aboutsummaryrefslogtreecommitdiff
path: root/libgcc/config/libbid/bid64_add.c
blob: fb71f4f5321fa53d62ee909b0f2c6b572f514beb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
/* Copyright (C) 2007-2024 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

/*****************************************************************************
 *    BID64 add
 *****************************************************************************
 *
 *  Algorithm description:
 *
 *   if(exponent_a < exponent_b)
 *       switch a, b
 *   diff_expon = exponent_a - exponent_b
 *   if(diff_expon > 16)
 *      return normalize(a)
 *   if(coefficient_a*10^diff_expon guaranteed below 2^62)
 *       S = sign_a*coefficient_a*10^diff_expon + sign_b*coefficient_b
 *       if(|S|<10^16)
 *           return get_BID64(sign(S),exponent_b,|S|)
 *       else
 *          determine number of extra digits in S (1, 2, or 3)
 *            return rounded result
 *   else // large exponent difference
 *       if(number_digits(coefficient_a*10^diff_expon) +/- 10^16)
 *          guaranteed the same as
 *          number_digits(coefficient_a*10^diff_expon) )
 *           S = normalize(coefficient_a + (sign_a^sign_b)*10^(16-diff_expon))
 *           corr = 10^16 + (sign_a^sign_b)*coefficient_b
 *           corr*10^exponent_b is rounded so it aligns with S*10^exponent_S
 *           return get_BID64(sign_a,exponent(S),S+rounded(corr))
 *       else
 *         add sign_a*coefficient_a*10^diff_expon, sign_b*coefficient_b
 *             in 128-bit integer arithmetic, then round to 16 decimal digits
 *
 *
 ****************************************************************************/

#include "bid_internal.h"

#if DECIMAL_CALL_BY_REFERENCE
void bid64_add (UINT64 * pres, UINT64 * px,
		UINT64 *
		py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
		_EXC_INFO_PARAM);
#else
UINT64 bid64_add (UINT64 x,
		  UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
		  _EXC_MASKS_PARAM _EXC_INFO_PARAM);
#endif

#if DECIMAL_CALL_BY_REFERENCE

void
bid64_sub (UINT64 * pres, UINT64 * px,
	   UINT64 *
	   py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
	   _EXC_INFO_PARAM) {
  UINT64 y = *py;
#if !DECIMAL_GLOBAL_ROUNDING
  _IDEC_round rnd_mode = *prnd_mode;
#endif
  // check if y is not NaN
  if (((y & NAN_MASK64) != NAN_MASK64))
    y ^= 0x8000000000000000ull;
  bid64_add (pres, px,
	     &y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
	     _EXC_INFO_ARG);
}
#else

UINT64
bid64_sub (UINT64 x,
	   UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
	   _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
  // check if y is not NaN
  if (((y & NAN_MASK64) != NAN_MASK64))
    y ^= 0x8000000000000000ull;

  return bid64_add (x,
		    y _RND_MODE_ARG _EXC_FLAGS_ARG _EXC_MASKS_ARG
		    _EXC_INFO_ARG);
}
#endif



#if DECIMAL_CALL_BY_REFERENCE

void
bid64_add (UINT64 * pres, UINT64 * px,
	   UINT64 *
	   py _RND_MODE_PARAM _EXC_FLAGS_PARAM _EXC_MASKS_PARAM
	   _EXC_INFO_PARAM) {
  UINT64 x, y;
#else

UINT64
bid64_add (UINT64 x,
	   UINT64 y _RND_MODE_PARAM _EXC_FLAGS_PARAM
	   _EXC_MASKS_PARAM _EXC_INFO_PARAM) {
#endif

  UINT128 CA, CT, CT_new;
  UINT64 sign_x, sign_y, coefficient_x, coefficient_y, C64_new;
  UINT64 valid_x, valid_y;
  UINT64 res;
  UINT64 sign_a, sign_b, coefficient_a, coefficient_b, sign_s, sign_ab,
    rem_a;
  UINT64 saved_ca, saved_cb, C0_64, C64, remainder_h, T1, carry, tmp;
  int_double tempx;
  int exponent_x, exponent_y, exponent_a, exponent_b, diff_dec_expon;
  int bin_expon_ca, extra_digits, amount, scale_k, scale_ca;
  unsigned rmode, status;

#if DECIMAL_CALL_BY_REFERENCE
#if !DECIMAL_GLOBAL_ROUNDING
  _IDEC_round rnd_mode = *prnd_mode;
#endif
  x = *px;
  y = *py;
#endif

  valid_x = unpack_BID64 (&sign_x, &exponent_x, &coefficient_x, x);
  valid_y = unpack_BID64 (&sign_y, &exponent_y, &coefficient_y, y);

  // unpack arguments, check for NaN or Infinity
  if (!valid_x) {
    // x is Inf. or NaN

    // test if x is NaN
    if ((x & NAN_MASK64) == NAN_MASK64) {
#ifdef SET_STATUS_FLAGS
      if (((x & SNAN_MASK64) == SNAN_MASK64)	// sNaN
	  || ((y & SNAN_MASK64) == SNAN_MASK64))
	__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
      res = coefficient_x & QUIET_MASK64;
      BID_RETURN (res);
    }
    // x is Infinity?
    if ((x & INFINITY_MASK64) == INFINITY_MASK64) {
      // check if y is Inf
      if (((y & NAN_MASK64) == INFINITY_MASK64)) {
	if (sign_x == (y & 0x8000000000000000ull)) {
	  res = coefficient_x;
	  BID_RETURN (res);
	}
	// return NaN
	{
#ifdef SET_STATUS_FLAGS
	  __set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
	  res = NAN_MASK64;
	  BID_RETURN (res);
	}
      }
      // check if y is NaN
      if (((y & NAN_MASK64) == NAN_MASK64)) {
	res = coefficient_y & QUIET_MASK64;
#ifdef SET_STATUS_FLAGS
	if (((y & SNAN_MASK64) == SNAN_MASK64))
	  __set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
	BID_RETURN (res);
      }
      // otherwise return +/-Inf
      {
	res = coefficient_x;
	BID_RETURN (res);
      }
    }
    // x is 0
    {
      if (((y & INFINITY_MASK64) != INFINITY_MASK64) && coefficient_y) {
	if (exponent_y <= exponent_x) {
	  res = y;
	  BID_RETURN (res);
	}
      }
    }

  }
  if (!valid_y) {
    // y is Inf. or NaN?
    if (((y & INFINITY_MASK64) == INFINITY_MASK64)) {
#ifdef SET_STATUS_FLAGS
      if ((y & SNAN_MASK64) == SNAN_MASK64)	// sNaN
	__set_status_flags (pfpsf, INVALID_EXCEPTION);
#endif
      res = coefficient_y & QUIET_MASK64;
      BID_RETURN (res);
    }
    // y is 0
    if (!coefficient_x) {	// x==0
      if (exponent_x <= exponent_y)
	res = ((UINT64) exponent_x) << 53;
      else
	res = ((UINT64) exponent_y) << 53;
      if (sign_x == sign_y)
	res |= sign_x;
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
      if (rnd_mode == ROUNDING_DOWN && sign_x != sign_y)
	res |= 0x8000000000000000ull;
#endif
#endif
      BID_RETURN (res);
    } else if (exponent_y >= exponent_x) {
      res = x;
      BID_RETURN (res);
    }
  }
  // sort arguments by exponent
  if (exponent_x < exponent_y) {
    sign_a = sign_y;
    exponent_a = exponent_y;
    coefficient_a = coefficient_y;
    sign_b = sign_x;
    exponent_b = exponent_x;
    coefficient_b = coefficient_x;
  } else {
    sign_a = sign_x;
    exponent_a = exponent_x;
    coefficient_a = coefficient_x;
    sign_b = sign_y;
    exponent_b = exponent_y;
    coefficient_b = coefficient_y;
  }

  // exponent difference
  diff_dec_expon = exponent_a - exponent_b;

  /* get binary coefficients of x and y */

  //--- get number of bits in the coefficients of x and y ---

  // version 2 (original)
  tempx.d = (double) coefficient_a;
  bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;

  if (diff_dec_expon > MAX_FORMAT_DIGITS) {
    // normalize a to a 16-digit coefficient

    scale_ca = estimate_decimal_digits[bin_expon_ca];
    if (coefficient_a >= power10_table_128[scale_ca].w[0])
      scale_ca++;

    scale_k = 16 - scale_ca;

    coefficient_a *= power10_table_128[scale_k].w[0];

    diff_dec_expon -= scale_k;
    exponent_a -= scale_k;

    /* get binary coefficients of x and y */

    //--- get number of bits in the coefficients of x and y ---
    tempx.d = (double) coefficient_a;
    bin_expon_ca = ((tempx.i & MASK_BINARY_EXPONENT) >> 52) - 0x3ff;

    if (diff_dec_expon > MAX_FORMAT_DIGITS) {
#ifdef SET_STATUS_FLAGS
      if (coefficient_b) {
	__set_status_flags (pfpsf, INEXACT_EXCEPTION);
      }
#endif

#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
      if (((rnd_mode) & 3) && coefficient_b)	// not ROUNDING_TO_NEAREST
      {
	switch (rnd_mode) {
	case ROUNDING_DOWN:
	  if (sign_b) {
	    coefficient_a -= ((((SINT64) sign_a) >> 63) | 1);
	    if (coefficient_a < 1000000000000000ull) {
	      exponent_a--;
	      coefficient_a = 9999999999999999ull;
	    } else if (coefficient_a >= 10000000000000000ull) {
	      exponent_a++;
	      coefficient_a = 1000000000000000ull;
	    }
	  }
	  break;
	case ROUNDING_UP:
	  if (!sign_b) {
	    coefficient_a += ((((SINT64) sign_a) >> 63) | 1);
	    if (coefficient_a < 1000000000000000ull) {
	      exponent_a--;
	      coefficient_a = 9999999999999999ull;
	    } else if (coefficient_a >= 10000000000000000ull) {
	      exponent_a++;
	      coefficient_a = 1000000000000000ull;
	    }
	  }
	  break;
	default:	// RZ
	  if (sign_a != sign_b) {
	    coefficient_a--;
	    if (coefficient_a < 1000000000000000ull) {
	      exponent_a--;
	      coefficient_a = 9999999999999999ull;
	    }
	  }
	  break;
	}
      } else
#endif
#endif
	// check special case here
	if ((coefficient_a == 1000000000000000ull)
	    && (diff_dec_expon == MAX_FORMAT_DIGITS + 1)
	    && (sign_a ^ sign_b)
	    && (coefficient_b > 5000000000000000ull)) {
	coefficient_a = 9999999999999999ull;
	exponent_a--;
      }

      res =
	fast_get_BID64_check_OF (sign_a, exponent_a, coefficient_a,
				 rnd_mode, pfpsf);
      BID_RETURN (res);
    }
  }
  // test whether coefficient_a*10^(exponent_a-exponent_b)  may exceed 2^62
  if (bin_expon_ca + estimate_bin_expon[diff_dec_expon] < 60) {
    // coefficient_a*10^(exponent_a-exponent_b)<2^63

    // multiply by 10^(exponent_a-exponent_b)
    coefficient_a *= power10_table_128[diff_dec_expon].w[0];

    // sign mask
    sign_b = ((SINT64) sign_b) >> 63;
    // apply sign to coeff. of b
    coefficient_b = (coefficient_b + sign_b) ^ sign_b;

    // apply sign to coefficient a
    sign_a = ((SINT64) sign_a) >> 63;
    coefficient_a = (coefficient_a + sign_a) ^ sign_a;

    coefficient_a += coefficient_b;
    // get sign
    sign_s = ((SINT64) coefficient_a) >> 63;
    coefficient_a = (coefficient_a + sign_s) ^ sign_s;
    sign_s &= 0x8000000000000000ull;

    // coefficient_a < 10^16 ?
    if (coefficient_a < power10_table_128[MAX_FORMAT_DIGITS].w[0]) {
#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
      if (rnd_mode == ROUNDING_DOWN && (!coefficient_a)
	  && sign_a != sign_b)
	sign_s = 0x8000000000000000ull;
#endif
#endif
      res = very_fast_get_BID64 (sign_s, exponent_b, coefficient_a);
      BID_RETURN (res);
    }
    // otherwise rounding is necessary

    // already know coefficient_a<10^19
    // coefficient_a < 10^17 ?
    if (coefficient_a < power10_table_128[17].w[0])
      extra_digits = 1;
    else if (coefficient_a < power10_table_128[18].w[0])
      extra_digits = 2;
    else
      extra_digits = 3;

#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
    rmode = rnd_mode;
    if (sign_s && (unsigned) (rmode - 1) < 2)
      rmode = 3 - rmode;
#else
    rmode = 0;
#endif
#else
    rmode = 0;
#endif
    coefficient_a += round_const_table[rmode][extra_digits];

    // get P*(2^M[extra_digits])/10^extra_digits
    __mul_64x64_to_128 (CT, coefficient_a,
			reciprocals10_64[extra_digits]);

    // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
    amount = short_recip_scale[extra_digits];
    C64 = CT.w[1] >> amount;

  } else {
    // coefficient_a*10^(exponent_a-exponent_b) is large
    sign_s = sign_a;

#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
    rmode = rnd_mode;
    if (sign_s && (unsigned) (rmode - 1) < 2)
      rmode = 3 - rmode;
#else
    rmode = 0;
#endif
#else
    rmode = 0;
#endif

    // check whether we can take faster path
    scale_ca = estimate_decimal_digits[bin_expon_ca];

    sign_ab = sign_a ^ sign_b;
    sign_ab = ((SINT64) sign_ab) >> 63;

    // T1 = 10^(16-diff_dec_expon)
    T1 = power10_table_128[16 - diff_dec_expon].w[0];

    // get number of digits in coefficient_a
    if (coefficient_a >= power10_table_128[scale_ca].w[0]) {
      scale_ca++;
    }

    scale_k = 16 - scale_ca;

    // addition
    saved_ca = coefficient_a - T1;
    coefficient_a =
      (SINT64) saved_ca *(SINT64) power10_table_128[scale_k].w[0];
    extra_digits = diff_dec_expon - scale_k;

    // apply sign
    saved_cb = (coefficient_b + sign_ab) ^ sign_ab;
    // add 10^16 and rounding constant
    coefficient_b =
      saved_cb + 10000000000000000ull +
      round_const_table[rmode][extra_digits];

    // get P*(2^M[extra_digits])/10^extra_digits
    __mul_64x64_to_128 (CT, coefficient_b,
			reciprocals10_64[extra_digits]);

    // now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
    amount = short_recip_scale[extra_digits];
    C0_64 = CT.w[1] >> amount;

    // result coefficient
    C64 = C0_64 + coefficient_a;
    // filter out difficult (corner) cases
    // this test ensures the number of digits in coefficient_a does not change
    // after adding (the appropriately scaled and rounded) coefficient_b
    if ((UINT64) (C64 - 1000000000000000ull - 1) >
	9000000000000000ull - 2) {
      if (C64 >= 10000000000000000ull) {
	// result has more than 16 digits
	if (!scale_k) {
	  // must divide coeff_a by 10
	  saved_ca = saved_ca + T1;
	  __mul_64x64_to_128 (CA, saved_ca, 0x3333333333333334ull);
	  //reciprocals10_64[1]);
	  coefficient_a = CA.w[1] >> 1;
	  rem_a =
	    saved_ca - (coefficient_a << 3) - (coefficient_a << 1);
	  coefficient_a = coefficient_a - T1;

	  saved_cb += rem_a * power10_table_128[diff_dec_expon].w[0];
	} else
	  coefficient_a =
	    (SINT64) (saved_ca - T1 -
		      (T1 << 3)) * (SINT64) power10_table_128[scale_k -
							      1].w[0];

	extra_digits++;
	coefficient_b =
	  saved_cb + 100000000000000000ull +
	  round_const_table[rmode][extra_digits];

	// get P*(2^M[extra_digits])/10^extra_digits
	__mul_64x64_to_128 (CT, coefficient_b,
			    reciprocals10_64[extra_digits]);

	// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
	amount = short_recip_scale[extra_digits];
	C0_64 = CT.w[1] >> amount;

	// result coefficient
	C64 = C0_64 + coefficient_a;
      } else if (C64 <= 1000000000000000ull) {
	// less than 16 digits in result
	coefficient_a =
	  (SINT64) saved_ca *(SINT64) power10_table_128[scale_k +
							1].w[0];
	//extra_digits --;
	exponent_b--;
	coefficient_b =
	  (saved_cb << 3) + (saved_cb << 1) + 100000000000000000ull +
	  round_const_table[rmode][extra_digits];

	// get P*(2^M[extra_digits])/10^extra_digits
	__mul_64x64_to_128 (CT_new, coefficient_b,
			    reciprocals10_64[extra_digits]);

	// now get P/10^extra_digits: shift C64 right by M[extra_digits]-128
	amount = short_recip_scale[extra_digits];
	C0_64 = CT_new.w[1] >> amount;

	// result coefficient
	C64_new = C0_64 + coefficient_a;
	if (C64_new < 10000000000000000ull) {
	  C64 = C64_new;
#ifdef SET_STATUS_FLAGS
	  CT = CT_new;
#endif
	} else
	  exponent_b++;
      }

    }

  }

#ifndef IEEE_ROUND_NEAREST_TIES_AWAY
#ifndef IEEE_ROUND_NEAREST
  if (rmode == 0)	//ROUNDING_TO_NEAREST
#endif
    if (C64 & 1) {
      // check whether fractional part of initial_P/10^extra_digits is
      // exactly .5
      // this is the same as fractional part of
      //      (initial_P + 0.5*10^extra_digits)/10^extra_digits is exactly zero

      // get remainder
      remainder_h = CT.w[1] << (64 - amount);

      // test whether fractional part is 0
      if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits])) {
	C64--;
      }
    }
#endif

#ifdef SET_STATUS_FLAGS
  status = INEXACT_EXCEPTION;

  // get remainder
  remainder_h = CT.w[1] << (64 - amount);

  switch (rmode) {
  case ROUNDING_TO_NEAREST:
  case ROUNDING_TIES_AWAY:
    // test whether fractional part is 0
    if ((remainder_h == 0x8000000000000000ull)
	&& (CT.w[0] < reciprocals10_64[extra_digits]))
      status = EXACT_STATUS;
    break;
  case ROUNDING_DOWN:
  case ROUNDING_TO_ZERO:
    if (!remainder_h && (CT.w[0] < reciprocals10_64[extra_digits]))
      status = EXACT_STATUS;
    //if(!C64 && rmode==ROUNDING_DOWN) sign_s=sign_y;
    break;
  default:
    // round up
    __add_carry_out (tmp, carry, CT.w[0],
		     reciprocals10_64[extra_digits]);
    if ((remainder_h >> (64 - amount)) + carry >=
	(((UINT64) 1) << amount))
      status = EXACT_STATUS;
    break;
  }
  __set_status_flags (pfpsf, status);

#endif

  res =
    fast_get_BID64_check_OF (sign_s, exponent_b + extra_digits, C64,
			     rnd_mode, pfpsf);
  BID_RETURN (res);
}