aboutsummaryrefslogtreecommitdiff
path: root/libgcc/config/ft32/lib1funcs.S
blob: 7636485ba096e886b7d440bb56d45b7b8caed841 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
# ieee754 sf routines for FT32

/* Copyright (C) 1995-2022 Free Software Foundation, Inc.

This file is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

This file is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

# See http://www.ens-lyon.fr/LIP/Pub/Rapports/PhD/PhD2006/PhD2006-02.pdf
# for implementation details of all except division which is detailed below
#

#ifdef L_fp_tools
// .global __cmpsf2_
nan:            .long 0x7FFFFFFF    # also abs mask
inf:            .long 0x7F800000
sign_mask:      .long 0x80000000
m_mask:         .long 0x007FFFFF
exp_bias:       .long 127
edge_case:      .long 0x00FFFFFF
smallest_norm:  .long 0x00800000    # implicit bit
high_FF:        .long 0xFF000000
high_uint:      .long 0xFFFFFFFF

ntz_table:
    .byte   32,0,1,12,2,6,0,13,3,0,7,0,0,0,0,14
    .byte   10,4,0,0,8,0,0,25,0,0,0,0,0,21,27,15
    .byte   31,11,5,0,0,0,0,0,9,0,0,24,0,0,20,26
    .byte   30,0,0,0,0,23,0,19,29,0,22,18,28,17,16,0

#endif

# Supply a few 'missing' instructions

# not
.macro      not rd,r1
    xor     \rd,\r1,-1
.endm

# negate
.macro      neg x
    not     \x, \x
    add     \x, \x, 1
.endm

# set $cc from the result of "ashl reg,dist"
.macro  ashlcc reg,dist
    .long   0x5de04008 | (\reg << 15) | (\dist << 4)
.endm


# converts an unsigned number x to a signed rep based on the bits in sign
# sign should be 0x00000000 or 0xffffffff.
.macro      to_signed x, sign
    add     \x,\x,\sign    # conditionally decrement x
    xor     \x,\x,\sign    # conditionally complement x
.endm


.macro  ld32    r,v
    ldk     \r,(\v>>10)
    ldl     \r,\r,(\v & 1023)
.endm

# calculate trailing zero count in x, also uses scr.
# Using Seal's algorithm
.macro      ntz x, scr
    not     \scr, \x
    add     \scr, \scr, 1
    and     \x, \x, \scr
    ashl    \scr, \x, 4
    add     \x, \scr, \x
    ashl    \scr, \x, 6
    add     \x, \scr, \x
    ashl    \scr, \x, 16
    sub     \x, \scr, \x
    lshr    \x, \x, 26
    ldk     \scr, ntz_table
    add     \x, \x, \scr
    lpmi.b  \x, \x, 0
.endm

# calculate leading zero count
.macro      nlz x, scr
    flip    \x, \x, 31
    ntz     \x, \scr
.endm


# Round 26 bit mantissa to nearest
# | 23 bits frac | G | R | S |
.macro      round m,  s1, s2
    ldk     \s1,0xc8
    and     \s2,\m,7
    lshr    \s1,\s1,\s2
    and     \s1,\s1,1
    lshr    \m,\m,2
    add     \m,\m,\s1
.endm

# If NZ, set the LSB of reg
.macro      sticky reg
    jmpc    z,1f
    or      \reg,\reg,1             # set the sticky bit to 1
1:
.endm

##########################################################################
##########################################################################
## addition & subtraction

#if defined(L_subsf3) || defined(L_addsub_sf)
.global __subsf3
__subsf3:
    # this is subtraction, so we just change the sign of r1
    lpm     $r2,sign_mask
    xor     $r1,$r1,$r2
    jmp     __addsf3
#endif

#if defined(L_addsf3) || defined(L_addsub_sf)
.global __addsf3
__addsf3:
    # x in $r0, y in $r1, result z in $r0       --||| 100 instructions +/- |||--
    # unpack e, calc d
    bextu   $r2,$r0,(8<<5)|23   # ex in r2
    bextu   $r3,$r1,(8<<5)|23   # ey in r3
    sub     $r5,$r2,$r3         # d = ex - ey

    # Special values are 0x00 and 0xff in ex and ey.
    # If (ex&ey) != 0 or (xy|ey)=255 then there may be
    # a special value.
    tst     $r2,$r3
    jmpc    nz,1f
    jmp     slow
1:  or      $r4,$r2,$r3
    cmp     $r4,255
    jmpc    nz,no_special_vals
slow:
    # Check for early exit
    cmp     $r2,0
    jmpc    z,test_if_not_255
    cmp     $r3,0
    jmpc    nz,no_early_exit
test_if_not_255:
    cmp     $r2,255
    jmpc    z,no_early_exit
    cmp     $r3,255
    jmpc    z,no_early_exit
    or      $r6,$r2,$r3
    cmp     $r6,0
    jmpc    nz,was_not_zero
    and     $r0,$r0,$r1
    lpm     $r1,sign_mask
    and     $r0,$r0,$r1
    return
was_not_zero:
    cmp     $r2,0
    jmpc    nz,ret_x
    move    $r0,$r1
    return
ret_x:
    return
no_early_exit:
    # setup to test for special values
    sub     $r6,$r2,1
    and     $r6,$r6,0xFE
    sub     $r7,$r3,1
    and     $r7,$r7,0xFE
    # test for special values
    cmp     $r6,$r7
    jmpc    gte,ex_spec_is_gte
    move    $r6,$r7
ex_spec_is_gte:
    cmp     $r6,0xFE
    jmpc    nz,no_special_vals
    cmp     $r5,0
    jmpc    ns,d_gte_0
    cmp     $r3,0xFF
    jmpc    z,ret_y
    cmp     $r2,0
    jmpc    z,ret_y
ret_y:
    move    $r0,$r1
    return
d_gte_0:
    cmp     $r5,0
    jmpc    z,d_is_0
    cmp     $r2,0xFF
    jmpc    z,ret_x
    cmp     $r3,0
    jmpc    z,ret_x
d_is_0:
    cmp     $r2,0xFF
    jmpc    nz,no_special_vals
    ashl    $r6,$r0,9           # clear all except x frac
    ashl    $r7,$r1,9           # clear all except y frac
    or      $r6,$r6,$r7
    cmp     $r6,0
    jmpc    nz,ret_nan
    lshr    $r4,$r0,31          # sx in r4
    lshr    $r5,$r1,31          # sy in r4
    cmp     $r4,$r5
    jmpc    nz,ret_nan
    return
ret_nan:
    lpm     $r0,nan
    return
no_special_vals:
    ldk     $r8,(1<<10)|(9<<5)|26   # setup implicit bit and mask for e
    #----------------------
    ashr    $r4,$r0,31              # sx in r4
    ashl    $r0,$r0,3               # shift mx 3 for GRS bits
    bins    $r0,$r0,$r8             # clear sx, ex and add implicit bit mx
    # change mx to signed mantissa
    to_signed $r0,$r4
    #----------------------
    ashr    $r4,$r1,31              # sy in r4
    ashl    $r1,$r1,3               # shift my 3 for GRS bits
    bins    $r1,$r1,$r8             # clear sy, ey and add implicit bit my
    # change my to signed mantissa
    to_signed $r1,$r4
    #----------------------
    # test if we swap ms based on d sign
    cmp     $r5,0
    jmpc    gte,noswap
    # swap mx & my
    xor     $r0,$r0,$r1
    xor     $r1,$r0,$r1
    xor     $r0,$r0,$r1
    # d positive means that ex>=ey, so ez = ex
    # d negative means that ey>ex, so ez = ey
    move    $r2,$r3
    # |d|
    neg     $r5
noswap:
                                    # now $r2 = ez = max(ex,ey)
    cmp     $r5,26                  # max necessary alignment shift is 26
    jmpc    lt,under_26
    ldk     $r5,26
under_26:
    ldk     $r7,-1
    ashl    $r7,$r7,$r5             # create inverse of mask for test of S bit value in discarded my
    not     $r7,$r7
    tst     $r1,$r7                 # determine value of sticky bit
    # shift my >> |d|
    ashr    $r1,$r1,$r5
    sticky  $r1

    # add ms
    add     $r0,$r0,$r1

    # $r4 = sign(mx), mx = |mx|
    ashr    $r4,$r0,31
    xor     $r0,$r0,$r4
    sub     $r0,$r0,$r4

    # realign mantissa using leading zero count
    flip    $r7,$r0,31
    ntz     $r7,$r8
    ashl    $r0,$r0,$r7
    btst    $r0,(6<<5)|0            # test low bits for sticky again
    lshr    $r0,$r0,6
    sticky  $r0

    # update exponent
    add     $r2,$r2,5
    sub     $r2,$r2,$r7

    # Round to nearest
    round   $r0,$r7,$r6

    # detect_exp_update
    lshr    $r6,$r0,24
    add     $r2,$r2,$r6

    # final tests
    # mz == 0? if so, we just bail with a +0
    cmp     $r0,0
    jmpc    nz,msum_not_zero
    ldk     $r0,0
    return
msum_not_zero:
    # Combined check that (1 <= ez <= 254)
    sub     $r3,$r2,1
    cmp     $r3,254
    jmpc    b,no_special_ret
    # underflow?
    cmp     $r2,0
    jmpc    gt,no_under
    ldk     $r0,0
    jmp     pack_sz
no_under:
    # overflow?
    cmp     $r2,255
    jmpc    lt,no_special_ret
    ldk     $r0,0x7F8
    ashl    $r0,$r0,20
    jmp     pack_sz
no_special_ret:
    # Pack ez
    ldl     $r2,$r2,(8<<5)|23
    bins    $r0,$r0,$r2             # width = 8, pos = 23 pack ez
    # Pack sz
pack_sz:
    ldl     $r4,$r4,(1<<5)|31
    bins    $r0,$r0,$r4             # width = 1, pos = 31 set sz to sy
    return
#endif

##########################################################################
##########################################################################
## multiplication

#ifdef  L_mulsf3
.global __mulsf3
__mulsf3:
    # x in $r0, y in $r1, result z in $r0       --||| 61 instructions +/- |||--

    # unpack e
    bextu   $r2,$r0,(8<<5)|23   # ex in r2
    bextu   $r3,$r1,(8<<5)|23   # ey in r3
    # calc result sign
    xor     $r4,$r0,$r1
    lpm     $r5,sign_mask
    and     $r4,$r4,$r5         # sz in r4

    # unpack m add implicit bit
    ldk     $r5,(1<<10)|(9<<5)|23   # setup implicit bit and mask for e
    #----------------------
    bins    $r0,$r0,$r5             # clear sx, ex and add implicit bit mx

    sub     $r6,$r2,1
    cmp     $r6,254
    jmpc    b,1f
    jmp     slow_mul
1:  sub     $r6,$r3,1
    cmp     $r6,254
    jmpc    b,no_special_vals_mul

slow_mul:
    # Check for early exit
    cmp     $r2,0
    jmpc    z,op_is_zero
    cmp     $r3,0
    jmpc    nz,no_early_exit_mul
op_is_zero:
    cmp     $r2,255
    jmpc    z,no_early_exit_mul
    cmp     $r3,255
    jmpc    z,no_early_exit_mul
    move    $r0,$r4
    return
no_early_exit_mul:
    # setup to test for special values
    sub     $r6,$r2,1
    and     $r6,$r6,0xFE
    sub     $r7,$r3,1
    and     $r7,$r7,0xFE
    # test for special values
    cmp     $r6,$r7
    jmpc    gte,ex_spec_is_gte_ey_mul
    move    $r6,$r7
ex_spec_is_gte_ey_mul:
    cmp     $r6,0xFE
    jmpc    nz,no_special_vals_mul
    cmp     $r2,0xFF
    jmpc    nz,ex_not_FF_mul
    ashl    $r6,$r0,9
    cmp     $r6,0
    jmpc    nz,ret_nan
    cmp     $r3,0
    jmpc    z,ret_nan
    ashl    $r6,$r1,1
    lpm     $r7,high_FF
    cmp     $r6,$r7
    jmpc    a,ret_nan
    cmp     $r6,0
    jmpc    z,ret_nan
    # infinity
    lpm     $r0,inf
    or      $r0,$r0,$r4
    return
ex_not_FF_mul:
    cmp     $r2,0
    jmpc    nz,no_nan_mul
    cmp     $r3,0xFF
    jmpc    nz,no_nan_mul
    jmp     ret_nan
no_nan_mul:
    lpm     $r0,nan
    and     $r0,$r0,$r1
    or      $r0,$r0,$r4
    return

ret_nan:
    lpm     $r0,nan
    return

no_special_vals_mul:
    bins    $r1,$r1,$r5         # clear sy, ey and add implicit bit my
    # calc ez
    add     $r3,$r2,$r3
    sub     $r3,$r3,127         # ez in r3

    # (r1,r2) = R0 * R1
    mul     $r2,$r0,$r1
    muluh   $r1,$r0,$r1

    btst    $r1,(1<<5)|15       # XXX use jmpx
    jmpc    z,mul_z0

    # mz is 1X.XX...X
    # 48-bit product is in (r1,r2). The low 22 bits of r2
    # are discarded.
    lshr    $r0,$r2,22
    ashl    $r1,$r1,10
    or      $r0,$r0,$r1         # r0 = (r1,r2) >> 22
    ashlcc  2,10
    sticky  $r0
    add     $r3,$r3,1           # bump exponent

    # Round to nearest
    round   $r0, $r1, $r2
    lshr    $r6,$r0,24
    add     $r3,$r3,$r6

    sub     $r6,$r3,1
    cmp     $r6,254
    jmpc    b,no_special_ret_mul

special_ret_mul:
    # When the final exponent <= 0, result is flushed to 0 except
    # for the border case 0x00FFFFFF which is promoted to next higher
    # FP no., that is, the smallest "normalized" number.
    cmp     $r3,0
    jmpc    gt,exp_normal
    # Pack ez
    ldl     $r3,$r3,(8<<5)|23
    bins    $r0,$r0,$r3 # width = 8, pos = 23 pack ez
    lpm     $r2,edge_case
    cmp     $r0,$r2
    jmpc    nz,no_edge_case
    lpm     $r0,smallest_norm
    jmp     pack_sz_mul
no_edge_case:
    ldk     $r0,0
    jmp     pack_sz_mul
exp_normal:
    # overflow?
    cmp     $r3,255
    jmpc    lt,no_special_ret_mul
    ldk     $r0,0x7F8
    ashl    $r0,$r0,20
    jmp     pack_sz_mul
no_special_ret_mul:
    # Pack ez
    ldl     $r3,$r3,(8<<5)|23
    bins    $r0,$r0,$r3 # width = 8, pos = 23 pack ez
    # Pack sz
pack_sz_mul:
    or    $r0,$r0,$r4
    return

mul_z0:
    # mz is 0X.XX...X
    # 48-bit product is in (r1,r2). The low 21 bits of r2
    # are discarded.
    lshr    $r0,$r2,21
    ashl    $r1,$r1,11
    or      $r0,$r0,$r1         # r0 = (r1,r2) >> 22
    ashlcc  2,11
    sticky  $r0
    # Round to nearest
    round   $r0, $r1, $r2
    lshr    $r6,$r0,24
    add     $r3,$r3,$r6

    sub     $r6,$r3,1
    cmp     $r6,254
    jmpc    b,no_special_ret_mul
    jmp     special_ret_mul
#endif

##########################################################################
##########################################################################
## division

## See http://perso.ens-lyon.fr/gilles.villard/BIBLIOGRAPHIE/PDF/arith19.pdf
## for implementation details




#ifdef  L_divsf3
dc_1: .long             0xffffe7d7
dc_2: .long             0xffffffe8
dc_3: .long             0xffbad86f
dc_4: .long             0xfffbece7
dc_5: .long             0xf3672b51
dc_6: .long             0xfd9d3a3e
dc_7: .long             0x9a3c4390
dc_8: .long             0xd4d2ce9b
dc_9: .long             0x1bba92b3
dc_10: .long            0x525a1a8b
dc_11: .long            0x0452b1bf
dc_12: .long            0xFFFFFFC0
spec_val_test:  .long   0x7F7FFFFF

.global __divsf3
__divsf3:
    push    $r13
    # x in $r0, y in $r1, result z in $r0       --||| 73 instructions +/- |||-
    bextu   $r10,$r0,(8<<5)|23   # ex in r2
    bextu   $r11,$r1,(8<<5)|23   # ey in r3
    lpm     $r6, m_mask
    and     $r2, $r0, $r6        # mx
    and     $r3, $r1, $r6        # my
    cmp     $r2,$r3
    bextu   $r2,$r30,(1<<5)|4   # c = Tx >= T;
    ashl    $r3,$r3,9           # T = X << 9;
    lpm     $r13, sign_mask
    ashl    $r4,$r0,8           # X8 = X << 8;
    or      $r4,$r4,$r13        # Mx = X8 | 0x80000000;
    lshr    $r5,$r4,$r2         # S = Mx >> c;
    # calc D
    sub     $r2, $r11, $r2
    add     $r12, $r10, 125
    sub     $r2, $r12, $r2      # int D = (Ex + 125) - (Ey - c);
    # calc result sign
    xor     $r12,$r0,$r1
    and     $r12,$r12,$r13      # Sr = ( X ˆ Y ) & 0x80000000;
    # check early exit
    cmp     $r10, 0
    jmpc    nz, no_early_ret_dev
    cmp     $r11, 0
    jmpc    z, no_early_ret_dev
    cmp     $r11, 255
    jmpc    z, no_early_ret_dev
    move    $r0, $r12
    pop     $r13
    return
no_early_ret_dev:
 # setup to test for special values
    sub     $r8,$r10,1
    and     $r8,$r8,0xFE
    sub     $r9,$r11,1
    and     $r9,$r9,0xFE
    # test for special values
    cmp     $r8, $r9
    jmpc    gte, absXm1_gte_absYm1
    move    $r8, $r9
absXm1_gte_absYm1:
    cmp     $r8, 0xFE
    jmpc    nz, no_spec_ret_div
    cmp     $r10, 0xFF
    jmpc    nz, ex_not_FF_div
    lpm     $r6, m_mask
    and     $r2, $r0, $r6        # mx
    cmp     $r2, 0
    jmpc    nz, ret_nan_div
    cmp     $r11, 0xFF
    jmpc    z, ret_nan_div
    jmp     ret_inf_div
ex_not_FF_div:
    cmp     $r11, 0xFF
    jmpc    nz, ey_not_FF_div
    ashl    $r13, $r1, 9
    cmp     $r13, 0
    jmpc    nz, ret_nan_div
    move    $r0, $r12
    pop     $r13
    return
ey_not_FF_div:
    or      $r10, $r10, $r11
    cmp     $r10, 0
    jmpc    z, ret_nan_div
ret_inf_div:
    lpm     $r6, inf
    move    $r0, $r6
    or      $r0, $r0, $r12
    pop     $r13
    return
ret_nan_div:
    lpm     $r0, nan
    pop     $r13
    return

no_spec_ret_div:
# check for overflow
    ldk     $r6, 0xFE
    cmp     $r2, $r6
    jmpc    lt, no_overflow_div
    lpm     $r6, inf
    or      $r0, $r12, $r6
    pop     $r13
    return
no_overflow_div:
# check for underflow
    cmp     $r2, 0
    jmpc    ns, no_underflow_div
    xnor    $r6, $r6, $r6       # -1
    cmp     $r2, $r6
    jmpc    nz, ret_sr_div
    ldk     $r7, 0xFF
    xor     $r6, $r6, $r7       # 0xFF ^ -1 = 0xFFFFFF00
    cmp     $r4, $r6
    jmpc    nz, ret_sr_div
    lpm     $r6, sign_mask
    cmp     $r4, $r6
    jmpc    nz, ret_sr_div
    lshr    $r0, $r6, 8
    or      $r0, $r0, $r12
    pop     $r13
    return
ret_sr_div:
    move    $r0, $r12
    pop     $r13
    return
no_underflow_div:
    lpm     $r6, dc_1
    muluh   $r7, $r3, $r6       # i0 = mul( T , 0xffffe7d7 );
    lpm     $r6, dc_2
    sub     $r7, $r6, $r7       # i1 = 0xffffffe8 - i0;
    muluh   $r7, $r5, $r7       # i2 = mul( S , i1 );
    add     $r7, $r7, 0x20      # i3 = 0x00000020 + i2;
    muluh   $r8, $r3, $r3       # i4 = mul( T , T );
    muluh   $r9, $r5, $r8       # i5 = mul( S , i4 );
    lpm     $r6, dc_3
    muluh   $r10, $r3, $r6      # i6 = mul( T , 0xffbad86f );
    lpm     $r6, dc_4
    sub     $r10, $r6, $r10     # i7 = 0xfffbece7 - i6;
    muluh   $r10, $r9, $r10     # i8 = mul( i5 , i7 );
    add     $r7, $r7, $r10      # i9 = i3 + i8;
    muluh   $r9, $r8, $r9       # i10 = mul( i4 , i5 );
    lpm     $r6, dc_5
    muluh   $r10, $r3, $r6      # i11 = mul( T , 0xf3672b51 );
    lpm     $r6, dc_6
    sub     $r10, $r6, $r10     # i12 = 0xfd9d3a3e - i11;
    lpm     $r6, dc_7
    muluh   $r11, $r3, $r6      # i13 = mul( T , 0x9a3c4390 );
    lpm     $r6, dc_8
    sub     $r11, $r6, $r11     # i14 = 0xd4d2ce9b - i13
    muluh   $r11, $r8, $r11     # i15 = mul( i4 , i14 );
    add     $r10, $r10, $r11    # i16 = i12 + i15;
    muluh   $r10, $r9, $r10     # i17 = mul( i10 , i16 )
    add     $r7, $r7, $r10      # i18 = i9 + i17;
    muluh   $r10, $r8, $r8      # i19 = mul( i4 , i4 );
    lpm     $r6, dc_9
    muluh   $r11, $r3, $r6      # i20 = mul( T , 0x1bba92b3 );
    lpm     $r6, dc_10
    sub     $r11, $r6, $r11     # i21 = 0x525a1a8b - i20;
    lpm     $r6, dc_11
    muluh   $r8, $r8, $r6       # i22 = mul( i4 , 0x0452b1bf );
    add     $r8, $r11, $r8      # i23 = i21 + i22;
    muluh   $r8, $r10, $r8      # i24 = mul( i19 , i23 );
    muluh   $r8, $r9, $r8       # i25 = mul( i10 , i24 );
    add     $r3, $r7, $r8       # V = i18 + i25;
# W = V & 0xFFFFFFC0;
    lpm     $r6, dc_12
    and     $r3, $r3, $r6   # W
# round and pack final values
    ashl    $r0, $r2, 23        # pack D
    or      $r0, $r0, $r12      # pack Sr
    ashl    $r12, $r1, 8
    or      $r12, $r12, $r13    # My
    muluh   $r10, $r3, $r12
    lshr    $r11, $r5, 1
    cmp     $r10, $r11
    jmpc    gte, div_ret_1
    add     $r3, $r3, 0x40
div_ret_1:
    lshr    $r3, $r3, 7
    add     $r0, $r0, $r3
    pop     $r13
    return
#endif

##########################################################################
##########################################################################
## Negate

#ifdef L_negsf
.global __negsf
__negsf:
    lpm     $r1, sign_mask
    xor     $r0, $r0, $r1
    return
#endif

##########################################################################
##########################################################################
## float to int & unsigned int

#ifdef L_fixsfsi
.global __fixsfsi
__fixsfsi: # 20 instructions
    bextu   $r1,$r0,(8<<5)|23   # e in r1
    lshr    $r2,$r0,31          # s in r2
    lpm     $r3, m_mask
    and     $r0,$r0,$r3         # m in r0
    # test nan
    cmp     $r1,0xFF
    jmpc    nz, int_not_nan
    cmp     $r0,0
    jmpc    z, int_not_nan
    ldk     $r0,0
    return
int_not_nan:
    # test edges
    cmp     $r1, 127
    jmpc    gte, int_not_zero   # lower limit
    ldk     $r0,0
    return
int_not_zero:
    cmp     $r1, 158
    jmpc    lt, int_not_max    # upper limit
    lpm     $r0, nan
    cmp     $r2, 0
    jmpc    z, int_positive
    xnor    $r0, $r0, 0
    return
int_not_max:
    lpm     $r3, smallest_norm
    or      $r0, $r0, $r3       # set implicit bit
    sub     $r1, $r1, 150
    cmp     $r1, 0
    jmpc    s, shift_right
    ashl    $r0, $r0, $r1
    jmp     set_int_sign
shift_right:
    xnor    $r1, $r1, 0
    add     $r1, $r1, 1
    lshr    $r0, $r0, $r1
set_int_sign:
    cmp     $r2, 0
    jmpc    z, int_positive
    xnor    $r0, $r0, 0
    add     $r0, $r0, 1
int_positive:
    return
#endif

#ifdef L_fixunssfsi
.global __fixunssfsi
__fixunssfsi: # 19 instructions
    lshr    $r2, $r0, 31          # s in r2
    cmp     $r2, 0
    jmpc    z, uint_not_neg
    ldk     $r0, 0
    return
uint_not_neg:
    bextu   $r1, $r0, (8<<5)|23   # e in r1
    sub     $r1, $r1, 127
    lpm     $r3, m_mask
    and     $r0, $r0, $r3         # m in r0
    # test nan
    cmp     $r1, 0xFF
    jmpc    nz, uint_not_nan
    cmp     $r0, 0
    jmpc    z, uint_not_nan
    ldk     $r0, 0
    return
uint_not_nan:
    # test edges
    cmp     $r1, 0
    jmpc    ns, uint_not_zero   # lower limit
    ldk     $r0, 0
    return
uint_not_zero:
    lpm     $r3, smallest_norm
    or      $r0, $r0, $r3       # set implicit bit
    cmp     $r1, 23
    jmpc    lt, shift_uint_right
    sub     $r1, $r1, 23
    ashl    $r0, $r0, $r1
    return
shift_uint_right:
    ldk     $r3, 23
    sub     $r1, $r3, $r1
    lshr    $r0, $r0, $r1
    return
#endif

##########################################################################
##########################################################################
## int & unsigned int to float


.macro  i2f x, s1, s2, s3, lbl
    move    \s1, \x
    nlz     \s1, \s2
    cmp     \s1, 8
    jmpc    s, float_round\lbl
    sub     \s2, \s1, 8
    ashl    \x, \x, \s2
    jmp     float_no_round\lbl
float_round\lbl:
    cmp     \s1, 6
    jmpc    s, float_shift_right\lbl
    sub     \s2, \s1, 6
    ashl    \x, \x, \s2
    jmp     float_round_and_pack\lbl
float_shift_right\lbl:
    ldk     \s2, 6
    sub     \s2, \s2, \s1
    xnor    \s3, \s3 ,\s3           # 0xFFFFFFFF
    ashl    \s3, \s3 ,\s2           # create inverse of mask for test of S bit value in discarded my
    xnor    \s3, \s3 ,0             # NOT
    tst     \x, \s3                # determine value of sticky bit
    lshr    \x, \x, \s2
    jmpc    z,float_round_and_pack\lbl
    or      \x, \x, 1               # set the sticky bit to 1
float_round_and_pack\lbl:
    bextu   \s2, \x, (1<<5)|2      # extract low bit of m
    or      \x, \x, \s2           # or p into r
    add     \x, \x, 1
    lshr    \x, \x, 2
    btst    \x, (1<<5)|24          # test for carry from round
    jmpc    z, float_no_round\lbl
    sub     \s1, \s1, 1             # inc e for carry (actually dec nlz)
    lshr    \x, \x, 1
float_no_round\lbl:
    ldk     \s2, 158
    sub     \s1, \s2, \s1
    # Pack e
    ldl     \s1, \s1, (8<<5)|23
    bins    \x, \x, \s1
.endm


#ifdef L_floatsisf
.global __floatsisf
__floatsisf:                       # 32 instructions
    cmp     $r0, 0
    jmpc    nz, float_not_zero
    return
float_not_zero:
    ashr    $r1, $r0, 31            # s in r1
    xor     $r0, $r0, $r1           # cond neg
    sub     $r0, $r0, $r1
    i2f     $r0, $r2, $r3, $r4, 1
    ldl     $r1, $r1, (1<<5)|31
    bins    $r0, $r0, $r1
    return
#endif

#ifdef L_floatunsisf
.global __floatunsisf
__floatunsisf:                        # 26 instructions
    cmp     $r0, 0
    jmpc    nz, float_not_zero2
    return
float_not_zero2:
    i2f     $r0, $r1, $r2, $r3, 2
    return
#endif

#if 0
##########################################################################
##########################################################################
## float compare


__cmpsf2_:
    # calc abs vals
    lpm     $r3, nan                # also abs mask
    and     $r2, $r0, $r3
    and     $r3, $r1, $r3
    # test if either abs is nan
    lpm     $r4, inf
    cmp     $r2, $r4
    jmpc    gt, cmp_is_gt
    cmp     $r3, $r4
    jmpc    gt, cmp_is_gt
    # test if both are 0
    or      $r2, $r2, $r3
    cmp     $r2, 0
    jmpc    z, cmp_is_eq
    # test if eq
    cmp     $r0, $r1
    jmpc    z, cmp_is_eq
    # -- if either is pos
    and     $r2, $r0, $r1
    cmp     $r2, 0
    jmpc    s, cmp_both_neg
    cmp     $r0, $r1
    jmpc    gt, cmp_is_gt
    # r0 < r1
    lpm     $r0, high_uint
    return
cmp_both_neg:
    cmp     $r0, $r1
    jmpc    lt, cmp_is_gt
    # r0 < r1
    lpm     $r0, high_uint
    return
cmp_is_gt:
    ldk     $r0, 1
    return
cmp_is_eq:
    ldk     $r0, 0
    return
#endif

#ifdef  L_udivsi3
.global __udivsi3
__udivsi3:
	# $r0 is dividend
	# $r1 is divisor
	ldk	$r2,0
	push	$r28
	ldk	$r28,-32
0:
	lshr	$r3,$r0,31	# Shift $r2:$r0 left one
	ashl	$r0,$r0,1
	ashl	$r2,$r2,1
	or	$r2,$r2,$r3
	cmp	$r2,$r1
	jmpc	b,1f
2:
	sub	$r2,$r2,$r1
	add	$r0,$r0,1
1:
	add	$r28,$r28,1
	jmpx	31,$r28,1,0b
	pop	$r28
	# $r0: quotient
	# $r2: remainder
	return
#endif

#ifdef	L_umodsi3
.global	__umodsi3
__umodsi3:
	call	__udivsi3
	move	$r0,$r2
	return
#endif

#ifdef	L_divsi3
.global	__divsi3
__divsi3:
	xor	$r5,$r0,$r1	# $r5 is sign of result
	ashr	$r2,$r0,31	# $r0 = abs($r0)
	xor	$r0,$r0,$r2
	sub	$r0,$r0,$r2
	ashr	$r2,$r1,31	# $r1 = abs($r1)
	xor	$r1,$r1,$r2
	sub	$r1,$r1,$r2
	call	__udivsi3
	ashr	$r5,$r5,31
	xor	$r0,$r0,$r5
	sub	$r0,$r0,$r5
	return
	
#endif

#ifdef	L_modsi3
.global	__modsi3
__modsi3:
	move	$r5,$r0		# $r5 is sign of result
	ashr	$r2,$r0,31	# $r0 = abs($r0)
	xor	$r0,$r0,$r2
	sub	$r0,$r0,$r2
	ashr	$r2,$r1,31	# $r1 = abs($r1)
	xor	$r1,$r1,$r2
	sub	$r1,$r1,$r2
	call	__umodsi3
	ashr	$r5,$r5,31
	xor	$r0,$r0,$r5
	sub	$r0,$r0,$r5
	return
#endif