1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
|
/* More subroutines needed by GCC output code on some machines. */
/* Compile this one with gcc. */
/* Copyright (C) 1989-2021 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "tconfig.h"
#include "tsystem.h"
#include "coretypes.h"
#include "tm.h"
#include "libgcc_tm.h"
#ifdef HAVE_GAS_HIDDEN
#define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
#else
#define ATTRIBUTE_HIDDEN
#endif
/* Work out the largest "word" size that we can deal with on this target. */
#if MIN_UNITS_PER_WORD > 4
# define LIBGCC2_MAX_UNITS_PER_WORD 8
#elif (MIN_UNITS_PER_WORD > 2 \
|| (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
# define LIBGCC2_MAX_UNITS_PER_WORD 4
#else
# define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
#endif
/* Work out what word size we are using for this compilation.
The value can be set on the command line. */
#ifndef LIBGCC2_UNITS_PER_WORD
#define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
#endif
#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
#include "libgcc2.h"
#ifdef DECLARE_LIBRARY_RENAMES
DECLARE_LIBRARY_RENAMES
#endif
#if defined (L_negdi2)
DWtype
__negdi2 (DWtype u)
{
const DWunion uu = {.ll = u};
const DWunion w = { {.low = -uu.s.low,
.high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
return w.ll;
}
#endif
#ifdef L_addvsi3
Wtype
__addvSI3 (Wtype a, Wtype b)
{
Wtype w;
if (__builtin_add_overflow (a, b, &w))
abort ();
return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__addvsi3 (SItype a, SItype b)
{
SItype w;
if (__builtin_add_overflow (a, b, &w))
abort ();
return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif
#ifdef L_addvdi3
DWtype
__addvDI3 (DWtype a, DWtype b)
{
DWtype w;
if (__builtin_add_overflow (a, b, &w))
abort ();
return w;
}
#endif
#ifdef L_subvsi3
Wtype
__subvSI3 (Wtype a, Wtype b)
{
Wtype w;
if (__builtin_sub_overflow (a, b, &w))
abort ();
return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__subvsi3 (SItype a, SItype b)
{
SItype w;
if (__builtin_sub_overflow (a, b, &w))
abort ();
return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif
#ifdef L_subvdi3
DWtype
__subvDI3 (DWtype a, DWtype b)
{
DWtype w;
if (__builtin_sub_overflow (a, b, &w))
abort ();
return w;
}
#endif
#ifdef L_mulvsi3
Wtype
__mulvSI3 (Wtype a, Wtype b)
{
Wtype w;
if (__builtin_mul_overflow (a, b, &w))
abort ();
return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__mulvsi3 (SItype a, SItype b)
{
SItype w;
if (__builtin_mul_overflow (a, b, &w))
abort ();
return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif
#ifdef L_negvsi2
Wtype
__negvSI2 (Wtype a)
{
Wtype w;
if (__builtin_sub_overflow (0, a, &w))
abort ();
return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__negvsi2 (SItype a)
{
SItype w;
if (__builtin_sub_overflow (0, a, &w))
abort ();
return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif
#ifdef L_negvdi2
DWtype
__negvDI2 (DWtype a)
{
DWtype w;
if (__builtin_sub_overflow (0, a, &w))
abort ();
return w;
}
#endif
#ifdef L_absvsi2
Wtype
__absvSI2 (Wtype a)
{
const Wtype v = 0 - (a < 0);
Wtype w;
if (__builtin_add_overflow (a, v, &w))
abort ();
return v ^ w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__absvsi2 (SItype a)
{
const SItype v = 0 - (a < 0);
SItype w;
if (__builtin_add_overflow (a, v, &w))
abort ();
return v ^ w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif
#ifdef L_absvdi2
DWtype
__absvDI2 (DWtype a)
{
const DWtype v = 0 - (a < 0);
DWtype w;
if (__builtin_add_overflow (a, v, &w))
abort ();
return v ^ w;
}
#endif
#ifdef L_mulvdi3
DWtype
__mulvDI3 (DWtype u, DWtype v)
{
/* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
but the checked multiplication needs only two. */
const DWunion uu = {.ll = u};
const DWunion vv = {.ll = v};
if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
{
/* u fits in a single Wtype. */
if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
{
/* v fits in a single Wtype as well. */
/* A single multiplication. No overflow risk. */
return (DWtype) uu.s.low * (DWtype) vv.s.low;
}
else
{
/* Two multiplications. */
DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low};
DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.high};
if (vv.s.high < 0)
w1.s.high -= uu.s.low;
if (uu.s.low < 0)
w1.ll -= vv.ll;
w1.ll += (UWtype) w0.s.high;
if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
{
w0.s.high = w1.s.low;
return w0.ll;
}
}
}
else
{
if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
{
/* v fits into a single Wtype. */
/* Two multiplications. */
DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low};
DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
* (UDWtype) (UWtype) vv.s.low};
if (uu.s.high < 0)
w1.s.high -= vv.s.low;
if (vv.s.low < 0)
w1.ll -= uu.ll;
w1.ll += (UWtype) w0.s.high;
if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
{
w0.s.high = w1.s.low;
return w0.ll;
}
}
else
{
/* A few sign checks and a single multiplication. */
if (uu.s.high >= 0)
{
if (vv.s.high >= 0)
{
if (uu.s.high == 0 && vv.s.high == 0)
{
const DWtype w = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low;
if (__builtin_expect (w >= 0, 1))
return w;
}
}
else
{
if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
{
DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low};
ww.s.high -= uu.s.low;
if (__builtin_expect (ww.s.high < 0, 1))
return ww.ll;
}
}
}
else
{
if (vv.s.high >= 0)
{
if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
{
DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low};
ww.s.high -= vv.s.low;
if (__builtin_expect (ww.s.high < 0, 1))
return ww.ll;
}
}
else
{
if ((uu.s.high & vv.s.high) == (Wtype) -1
&& (uu.s.low | vv.s.low) != 0)
{
DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
* (UDWtype) (UWtype) vv.s.low};
ww.s.high -= uu.s.low;
ww.s.high -= vv.s.low;
if (__builtin_expect (ww.s.high >= 0, 1))
return ww.ll;
}
}
}
}
}
/* Overflow. */
abort ();
}
#endif
/* Unless shift functions are defined with full ANSI prototypes,
parameter b will be promoted to int if shift_count_type is smaller than an int. */
#ifdef L_lshrdi3
DWtype
__lshrdi3 (DWtype u, shift_count_type b)
{
if (b == 0)
return u;
const DWunion uu = {.ll = u};
const shift_count_type bm = W_TYPE_SIZE - b;
DWunion w;
if (bm <= 0)
{
w.s.high = 0;
w.s.low = (UWtype) uu.s.high >> -bm;
}
else
{
const UWtype carries = (UWtype) uu.s.high << bm;
w.s.high = (UWtype) uu.s.high >> b;
w.s.low = ((UWtype) uu.s.low >> b) | carries;
}
return w.ll;
}
#endif
#ifdef L_ashldi3
DWtype
__ashldi3 (DWtype u, shift_count_type b)
{
if (b == 0)
return u;
const DWunion uu = {.ll = u};
const shift_count_type bm = W_TYPE_SIZE - b;
DWunion w;
if (bm <= 0)
{
w.s.low = 0;
w.s.high = (UWtype) uu.s.low << -bm;
}
else
{
const UWtype carries = (UWtype) uu.s.low >> bm;
w.s.low = (UWtype) uu.s.low << b;
w.s.high = ((UWtype) uu.s.high << b) | carries;
}
return w.ll;
}
#endif
#ifdef L_ashrdi3
DWtype
__ashrdi3 (DWtype u, shift_count_type b)
{
if (b == 0)
return u;
const DWunion uu = {.ll = u};
const shift_count_type bm = W_TYPE_SIZE - b;
DWunion w;
if (bm <= 0)
{
/* w.s.high = 1..1 or 0..0 */
w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
w.s.low = uu.s.high >> -bm;
}
else
{
const UWtype carries = (UWtype) uu.s.high << bm;
w.s.high = uu.s.high >> b;
w.s.low = ((UWtype) uu.s.low >> b) | carries;
}
return w.ll;
}
#endif
#ifdef L_bswapsi2
SItype
__bswapsi2 (SItype u)
{
return ((((u) & 0xff000000u) >> 24)
| (((u) & 0x00ff0000u) >> 8)
| (((u) & 0x0000ff00u) << 8)
| (((u) & 0x000000ffu) << 24));
}
#endif
#ifdef L_bswapdi2
DItype
__bswapdi2 (DItype u)
{
return ((((u) & 0xff00000000000000ull) >> 56)
| (((u) & 0x00ff000000000000ull) >> 40)
| (((u) & 0x0000ff0000000000ull) >> 24)
| (((u) & 0x000000ff00000000ull) >> 8)
| (((u) & 0x00000000ff000000ull) << 8)
| (((u) & 0x0000000000ff0000ull) << 24)
| (((u) & 0x000000000000ff00ull) << 40)
| (((u) & 0x00000000000000ffull) << 56));
}
#endif
#ifdef L_ffssi2
#undef int
int
__ffsSI2 (UWtype u)
{
UWtype count;
if (u == 0)
return 0;
count_trailing_zeros (count, u);
return count + 1;
}
#endif
#ifdef L_ffsdi2
#undef int
int
__ffsDI2 (DWtype u)
{
const DWunion uu = {.ll = u};
UWtype word, count, add;
if (uu.s.low != 0)
word = uu.s.low, add = 0;
else if (uu.s.high != 0)
word = uu.s.high, add = W_TYPE_SIZE;
else
return 0;
count_trailing_zeros (count, word);
return count + add + 1;
}
#endif
#ifdef L_muldi3
DWtype
__muldi3 (DWtype u, DWtype v)
{
const DWunion uu = {.ll = u};
const DWunion vv = {.ll = v};
DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
+ (UWtype) uu.s.high * (UWtype) vv.s.low);
return w.ll;
}
#endif
#if (defined (L_udivdi3) || defined (L_divdi3) || \
defined (L_umoddi3) || defined (L_moddi3))
#if defined (sdiv_qrnnd)
#define L_udiv_w_sdiv
#endif
#endif
#ifdef L_udiv_w_sdiv
#if defined (sdiv_qrnnd)
#if (defined (L_udivdi3) || defined (L_divdi3) || \
defined (L_umoddi3) || defined (L_moddi3))
static inline __attribute__ ((__always_inline__))
#endif
UWtype
__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
{
UWtype q, r;
UWtype c0, c1, b1;
if ((Wtype) d >= 0)
{
if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
{
/* Dividend, divisor, and quotient are nonnegative. */
sdiv_qrnnd (q, r, a1, a0, d);
}
else
{
/* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
/* Divide (c1*2^32 + c0) by d. */
sdiv_qrnnd (q, r, c1, c0, d);
/* Add 2^31 to quotient. */
q += (UWtype) 1 << (W_TYPE_SIZE - 1);
}
}
else
{
b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
c1 = a1 >> 1; /* A/2 */
c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
{
sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
if ((d & 1) != 0)
{
if (r >= q)
r = r - q;
else if (q - r <= d)
{
r = r - q + d;
q--;
}
else
{
r = r - q + 2*d;
q -= 2;
}
}
}
else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
{
c1 = (b1 - 1) - c1;
c0 = ~c0; /* logical NOT */
sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
q = ~q; /* (A/2)/b1 */
r = (b1 - 1) - r;
r = 2*r + (a0 & 1); /* A/(2*b1) */
if ((d & 1) != 0)
{
if (r >= q)
r = r - q;
else if (q - r <= d)
{
r = r - q + d;
q--;
}
else
{
r = r - q + 2*d;
q -= 2;
}
}
}
else /* Implies c1 = b1 */
{ /* Hence a1 = d - 1 = 2*b1 - 1 */
if (a0 >= -d)
{
q = -1;
r = a0 + d;
}
else
{
q = -2;
r = a0 + 2*d;
}
}
}
*rp = r;
return q;
}
#else
/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
UWtype
__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
UWtype a1 __attribute__ ((__unused__)),
UWtype a0 __attribute__ ((__unused__)),
UWtype d __attribute__ ((__unused__)))
{
return 0;
}
#endif
#endif
#if (defined (L_udivdi3) || defined (L_divdi3) || \
defined (L_umoddi3) || defined (L_moddi3) || \
defined (L_divmoddi4))
#define L_udivmoddi4
#endif
#ifdef L_clz
const UQItype __clz_tab[256] =
{
0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
};
#endif
#ifdef L_clzsi2
#undef int
int
__clzSI2 (UWtype x)
{
Wtype ret;
count_leading_zeros (ret, x);
return ret;
}
#endif
#ifdef L_clzdi2
#undef int
int
__clzDI2 (UDWtype x)
{
const DWunion uu = {.ll = x};
UWtype word;
Wtype ret, add;
if (uu.s.high)
word = uu.s.high, add = 0;
else
word = uu.s.low, add = W_TYPE_SIZE;
count_leading_zeros (ret, word);
return ret + add;
}
#endif
#ifdef L_ctzsi2
#undef int
int
__ctzSI2 (UWtype x)
{
Wtype ret;
count_trailing_zeros (ret, x);
return ret;
}
#endif
#ifdef L_ctzdi2
#undef int
int
__ctzDI2 (UDWtype x)
{
const DWunion uu = {.ll = x};
UWtype word;
Wtype ret, add;
if (uu.s.low)
word = uu.s.low, add = 0;
else
word = uu.s.high, add = W_TYPE_SIZE;
count_trailing_zeros (ret, word);
return ret + add;
}
#endif
#ifdef L_clrsbsi2
#undef int
int
__clrsbSI2 (Wtype x)
{
Wtype ret;
if (x < 0)
x = ~x;
if (x == 0)
return W_TYPE_SIZE - 1;
count_leading_zeros (ret, x);
return ret - 1;
}
#endif
#ifdef L_clrsbdi2
#undef int
int
__clrsbDI2 (DWtype x)
{
const DWunion uu = {.ll = x};
UWtype word;
Wtype ret, add;
if (uu.s.high == 0)
word = uu.s.low, add = W_TYPE_SIZE;
else if (uu.s.high == -1)
word = ~uu.s.low, add = W_TYPE_SIZE;
else if (uu.s.high >= 0)
word = uu.s.high, add = 0;
else
word = ~uu.s.high, add = 0;
if (word == 0)
ret = W_TYPE_SIZE;
else
count_leading_zeros (ret, word);
return ret + add - 1;
}
#endif
#ifdef L_popcount_tab
const UQItype __popcount_tab[256] =
{
0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
};
#endif
#if defined(L_popcountsi2) || defined(L_popcountdi2)
#define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x)
#define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x)
#define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x)
#if W_TYPE_SIZE == __CHAR_BIT__
#define POPCOUNTCST(x) x
#elif W_TYPE_SIZE == 2 * __CHAR_BIT__
#define POPCOUNTCST(x) POPCOUNTCST2 (x)
#elif W_TYPE_SIZE == 4 * __CHAR_BIT__
#define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x))
#elif W_TYPE_SIZE == 8 * __CHAR_BIT__
#define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x)))
#endif
#endif
#ifdef L_popcountsi2
#undef int
int
__popcountSI2 (UWtype x)
{
/* Force table lookup on targets like AVR and RL78 which only
pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
have 1, and other small word targets. */
#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
x = x - ((x >> 1) & POPCOUNTCST (0x55));
x = (x & POPCOUNTCST (0x33)) + ((x >> 2) & POPCOUNTCST (0x33));
x = (x + (x >> 4)) & POPCOUNTCST (0x0F);
return (x * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
#else
int i, ret = 0;
for (i = 0; i < W_TYPE_SIZE; i += 8)
ret += __popcount_tab[(x >> i) & 0xff];
return ret;
#endif
}
#endif
#ifdef L_popcountdi2
#undef int
int
__popcountDI2 (UDWtype x)
{
/* Force table lookup on targets like AVR and RL78 which only
pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
have 1, and other small word targets. */
#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
const DWunion uu = {.ll = x};
UWtype x1 = uu.s.low, x2 = uu.s.high;
x1 = x1 - ((x1 >> 1) & POPCOUNTCST (0x55));
x2 = x2 - ((x2 >> 1) & POPCOUNTCST (0x55));
x1 = (x1 & POPCOUNTCST (0x33)) + ((x1 >> 2) & POPCOUNTCST (0x33));
x2 = (x2 & POPCOUNTCST (0x33)) + ((x2 >> 2) & POPCOUNTCST (0x33));
x1 = (x1 + (x1 >> 4)) & POPCOUNTCST (0x0F);
x2 = (x2 + (x2 >> 4)) & POPCOUNTCST (0x0F);
x1 += x2;
return (x1 * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
#else
int i, ret = 0;
for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
ret += __popcount_tab[(x >> i) & 0xff];
return ret;
#endif
}
#endif
#ifdef L_paritysi2
#undef int
int
__paritySI2 (UWtype x)
{
#if W_TYPE_SIZE > 64
# error "fill out the table"
#endif
#if W_TYPE_SIZE > 32
x ^= x >> 32;
#endif
#if W_TYPE_SIZE > 16
x ^= x >> 16;
#endif
x ^= x >> 8;
x ^= x >> 4;
x &= 0xf;
return (0x6996 >> x) & 1;
}
#endif
#ifdef L_paritydi2
#undef int
int
__parityDI2 (UDWtype x)
{
const DWunion uu = {.ll = x};
UWtype nx = uu.s.low ^ uu.s.high;
#if W_TYPE_SIZE > 64
# error "fill out the table"
#endif
#if W_TYPE_SIZE > 32
nx ^= nx >> 32;
#endif
#if W_TYPE_SIZE > 16
nx ^= nx >> 16;
#endif
nx ^= nx >> 8;
nx ^= nx >> 4;
nx &= 0xf;
return (0x6996 >> nx) & 1;
}
#endif
#ifdef L_udivmoddi4
#ifdef TARGET_HAS_NO_HW_DIVIDE
#if (defined (L_udivdi3) || defined (L_divdi3) || \
defined (L_umoddi3) || defined (L_moddi3) || \
defined (L_divmoddi4))
static inline __attribute__ ((__always_inline__))
#endif
UDWtype
__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
{
UDWtype q = 0, r = n, y = d;
UWtype lz1, lz2, i, k;
/* Implements align divisor shift dividend method. This algorithm
aligns the divisor under the dividend and then perform number of
test-subtract iterations which shift the dividend left. Number of
iterations is k + 1 where k is the number of bit positions the
divisor must be shifted left to align it under the dividend.
quotient bits can be saved in the rightmost positions of the dividend
as it shifts left on each test-subtract iteration. */
if (y <= r)
{
lz1 = __builtin_clzll (d);
lz2 = __builtin_clzll (n);
k = lz1 - lz2;
y = (y << k);
/* Dividend can exceed 2 ^ (width - 1) - 1 but still be less than the
aligned divisor. Normal iteration can drops the high order bit
of the dividend. Therefore, first test-subtract iteration is a
special case, saving its quotient bit in a separate location and
not shifting the dividend. */
if (r >= y)
{
r = r - y;
q = (1ULL << k);
}
if (k > 0)
{
y = y >> 1;
/* k additional iterations where k regular test subtract shift
dividend iterations are done. */
i = k;
do
{
if (r >= y)
r = ((r - y) << 1) + 1;
else
r = (r << 1);
i = i - 1;
} while (i != 0);
/* First quotient bit is combined with the quotient bits resulting
from the k regular iterations. */
q = q + r;
r = r >> k;
q = q - (r << k);
}
}
if (rp)
*rp = r;
return q;
}
#else
#if (defined (L_udivdi3) || defined (L_divdi3) || \
defined (L_umoddi3) || defined (L_moddi3) || \
defined (L_divmoddi4))
static inline __attribute__ ((__always_inline__))
#endif
UDWtype
__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
{
const DWunion nn = {.ll = n};
const DWunion dd = {.ll = d};
DWunion rr;
UWtype d0, d1, n0, n1, n2;
UWtype q0, q1;
UWtype b, bm;
d0 = dd.s.low;
d1 = dd.s.high;
n0 = nn.s.low;
n1 = nn.s.high;
#if !UDIV_NEEDS_NORMALIZATION
if (d1 == 0)
{
if (d0 > n1)
{
/* 0q = nn / 0D */
udiv_qrnnd (q0, n0, n1, n0, d0);
q1 = 0;
/* Remainder in n0. */
}
else
{
/* qq = NN / 0d */
if (d0 == 0)
d0 = 1 / d0; /* Divide intentionally by zero. */
udiv_qrnnd (q1, n1, 0, n1, d0);
udiv_qrnnd (q0, n0, n1, n0, d0);
/* Remainder in n0. */
}
if (rp != 0)
{
rr.s.low = n0;
rr.s.high = 0;
*rp = rr.ll;
}
}
#else /* UDIV_NEEDS_NORMALIZATION */
if (d1 == 0)
{
if (d0 > n1)
{
/* 0q = nn / 0D */
count_leading_zeros (bm, d0);
if (bm != 0)
{
/* Normalize, i.e. make the most significant bit of the
denominator set. */
d0 = d0 << bm;
n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
n0 = n0 << bm;
}
udiv_qrnnd (q0, n0, n1, n0, d0);
q1 = 0;
/* Remainder in n0 >> bm. */
}
else
{
/* qq = NN / 0d */
if (d0 == 0)
d0 = 1 / d0; /* Divide intentionally by zero. */
count_leading_zeros (bm, d0);
if (bm == 0)
{
/* From (n1 >= d0) /\ (the most significant bit of d0 is set),
conclude (the most significant bit of n1 is set) /\ (the
leading quotient digit q1 = 1).
This special case is necessary, not an optimization.
(Shifts counts of W_TYPE_SIZE are undefined.) */
n1 -= d0;
q1 = 1;
}
else
{
/* Normalize. */
b = W_TYPE_SIZE - bm;
d0 = d0 << bm;
n2 = n1 >> b;
n1 = (n1 << bm) | (n0 >> b);
n0 = n0 << bm;
udiv_qrnnd (q1, n1, n2, n1, d0);
}
/* n1 != d0... */
udiv_qrnnd (q0, n0, n1, n0, d0);
/* Remainder in n0 >> bm. */
}
if (rp != 0)
{
rr.s.low = n0 >> bm;
rr.s.high = 0;
*rp = rr.ll;
}
}
#endif /* UDIV_NEEDS_NORMALIZATION */
else
{
if (d1 > n1)
{
/* 00 = nn / DD */
q0 = 0;
q1 = 0;
/* Remainder in n1n0. */
if (rp != 0)
{
rr.s.low = n0;
rr.s.high = n1;
*rp = rr.ll;
}
}
else
{
/* 0q = NN / dd */
count_leading_zeros (bm, d1);
if (bm == 0)
{
/* From (n1 >= d1) /\ (the most significant bit of d1 is set),
conclude (the most significant bit of n1 is set) /\ (the
quotient digit q0 = 0 or 1).
This special case is necessary, not an optimization. */
/* The condition on the next line takes advantage of that
n1 >= d1 (true due to program flow). */
if (n1 > d1 || n0 >= d0)
{
q0 = 1;
sub_ddmmss (n1, n0, n1, n0, d1, d0);
}
else
q0 = 0;
q1 = 0;
if (rp != 0)
{
rr.s.low = n0;
rr.s.high = n1;
*rp = rr.ll;
}
}
else
{
UWtype m1, m0;
/* Normalize. */
b = W_TYPE_SIZE - bm;
d1 = (d1 << bm) | (d0 >> b);
d0 = d0 << bm;
n2 = n1 >> b;
n1 = (n1 << bm) | (n0 >> b);
n0 = n0 << bm;
udiv_qrnnd (q0, n1, n2, n1, d1);
umul_ppmm (m1, m0, q0, d0);
if (m1 > n1 || (m1 == n1 && m0 > n0))
{
q0--;
sub_ddmmss (m1, m0, m1, m0, d1, d0);
}
q1 = 0;
/* Remainder in (n1n0 - m1m0) >> bm. */
if (rp != 0)
{
sub_ddmmss (n1, n0, n1, n0, m1, m0);
rr.s.low = (n1 << b) | (n0 >> bm);
rr.s.high = n1 >> bm;
*rp = rr.ll;
}
}
}
}
const DWunion ww = {{.low = q0, .high = q1}};
return ww.ll;
}
#endif
#endif
#ifdef L_divdi3
DWtype
__divdi3 (DWtype u, DWtype v)
{
Wtype c = 0;
DWunion uu = {.ll = u};
DWunion vv = {.ll = v};
DWtype w;
if (uu.s.high < 0)
c = ~c,
uu.ll = -uu.ll;
if (vv.s.high < 0)
c = ~c,
vv.ll = -vv.ll;
w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
if (c)
w = -w;
return w;
}
#endif
#ifdef L_moddi3
DWtype
__moddi3 (DWtype u, DWtype v)
{
Wtype c = 0;
DWunion uu = {.ll = u};
DWunion vv = {.ll = v};
DWtype w;
if (uu.s.high < 0)
c = ~c,
uu.ll = -uu.ll;
if (vv.s.high < 0)
vv.ll = -vv.ll;
(void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
if (c)
w = -w;
return w;
}
#endif
#ifdef L_divmoddi4
DWtype
__divmoddi4 (DWtype u, DWtype v, DWtype *rp)
{
Wtype c1 = 0, c2 = 0;
DWunion uu = {.ll = u};
DWunion vv = {.ll = v};
DWtype w;
DWtype r;
if (uu.s.high < 0)
c1 = ~c1, c2 = ~c2,
uu.ll = -uu.ll;
if (vv.s.high < 0)
c1 = ~c1,
vv.ll = -vv.ll;
w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&r);
if (c1)
w = -w;
if (c2)
r = -r;
*rp = r;
return w;
}
#endif
#ifdef L_umoddi3
UDWtype
__umoddi3 (UDWtype u, UDWtype v)
{
UDWtype w;
(void) __udivmoddi4 (u, v, &w);
return w;
}
#endif
#ifdef L_udivdi3
UDWtype
__udivdi3 (UDWtype n, UDWtype d)
{
return __udivmoddi4 (n, d, (UDWtype *) 0);
}
#endif
#ifdef L_cmpdi2
cmp_return_type
__cmpdi2 (DWtype a, DWtype b)
{
return (a > b) - (a < b) + 1;
}
#endif
#ifdef L_ucmpdi2
cmp_return_type
__ucmpdi2 (UDWtype a, UDWtype b)
{
return (a > b) - (a < b) + 1;
}
#endif
#if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
UDWtype
__fixunstfDI (TFtype a)
{
if (a < 0)
return 0;
/* Compute high word of result, as a flonum. */
const TFtype b = (a / Wtype_MAXp1_F);
/* Convert that to fixed (but not to DWtype!),
and shift it into the high word. */
UDWtype v = (UWtype) b;
v <<= W_TYPE_SIZE;
/* Remove high part from the TFtype, leaving the low part as flonum. */
a -= (TFtype)v;
/* Convert that to fixed (but not to DWtype!) and add it in.
Sometimes A comes out negative. This is significant, since
A has more bits than a long int does. */
if (a < 0)
v -= (UWtype) (- a);
else
v += (UWtype) a;
return v;
}
#endif
#if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
DWtype
__fixtfdi (TFtype a)
{
if (a < 0)
return - __fixunstfDI (-a);
return __fixunstfDI (a);
}
#endif
#if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
UDWtype
__fixunsxfDI (XFtype a)
{
if (a < 0)
return 0;
/* Compute high word of result, as a flonum. */
const XFtype b = (a / Wtype_MAXp1_F);
/* Convert that to fixed (but not to DWtype!),
and shift it into the high word. */
UDWtype v = (UWtype) b;
v <<= W_TYPE_SIZE;
/* Remove high part from the XFtype, leaving the low part as flonum. */
a -= (XFtype)v;
/* Convert that to fixed (but not to DWtype!) and add it in.
Sometimes A comes out negative. This is significant, since
A has more bits than a long int does. */
if (a < 0)
v -= (UWtype) (- a);
else
v += (UWtype) a;
return v;
}
#endif
#if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
DWtype
__fixxfdi (XFtype a)
{
if (a < 0)
return - __fixunsxfDI (-a);
return __fixunsxfDI (a);
}
#endif
#if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
UDWtype
__fixunsdfDI (DFtype a)
{
/* Get high part of result. The division here will just moves the radix
point and will not cause any rounding. Then the conversion to integral
type chops result as desired. */
const UWtype hi = a / Wtype_MAXp1_F;
/* Get low part of result. Convert `hi' to floating type and scale it back,
then subtract this from the number being converted. This leaves the low
part. Convert that to integral type. */
const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
/* Assemble result from the two parts. */
return ((UDWtype) hi << W_TYPE_SIZE) | lo;
}
#endif
#if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
DWtype
__fixdfdi (DFtype a)
{
if (a < 0)
return - __fixunsdfDI (-a);
return __fixunsdfDI (a);
}
#endif
#if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
UDWtype
__fixunssfDI (SFtype a)
{
#if LIBGCC2_HAS_DF_MODE
/* Convert the SFtype to a DFtype, because that is surely not going
to lose any bits. Some day someone else can write a faster version
that avoids converting to DFtype, and verify it really works right. */
const DFtype dfa = a;
/* Get high part of result. The division here will just moves the radix
point and will not cause any rounding. Then the conversion to integral
type chops result as desired. */
const UWtype hi = dfa / Wtype_MAXp1_F;
/* Get low part of result. Convert `hi' to floating type and scale it back,
then subtract this from the number being converted. This leaves the low
part. Convert that to integral type. */
const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
/* Assemble result from the two parts. */
return ((UDWtype) hi << W_TYPE_SIZE) | lo;
#elif FLT_MANT_DIG < W_TYPE_SIZE
if (a < 1)
return 0;
if (a < Wtype_MAXp1_F)
return (UWtype)a;
if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
{
/* Since we know that there are fewer significant bits in the SFmode
quantity than in a word, we know that we can convert out all the
significant bits in one step, and thus avoid losing bits. */
/* ??? This following loop essentially performs frexpf. If we could
use the real libm function, or poke at the actual bits of the fp
format, it would be significantly faster. */
UWtype shift = 0, counter;
SFtype msb;
a /= Wtype_MAXp1_F;
for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
{
SFtype counterf = (UWtype)1 << counter;
if (a >= counterf)
{
shift |= counter;
a /= counterf;
}
}
/* Rescale into the range of one word, extract the bits of that
one word, and shift the result into position. */
a *= Wtype_MAXp1_F;
counter = a;
return (DWtype)counter << shift;
}
return -1;
#else
# error
#endif
}
#endif
#if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
DWtype
__fixsfdi (SFtype a)
{
if (a < 0)
return - __fixunssfDI (-a);
return __fixunssfDI (a);
}
#endif
#if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
XFtype
__floatdixf (DWtype u)
{
#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
# error
#endif
XFtype d = (Wtype) (u >> W_TYPE_SIZE);
d *= Wtype_MAXp1_F;
d += (UWtype)u;
return d;
}
#endif
#if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
XFtype
__floatundixf (UDWtype u)
{
#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
# error
#endif
XFtype d = (UWtype) (u >> W_TYPE_SIZE);
d *= Wtype_MAXp1_F;
d += (UWtype)u;
return d;
}
#endif
#if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
TFtype
__floatditf (DWtype u)
{
#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
# error
#endif
TFtype d = (Wtype) (u >> W_TYPE_SIZE);
d *= Wtype_MAXp1_F;
d += (UWtype)u;
return d;
}
#endif
#if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
TFtype
__floatunditf (UDWtype u)
{
#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
# error
#endif
TFtype d = (UWtype) (u >> W_TYPE_SIZE);
d *= Wtype_MAXp1_F;
d += (UWtype)u;
return d;
}
#endif
#if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
|| (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
#define DI_SIZE (W_TYPE_SIZE * 2)
#define F_MODE_OK(SIZE) \
(SIZE < DI_SIZE \
&& SIZE > (DI_SIZE - SIZE + FSSIZE) \
&& !AVOID_FP_TYPE_CONVERSION(SIZE))
#if defined(L_floatdisf)
#define FUNC __floatdisf
#define FSTYPE SFtype
#define FSSIZE __LIBGCC_SF_MANT_DIG__
#else
#define FUNC __floatdidf
#define FSTYPE DFtype
#define FSSIZE __LIBGCC_DF_MANT_DIG__
#endif
FSTYPE
FUNC (DWtype u)
{
#if FSSIZE >= W_TYPE_SIZE
/* When the word size is small, we never get any rounding error. */
FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
f *= Wtype_MAXp1_F;
f += (UWtype)u;
return f;
#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
|| (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
|| (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
# define FSIZE __LIBGCC_DF_MANT_DIG__
# define FTYPE DFtype
#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
# define FSIZE __LIBGCC_XF_MANT_DIG__
# define FTYPE XFtype
#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
# define FSIZE __LIBGCC_TF_MANT_DIG__
# define FTYPE TFtype
#else
# error
#endif
#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
/* Protect against double-rounding error.
Represent any low-order bits, that might be truncated by a bit that
won't be lost. The bit can go in anywhere below the rounding position
of the FSTYPE. A fixed mask and bit position handles all usual
configurations. */
if (! (- ((DWtype) 1 << FSIZE) < u
&& u < ((DWtype) 1 << FSIZE)))
{
if ((UDWtype) u & (REP_BIT - 1))
{
u &= ~ (REP_BIT - 1);
u |= REP_BIT;
}
}
/* Do the calculation in a wider type so that we don't lose any of
the precision of the high word while multiplying it. */
FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
f *= Wtype_MAXp1_F;
f += (UWtype)u;
return (FSTYPE) f;
#else
#if FSSIZE >= W_TYPE_SIZE - 2
# error
#endif
/* Finally, the word size is larger than the number of bits in the
required FSTYPE, and we've got no suitable wider type. The only
way to avoid double rounding is to special case the
extraction. */
/* If there are no high bits set, fall back to one conversion. */
if ((Wtype)u == u)
return (FSTYPE)(Wtype)u;
/* Otherwise, find the power of two. */
Wtype hi = u >> W_TYPE_SIZE;
if (hi < 0)
hi = -(UWtype) hi;
UWtype count, shift;
#if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE
if (hi == 0)
count = W_TYPE_SIZE;
else
#endif
count_leading_zeros (count, hi);
/* No leading bits means u == minimum. */
if (count == 0)
return Wtype_MAXp1_F * (FSTYPE) (hi | ((UWtype) u != 0));
shift = 1 + W_TYPE_SIZE - count;
/* Shift down the most significant bits. */
hi = u >> shift;
/* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
if ((UWtype)u << (W_TYPE_SIZE - shift))
hi |= 1;
/* Convert the one word of data, and rescale. */
FSTYPE f = hi, e;
if (shift == W_TYPE_SIZE)
e = Wtype_MAXp1_F;
/* The following two cases could be merged if we knew that the target
supported a native unsigned->float conversion. More often, we only
have a signed conversion, and have to add extra fixup code. */
else if (shift == W_TYPE_SIZE - 1)
e = Wtype_MAXp1_F / 2;
else
e = (Wtype)1 << shift;
return f * e;
#endif
}
#endif
#if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
|| (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
#define DI_SIZE (W_TYPE_SIZE * 2)
#define F_MODE_OK(SIZE) \
(SIZE < DI_SIZE \
&& SIZE > (DI_SIZE - SIZE + FSSIZE) \
&& !AVOID_FP_TYPE_CONVERSION(SIZE))
#if defined(L_floatundisf)
#define FUNC __floatundisf
#define FSTYPE SFtype
#define FSSIZE __LIBGCC_SF_MANT_DIG__
#else
#define FUNC __floatundidf
#define FSTYPE DFtype
#define FSSIZE __LIBGCC_DF_MANT_DIG__
#endif
FSTYPE
FUNC (UDWtype u)
{
#if FSSIZE >= W_TYPE_SIZE
/* When the word size is small, we never get any rounding error. */
FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
f *= Wtype_MAXp1_F;
f += (UWtype)u;
return f;
#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
|| (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
|| (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
# define FSIZE __LIBGCC_DF_MANT_DIG__
# define FTYPE DFtype
#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
# define FSIZE __LIBGCC_XF_MANT_DIG__
# define FTYPE XFtype
#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
# define FSIZE __LIBGCC_TF_MANT_DIG__
# define FTYPE TFtype
#else
# error
#endif
#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
/* Protect against double-rounding error.
Represent any low-order bits, that might be truncated by a bit that
won't be lost. The bit can go in anywhere below the rounding position
of the FSTYPE. A fixed mask and bit position handles all usual
configurations. */
if (u >= ((UDWtype) 1 << FSIZE))
{
if ((UDWtype) u & (REP_BIT - 1))
{
u &= ~ (REP_BIT - 1);
u |= REP_BIT;
}
}
/* Do the calculation in a wider type so that we don't lose any of
the precision of the high word while multiplying it. */
FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
f *= Wtype_MAXp1_F;
f += (UWtype)u;
return (FSTYPE) f;
#else
#if FSSIZE == W_TYPE_SIZE - 1
# error
#endif
/* Finally, the word size is larger than the number of bits in the
required FSTYPE, and we've got no suitable wider type. The only
way to avoid double rounding is to special case the
extraction. */
/* If there are no high bits set, fall back to one conversion. */
if ((UWtype)u == u)
return (FSTYPE)(UWtype)u;
/* Otherwise, find the power of two. */
UWtype hi = u >> W_TYPE_SIZE;
UWtype count, shift;
count_leading_zeros (count, hi);
shift = W_TYPE_SIZE - count;
/* Shift down the most significant bits. */
hi = u >> shift;
/* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
if ((UWtype)u << (W_TYPE_SIZE - shift))
hi |= 1;
/* Convert the one word of data, and rescale. */
FSTYPE f = hi, e;
if (shift == W_TYPE_SIZE)
e = Wtype_MAXp1_F;
/* The following two cases could be merged if we knew that the target
supported a native unsigned->float conversion. More often, we only
have a signed conversion, and have to add extra fixup code. */
else if (shift == W_TYPE_SIZE - 1)
e = Wtype_MAXp1_F / 2;
else
e = (Wtype)1 << shift;
return f * e;
#endif
}
#endif
#if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
UWtype
__fixunsxfSI (XFtype a)
{
if (a >= - (DFtype) Wtype_MIN)
return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
return (Wtype) a;
}
#endif
#if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
UWtype
__fixunsdfSI (DFtype a)
{
if (a >= - (DFtype) Wtype_MIN)
return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
return (Wtype) a;
}
#endif
#if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
UWtype
__fixunssfSI (SFtype a)
{
if (a >= - (SFtype) Wtype_MIN)
return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
return (Wtype) a;
}
#endif
/* Integer power helper used from __builtin_powi for non-constant
exponents. */
#if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
|| (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
|| (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
|| (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
# if defined(L_powisf2)
# define TYPE SFtype
# define NAME __powisf2
# elif defined(L_powidf2)
# define TYPE DFtype
# define NAME __powidf2
# elif defined(L_powixf2)
# define TYPE XFtype
# define NAME __powixf2
# elif defined(L_powitf2)
# define TYPE TFtype
# define NAME __powitf2
# endif
#undef int
#undef unsigned
TYPE
NAME (TYPE x, int m)
{
unsigned int n = m < 0 ? -(unsigned int) m : (unsigned int) m;
TYPE y = n % 2 ? x : 1;
while (n >>= 1)
{
x = x * x;
if (n % 2)
y = y * x;
}
return m < 0 ? 1/y : y;
}
#endif
#if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \
|| ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
|| ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
|| ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
|| ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
#undef float
#undef double
#undef long
#if defined(L_mulhc3) || defined(L_divhc3)
# define MTYPE HFtype
# define CTYPE HCtype
# define AMTYPE SFtype
# define MODE hc
# define CEXT __LIBGCC_HF_FUNC_EXT__
# define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__)
#elif defined(L_mulsc3) || defined(L_divsc3)
# define MTYPE SFtype
# define CTYPE SCtype
# define AMTYPE DFtype
# define MODE sc
# define CEXT __LIBGCC_SF_FUNC_EXT__
# define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__)
# define RBIG (__LIBGCC_SF_MAX__ / 2)
# define RMIN (__LIBGCC_SF_MIN__)
# define RMIN2 (__LIBGCC_SF_EPSILON__)
# define RMINSCAL (1 / __LIBGCC_SF_EPSILON__)
# define RMAX2 (RBIG * RMIN2)
#elif defined(L_muldc3) || defined(L_divdc3)
# define MTYPE DFtype
# define CTYPE DCtype
# define MODE dc
# define CEXT __LIBGCC_DF_FUNC_EXT__
# define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__)
# define RBIG (__LIBGCC_DF_MAX__ / 2)
# define RMIN (__LIBGCC_DF_MIN__)
# define RMIN2 (__LIBGCC_DF_EPSILON__)
# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
# define RMAX2 (RBIG * RMIN2)
#elif defined(L_mulxc3) || defined(L_divxc3)
# define MTYPE XFtype
# define CTYPE XCtype
# define MODE xc
# define CEXT __LIBGCC_XF_FUNC_EXT__
# define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__)
# define RBIG (__LIBGCC_XF_MAX__ / 2)
# define RMIN (__LIBGCC_XF_MIN__)
# define RMIN2 (__LIBGCC_XF_EPSILON__)
# define RMINSCAL (1 / __LIBGCC_XF_EPSILON__)
# define RMAX2 (RBIG * RMIN2)
#elif defined(L_multc3) || defined(L_divtc3)
# define MTYPE TFtype
# define CTYPE TCtype
# define MODE tc
# define CEXT __LIBGCC_TF_FUNC_EXT__
# define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__)
# define RBIG (__LIBGCC_TF_MAX__ / 2)
# define RMIN (__LIBGCC_TF_MIN__)
# define RMIN2 (__LIBGCC_TF_EPSILON__)
# define RMINSCAL (1 / __LIBGCC_TF_EPSILON__)
# define RMAX2 (RBIG * RMIN2)
#else
# error
#endif
#define CONCAT3(A,B,C) _CONCAT3(A,B,C)
#define _CONCAT3(A,B,C) A##B##C
#define CONCAT2(A,B) _CONCAT2(A,B)
#define _CONCAT2(A,B) A##B
#define isnan(x) __builtin_isnan (x)
#define isfinite(x) __builtin_isfinite (x)
#define isinf(x) __builtin_isinf (x)
#define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
#define I 1i
/* Helpers to make the following code slightly less gross. */
#define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
#define FABS CONCAT2(__builtin_fabs, CEXT)
/* Verify that MTYPE matches up with CEXT. */
extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
/* Ensure that we've lost any extra precision. */
#if NOTRUNC
# define TRUNC(x)
#else
# define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
#endif
#if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \
|| defined(L_mulxc3) || defined(L_multc3)
CTYPE
CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
{
MTYPE ac, bd, ad, bc, x, y;
CTYPE res;
ac = a * c;
bd = b * d;
ad = a * d;
bc = b * c;
TRUNC (ac);
TRUNC (bd);
TRUNC (ad);
TRUNC (bc);
x = ac - bd;
y = ad + bc;
if (isnan (x) && isnan (y))
{
/* Recover infinities that computed as NaN + iNaN. */
_Bool recalc = 0;
if (isinf (a) || isinf (b))
{
/* z is infinite. "Box" the infinity and change NaNs in
the other factor to 0. */
a = COPYSIGN (isinf (a) ? 1 : 0, a);
b = COPYSIGN (isinf (b) ? 1 : 0, b);
if (isnan (c)) c = COPYSIGN (0, c);
if (isnan (d)) d = COPYSIGN (0, d);
recalc = 1;
}
if (isinf (c) || isinf (d))
{
/* w is infinite. "Box" the infinity and change NaNs in
the other factor to 0. */
c = COPYSIGN (isinf (c) ? 1 : 0, c);
d = COPYSIGN (isinf (d) ? 1 : 0, d);
if (isnan (a)) a = COPYSIGN (0, a);
if (isnan (b)) b = COPYSIGN (0, b);
recalc = 1;
}
if (!recalc
&& (isinf (ac) || isinf (bd)
|| isinf (ad) || isinf (bc)))
{
/* Recover infinities from overflow by changing NaNs to 0. */
if (isnan (a)) a = COPYSIGN (0, a);
if (isnan (b)) b = COPYSIGN (0, b);
if (isnan (c)) c = COPYSIGN (0, c);
if (isnan (d)) d = COPYSIGN (0, d);
recalc = 1;
}
if (recalc)
{
x = INFINITY * (a * c - b * d);
y = INFINITY * (a * d + b * c);
}
}
__real__ res = x;
__imag__ res = y;
return res;
}
#endif /* complex multiply */
#if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \
|| defined(L_divxc3) || defined(L_divtc3)
CTYPE
CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
{
#if defined(L_divhc3) \
|| (defined(L_divsc3) && defined(__LIBGCC_HAVE_HWDBL__) )
/* Half precision is handled with float precision.
float is handled with double precision when double precision
hardware is available.
Due to the additional precision, the simple complex divide
method (without Smith's method) is sufficient to get accurate
answers and runs slightly faster than Smith's method. */
AMTYPE aa, bb, cc, dd;
AMTYPE denom;
MTYPE x, y;
CTYPE res;
aa = a;
bb = b;
cc = c;
dd = d;
denom = (cc * cc) + (dd * dd);
x = ((aa * cc) + (bb * dd)) / denom;
y = ((bb * cc) - (aa * dd)) / denom;
#else
MTYPE denom, ratio, x, y;
CTYPE res;
/* double, extended, long double have significant potential
underflow/overflow errors that can be greatly reduced with
a limited number of tests and adjustments. float is handled
the same way when no HW double is available.
*/
/* Scale by max(c,d) to reduce chances of denominator overflowing. */
if (FABS (c) < FABS (d))
{
/* Prevent underflow when denominator is near max representable. */
if (FABS (d) >= RBIG)
{
a = a / 2;
b = b / 2;
c = c / 2;
d = d / 2;
}
/* Avoid overflow/underflow issues when c and d are small.
Scaling up helps avoid some underflows.
No new overflow possible since c&d < RMIN2. */
if (FABS (d) < RMIN2)
{
a = a * RMINSCAL;
b = b * RMINSCAL;
c = c * RMINSCAL;
d = d * RMINSCAL;
}
else
{
if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (d) < RMAX2))
|| ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
&& (FABS (d) < RMAX2)))
{
a = a * RMINSCAL;
b = b * RMINSCAL;
c = c * RMINSCAL;
d = d * RMINSCAL;
}
}
ratio = c / d;
denom = (c * ratio) + d;
/* Choose alternate order of computation if ratio is subnormal. */
if (FABS (ratio) > RMIN)
{
x = ((a * ratio) + b) / denom;
y = ((b * ratio) - a) / denom;
}
else
{
x = ((c * (a / d)) + b) / denom;
y = ((c * (b / d)) - a) / denom;
}
}
else
{
/* Prevent underflow when denominator is near max representable. */
if (FABS (c) >= RBIG)
{
a = a / 2;
b = b / 2;
c = c / 2;
d = d / 2;
}
/* Avoid overflow/underflow issues when both c and d are small.
Scaling up helps avoid some underflows.
No new overflow possible since both c&d are less than RMIN2. */
if (FABS (c) < RMIN2)
{
a = a * RMINSCAL;
b = b * RMINSCAL;
c = c * RMINSCAL;
d = d * RMINSCAL;
}
else
{
if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (c) < RMAX2))
|| ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
&& (FABS (c) < RMAX2)))
{
a = a * RMINSCAL;
b = b * RMINSCAL;
c = c * RMINSCAL;
d = d * RMINSCAL;
}
}
ratio = d / c;
denom = (d * ratio) + c;
/* Choose alternate order of computation if ratio is subnormal. */
if (FABS (ratio) > RMIN)
{
x = ((b * ratio) + a) / denom;
y = (b - (a * ratio)) / denom;
}
else
{
x = (a + (d * (b / c))) / denom;
y = (b - (d * (a / c))) / denom;
}
}
#endif
/* Recover infinities and zeros that computed as NaN+iNaN; the only
cases are nonzero/zero, infinite/finite, and finite/infinite. */
if (isnan (x) && isnan (y))
{
if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
{
x = COPYSIGN (INFINITY, c) * a;
y = COPYSIGN (INFINITY, c) * b;
}
else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
{
a = COPYSIGN (isinf (a) ? 1 : 0, a);
b = COPYSIGN (isinf (b) ? 1 : 0, b);
x = INFINITY * (a * c + b * d);
y = INFINITY * (b * c - a * d);
}
else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
{
c = COPYSIGN (isinf (c) ? 1 : 0, c);
d = COPYSIGN (isinf (d) ? 1 : 0, d);
x = 0.0 * (a * c + b * d);
y = 0.0 * (b * c - a * d);
}
}
__real__ res = x;
__imag__ res = y;
return res;
}
#endif /* complex divide */
#endif /* all complex float routines */
/* From here on down, the routines use normal data types. */
#define SItype bogus_type
#define USItype bogus_type
#define DItype bogus_type
#define UDItype bogus_type
#define SFtype bogus_type
#define DFtype bogus_type
#undef Wtype
#undef UWtype
#undef HWtype
#undef UHWtype
#undef DWtype
#undef UDWtype
#undef char
#undef short
#undef int
#undef long
#undef unsigned
#undef float
#undef double
#ifdef L__gcc_bcmp
/* Like bcmp except the sign is meaningful.
Result is negative if S1 is less than S2,
positive if S1 is greater, 0 if S1 and S2 are equal. */
int
__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
{
while (size > 0)
{
const unsigned char c1 = *s1++, c2 = *s2++;
if (c1 != c2)
return c1 - c2;
size--;
}
return 0;
}
#endif
/* __eprintf used to be used by GCC's private version of <assert.h>.
We no longer provide that header, but this routine remains in libgcc.a
for binary backward compatibility. Note that it is not included in
the shared version of libgcc. */
#ifdef L_eprintf
#ifndef inhibit_libc
#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
#include <stdio.h>
void
__eprintf (const char *string, const char *expression,
unsigned int line, const char *filename)
{
fprintf (stderr, string, expression, line, filename);
fflush (stderr);
abort ();
}
#endif
#endif
#ifdef L_clear_cache
/* Clear part of an instruction cache. */
void
__clear_cache (void *beg __attribute__((__unused__)),
void *end __attribute__((__unused__)))
{
#ifdef CLEAR_INSN_CACHE
/* Cast the void* pointers to char* as some implementations
of the macro assume the pointers can be subtracted from
one another. */
CLEAR_INSN_CACHE ((char *) beg, (char *) end);
#endif /* CLEAR_INSN_CACHE */
}
#endif /* L_clear_cache */
#ifdef L_trampoline
/* Jump to a trampoline, loading the static chain address. */
#if defined(WINNT) && ! defined(__CYGWIN__)
#include <windows.h>
int getpagesize (void);
int mprotect (char *,int, int);
int
getpagesize (void)
{
#ifdef _ALPHA_
return 8192;
#else
return 4096;
#endif
}
int
mprotect (char *addr, int len, int prot)
{
DWORD np, op;
if (prot == 7)
np = 0x40;
else if (prot == 5)
np = 0x20;
else if (prot == 4)
np = 0x10;
else if (prot == 3)
np = 0x04;
else if (prot == 1)
np = 0x02;
else if (prot == 0)
np = 0x01;
else
return -1;
if (VirtualProtect (addr, len, np, &op))
return 0;
else
return -1;
}
#endif /* WINNT && ! __CYGWIN__ */
#ifdef TRANSFER_FROM_TRAMPOLINE
TRANSFER_FROM_TRAMPOLINE
#endif
#endif /* L_trampoline */
#ifndef __CYGWIN__
#ifdef L__main
#include "gbl-ctors.h"
/* Some systems use __main in a way incompatible with its use in gcc, in these
cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
give the same symbol without quotes for an alternative entry point. You
must define both, or neither. */
#ifndef NAME__MAIN
#define NAME__MAIN "__main"
#define SYMBOL__MAIN __main
#endif
#if defined (__LIBGCC_INIT_SECTION_ASM_OP__) \
|| defined (__LIBGCC_INIT_ARRAY_SECTION_ASM_OP__)
#undef HAS_INIT_SECTION
#define HAS_INIT_SECTION
#endif
#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
code to run constructors. In that case, we need to handle EH here, too.
But MINGW32 is special because it handles CRTSTUFF and EH on its own. */
#ifdef __MINGW32__
#undef __LIBGCC_EH_FRAME_SECTION_NAME__
#endif
#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
#include "unwind-dw2-fde.h"
extern unsigned char __EH_FRAME_BEGIN__[];
#endif
/* Run all the global destructors on exit from the program. */
void
__do_global_dtors (void)
{
#ifdef DO_GLOBAL_DTORS_BODY
DO_GLOBAL_DTORS_BODY;
#else
static func_ptr *p = __DTOR_LIST__ + 1;
while (*p)
{
p++;
(*(p-1)) ();
}
#endif
#if defined (__LIBGCC_EH_FRAME_SECTION_NAME__) && !defined (HAS_INIT_SECTION)
{
static int completed = 0;
if (! completed)
{
completed = 1;
__deregister_frame_info (__EH_FRAME_BEGIN__);
}
}
#endif
}
#endif
#ifndef HAS_INIT_SECTION
/* Run all the global constructors on entry to the program. */
void
__do_global_ctors (void)
{
#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
{
static struct object object;
__register_frame_info (__EH_FRAME_BEGIN__, &object);
}
#endif
DO_GLOBAL_CTORS_BODY;
atexit (__do_global_dtors);
}
#endif /* no HAS_INIT_SECTION */
#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
/* Subroutine called automatically by `main'.
Compiling a global function named `main'
produces an automatic call to this function at the beginning.
For many systems, this routine calls __do_global_ctors.
For systems which support a .init section we use the .init section
to run __do_global_ctors, so we need not do anything here. */
extern void SYMBOL__MAIN (void);
void
SYMBOL__MAIN (void)
{
/* Support recursive calls to `main': run initializers just once. */
static int initialized;
if (! initialized)
{
initialized = 1;
__do_global_ctors ();
}
}
#endif /* no HAS_INIT_SECTION or INVOKE__main */
#endif /* L__main */
#endif /* __CYGWIN__ */
#ifdef L_ctors
#include "gbl-ctors.h"
/* Provide default definitions for the lists of constructors and
destructors, so that we don't get linker errors. These symbols are
intentionally bss symbols, so that gld and/or collect will provide
the right values. */
/* We declare the lists here with two elements each,
so that they are valid empty lists if no other definition is loaded.
If we are using the old "set" extensions to have the gnu linker
collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
must be in the bss/common section.
Long term no port should use those extensions. But many still do. */
#if !defined(__LIBGCC_INIT_SECTION_ASM_OP__)
#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
func_ptr __CTOR_LIST__[2] = {0, 0};
func_ptr __DTOR_LIST__[2] = {0, 0};
#else
func_ptr __CTOR_LIST__[2];
func_ptr __DTOR_LIST__[2];
#endif
#endif /* no __LIBGCC_INIT_SECTION_ASM_OP__ */
#endif /* L_ctors */
#endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */
|