1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
|
/* Class helper function for repacking arrays.
Copyright (C) 2003-2025 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <string.h>
extern void
internal_unpack_class (gfc_class_array_t *, gfc_class_array_t *, const size_t,
const int);
export_proto (internal_unpack_class);
void
internal_unpack_class (gfc_class_array_t *dest_class,
gfc_class_array_t *source_class, const size_t size_class,
const int attr)
{
#define BIT_TEST(mask, bit) (((mask) & (1U << (bit))) == (1U << (bit)))
index_type count[GFC_MAX_DIMENSIONS];
index_type extent[GFC_MAX_DIMENSIONS];
index_type stride[GFC_MAX_DIMENSIONS];
index_type stride0;
index_type dim;
index_type dsize;
void *dest;
const void *src;
index_type size;
const gfc_array_void *src_arr;
gfc_array_void *dest_arr;
bool len_present = BIT_TEST (attr, 0);
gfc_vtype_generic_t *vtab;
void (*copyfn) (const void *, void *);
/* This check may be redundant, but do it anyway. */
if (!source_class || !dest_class || !source_class->_data.base_addr
|| !dest_class->_data.base_addr)
return;
dest_arr = (gfc_array_void *) &(dest_class->_data);
dest = dest_arr->base_addr;
size = GFC_DESCRIPTOR_SIZE (dest_arr);
dim = GFC_DESCRIPTOR_RANK (dest_arr);
dsize = 1;
for (index_type n = 0; n < dim; n++)
{
count[n] = 0;
stride[n] = GFC_DESCRIPTOR_STRIDE (dest_arr, n);
extent[n] = GFC_DESCRIPTOR_EXTENT (dest_arr, n);
if (extent[n] <= 0)
return;
if (dsize == stride[n])
dsize *= extent[n];
else
dsize = 0;
}
src_arr = (gfc_array_void *) &source_class->_data;
src = src_arr->base_addr;
vtab = *(gfc_vtype_generic_t **) (((void *) source_class) + size_class
- (len_present ? sizeof (size_t) : 0)
- sizeof (void *)); /* _vptr */
copyfn = vtab->_copy;
if (dsize != 0)
{
for (index_type n = 0; n < dsize; ++n)
{
copyfn (src, dest);
src += size;
dest += size;
}
free (src_arr->base_addr);
return;
}
stride0 = stride[0] * size;
while (dest)
{
/* Copy the data. */
copyfn (src, dest);
/* Advance to the next element. */
src += size;
dest += stride0;
count[0]++;
/* Advance to the next source element. */
index_type n = 0;
while (count[n] == extent[n])
{
/* When we get to the end of a dimension, reset it and increment
the next dimension. */
count[n] = 0;
/* We could precalculate these products, but this is a less
frequently used path so probably not worth it. */
dest -= stride[n] * extent[n] * size;
n++;
if (n == dim)
{
dest = NULL;
break;
}
else
{
count[n]++;
dest += stride[n] * size;
}
}
}
free (src_arr->base_addr);
}
|