aboutsummaryrefslogtreecommitdiff
path: root/libgfortran/intrinsics/random.c
blob: ef09d857e812a0eb5f00a244afbae31496622678 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
/* Implementation of the RANDOM intrinsics
   Copyright 2002, 2004 Free Software Foundation, Inc.
   Contributed by Lars Segerlund <seger@linuxmail.org>
   and Steve Kargl.

This file is part of the GNU Fortran 95 runtime library (libgfortran).

Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

Ligbfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with libgfor; see the file COPYING.LIB.  If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

#if 0

/*  The Mersenne Twister code is currently commented out due to

    (1) Simple user specified seeds lead to really bad sequences for
        nearly 100000 random numbers.
    (2) open(), read(), and close() are not properly declared via header
        files.
    (3) The global index i is abused and causes unexpected behavior with
        GET and PUT.
    (4) See PR 15619.

  The algorithm was taken from the paper :

	Mersenne Twister:	623-dimensionally equidistributed
				uniform pseudorandom generator.

	by:	Makoto Matsumoto
		Takuji Nishimura

	Which appeared in the: ACM Transactions on Modelling and Computer
	Simulations: Special Issue on Uniform Random Number
	Generation. ( Early in 1998 ).  */


#include "config.h"
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif

#include "libgfortran.h"

/*Use the 'big' generator by default ( period -> 2**19937 ).  */

#define MT19937

/* Define the necessary constants for the algorithm.  */

#ifdef  MT19937
enum constants
{
  N = 624, M = 397, R = 19, TU = 11, TS = 7, TT = 15, TL = 17
};
#define M_A	0x9908B0DF
#define T_B	0x9D2C5680
#define T_C	0xEFC60000
#else
enum constants
{
  N = 351, M = 175, R = 19, TU = 11, TS = 7, TT = 15, TL = 17
};
#define M_A	0xE4BD75F5
#define T_B	0x655E5280
#define T_C	0xFFD58000
#endif

static int i = N;
static unsigned int seed[N];

/* This is the routine which handles the seeding of the generator,
   and also reading and writing of the seed.  */

void
random_seed (GFC_INTEGER_4 * size, const gfc_array_i4 * put,
	     const gfc_array_i4 * get)
{
  /* Initialize the seed in system dependent manner.  */
  if (get == NULL && put == NULL && size == NULL)
    {
      int fd;
      fd = open ("/dev/urandom", O_RDONLY);
      if (fd == 0)
	{
	  /* We dont have urandom.  */
	  GFC_UINTEGER_4 s = (GFC_UINTEGER_4) seed;
	  for (i = 0; i < N; i++)
	    {
	      s = s * 29943829 - 1;
	      seed[i] = s;
	    }
	}
      else
	{
	  /* Using urandom, might have a length issue.  */
	  read (fd, &seed[0], sizeof (GFC_UINTEGER_4) * N);
	  close (fd);
	}
      return;
    }

  /* Return the size of the seed */
  if (size != NULL)
    {
      *size = N;
      return;
    }

  /* if we have gotten to this pount we have a get or put
   * now we check it the array fulfills the demands in the standard .
   */

  /* Set the seed to PUT data */
  if (put != NULL)
    {
      /* if the rank of the array is not 1 abort */
      if (GFC_DESCRIPTOR_RANK (put) != 1)
	abort ();

      /* if the array is too small abort */
      if (((put->dim[0].ubound + 1 - put->dim[0].lbound)) < N)
	abort ();

      /* If this is the case the array is a temporary */
      if (put->dim[0].stride == 0)
	return;

      /*  This code now should do correct strides. */
      for (i = 0; i < N; i++)
	seed[i] = put->data[i * put->dim[0].stride];
    }

  /* Return the seed to GET data */
  if (get != NULL)
    {
      /* if the rank of the array is not 1 abort */
      if (GFC_DESCRIPTOR_RANK (get) != 1)
	abort ();

      /* if the array is too small abort */
      if (((get->dim[0].ubound + 1 - get->dim[0].lbound)) < N)
	abort ();

      /* If this is the case the array is a temporary */
      if (get->dim[0].stride == 0)
	return;

      /*  This code now should do correct strides. */
      for (i = 0; i < N; i++)
	get->data[i * get->dim[0].stride] = seed[i];
    }
}

/* Here is the internal routine which generates the random numbers
   in 'batches' based upon the need for a new batch.
   It's an integer based routine known as 'Mersenne Twister'.
   This implementation still lacks 'tempering' and a good verification,
   but gives very good metrics.  */

static void
random_generate (void)
{
  /* 32 bits.  */
  GFC_UINTEGER_4 y;

  /* Generate batch of N.  */
  int k, m;
  for (k = 0, m = M; k < N - 1; k++)
    {
      y = (seed[k] & (-1 << R)) | (seed[k + 1] & ((1u << R) - 1));
      seed[k] = seed[m] ^ (y >> 1) ^ (-(GFC_INTEGER_4) (y & 1) & M_A);
      if (++m >= N)
	m = 0;
    }

  y = (seed[N - 1] & (-1 << R)) | (seed[0] & ((1u << R) - 1));
  seed[N - 1] = seed[M - 1] ^ (y >> 1) ^ (-(GFC_INTEGER_4) (y & 1) & M_A);
  i = 0;
}

/* A routine to return a REAL(KIND=4).  */

#define random_r4 prefix(random_r4)
void
random_r4 (GFC_REAL_4 * harv)
{
  /* Regenerate if we need to.  */
  if (i >= N)
    random_generate ();

  /* Convert uint32 to REAL(KIND=4).  */
  *harv = (GFC_REAL_4) ((GFC_REAL_4) (GFC_UINTEGER_4) seed[i++] /
			(GFC_REAL_4) (~(GFC_UINTEGER_4) 0));
}

/* A routine to return a REAL(KIND=8).  */

#define random_r8 prefix(random_r8)
void
random_r8 (GFC_REAL_8 * harv)
{
  /* Regenerate if we need to, may waste one 32-bit value.  */
  if ((i + 1) >= N)
    random_generate ();

  /* Convert two uint32 to a REAL(KIND=8).  */
  *harv = ((GFC_REAL_8) ((((GFC_UINTEGER_8) seed[i+1]) << 32) + seed[i])) /
	  (GFC_REAL_8) (~(GFC_UINTEGER_8) 0);
  i += 2;
}

/* Code to handle arrays will follow here.  */

/* REAL(KIND=4) REAL array.  */

#define arandom_r4 prefix(arandom_r4)
void
arandom_r4 (gfc_array_r4 * harv)
{
  index_type count[GFC_MAX_DIMENSIONS - 1];
  index_type extent[GFC_MAX_DIMENSIONS - 1];
  index_type stride[GFC_MAX_DIMENSIONS - 1];
  index_type stride0;
  index_type dim;
  GFC_REAL_4 *dest;
  int n;

  dest = harv->data;

  if (harv->dim[0].stride == 0)
    harv->dim[0].stride = 1;

  dim = GFC_DESCRIPTOR_RANK (harv);

  for (n = 0; n < dim; n++)
    {
      count[n] = 0;
      stride[n] = harv->dim[n].stride;
      extent[n] = harv->dim[n].ubound + 1 - harv->dim[n].lbound;
      if (extent[n] <= 0)
	return;
    }

  stride0 = stride[0];

  while (dest)
    {
      /* Set the elements.  */

      /* regenerate if we need to */
      if (i >= N)
	random_generate ();

      /* Convert uint32 to float in a hopefully g95 compiant manner */
      *dest = (GFC_REAL_4) ((GFC_REAL_4) (GFC_UINTEGER_4) seed[i++] /
			    (GFC_REAL_4) (~(GFC_UINTEGER_4) 0));

      /* Advance to the next element.  */
      dest += stride0;
      count[0]++;
      /* Advance to the next source element.  */
      n = 0;
      while (count[n] == extent[n])
	{
	  /* When we get to the end of a dimension,
	     reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products,
	     but this is a less
	     frequently used path so proabably not worth it.  */
	  dest -= stride[n] * extent[n];
	  n++;
	  if (n == dim)
	    {
	      dest = NULL;
	      break;
	    }
	  else
	    {
	      count[n]++;
	      dest += stride[n];
	    }
	}
    }
}

/* REAL(KIND=8) array.  */

#define arandom_r8 prefix(arandom_r8)
void
arandom_r8 (gfc_array_r8 * harv)
{
  index_type count[GFC_MAX_DIMENSIONS - 1];
  index_type extent[GFC_MAX_DIMENSIONS - 1];
  index_type stride[GFC_MAX_DIMENSIONS - 1];
  index_type stride0;
  index_type dim;
  GFC_REAL_8 *dest;
  int n;

  dest = harv->data;

  if (harv->dim[0].stride == 0)
    harv->dim[0].stride = 1;

  dim = GFC_DESCRIPTOR_RANK (harv);

  for (n = 0; n < dim; n++)
    {
      count[n] = 0;
      stride[n] = harv->dim[n].stride;
      extent[n] = harv->dim[n].ubound + 1 - harv->dim[n].lbound;
      if (extent[n] <= 0)
	return;
    }

  stride0 = stride[0];

  while (dest)
    {
      /* Set the elements.  */

      /* regenerate if we need to, may waste one 32-bit value */
      if ((i + 1) >= N)
	random_generate ();

      /* Convert two uint32 to a REAL(KIND=8).  */
      *dest = ((GFC_REAL_8) ((((GFC_UINTEGER_8) seed[i+1]) << 32) + seed[i])) /
	      (GFC_REAL_8) (~(GFC_UINTEGER_8) 0);
      i += 2;

      /* Advance to the next element.  */
      dest += stride0;
      count[0]++;
      /* Advance to the next source element.  */
      n = 0;
      while (count[n] == extent[n])
	{
	  /* When we get to the end of a dimension,
	     reset it and increment
	     the next dimension.  */
	  count[n] = 0;
	  /* We could precalculate these products,
	     but this is a less
	     frequently used path so proabably not worth it.  */
	  dest -= stride[n] * extent[n];
	  n++;
	  if (n == dim)
	    {
	      dest = NULL;
	      break;
	    }
	  else
	    {
	      count[n]++;
	      dest += stride[n];
	    }
	}
    }
}
#endif /* Mersenne Twister code */


/* George Marsaglia's KISS (Keep It Simple Stupid) random number generator.

   This PRNG combines:

   (1) The congruential generator x(n)=69069*x(n-1)+1327217885 with a period
       of 2^32,
   (2) A 3-shift shift-register generator with a period of 2^32-1,
   (3) Two 16-bit multiply-with-carry generators with a period of
       597273182964842497 > 2^59.

   The overall period exceeds 2^123.

   http://www.ciphersbyritter.com/NEWS4/RANDC.HTM#369F6FCA.74C7C041@stat.fsu.edu

   The above web site has an archive of a newsgroup posting from George
   Marsaglia with the statement:

   Subject: Random numbers for C: Improvements.
   Date: Fri, 15 Jan 1999 11:41:47 -0500
   From: George Marsaglia <geo@stat.fsu.edu>
   Message-ID: <369F6FCA.74C7C041@stat.fsu.edu>
   References: <369B5E30.65A55FD1@stat.fsu.edu>
   Newsgroups: sci.stat.math,sci.math,sci.math.numer-analysis
   Lines: 93

   As I hoped, several suggestions have led to
   improvements in the code for RNG's I proposed for
   use in C. (See the thread "Random numbers for C: Some
   suggestions" in previous postings.) The improved code
   is listed below.

   A question of copyright has also been raised.  Unlike
   DIEHARD, there is no copyright on the code below. You
   are free to use it in any way you want, but you may
   wish to acknowledge the source, as a courtesy.

"There is no copyright on the code below." included the original
KISS algorithm.  */

#include "config.h"
#include "libgfortran.h"

#define GFC_SL(k, n)	((k)^((k)<<(n)))
#define GFC_SR(k, n)	((k)^((k)>>(n)))

static const GFC_INTEGER_4 kiss_size = 4;
#define KISS_DEFAULT_SEED {123456789, 362436069, 521288629, 916191069};
static const GFC_UINTEGER_4 kiss_default_seed[4] = KISS_DEFAULT_SEED;
static GFC_UINTEGER_4 kiss_seed[4] = KISS_DEFAULT_SEED;

/* kiss_random_kernel() returns an integer value in the range of
   (0, GFC_UINTEGER_4_HUGE].  The distribution of pseudorandom numbers
   should be uniform.  */

static GFC_UINTEGER_4
kiss_random_kernel(void)
{

  GFC_UINTEGER_4 kiss;

  kiss_seed[0] = 69069 * kiss_seed[0] + 1327217885;
  kiss_seed[1] = GFC_SL(GFC_SR(GFC_SL(kiss_seed[1],13),17),5);
  kiss_seed[2] = 18000 * (kiss_seed[2] & 65535) + (kiss_seed[2] >> 16);
  kiss_seed[3] = 30903 * (kiss_seed[3] & 65535) + (kiss_seed[3] >> 16);
  kiss = kiss_seed[0] + kiss_seed[1] + (kiss_seed[2] << 16) + kiss_seed[3];

  return kiss;

}

/*  This function produces a REAL(4) value from the uniform distribution
    with range [0,1).  */

void
prefix(random_r4) (GFC_REAL_4 *x)
{

  GFC_UINTEGER_4 kiss;

  do
    {
      kiss = kiss_random_kernel ();
      *x = (GFC_REAL_4)kiss / (GFC_REAL_4)(~(GFC_UINTEGER_4) 0);
      /* Burn a random number, so the REAL*4 and REAL*8 functions
         produce similar sequences of random numbers.  */
      kiss = kiss_random_kernel ();
    }
  while (*x == 1.0);

}

/*  This function produces a REAL(8) value from the uniform distribution
    with range [0,1).  */

void
prefix(random_r8) (GFC_REAL_8 *x)
{

  GFC_UINTEGER_8 kiss;

  do
    {
      kiss = (((GFC_UINTEGER_8)kiss_random_kernel ()) << 32)
	     + kiss_random_kernel ();
      *x = (GFC_REAL_8)kiss / (GFC_REAL_8)(~(GFC_UINTEGER_8) 0);
    }
  while (*x == 1.0);

}

/*  This function fills a REAL(4) array with values from the uniform
    distribution with range [0,1).  */

void
prefix(arandom_r4) (gfc_array_r4 *x)
{

  index_type count[GFC_MAX_DIMENSIONS - 1];
  index_type extent[GFC_MAX_DIMENSIONS - 1];
  index_type stride[GFC_MAX_DIMENSIONS - 1];
  index_type stride0;
  index_type dim;
  GFC_REAL_4 *dest;
  int n;

  dest = x->data;

  if (x->dim[0].stride == 0)
    x->dim[0].stride = 1;

  dim = GFC_DESCRIPTOR_RANK (x);

  for (n = 0; n < dim; n++)
    {
      count[n] = 0;
      stride[n] = x->dim[n].stride;
      extent[n] = x->dim[n].ubound + 1 - x->dim[n].lbound;
      if (extent[n] <= 0)
        return;
    }

  stride0 = stride[0];

  while (dest)
    {
      prefix(random_r4) (dest);

      /* Advance to the next element.  */
      dest += stride0;
      count[0]++;
      /* Advance to the next source element.  */
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          dest -= stride[n] * extent[n];
          n++;
          if (n == dim)
            {
              dest = NULL;
              break;
            }
          else
            {
              count[n]++;
              dest += stride[n];
            }
        }
    }
}

/*  This function fills a REAL(8) array with values from the uniform
    distribution with range [0,1).  */

void
prefix(arandom_r8) (gfc_array_r8 *x)
{

  index_type count[GFC_MAX_DIMENSIONS - 1];
  index_type extent[GFC_MAX_DIMENSIONS - 1];
  index_type stride[GFC_MAX_DIMENSIONS - 1];
  index_type stride0;
  index_type dim;
  GFC_REAL_8 *dest;
  int n;

  dest = x->data;

  if (x->dim[0].stride == 0)
    x->dim[0].stride = 1;

  dim = GFC_DESCRIPTOR_RANK (x);

  for (n = 0; n < dim; n++)
    {
      count[n] = 0;
      stride[n] = x->dim[n].stride;
      extent[n] = x->dim[n].ubound + 1 - x->dim[n].lbound;
      if (extent[n] <= 0)
        return;
    }

  stride0 = stride[0];

  while (dest)
    {
      prefix(random_r8) (dest);

      /* Advance to the next element.  */
      dest += stride0;
      count[0]++;
      /* Advance to the next source element.  */
      n = 0;
      while (count[n] == extent[n])
        {
          /* When we get to the end of a dimension, reset it and increment
             the next dimension.  */
          count[n] = 0;
          /* We could precalculate these products, but this is a less
             frequently used path so probably not worth it.  */
          dest -= stride[n] * extent[n];
          n++;
          if (n == dim)
            {
              dest = NULL;
              break;
            }
          else
            {
              count[n]++;
              dest += stride[n];
            }
        }
    }
}

/* prefix(random_seed) is used to seed the PRNG with either a default
   set of seeds or user specified set of seeds.  prefix(random_seed) 
   must be called with no argument or exactly one argument.  */

void
random_seed (GFC_INTEGER_4 *size, gfc_array_i4 * put, 
		     gfc_array_i4 * get)
{

  int i;

  if (size == NULL && put == NULL && get == NULL)
    {
      /* From the standard: "If no argument is present, the processor assigns
         a processor-dependent value to the seed."  */
      kiss_seed[0] = kiss_default_seed[0];
      kiss_seed[1] = kiss_default_seed[1];
      kiss_seed[2] = kiss_default_seed[2];
      kiss_seed[3] = kiss_default_seed[3];
    }

  if (size != NULL)
    *size = kiss_size;

  if (put != NULL)
    {
      /* If the rank of the array is not 1, abort.  */
      if (GFC_DESCRIPTOR_RANK (put) != 1)
        runtime_error ("Array rank of PUT is not 1.");

      /* If the array is too small, abort.  */
      if (((put->dim[0].ubound + 1 - put->dim[0].lbound)) < kiss_size)
        runtime_error ("Array size of PUT is too small.");

      if (put->dim[0].stride == 0)
	put->dim[0].stride = 1;

      /*  This code now should do correct strides.  */
      for (i = 0; i < kiss_size; i++)
        kiss_seed[i] =(GFC_UINTEGER_4) put->data[i * put->dim[0].stride];
    }

  /* Return the seed to GET data.  */
  if (get != NULL)
    {
      /* If the rank of the array is not 1, abort.  */
      if (GFC_DESCRIPTOR_RANK (get) != 1)
	runtime_error ("Array rank of GET is not 1.");

      /* If the array is too small, abort.  */
      if (((get->dim[0].ubound + 1 - get->dim[0].lbound)) < kiss_size)
	runtime_error ("Array size of GET is too small.");

      if (get->dim[0].stride == 0)
	get->dim[0].stride = 1;

      /*  This code now should do correct strides.  */
      for (i = 0; i < kiss_size; i++)
        get->data[i * get->dim[0].stride] = (GFC_INTEGER_4) kiss_seed[i];
    }
}