64, 128, 256, 1e3, 1e4, 1e5, 1e6} {
x := NewFloat(2)
z := new(Float).SetPrec(prec)
b.Run(fmt.Sprintf("%v", prec), func(b *testing.B) {
b.ReportAllocs()
for n := 0; n < b.N; n++ {
z.Sqrt(x)
}
})
}
}
|