1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
|
/* HImode div/mod functions for the GCC support library for the Renesas RL78 processors.
Copyright (C) 2012-2022 Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "vregs.h"
#if defined __RL78_MUL_G14__
START_FUNC ___divhi3
;; r8 = 4[sp] / 6[sp]
;; Test for a negative denumerator.
movw ax, [sp+6]
mov1 cy, a.7
movw de, ax
bc $__div_neg_den
;; Test for a negative numerator.
movw ax, [sp+4]
mov1 cy, a.7
bc $__div_neg_num
;; Neither are negative - we can use the unsigned divide instruction.
__div_no_convert:
push psw
di
divhu
pop psw
movw r8, ax
ret
__div_neg_den:
;; Negate the denumerator (which is in DE)
clrw ax
subw ax, de
movw de, ax
;; Test for a negative numerator.
movw ax, [sp+4]
mov1 cy, a.7
;; If it is not negative then we perform the division and then negate the result.
bnc $__div_then_convert
;; Otherwise we negate the numerator and then go with an unsigned division.
movw bc, ax
clrw ax
subw ax, bc
br $__div_no_convert
__div_neg_num:
;; Negate the numerator (which is in AX)
;; We know that the denumerator is positive.
movw bc, ax
clrw ax
subw ax, bc
__div_then_convert:
push psw
di
divhu
pop psw
;; Negate result and transfer into r8
movw bc, ax
clrw ax
subw ax, bc
movw r8, ax
ret
END_FUNC ___divhi3
;----------------------------------------------------------------------
START_FUNC ___modhi3
;; r8 = 4[sp] % 6[sp]
;; Test for a negative denumerator.
movw ax, [sp+6]
mov1 cy, a.7
movw de, ax
bc $__mod_neg_den
;; Test for a negative numerator.
movw ax, [sp+4]
mov1 cy, a.7
bc $__mod_neg_num
;; Neither are negative - we can use the unsigned divide instruction.
__mod_no_convert:
push psw
di
divhu
pop psw
movw ax, de
movw r8, ax
ret
__mod_neg_den:
;; Negate the denumerator (which is in DE)
clrw ax
subw ax, de
movw de, ax
;; Test for a negative numerator.
movw ax, [sp+4]
mov1 cy, a.7
;; If it is not negative then we perform the modulo operation without conversion.
bnc $__mod_no_convert
;; Otherwise we negate the numerator and then go with an unsigned modulo operation.
movw bc, ax
clrw ax
subw ax, bc
br $__mod_then_convert
__mod_neg_num:
;; Negate the numerator (which is in AX)
;; We know that the denumerator is positive.
movw bc, ax
clrw ax
subw ax, bc
__mod_then_convert:
push psw
di
divhu
pop psw
;; Negate result and transfer into r8
clrw ax
subw ax, de
movw r8, ax
ret
END_FUNC ___modhi3
;----------------------------------------------------------------------
#elif defined __RL78_MUL_G13__
;; The G13 S2 core does not have a 16 bit divide peripheral.
;; So instead we perform a 32-bit divide and twiddle the inputs
;; as necessary.
;; Hardware registers. Note - these values match the silicon, not the documentation.
MDAL = 0xffff0
MDAH = 0xffff2
MDBL = 0xffff6
MDBH = 0xffff4
MDCL = 0xf00e0
MDCH = 0xf00e2
MDUC = 0xf00e8
.macro _Negate src, dest
movw ax, !\src
movw bc, ax
clrw ax
subw ax, bc
movw \dest, ax
.endm
;----------------------------------------------------------------------
START_FUNC ___divhi3
;; r8 = 4[sp] / 6[sp] (signed division)
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
clrw ax ; Clear the top 16-bits of the divisor and dividend
movw MDBH, ax
movw MDAH, ax
;; Load and test for a negative denumerator.
movw ax, [sp+6]
movw MDBL, ax
mov1 cy, a.7
bc $__div_neg_den
;; Load and test for a negative numerator.
movw ax, [sp+4]
mov1 cy, a.7
movw MDAL, ax
bc $__div_neg_num
;; Neither are negative - we can use the unsigned divide hardware.
__div_no_convert:
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
movw ax, MDAL ; Read the result
movw r8, ax
ret
__div_neg_den:
;; Negate the denumerator (which is in MDBL)
_Negate MDBL MDBL
;; Load and test for a negative numerator.
movw ax, [sp+4]
mov1 cy, a.7
movw MDAL, ax
;; If it is not negative then we perform the division and then negate the result.
bnc $__div_then_convert
;; Otherwise we negate the numerator and then go with a straightforward unsigned division.
_Negate MDAL MDAL
br $!__div_no_convert
__div_neg_num:
;; Negate the numerator (which is in MDAL)
;; We know that the denumerator is positive.
_Negate MDAL MDAL
__div_then_convert:
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
;; Negate result and transfer into r8
_Negate MDAL r8
ret
END_FUNC ___divhi3
;----------------------------------------------------------------------
START_FUNC ___modhi3
;; r8 = 4[sp] % 6[sp] (signed modulus)
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
clrw ax ; Clear the top 16-bits of the divisor and dividend
movw MDBH, ax
movw MDAH, ax
;; Load and test for a negative denumerator.
movw ax, [sp+6]
movw MDBL, ax
mov1 cy, a.7
bc $__mod_neg_den
;; Load and test for a negative numerator.
movw ax, [sp+4]
mov1 cy, a.7
movw MDAL, ax
bc $__mod_neg_num
;; Neither are negative - we can use the unsigned divide hardware
__mod_no_convert:
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
movw ax, !MDCL ; Read the remainder
movw r8, ax
ret
__mod_neg_den:
;; Negate the denumerator (which is in MDBL)
_Negate MDBL MDBL
;; Load and test for a negative numerator.
movw ax, [sp+4]
mov1 cy, a.7
movw MDAL, ax
;; If it is not negative then we perform the modulo operation without conversion.
bnc $__mod_no_convert
;; Otherwise we negate the numerator and then go with a modulo followed by negation.
_Negate MDAL MDAL
br $!__mod_then_convert
__mod_neg_num:
;; Negate the numerator (which is in MDAL)
;; We know that the denumerator is positive.
_Negate MDAL MDAL
__mod_then_convert:
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
_Negate MDCL r8
ret
END_FUNC ___modhi3
;----------------------------------------------------------------------
START_FUNC ___udivhi3
;; r8 = 4[sp] / 6[sp] (unsigned division)
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
movw ax, [sp+4] ; Load the divisor
movw MDAL, ax
movw ax, [sp+6] ; Load the dividend
movw MDBL, ax
clrw ax
movw MDAH, ax
movw MDBH, ax
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
movw ax, !MDAL ; Read the remainder
movw r8, ax
ret
END_FUNC ___udivhi3
;----------------------------------------------------------------------
START_FUNC ___umodhi3
;; r8 = 4[sp] % 6[sp] (unsigned modulus)
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
movw ax, [sp+4] ; Load the divisor
movw MDAL, ax
movw ax, [sp+6] ; Load the dividend
movw MDBL, ax
clrw ax
movw MDAH, ax
movw MDBH, ax
mov a, #0xC1 ; Set the DIVST bit in MDUC
mov !MDUC, a ; This starts the division op
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
bt a.0, $1b
movw ax, !MDCL ; Read the remainder
movw r8, ax
ret
END_FUNC ___umodhi3
;----------------------------------------------------------------------
#elif defined __RL78_MUL_NONE__
.macro MAKE_GENERIC which,need_result
.if \need_result
quot = r8
num = r10
den = r12
bit = r14
.else
num = r8
quot = r10
den = r12
bit = r14
.endif
quotB0 = quot
quotB1 = quot+1
numB0 = num
numB1 = num+1
denB0 = den
denB1 = den+1
bitB0 = bit
bitB1 = bit+1
#define bit bc
#define bitB0 c
#define bitB1 b
START_FUNC __generic_hidivmod\which
num_lt_den\which:
.if \need_result
movw r8, #0
.else
movw ax, [sp+8]
movw r8, ax
.endif
ret
;; These routines leave DE alone - the signed functions use DE
;; to store sign information that must remain intact
.if \need_result
.global __generic_hidiv
__generic_hidiv:
.else
.global __generic_himod
__generic_himod:
.endif
;; (quot,rem) = 8[sp] /% 10[sp]
movw hl, sp
movw ax, [hl+10] ; denH
cmpw ax, [hl+8] ; numH
bh $num_lt_den\which
;; (quot,rem) = 16[sp] /% 20[sp]
;; copy numerator
movw ax, [hl+8]
movw num, ax
;; copy denomonator
movw ax, [hl+10]
movw den, ax
movw ax, den
cmpw ax, #0
bnz $den_not_zero\which
.if \need_result
movw quot, #0
.else
movw num, #0
.endif
ret
den_not_zero\which:
.if \need_result
;; zero out quot
movw quot, #0
.endif
;; initialize bit to 1
movw bit, #1
; while (den < num && !(den & (1L << BITS_MINUS_1)))
shift_den_bit\which:
movw ax, den
mov1 cy,a.7
bc $enter_main_loop\which
cmpw ax, num
bh $enter_main_loop\which
;; den <<= 1
; movw ax, den ; already has it from the cmpw above
shlw ax, 1
movw den, ax
;; bit <<= 1
.if \need_result
#ifdef bit
shlw bit, 1
#else
movw ax, bit
shlw ax, 1
movw bit, ax
#endif
.else
;; if we don't need to compute the quotent, we don't need an
;; actual bit *mask*, we just need to keep track of which bit
inc bitB0
.endif
br $shift_den_bit\which
main_loop\which:
;; if (num >= den) (cmp den > num)
movw ax, den
cmpw ax, num
bh $next_loop\which
;; num -= den
movw ax, num
subw ax, den
movw num, ax
.if \need_result
;; res |= bit
mov a, quotB0
or a, bitB0
mov quotB0, a
mov a, quotB1
or a, bitB1
mov quotB1, a
.endif
next_loop\which:
;; den >>= 1
movw ax, den
shrw ax, 1
movw den, ax
.if \need_result
;; bit >>= 1
movw ax, bit
shrw ax, 1
movw bit, ax
.else
dec bitB0
.endif
enter_main_loop\which:
.if \need_result
movw ax, bit
cmpw ax, #0
.else
cmp0 bitB0
.endif
bnz $main_loop\which
main_loop_done\which:
ret
END_FUNC __generic_hidivmod\which
.endm
;----------------------------------------------------------------------
MAKE_GENERIC _d 1
MAKE_GENERIC _m 0
;----------------------------------------------------------------------
START_FUNC ___udivhi3
;; r8 = 4[sp] / 6[sp]
call $!__generic_hidiv
ret
END_FUNC ___udivhi3
START_FUNC ___umodhi3
;; r8 = 4[sp] % 6[sp]
call $!__generic_himod
ret
END_FUNC ___umodhi3
;----------------------------------------------------------------------
.macro NEG_AX
movw hl, ax
movw ax, #0
subw ax, [hl]
movw [hl], ax
.endm
;----------------------------------------------------------------------
START_FUNC ___divhi3
;; r8 = 4[sp] / 6[sp]
movw de, #0
mov a, [sp+5]
mov1 cy, a.7
bc $div_signed_num
mov a, [sp+7]
mov1 cy, a.7
bc $div_signed_den
call $!__generic_hidiv
ret
div_signed_num:
;; neg [sp+4]
movw ax, sp
addw ax, #4
NEG_AX
mov d, #1
mov a, [sp+7]
mov1 cy, a.7
bnc $div_unsigned_den
div_signed_den:
;; neg [sp+6]
movw ax, sp
addw ax, #6
NEG_AX
mov e, #1
div_unsigned_den:
call $!__generic_hidiv
mov a, d
cmp0 a
bz $div_skip_restore_num
;; We have to restore the numerator [sp+4]
movw ax, sp
addw ax, #4
NEG_AX
mov a, d
div_skip_restore_num:
xor a, e
bz $div_no_neg
movw ax, #r8
NEG_AX
div_no_neg:
mov a, e
cmp0 a
bz $div_skip_restore_den
movw ax, sp
addw ax, #6
NEG_AX
div_skip_restore_den:
ret
END_FUNC ___divhi3
START_FUNC ___modhi3
;; r8 = 4[sp] % 6[sp]
movw de, #0
mov a, [sp+5]
mov1 cy, a.7
bc $mod_signed_num
mov a, [sp+7]
mov1 cy, a.7
bc $mod_signed_den
call $!__generic_himod
ret
mod_signed_num:
;; neg [sp+4]
movw ax, sp
addw ax, #4
NEG_AX
mov d, #1
mov a, [sp+7]
mov1 cy, a.7
bnc $mod_unsigned_den
mod_signed_den:
;; neg [sp+6]
movw ax, sp
addw ax, #6
NEG_AX
mod_unsigned_den:
call $!__generic_himod
mov a, d
cmp0 a
bz $mod_no_neg
movw ax, #r8
NEG_AX
;; Also restore numerator
movw ax, sp
addw ax, #4
NEG_AX
mod_no_neg:
mov a, e
cmp0 a
bz $mod_skip_restore_den
movw ax, sp
addw ax, #6
NEG_AX
mod_skip_restore_den:
ret
END_FUNC ___modhi3
;----------------------------------------------------------------------
#else
#error "Unknown RL78 hardware multiply/divide support"
#endif
|