1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
|
/* Copyright (C) 2007-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "bid_internal.h"
/*****************************************************************************
* BID64 minimum function - returns greater of two numbers
*****************************************************************************/
static const UINT64 mult_factor[16] = {
1ull, 10ull, 100ull, 1000ull,
10000ull, 100000ull, 1000000ull, 10000000ull,
100000000ull, 1000000000ull, 10000000000ull, 100000000000ull,
1000000000000ull, 10000000000000ull,
100000000000000ull, 1000000000000000ull
};
#if DECIMAL_CALL_BY_REFERENCE
void
bid64_minnum (UINT64 * pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM) {
UINT64 x = *px;
UINT64 y = *py;
#else
UINT64
bid64_minnum (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
#endif
UINT64 res;
int exp_x, exp_y;
UINT64 sig_x, sig_y;
UINT128 sig_n_prime;
char x_is_zero = 0, y_is_zero = 0;
// check for non-canonical x
if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
x = x & 0xfe03ffffffffffffull; // clear G6-G12
if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
}
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
x = x & (MASK_SIGN | MASK_INF);
} else { // x is not special
// check for non-canonical values - treated as zero
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
// if the steering bits are 11, then the exponent is G[0:w+1]
if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
9999999999999999ull) {
// non-canonical
x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
} // else canonical
} // else canonical
}
// check for non-canonical y
if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
y = y & 0xfe03ffffffffffffull; // clear G6-G12
if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
}
} else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
y = y & (MASK_SIGN | MASK_INF);
} else { // y is not special
// check for non-canonical values - treated as zero
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
// if the steering bits are 11, then the exponent is G[0:w+1]
if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
9999999999999999ull) {
// non-canonical
y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
} // else canonical
} // else canonical
}
// NaN (CASE1)
if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
// if x is SNAN, then return quiet (x)
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
x = x & 0xfdffffffffffffffull; // quietize x
res = x;
} else { // x is QNaN
if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
*pfpsf |= INVALID_EXCEPTION; // set invalid flag
}
res = x;
} else {
res = y;
}
}
BID_RETURN (res);
} else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
if ((y & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
y = y & 0xfdffffffffffffffull; // quietize y
res = y;
} else {
// will return x (which is not NaN)
res = x;
}
BID_RETURN (res);
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal, return either number
if (x == y) {
res = x;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x & MASK_INF) == MASK_INF) {
// if x is neg infinity, there is no way it is greater than y, return x
if (((x & MASK_SIGN) == MASK_SIGN)) {
res = x;
BID_RETURN (res);
}
// x is pos infinity, return y
else {
res = y;
BID_RETURN (res);
}
} else if ((y & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return y
// if y is negative infinity, then x is greater, return x
res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
BID_RETURN (res);
}
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
} else {
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
sig_x = (x & MASK_BINARY_SIG1);
}
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
} else {
exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
sig_y = (y & MASK_BINARY_SIG1);
}
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore
// ignore the sign, and neither number is greater
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (sig_x == 0) {
x_is_zero = 1;
}
if (sig_y == 0) {
y_is_zero = 1;
}
if (x_is_zero && y_is_zero) {
// if both numbers are zero, neither is greater => return either
res = y;
BID_RETURN (res);
} else if (x_is_zero) {
// is x is zero, it is greater if Y is negative
res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
BID_RETURN (res);
} else if (y_is_zero) {
// is y is zero, X is greater if it is positive
res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x;;
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if both components are either bigger or smaller,
// it is clear what needs to be done
if (sig_x > sig_y && exp_x >= exp_y) {
res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x;
BID_RETURN (res);
}
if (sig_x < sig_y && exp_x <= exp_y) {
res = ((x & MASK_SIGN) == MASK_SIGN) ? y : x;
BID_RETURN (res);
}
// if exp_x is 15 greater than exp_y, no need for compensation
if (exp_x - exp_y > 15) {
res = ((x & MASK_SIGN) != MASK_SIGN) ? y : x; // difference cannot be >10^15
BID_RETURN (res);
}
// if exp_x is 15 less than exp_y, no need for compensation
if (exp_y - exp_x > 15) {
res = ((x & MASK_SIGN) == MASK_SIGN) ? y : x;
BID_RETURN (res);
}
// if |exp_x - exp_y| < 15, it comes down to the compensated significand
if (exp_x > exp_y) { // to simplify the loop below,
// otherwise adjust the x significand upwards
__mul_64x64_to_128MACH (sig_n_prime, sig_x,
mult_factor[exp_x - exp_y]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
res = y;
BID_RETURN (res);
}
res = (((sig_n_prime.w[1] > 0)
|| sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
MASK_SIGN)) ? y : x;
BID_RETURN (res);
}
// adjust the y significand upwards
__mul_64x64_to_128MACH (sig_n_prime, sig_y,
mult_factor[exp_y - exp_x]);
// if postitive, return whichever significand is larger (converse if negative)
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
res = y;
BID_RETURN (res);
}
res = (((sig_n_prime.w[1] == 0)
&& (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
MASK_SIGN)) ? y : x;
BID_RETURN (res);
}
/*****************************************************************************
* BID64 minimum magnitude function - returns greater of two numbers
*****************************************************************************/
#if DECIMAL_CALL_BY_REFERENCE
void
bid64_minnum_mag (UINT64 * pres, UINT64 * px,
UINT64 * py _EXC_FLAGS_PARAM) {
UINT64 x = *px;
UINT64 y = *py;
#else
UINT64
bid64_minnum_mag (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
#endif
UINT64 res;
int exp_x, exp_y;
UINT64 sig_x, sig_y;
UINT128 sig_n_prime;
// check for non-canonical x
if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
x = x & 0xfe03ffffffffffffull; // clear G6-G12
if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
}
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
x = x & (MASK_SIGN | MASK_INF);
} else { // x is not special
// check for non-canonical values - treated as zero
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
// if the steering bits are 11, then the exponent is G[0:w+1]
if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
9999999999999999ull) {
// non-canonical
x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
} // else canonical
} // else canonical
}
// check for non-canonical y
if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
y = y & 0xfe03ffffffffffffull; // clear G6-G12
if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
}
} else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
y = y & (MASK_SIGN | MASK_INF);
} else { // y is not special
// check for non-canonical values - treated as zero
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
// if the steering bits are 11, then the exponent is G[0:w+1]
if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
9999999999999999ull) {
// non-canonical
y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
} // else canonical
} // else canonical
}
// NaN (CASE1)
if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
// if x is SNAN, then return quiet (x)
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
x = x & 0xfdffffffffffffffull; // quietize x
res = x;
} else { // x is QNaN
if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
*pfpsf |= INVALID_EXCEPTION; // set invalid flag
}
res = x;
} else {
res = y;
}
}
BID_RETURN (res);
} else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
if ((y & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
y = y & 0xfdffffffffffffffull; // quietize y
res = y;
} else {
// will return x (which is not NaN)
res = x;
}
BID_RETURN (res);
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal, return either number
if (x == y) {
res = x;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x & MASK_INF) == MASK_INF) {
// x is infinity, its magnitude is greater than or equal to y
// return x only if y is infinity and x is negative
res = ((x & MASK_SIGN) == MASK_SIGN
&& (y & MASK_INF) == MASK_INF) ? x : y;
BID_RETURN (res);
} else if ((y & MASK_INF) == MASK_INF) {
// y is infinity, then it must be greater in magnitude, return x
res = x;
BID_RETURN (res);
}
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
} else {
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
sig_x = (x & MASK_BINARY_SIG1);
}
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
} else {
exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
sig_y = (y & MASK_BINARY_SIG1);
}
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore
// ignore the sign, and neither number is greater
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (sig_x == 0) {
res = x; // x_is_zero, its magnitude must be smaller than y
BID_RETURN (res);
}
if (sig_y == 0) {
res = y; // y_is_zero, its magnitude must be smaller than x
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if both components are either bigger or smaller,
// it is clear what needs to be done
if (sig_x > sig_y && exp_x >= exp_y) {
res = y;
BID_RETURN (res);
}
if (sig_x < sig_y && exp_x <= exp_y) {
res = x;
BID_RETURN (res);
}
// if exp_x is 15 greater than exp_y, no need for compensation
if (exp_x - exp_y > 15) {
res = y; // difference cannot be greater than 10^15
BID_RETURN (res);
}
// if exp_x is 15 less than exp_y, no need for compensation
if (exp_y - exp_x > 15) {
res = x;
BID_RETURN (res);
}
// if |exp_x - exp_y| < 15, it comes down to the compensated significand
if (exp_x > exp_y) { // to simplify the loop below,
// otherwise adjust the x significand upwards
__mul_64x64_to_128MACH (sig_n_prime, sig_x,
mult_factor[exp_x - exp_y]);
// now, sig_n_prime has: sig_x * 10^(exp_x-exp_y), this is
// the compensated signif.
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
// two numbers are equal, return minNum(x,y)
res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
BID_RETURN (res);
}
// now, if compensated_x (sig_n_prime) is greater than y, return y,
// otherwise return x
res = ((sig_n_prime.w[1] != 0) || sig_n_prime.w[0] > sig_y) ? y : x;
BID_RETURN (res);
}
// exp_y must be greater than exp_x, thus adjust the y significand upwards
__mul_64x64_to_128MACH (sig_n_prime, sig_y,
mult_factor[exp_y - exp_x]);
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
res = ((y & MASK_SIGN) == MASK_SIGN) ? y : x;
// two numbers are equal, return either
BID_RETURN (res);
}
res = ((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ? y : x;
BID_RETURN (res);
}
/*****************************************************************************
* BID64 maximum function - returns greater of two numbers
*****************************************************************************/
#if DECIMAL_CALL_BY_REFERENCE
void
bid64_maxnum (UINT64 * pres, UINT64 * px, UINT64 * py _EXC_FLAGS_PARAM) {
UINT64 x = *px;
UINT64 y = *py;
#else
UINT64
bid64_maxnum (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
#endif
UINT64 res;
int exp_x, exp_y;
UINT64 sig_x, sig_y;
UINT128 sig_n_prime;
char x_is_zero = 0, y_is_zero = 0;
// check for non-canonical x
if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
x = x & 0xfe03ffffffffffffull; // clear G6-G12
if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
}
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
x = x & (MASK_SIGN | MASK_INF);
} else { // x is not special
// check for non-canonical values - treated as zero
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
// if the steering bits are 11, then the exponent is G[0:w+1]
if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
9999999999999999ull) {
// non-canonical
x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
} // else canonical
} // else canonical
}
// check for non-canonical y
if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
y = y & 0xfe03ffffffffffffull; // clear G6-G12
if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
}
} else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
y = y & (MASK_SIGN | MASK_INF);
} else { // y is not special
// check for non-canonical values - treated as zero
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
// if the steering bits are 11, then the exponent is G[0:w+1]
if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
9999999999999999ull) {
// non-canonical
y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
} // else canonical
} // else canonical
}
// NaN (CASE1)
if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
// if x is SNAN, then return quiet (x)
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
x = x & 0xfdffffffffffffffull; // quietize x
res = x;
} else { // x is QNaN
if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
*pfpsf |= INVALID_EXCEPTION; // set invalid flag
}
res = x;
} else {
res = y;
}
}
BID_RETURN (res);
} else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
if ((y & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
y = y & 0xfdffffffffffffffull; // quietize y
res = y;
} else {
// will return x (which is not NaN)
res = x;
}
BID_RETURN (res);
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal (not Greater).
if (x == y) {
res = x;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x & MASK_INF) == MASK_INF) {
// if x is neg infinity, there is no way it is greater than y, return y
// x is pos infinity, it is greater, unless y is positive infinity =>
// return y!=pos_infinity
if (((x & MASK_SIGN) == MASK_SIGN)) {
res = y;
BID_RETURN (res);
} else {
res = (((y & MASK_INF) != MASK_INF)
|| ((y & MASK_SIGN) == MASK_SIGN)) ? x : y;
BID_RETURN (res);
}
} else if ((y & MASK_INF) == MASK_INF) {
// x is finite, so if y is positive infinity, then x is less, return y
// if y is negative infinity, then x is greater, return x
res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
BID_RETURN (res);
}
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
} else {
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
sig_x = (x & MASK_BINARY_SIG1);
}
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
} else {
exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
sig_y = (y & MASK_BINARY_SIG1);
}
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore
// ignore the sign, and neither number is greater
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (sig_x == 0) {
x_is_zero = 1;
}
if (sig_y == 0) {
y_is_zero = 1;
}
if (x_is_zero && y_is_zero) {
// if both numbers are zero, neither is greater => return NOTGREATERTHAN
res = y;
BID_RETURN (res);
} else if (x_is_zero) {
// is x is zero, it is greater if Y is negative
res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
BID_RETURN (res);
} else if (y_is_zero) {
// is y is zero, X is greater if it is positive
res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y;;
BID_RETURN (res);
}
// OPPOSITE SIGN (CASE5)
// now, if the sign bits differ, x is greater if y is negative
if (((x ^ y) & MASK_SIGN) == MASK_SIGN) {
res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if both components are either bigger or smaller,
// it is clear what needs to be done
if (sig_x > sig_y && exp_x >= exp_y) {
res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y;
BID_RETURN (res);
}
if (sig_x < sig_y && exp_x <= exp_y) {
res = ((x & MASK_SIGN) == MASK_SIGN) ? x : y;
BID_RETURN (res);
}
// if exp_x is 15 greater than exp_y, no need for compensation
if (exp_x - exp_y > 15) {
res = ((x & MASK_SIGN) != MASK_SIGN) ? x : y;
// difference cannot be > 10^15
BID_RETURN (res);
}
// if exp_x is 15 less than exp_y, no need for compensation
if (exp_y - exp_x > 15) {
res = ((x & MASK_SIGN) == MASK_SIGN) ? x : y;
BID_RETURN (res);
}
// if |exp_x - exp_y| < 15, it comes down to the compensated significand
if (exp_x > exp_y) { // to simplify the loop below,
// otherwise adjust the x significand upwards
__mul_64x64_to_128MACH (sig_n_prime, sig_x,
mult_factor[exp_x - exp_y]);
// if postitive, return whichever significand is larger
// (converse if negative)
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
res = y;
BID_RETURN (res);
}
res = (((sig_n_prime.w[1] > 0)
|| sig_n_prime.w[0] > sig_y) ^ ((x & MASK_SIGN) ==
MASK_SIGN)) ? x : y;
BID_RETURN (res);
}
// adjust the y significand upwards
__mul_64x64_to_128MACH (sig_n_prime, sig_y,
mult_factor[exp_y - exp_x]);
// if postitive, return whichever significand is larger (converse if negative)
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
res = y;
BID_RETURN (res);
}
res = (((sig_n_prime.w[1] == 0)
&& (sig_x > sig_n_prime.w[0])) ^ ((x & MASK_SIGN) ==
MASK_SIGN)) ? x : y;
BID_RETURN (res);
}
/*****************************************************************************
* BID64 maximum magnitude function - returns greater of two numbers
*****************************************************************************/
#if DECIMAL_CALL_BY_REFERENCE
void
bid64_maxnum_mag (UINT64 * pres, UINT64 * px,
UINT64 * py _EXC_FLAGS_PARAM) {
UINT64 x = *px;
UINT64 y = *py;
#else
UINT64
bid64_maxnum_mag (UINT64 x, UINT64 y _EXC_FLAGS_PARAM) {
#endif
UINT64 res;
int exp_x, exp_y;
UINT64 sig_x, sig_y;
UINT128 sig_n_prime;
// check for non-canonical x
if ((x & MASK_NAN) == MASK_NAN) { // x is NaN
x = x & 0xfe03ffffffffffffull; // clear G6-G12
if ((x & 0x0003ffffffffffffull) > 999999999999999ull) {
x = x & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
}
} else if ((x & MASK_INF) == MASK_INF) { // check for Infinity
x = x & (MASK_SIGN | MASK_INF);
} else { // x is not special
// check for non-canonical values - treated as zero
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
// if the steering bits are 11, then the exponent is G[0:w+1]
if (((x & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
9999999999999999ull) {
// non-canonical
x = (x & MASK_SIGN) | ((x & MASK_BINARY_EXPONENT2) << 2);
} // else canonical
} // else canonical
}
// check for non-canonical y
if ((y & MASK_NAN) == MASK_NAN) { // y is NaN
y = y & 0xfe03ffffffffffffull; // clear G6-G12
if ((y & 0x0003ffffffffffffull) > 999999999999999ull) {
y = y & 0xfe00000000000000ull; // clear G6-G12 and the payload bits
}
} else if ((y & MASK_INF) == MASK_INF) { // check for Infinity
y = y & (MASK_SIGN | MASK_INF);
} else { // y is not special
// check for non-canonical values - treated as zero
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
// if the steering bits are 11, then the exponent is G[0:w+1]
if (((y & MASK_BINARY_SIG2) | MASK_BINARY_OR2) >
9999999999999999ull) {
// non-canonical
y = (y & MASK_SIGN) | ((y & MASK_BINARY_EXPONENT2) << 2);
} // else canonical
} // else canonical
}
// NaN (CASE1)
if ((x & MASK_NAN) == MASK_NAN) { // x is NAN
if ((x & MASK_SNAN) == MASK_SNAN) { // x is SNaN
// if x is SNAN, then return quiet (x)
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
x = x & 0xfdffffffffffffffull; // quietize x
res = x;
} else { // x is QNaN
if ((y & MASK_NAN) == MASK_NAN) { // y is NAN
if ((y & MASK_SNAN) == MASK_SNAN) { // y is SNAN
*pfpsf |= INVALID_EXCEPTION; // set invalid flag
}
res = x;
} else {
res = y;
}
}
BID_RETURN (res);
} else if ((y & MASK_NAN) == MASK_NAN) { // y is NaN, but x is not
if ((y & MASK_SNAN) == MASK_SNAN) {
*pfpsf |= INVALID_EXCEPTION; // set exception if SNaN
y = y & 0xfdffffffffffffffull; // quietize y
res = y;
} else {
// will return x (which is not NaN)
res = x;
}
BID_RETURN (res);
}
// SIMPLE (CASE2)
// if all the bits are the same, these numbers are equal, return either number
if (x == y) {
res = x;
BID_RETURN (res);
}
// INFINITY (CASE3)
if ((x & MASK_INF) == MASK_INF) {
// x is infinity, its magnitude is greater than or equal to y
// return y as long as x isn't negative infinity
res = ((x & MASK_SIGN) == MASK_SIGN
&& (y & MASK_INF) == MASK_INF) ? y : x;
BID_RETURN (res);
} else if ((y & MASK_INF) == MASK_INF) {
// y is infinity, then it must be greater in magnitude
res = y;
BID_RETURN (res);
}
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
if ((x & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
exp_x = (x & MASK_BINARY_EXPONENT2) >> 51;
sig_x = (x & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
} else {
exp_x = (x & MASK_BINARY_EXPONENT1) >> 53;
sig_x = (x & MASK_BINARY_SIG1);
}
// if steering bits are 11 (condition will be 0), then exponent is G[0:w+1] =>
if ((y & MASK_STEERING_BITS) == MASK_STEERING_BITS) {
exp_y = (y & MASK_BINARY_EXPONENT2) >> 51;
sig_y = (y & MASK_BINARY_SIG2) | MASK_BINARY_OR2;
} else {
exp_y = (y & MASK_BINARY_EXPONENT1) >> 53;
sig_y = (y & MASK_BINARY_SIG1);
}
// ZERO (CASE4)
// some properties:
// (+ZERO == -ZERO) => therefore
// ignore the sign, and neither number is greater
// (ZERO x 10^A == ZERO x 10^B) for any valid A, B =>
// ignore the exponent field
// (Any non-canonical # is considered 0)
if (sig_x == 0) {
res = y; // x_is_zero, its magnitude must be smaller than y
BID_RETURN (res);
}
if (sig_y == 0) {
res = x; // y_is_zero, its magnitude must be smaller than x
BID_RETURN (res);
}
// REDUNDANT REPRESENTATIONS (CASE6)
// if both components are either bigger or smaller,
// it is clear what needs to be done
if (sig_x > sig_y && exp_x >= exp_y) {
res = x;
BID_RETURN (res);
}
if (sig_x < sig_y && exp_x <= exp_y) {
res = y;
BID_RETURN (res);
}
// if exp_x is 15 greater than exp_y, no need for compensation
if (exp_x - exp_y > 15) {
res = x; // difference cannot be greater than 10^15
BID_RETURN (res);
}
// if exp_x is 15 less than exp_y, no need for compensation
if (exp_y - exp_x > 15) {
res = y;
BID_RETURN (res);
}
// if |exp_x - exp_y| < 15, it comes down to the compensated significand
if (exp_x > exp_y) { // to simplify the loop below,
// otherwise adjust the x significand upwards
__mul_64x64_to_128MACH (sig_n_prime, sig_x,
mult_factor[exp_x - exp_y]);
// now, sig_n_prime has: sig_x * 10^(exp_x-exp_y),
// this is the compensated signif.
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_y)) {
// two numbers are equal, return maxNum(x,y)
res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
BID_RETURN (res);
}
// now, if compensated_x (sig_n_prime) is greater than y return y,
// otherwise return x
res = ((sig_n_prime.w[1] != 0) || sig_n_prime.w[0] > sig_y) ? x : y;
BID_RETURN (res);
}
// exp_y must be greater than exp_x, thus adjust the y significand upwards
__mul_64x64_to_128MACH (sig_n_prime, sig_y,
mult_factor[exp_y - exp_x]);
if (sig_n_prime.w[1] == 0 && (sig_n_prime.w[0] == sig_x)) {
res = ((y & MASK_SIGN) == MASK_SIGN) ? x : y;
// two numbers are equal, return either
BID_RETURN (res);
}
res = ((sig_n_prime.w[1] == 0) && (sig_x > sig_n_prime.w[0])) ? x : y;
BID_RETURN (res);
}
|