aboutsummaryrefslogtreecommitdiff
path: root/libgfortran/io/write.c
blob: 1babd20463f07f70eaa58fc89504b44bb3bc4fc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
/* Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
   Contributed by Andy Vaught

This file is part of the GNU Fortran 95 runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

In addition to the permissions in the GNU General Public License, the
Free Software Foundation gives you unlimited permission to link the
compiled version of this file into combinations with other programs,
and to distribute those combinations without any restriction coming
from the use of this file.  (The General Public License restrictions
do apply in other respects; for example, they cover modification of
the file, and distribution when not linked into a combine
executable.)

Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Libgfortran; see the file COPYING.  If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#include "config.h"
#include <string.h>
#include <float.h>
#include <stdio.h>
#include <stdlib.h>
#include "libgfortran.h"
#include "io.h"


#define star_fill(p, n) memset(p, '*', n)


typedef enum
{ SIGN_NONE, SIGN_MINUS, SIGN_PLUS }
sign_t;


void
write_a (fnode * f, const char *source, int len)
{
  int wlen;
  char *p;

  wlen = f->u.string.length < 0 ? len : f->u.string.length;

  p = write_block (wlen);
  if (p == NULL)
    return;

  if (wlen < len)
    memcpy (p, source, wlen);
  else
    {
      memset (p, ' ', wlen - len);
      memcpy (p + wlen - len, source, len);
    }
}

static int64_t
extract_int (const void *p, int len)
{
  int64_t i = 0;

  if (p == NULL)
    return i;

  switch (len)
    {
    case 1:
      i = *((const int8_t *) p);
      break;
    case 2:
      i = *((const int16_t *) p);
      break;
    case 4:
      i = *((const int32_t *) p);
      break;
    case 8:
      i = *((const int64_t *) p);
      break;
    default:
      internal_error ("bad integer kind");
    }

  return i;
}

static double
extract_real (const void *p, int len)
{
  double i = 0.0;
  switch (len)
    {
    case 4:
      i = *((const float *) p);
      break;
    case 8:
      i = *((const double *) p);
      break;
    default:
      internal_error ("bad real kind");
    }
  return i;

}


/* Given a flag that indicate if a value is negative or not, return a
   sign_t that gives the sign that we need to produce.  */

static sign_t
calculate_sign (int negative_flag)
{
  sign_t s = SIGN_NONE;

  if (negative_flag)
    s = SIGN_MINUS;
  else
    switch (g.sign_status)
      {
      case SIGN_SP:
	s = SIGN_PLUS;
	break;
      case SIGN_SS:
	s = SIGN_NONE;
	break;
      case SIGN_S:
	s = options.optional_plus ? SIGN_PLUS : SIGN_NONE;
	break;
      }

  return s;
}


/* Returns the value of 10**d.  */

static double
calculate_exp (int d)
{
  int i;
  double r = 1.0;

  for (i = 0; i< (d >= 0 ? d : -d); i++)
    r *= 10;

  r = (d >= 0) ? r : 1.0 / r;

  return r;
}


/* Generate corresponding I/O format for FMT_G output.
   The rules to translate FMT_G to FMT_E or FMT_F from DEC fortran
   LRM (table 11-2, Chapter 11, "I/O Formatting", P11-25) is:

   Data Magnitude                              Equivalent Conversion
   0< m < 0.1-0.5*10**(-d-1)                   Ew.d[Ee]
   m = 0                                       F(w-n).(d-1), n' '
   0.1-0.5*10**(-d-1)<= m < 1-0.5*10**(-d)     F(w-n).d, n' '
   1-0.5*10**(-d)<= m < 10-0.5*10**(-d+1)      F(w-n).(d-1), n' '
   10-0.5*10**(-d+1)<= m < 100-0.5*10**(-d+2)  F(w-n).(d-2), n' '
   ................                           ..........
   10**(d-1)-0.5*10**(-1)<= m <10**d-0.5       F(w-n).0,n(' ')
   m >= 10**d-0.5                              Ew.d[Ee]

   notes: for Gw.d ,  n' ' means 4 blanks
          for Gw.dEe, n' ' means e+2 blanks  */

static fnode *
calculate_G_format (fnode *f, double value, int len, int *num_blank)
{
  int e = f->u.real.e;
  int d = f->u.real.d;
  int w = f->u.real.w;
  fnode *newf;
  double m, exp_d;
  int low, high, mid;
  int ubound, lbound;

  newf = get_mem (sizeof (fnode));

  /* Absolute value.  */
  m = (value > 0.0) ? value : -value;

  /* In case of the two data magnitude ranges,
     generate E editing, Ew.d[Ee].  */
  exp_d = calculate_exp (d);
  if ((m > 0.0 && m < 0.1 - 0.05 / (double) exp_d)
      || (m >= (double) exp_d - 0.5 ))
    {
      newf->format = FMT_E;
      newf->u.real.w = w;
      newf->u.real.d = d;
      newf->u.real.e = e;
      *num_blank = 0;
      return newf;
    }

  /* Use binary search to find the data magnitude range.  */
  mid = 0;
  low = 0;
  high = d + 1;
  lbound = 0;
  ubound = d + 1;

  while (low <= high)
    {
      double temp;
      mid = (low + high) / 2;

      /* 0.1 * 10**mid - 0.5 * 10**(mid-d-1)  */
      temp = 0.1 * calculate_exp (mid) - 0.5 * calculate_exp (mid - d - 1);

      if (m < temp)
        {
          ubound = mid;
          if (ubound == lbound + 1)
            break;
          high = mid - 1;
        }
      else if (m > temp)
        {
          lbound = mid;
          if (ubound == lbound + 1)
            {
              mid ++;
              break;
            }
          low = mid + 1;
        }
      else
        break;
    }

  /* Pad with blanks where the exponent would be.  */
  if (e < 0)
    *num_blank = 4;
  else
    *num_blank = e + 2;

  /* Generate the F editing. F(w-n).(-(mid-d-1)), n' '.  */
  newf->format = FMT_F;
  newf->u.real.w = f->u.real.w - *num_blank;

  /* Special case.  */
  if (m == 0.0)
    newf->u.real.d = d - 1;
  else
    newf->u.real.d = - (mid - d - 1);

  /* For F editing, the scale factor is ignored.  */
  g.scale_factor = 0;
  return newf;
}


/* Output a real number according to its format which is FMT_G free.  */

static void
output_float (fnode *f, double value, int len)
{
  /* This must be large enough to accurately hold any value.  */ 
  char buffer[32];
  char *out;
  char *digits;
  int e;
  char expchar;
  format_token ft;
  int w;
  int d;
  int edigits;
  int ndigits;
  /* Number of digits before the decimal point.  */
  int nbefore;
  /* Number of zeros after the decimal point.  */
  int nzero;
  /* Number of digits after the decimal point.  */
  int nafter;
  int leadzero;
  int nblanks;
  int i;
  sign_t sign;

  ft = f->format;
  w = f->u.real.w;
  d = f->u.real.d;

  /* We should always know the field width and precision.  */
  if (d < 0)
    internal_error ("Unspecified precision");

  /* Use sprintf to print the number in the format +D.DDDDe+ddd
     For an N digit exponent, this gives us (32-6)-N digits after the
     decimal point, plus another one before the decimal point.  */
  sign = calculate_sign (value < 0.0);
  if (value < 0)
    value = -value;

  /* Printf always prints at least two exponent digits.  */
  if (value == 0)
    edigits = 2;
  else
    {
      edigits = 1 + (int) log10 (fabs(log10 (value)));
      if (edigits < 2)
	edigits = 2;
    }
  
  if (ft == FMT_F || ft == FMT_EN
      || ((ft == FMT_D || ft == FMT_E) && g.scale_factor != 0))
    {
      /* Always convert at full precision to avoid double rounding.  */
      ndigits = 27 - edigits;
    }
  else
    {
      /* We know the number of digits, so can let printf do the rounding
	 for us.  */
      if (ft == FMT_ES)
	ndigits = d + 1;
      else
	ndigits = d;
      if (ndigits > 27 - edigits)
	ndigits = 27 - edigits;
    }

  sprintf (buffer, "%+-#31.*e", ndigits - 1, value);
  
  /* Check the resulting string has punctuation in the correct places.  */
  if (buffer[2] != '.' || buffer[ndigits + 2] != 'e')
      internal_error ("printf is broken");

  /* Read the exponent back in.  */
  e = atoi (&buffer[ndigits + 3]) + 1;

  /* Make sure zero comes out as 0.0e0.  */
  if (value == 0.0)
    e = 0;

  /* Normalize the fractional component.  */
  buffer[2] = buffer[1];
  digits = &buffer[2];

  /* Figure out where to place the decimal point.  */
  switch (ft)
    {
    case FMT_F:
      nbefore = e + g.scale_factor;
      if (nbefore < 0)
	{
	  nzero = -nbefore;
	  if (nzero > d)
	    nzero = d;
	  nafter = d - nzero;
	  nbefore = 0;
	}
      else
	{
	  nzero = 0;
	  nafter = d;
	}
      expchar = 0;
      break;

    case FMT_E:
    case FMT_D:
      i = g.scale_factor;
      if (value != 0.0)
	e -= i;
      if (i < 0)
	{
	  nbefore = 0;
	  nzero = -i;
	  nafter = d + i;
	}
      else if (i > 0)
	{
	  nbefore = i;
	  nzero = 0;
	  nafter = (d - i) + 1;
	}
      else /* i == 0 */
	{
	  nbefore = 0;
	  nzero = 0;
	  nafter = d;
	}

      if (ft == FMT_E)
	expchar = 'E';
      else
	expchar = 'D';
      break;

    case FMT_EN:
      /* The exponent must be a multiple of three, with 1-3 digits before
	 the decimal point.  */
      e--;
      if (e >= 0)
	nbefore = e % 3;
      else
	{
	  nbefore = (-e) % 3;
	  if (nbefore != 0)
	    nbefore = 3 - nbefore;
	}
      e -= nbefore;
      nbefore++;
      nzero = 0;
      nafter = d;
      expchar = 'E';
      break;

    case FMT_ES:
      e--;
      nbefore = 1;
      nzero = 0;
      nafter = d;
      expchar = 'E';
      break;

    default:
      /* Should never happen.  */
      internal_error ("Unexpected format token");
    }

  /* Round the value.  */
  if (nbefore + nafter == 0)
    ndigits = 0;
  else if (nbefore + nafter < ndigits)
    {
      ndigits = nbefore + nafter;
      i = ndigits;
      if (digits[i] >= '5')
	{
	  /* Propagate the carry.  */
	  for (i--; i >= 0; i--)
	    {
	      if (digits[i] != '9')
		{
		  digits[i]++;
		  break;
		}
	      digits[i] = '0';
	    }

	  if (i < 0)
	    {
	      /* The carry overflowed.  Fortunately we have some spare space
		 at the start of the buffer.  We may discard some digits, but
		 this is ok because we already know they are zero.  */
	      digits--;
	      digits[0] = '1';
	      if (ft == FMT_F)
		{
		  if (nzero > 0)
		    {
		      nzero--;
		      nafter++;
		    }
		  else
		    nbefore++;
		}
	      else if (ft == FMT_EN)
		{
		  nbefore++;
		  if (nbefore == 4)
		    {
		      nbefore = 1;
		      e += 3;
		    }
		}
	      else
		e++;
	    }
	}
    }

  /* Calculate the format of the exponent field.  */
  if (expchar)
    {
      edigits = 1;
      for (i = abs (e); i >= 10; i /= 10)
	edigits++;
      
      if (f->u.real.e < 0)
	{
	  /* Width not specified.  Must be no more than 3 digits.  */
	  if (e > 999 || e < -999)
	    edigits = -1;
	  else
	    {
	      edigits = 4;
	      if (e > 99 || e < -99)
		expchar = ' ';
	    }
	}
      else
	{
	  /* Exponent width specified, check it is wide enough.  */
	  if (edigits > f->u.real.e)
	    edigits = -1;
	  else
	    edigits = f->u.real.e + 2;
	}
    }
  else
    edigits = 0;

  /* Pick a field size if none was specified.  */
  if (w <= 0)
    w = nbefore + nzero + nafter + 2;

  /* Create the ouput buffer.  */
  out = write_block (w);
  if (out == NULL)
    return;

  /* Zero values always output as positive, even if the value was negative
     before rounding.  */
  for (i = 0; i < ndigits; i++)
    {
      if (digits[i] != '0')
	break;
    }
  if (i == ndigits)
    sign = calculate_sign (0);

  /* Work out how much padding is needed.  */
  nblanks = w - (nbefore + nzero + nafter + edigits + 1);
  if (sign != SIGN_NONE)
    nblanks--;
  
  /* Check the value fits in the specified field width.  */
  if (nblanks < 0 || edigits == -1)
    {
      star_fill (out, w);
      return;
    }

  /* See if we have space for a zero before the decimal point.  */
  if (nbefore == 0 && nblanks > 0)
    {
      leadzero = 1;
      nblanks--;
    }
  else
    leadzero = 0;

  /* Padd to full field width.  */
  if (nblanks > 0)
    {
      memset (out, ' ', nblanks);
      out += nblanks;
    }

  /* Output the initial sign (if any).  */
  if (sign == SIGN_PLUS)
    *(out++) = '+';
  else if (sign == SIGN_MINUS)
    *(out++) = '-';

  /* Output an optional leading zero.  */
  if (leadzero)
    *(out++) = '0';

  /* Output the part before the decimal point, padding with zeros.  */
  if (nbefore > 0)
    {
      if (nbefore > ndigits)
	i = ndigits;
      else
	i = nbefore;

      memcpy (out, digits, i);
      while (i < nbefore)
	out[i++] = '0';

      digits += i;
      ndigits -= i;
      out += nbefore;
    }
  /* Output the decimal point.  */
  *(out++) = '.';

  /* Output leading zeros after the decimal point.  */
  if (nzero > 0)
    {
      for (i = 0; i < nzero; i++)
	*(out++) = '0';
    }

  /* Output digits after the decimal point, padding with zeros.  */
  if (nafter > 0)
    {
      if (nafter > ndigits)
	i = ndigits;
      else
	i = nafter;

      memcpy (out, digits, i);
      while (i < nafter)
	out[i++] = '0';

      digits += i;
      ndigits -= i;
      out += nafter;
    }
  
  /* Output the exponent.  */
  if (expchar)
    {
      if (expchar != ' ')
	{
	  *(out++) = expchar;
	  edigits--;
	}
#if HAVE_SNPRINTF
      snprintf (buffer, 32, "%+0*d", edigits, e);
#else
      sprintf (buffer, "%+0*d", edigits, e);
#endif
      memcpy (out, buffer, edigits);
    }
}


void
write_l (fnode * f, char *source, int len)
{
  char *p;
  int64_t n;

  p = write_block (f->u.w);
  if (p == NULL)
    return;

  memset (p, ' ', f->u.w - 1);
  n = extract_int (source, len);
  p[f->u.w - 1] = (n) ? 'T' : 'F';
}

/* Output a real number according to its format.  */

static void
write_float (fnode *f, const char *source, int len)
{
  double n;
  int nb =0, res;
  char * p, fin;
  fnode *f2 = NULL;

  n = extract_real (source, len);

  if (f->format != FMT_B && f->format != FMT_O && f->format != FMT_Z)
    {
      res = isfinite (n);
      if (res == 0)
	{
	  nb =  f->u.real.w;
	  p = write_block (nb);
	  if (nb < 3)
	    {
	      memset (p, '*',nb);
	      return;
	    }

	  memset(p, ' ', nb);
	  res = !isnan (n); 
	  if (res != 0)
	    {
	      if (signbit(n))   
		fin = '-';
	      else
		fin = '+';

	      if (nb > 7)
		memcpy(p + nb - 8, "Infinity", 8); 
	      else
		memcpy(p + nb - 3, "Inf", 3);
	      if (nb < 8 && nb > 3)
		p[nb - 4] = fin;
	      else if (nb > 8)
		p[nb - 9] = fin; 
	    }
	  else
	    memcpy(p + nb - 3, "NaN", 3);
	  return;
	}
    }

  if (f->format != FMT_G)
    {
      output_float (f, n, len);
    }
  else
    {
      f2 = calculate_G_format(f, n, len, &nb);
      output_float (f2, n, len);
      if (f2 != NULL)
        free_mem(f2);

      if (nb > 0)
        {
          p = write_block (nb);
          memset (p, ' ', nb);
        }
    }
}


static void
write_int (fnode *f, const char *source, int len, char *(*conv) (uint64_t))
{
  uint32_t ns =0;
  uint64_t n = 0;
  int w, m, digits, nzero, nblank;
  char *p, *q;

  w = f->u.integer.w;
  m = f->u.integer.m;

  n = extract_int (source, len);

  /* Special case:  */

  if (m == 0 && n == 0)
    {
      if (w == 0)
        w = 1;

      p = write_block (w);
      if (p == NULL)
        return;

      memset (p, ' ', w);
      goto done;
    }


  if (len < 8)
     {
       ns = n;
       q = conv (ns);
     }
  else
      q = conv (n);

  digits = strlen (q);

  /* Select a width if none was specified.  The idea here is to always
     print something.  */

  if (w == 0)
    w = ((digits < m) ? m : digits);

  p = write_block (w);
  if (p == NULL)
    return;

  nzero = 0;
  if (digits < m)
    nzero = m - digits;

  /* See if things will work.  */

  nblank = w - (nzero + digits);

  if (nblank < 0)
    {
      star_fill (p, w);
      goto done;
    }

  memset (p, ' ', nblank);
  p += nblank;

  memset (p, '0', nzero);
  p += nzero;

  memcpy (p, q, digits);

 done:
  return;
}

static void
write_decimal (fnode *f, const char *source, int len, char *(*conv) (int64_t))
{
  int64_t n = 0;
  int w, m, digits, nsign, nzero, nblank;
  char *p, *q;
  sign_t sign;

  w = f->u.integer.w;
  m = f->u.integer.m;

  n = extract_int (source, len);

  /* Special case:  */

  if (m == 0 && n == 0)
    {
      if (w == 0)
        w = 1;

      p = write_block (w);
      if (p == NULL)
        return;

      memset (p, ' ', w);
      goto done;
    }

  sign = calculate_sign (n < 0);
  if (n < 0)
    n = -n;

  nsign = sign == SIGN_NONE ? 0 : 1;
  q = conv (n);

  digits = strlen (q);

  /* Select a width if none was specified.  The idea here is to always
     print something.  */

  if (w == 0)
    w = ((digits < m) ? m : digits) + nsign;

  p = write_block (w);
  if (p == NULL)
    return;

  nzero = 0;
  if (digits < m)
    nzero = m - digits;

  /* See if things will work.  */

  nblank = w - (nsign + nzero + digits);

  if (nblank < 0)
    {
      star_fill (p, w);
      goto done;
    }

  memset (p, ' ', nblank);
  p += nblank;

  switch (sign)
    {
    case SIGN_PLUS:
      *p++ = '+';
      break;
    case SIGN_MINUS:
      *p++ = '-';
      break;
    case SIGN_NONE:
      break;
    }

  memset (p, '0', nzero);
  p += nzero;

  memcpy (p, q, digits);

 done:
  return;
}


/* Convert unsigned octal to ascii.  */

static char *
otoa (uint64_t n)
{
  char *p;

  if (n == 0)
    {
      scratch[0] = '0';
      scratch[1] = '\0';
      return scratch;
    }

  p = scratch + sizeof (SCRATCH_SIZE) - 1;
  *p-- = '\0';

  while (n != 0)
    {
      *p = '0' + (n & 7);
      p -- ;
      n >>= 3;
    }

  return ++p;
}


/* Convert unsigned binary to ascii.  */

static char *
btoa (uint64_t n)
{
  char *p;

  if (n == 0)
    {
      scratch[0] = '0';
      scratch[1] = '\0';
      return scratch;
    }

  p = scratch + sizeof (SCRATCH_SIZE) - 1;
  *p-- = '\0';

  while (n != 0)
    {
      *p-- = '0' + (n & 1);
      n >>= 1;
    }

  return ++p;
}


void
write_i (fnode * f, const char *p, int len)
{
  write_decimal (f, p, len, (void *) gfc_itoa);
}


void
write_b (fnode * f, const char *p, int len)
{
  write_int (f, p, len, btoa);
}


void
write_o (fnode * f, const char *p, int len)
{
  write_int (f, p, len, otoa);
}

void
write_z (fnode * f, const char *p, int len)
{
  write_int (f, p, len, xtoa);
}


void
write_d (fnode *f, const char *p, int len)
{
  write_float (f, p, len);
}


void
write_e (fnode *f, const char *p, int len)
{
  write_float (f, p, len);
}


void
write_f (fnode *f, const char *p, int len)
{
  write_float (f, p, len);
}


void
write_en (fnode *f, const char *p, int len)
{
  write_float (f, p, len);
}


void
write_es (fnode *f, const char *p, int len)
{
  write_float (f, p, len);
}


/* Take care of the X/TR descriptor.  */

void
write_x (fnode * f)
{
  char *p;

  p = write_block (f->u.n);
  if (p == NULL)
    return;

  memset (p, ' ', f->u.n);
}


/* List-directed writing.  */


/* Write a single character to the output.  Returns nonzero if
   something goes wrong.  */

static int
write_char (char c)
{
  char *p;

  p = write_block (1);
  if (p == NULL)
    return 1;

  *p = c;

  return 0;
}


/* Write a list-directed logical value.  */

static void
write_logical (const char *source, int length)
{
  write_char (extract_int (source, length) ? 'T' : 'F');
}


/* Write a list-directed integer value.  */

static void
write_integer (const char *source, int length)
{
  char *p;
  const char *q;
  int digits;
  int width;

  q = gfc_itoa (extract_int (source, length));

  switch (length)
    {
    case 1:
      width = 4;
      break;

    case 2:
      width = 6;
      break;

    case 4:
      width = 11;
      break;

    case 8:
      width = 20;
      break;

    default:
      width = 0;
      break;
    }

  digits = strlen (q);

  if(width < digits )
    width = digits ;
  p = write_block (width) ;

  memset(p ,' ', width - digits) ;
  memcpy (p + width - digits, q, digits);
}


/* Write a list-directed string.  We have to worry about delimiting
   the strings if the file has been opened in that mode.  */

static void
write_character (const char *source, int length)
{
  int i, extra;
  char *p, d;

  switch (current_unit->flags.delim)
    {
    case DELIM_APOSTROPHE:
      d = '\'';
      break;
    case DELIM_QUOTE:
      d = '"';
      break;
    default:
      d = ' ';
      break;
    }

  if (d == ' ')
    extra = 0;
  else
    {
      extra = 2;

      for (i = 0; i < length; i++)
	if (source[i] == d)
	  extra++;
    }

  p = write_block (length + extra);
  if (p == NULL)
    return;

  if (d == ' ')
    memcpy (p, source, length);
  else
    {
      *p++ = d;

      for (i = 0; i < length; i++)
	{
	  *p++ = source[i];
	  if (source[i] == d)
	    *p++ = d;
	}

      *p = d;
    }
}


/* Output a real number with default format.
   This is 1PG14.7E2 for REAL(4) and 1PG23.15E3 for REAL(8).  */

static void
write_real (const char *source, int length)
{
  fnode f ;
  int org_scale = g.scale_factor;
  f.format = FMT_G;
  g.scale_factor = 1;
  if (length < 8)
    {
      f.u.real.w = 14;
      f.u.real.d = 7;
      f.u.real.e = 2;
    }
  else
    {
      f.u.real.w = 23;
      f.u.real.d = 15;
      f.u.real.e = 3;
    }
  write_float (&f, source , length);
  g.scale_factor = org_scale;
}


static void
write_complex (const char *source, int len)
{
  if (write_char ('('))
    return;
  write_real (source, len);

  if (write_char (','))
    return;
  write_real (source + len, len);

  write_char (')');
}


/* Write the separator between items.  */

static void
write_separator (void)
{
  char *p;

  p = write_block (options.separator_len);
  if (p == NULL)
    return;

  memcpy (p, options.separator, options.separator_len);
}


/* Write an item with list formatting.
   TODO: handle skipping to the next record correctly, particularly
   with strings.  */

void
list_formatted_write (bt type, void *p, int len)
{
  static int char_flag;

  if (current_unit == NULL)
    return;

  if (g.first_item)
    {
      g.first_item = 0;
      char_flag = 0;
      write_char (' ');
    }
  else
    {
      if (type != BT_CHARACTER || !char_flag ||
	  current_unit->flags.delim != DELIM_NONE)
	write_separator ();
    }

  switch (type)
    {
    case BT_INTEGER:
      write_integer (p, len);
      break;
    case BT_LOGICAL:
      write_logical (p, len);
      break;
    case BT_CHARACTER:
      write_character (p, len);
      break;
    case BT_REAL:
      write_real (p, len);
      break;
    case BT_COMPLEX:
      write_complex (p, len);
      break;
    default:
      internal_error ("list_formatted_write(): Bad type");
    }

  char_flag = (type == BT_CHARACTER);
}

void
namelist_write (void)
{
  namelist_info * t1, *t2;
  int len,num;
  void * p;

  num = 0;
  write_character("&",1);
  write_character (ioparm.namelist_name, ioparm.namelist_name_len);
  write_character("\n",1);

  if (ionml != NULL)
    {
      t1 = ionml;
      while (t1 != NULL)
	{
          num ++;
          t2 = t1;
          t1 = t1->next;
          if (t2->var_name)
            {
              write_character(t2->var_name, strlen(t2->var_name));
              write_character("=",1);
            }
          len = t2->len;
          p = t2->mem_pos;
          switch (t2->type)
            {
            case BT_INTEGER:
              write_integer (p, len);
              break;
            case BT_LOGICAL:
              write_logical (p, len);
              break;
            case BT_CHARACTER:
              write_character (p, t2->string_length);
              break;
            case BT_REAL:
              write_real (p, len);
              break;
            case BT_COMPLEX:
              write_complex (p, len);
              break;
            default:
              internal_error ("Bad type for namelist write");
            }
	  write_character(",",1);
	  if (num > 5)
	    {
	      num = 0;
	      write_character("\n",1);
	    }
	}
    }
  write_character("/",1);
}