aboutsummaryrefslogtreecommitdiff
path: root/gcc/vec.h
blob: 5ade7e9c5393b53c265c19a1dfe6c5896e3ba069 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
/* Vector API for GNU compiler.
   Copyright (C) 2004-2024 Free Software Foundation, Inc.
   Contributed by Nathan Sidwell <nathan@codesourcery.com>
   Re-implemented in C++ by Diego Novillo <dnovillo@google.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#ifndef GCC_VEC_H
#define GCC_VEC_H

/* Some gen* file have no ggc support as the header file gtype-desc.h is
   missing.  Provide these definitions in case ggc.h has not been included.
   This is not a problem because any code that runs before gengtype is built
   will never need to use GC vectors.*/

extern void ggc_free (void *);
extern size_t ggc_round_alloc_size (size_t requested_size);
extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);

/* Templated vector type and associated interfaces.

   The interface functions are typesafe and use inline functions,
   sometimes backed by out-of-line generic functions.  The vectors are
   designed to interoperate with the GTY machinery.

   There are both 'index' and 'iterate' accessors.  The index accessor
   is implemented by operator[].  The iterator returns a boolean
   iteration condition and updates the iteration variable passed by
   reference.  Because the iterator will be inlined, the address-of
   can be optimized away.

   Each operation that increases the number of active elements is
   available in 'quick' and 'safe' variants.  The former presumes that
   there is sufficient allocated space for the operation to succeed
   (it dies if there is not).  The latter will reallocate the
   vector, if needed.  Reallocation causes an exponential increase in
   vector size.  If you know you will be adding N elements, it would
   be more efficient to use the reserve operation before adding the
   elements with the 'quick' operation.  This will ensure there are at
   least as many elements as you ask for, it will exponentially
   increase if there are too few spare slots.  If you want reserve a
   specific number of slots, but do not want the exponential increase
   (for instance, you know this is the last allocation), use the
   reserve_exact operation.  You can also create a vector of a
   specific size from the get go.

   You should prefer the push and pop operations, as they append and
   remove from the end of the vector. If you need to remove several
   items in one go, use the truncate operation.  The insert and remove
   operations allow you to change elements in the middle of the
   vector.  There are two remove operations, one which preserves the
   element ordering 'ordered_remove', and one which does not
   'unordered_remove'.  The latter function copies the end element
   into the removed slot, rather than invoke a memmove operation.  The
   'lower_bound' function will determine where to place an item in the
   array using insert that will maintain sorted order.

   Vectors are template types with three arguments: the type of the
   elements in the vector, the allocation strategy, and the physical
   layout to use

   Four allocation strategies are supported:

	- Heap: allocation is done using malloc/free.  This is the
	  default allocation strategy.

  	- GC: allocation is done using ggc_alloc/ggc_free.

  	- GC atomic: same as GC with the exception that the elements
	  themselves are assumed to be of an atomic type that does
	  not need to be garbage collected.  This means that marking
	  routines do not need to traverse the array marking the
	  individual elements.  This increases the performance of
	  GC activities.

   Two physical layouts are supported:

	- Embedded: The vector is structured using the trailing array
	  idiom.  The last member of the structure is an array of size
	  1.  When the vector is initially allocated, a single memory
	  block is created to hold the vector's control data and the
	  array of elements.  These vectors cannot grow without
	  reallocation (see discussion on embeddable vectors below).

	- Space efficient: The vector is structured as a pointer to an
	  embedded vector.  This is the default layout.  It means that
	  vectors occupy a single word of storage before initial
	  allocation.  Vectors are allowed to grow (the internal
	  pointer is reallocated but the main vector instance does not
	  need to relocate).

   The type, allocation and layout are specified when the vector is
   declared.

   If you need to directly manipulate a vector, then the 'address'
   accessor will return the address of the start of the vector.  Also
   the 'space' predicate will tell you whether there is spare capacity
   in the vector.  You will not normally need to use these two functions.

   Not all vector operations support non-POD types and such restrictions
   are enforced through static assertions.  Some operations which often use
   memmove to move elements around like quick_insert, safe_insert,
   ordered_remove, unordered_remove, block_remove etc. require trivially
   copyable types.  Sorting operations, qsort, sort and stablesort, require
   those too but as an extension allow also std::pair of 2 trivially copyable
   types which happens to work even when std::pair itself isn't trivially
   copyable.  The quick_grow and safe_grow operations require trivially
   default constructible types.  One can use quick_grow_cleared or
   safe_grow_cleared for non-trivially default constructible types if needed
   (but of course such operation is more expensive then).  The pop operation
   returns reference to the last element only for trivially destructible
   types, for non-trivially destructible types one should use last operation
   followed by pop which in that case returns void.
   And finally, the GC and GC atomic vectors should always be used with
   trivially destructible types, as nothing will invoke destructors when they
   are freed during GC.

   Notes on the different layout strategies

   * Embeddable vectors (vec<T, A, vl_embed>)

     These vectors are suitable to be embedded in other data
     structures so that they can be pre-allocated in a contiguous
     memory block.

     Embeddable vectors are implemented using the trailing array
     idiom, thus they are not resizeable without changing the address
     of the vector object itself.  This means you cannot have
     variables or fields of embeddable vector type -- always use a
     pointer to a vector.  The one exception is the final field of a
     structure, which could be a vector type.

     You will have to use the embedded_size & embedded_init calls to
     create such objects, and they will not be resizeable (so the
     'safe' allocation variants are not available).

     Properties of embeddable vectors:

	  - The whole vector and control data are allocated in a single
	    contiguous block.  It uses the trailing-vector idiom, so
	    allocation must reserve enough space for all the elements
	    in the vector plus its control data.
	  - The vector cannot be re-allocated.
	  - The vector cannot grow nor shrink.
	  - No indirections needed for access/manipulation.
	  - It requires 2 words of storage (prior to vector allocation).


   * Space efficient vector (vec<T, A, vl_ptr>)

     These vectors can grow dynamically and are allocated together
     with their control data.  They are suited to be included in data
     structures.  Prior to initial allocation, they only take a single
     word of storage.

     These vectors are implemented as a pointer to embeddable vectors.
     The semantics allow for this pointer to be NULL to represent
     empty vectors.  This way, empty vectors occupy minimal space in
     the structure containing them.

     Properties:

	- The whole vector and control data are allocated in a single
	  contiguous block.
  	- The whole vector may be re-allocated.
  	- Vector data may grow and shrink.
  	- Access and manipulation requires a pointer test and
	  indirection.
  	- It requires 1 word of storage (prior to vector allocation).

   An example of their use would be,

   struct my_struct {
     // A space-efficient vector of tree pointers in GC memory.
     vec<tree, va_gc, vl_ptr> v;
   };

   struct my_struct *s;

   if (s->v.length ()) { we have some contents }
   s->v.safe_push (decl); // append some decl onto the end
   for (ix = 0; s->v.iterate (ix, &elt); ix++)
     { do something with elt }
*/

/* Support function for statistics.  */
extern void dump_vec_loc_statistics (void);

/* Hashtable mapping vec addresses to descriptors.  */
extern htab_t vec_mem_usage_hash;

/* Destruct N elements in DST.  */

template <typename T>
inline void
vec_destruct (T *dst, unsigned n)
{
  for ( ; n; ++dst, --n)
    dst->~T ();
}

/* Control data for vectors.  This contains the number of allocated
   and used slots inside a vector.  */

struct vec_prefix
{
  /* FIXME - These fields should be private, but we need to cater to
	     compilers that have stricter notions of PODness for types.  */

  /* Memory allocation support routines in vec.cc.  */
  void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
  void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
  static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
  static unsigned calculate_allocation_1 (unsigned, unsigned);

  /* Note that vec_prefix should be a base class for vec, but we use
     offsetof() on vector fields of tree structures (e.g.,
     tree_binfo::base_binfos), and offsetof only supports base types.

     To compensate, we make vec_prefix a field inside vec and make
     vec a friend class of vec_prefix so it can access its fields.  */
  template <typename, typename, typename> friend struct vec;

  /* The allocator types also need access to our internals.  */
  friend struct va_gc;
  friend struct va_gc_atomic;
  friend struct va_heap;

  unsigned m_alloc : 31;
  unsigned m_using_auto_storage : 1;
  unsigned m_num;
};

/* Calculate the number of slots to reserve a vector, making sure that
   RESERVE slots are free.  If EXACT grow exactly, otherwise grow
   exponentially.  PFX is the control data for the vector.  */

inline unsigned
vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
				  bool exact)
{
  if (exact)
    return (pfx ? pfx->m_num : 0) + reserve;
  else if (!pfx)
    return MAX (4, reserve);
  return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
}

template<typename, typename, typename> struct vec;

/* Valid vector layouts

   vl_embed	- Embeddable vector that uses the trailing array idiom.
   vl_ptr	- Space efficient vector that uses a pointer to an
		  embeddable vector.  */
struct vl_embed { };
struct vl_ptr { };


/* Types of supported allocations

   va_heap	- Allocation uses malloc/free.
   va_gc	- Allocation uses ggc_alloc.
   va_gc_atomic	- Same as GC, but individual elements of the array
		  do not need to be marked during collection.  */

/* Allocator type for heap vectors.  */
struct va_heap
{
  /* Heap vectors are frequently regular instances, so use the vl_ptr
     layout for them.  */
  typedef vl_ptr default_layout;

  template<typename T>
  static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
		       CXX_MEM_STAT_INFO);

  template<typename T>
  static void release (vec<T, va_heap, vl_embed> *&);
};


/* Allocator for heap memory.  Ensure there are at least RESERVE free
   slots in V.  If EXACT is true, grow exactly, else grow
   exponentially.  As a special case, if the vector had not been
   allocated and RESERVE is 0, no vector will be created.  */

template<typename T>
inline void
va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
		  MEM_STAT_DECL)
{
  size_t elt_size = sizeof (T);
  unsigned alloc
    = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
  gcc_checking_assert (alloc);

  if (GATHER_STATISTICS && v)
    v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
				  v->allocated (), false);

  size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
  unsigned nelem = v ? v->length () : 0;
  v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
  v->embedded_init (alloc, nelem);

  if (GATHER_STATISTICS)
    v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
}


#if GCC_VERSION >= 4007
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfree-nonheap-object"
#endif

/* Free the heap space allocated for vector V.  */

template<typename T>
void
va_heap::release (vec<T, va_heap, vl_embed> *&v)
{
  size_t elt_size = sizeof (T);
  if (v == NULL)
    return;

  if (!std::is_trivially_destructible <T>::value)
    vec_destruct (v->address (), v->length ());

  if (GATHER_STATISTICS)
    v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
				  v->allocated (), true);
  ::free (v);
  v = NULL;
}

#if GCC_VERSION >= 4007
#pragma GCC diagnostic pop
#endif

/* Allocator type for GC vectors.  Notice that we need the structure
   declaration even if GC is not enabled.  */

struct va_gc
{
  /* Use vl_embed as the default layout for GC vectors.  Due to GTY
     limitations, GC vectors must always be pointers, so it is more
     efficient to use a pointer to the vl_embed layout, rather than
     using a pointer to a pointer as would be the case with vl_ptr.  */
  typedef vl_embed default_layout;

  template<typename T, typename A>
  static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
		       CXX_MEM_STAT_INFO);

  template<typename T, typename A>
  static void release (vec<T, A, vl_embed> *&v);
};


/* Free GC memory used by V and reset V to NULL.  */

template<typename T, typename A>
inline void
va_gc::release (vec<T, A, vl_embed> *&v)
{
  if (v)
    ::ggc_free (v);
  v = NULL;
}


/* Allocator for GC memory.  Ensure there are at least RESERVE free
   slots in V.  If EXACT is true, grow exactly, else grow
   exponentially.  As a special case, if the vector had not been
   allocated and RESERVE is 0, no vector will be created.  */

template<typename T, typename A>
void
va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
		MEM_STAT_DECL)
{
  unsigned alloc
    = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
  if (!alloc)
    {
      ::ggc_free (v);
      v = NULL;
      return;
    }

  /* Calculate the amount of space we want.  */
  size_t size = vec<T, A, vl_embed>::embedded_size (alloc);

  /* Ask the allocator how much space it will really give us.  */
  size = ::ggc_round_alloc_size (size);

  /* Adjust the number of slots accordingly.  */
  size_t vec_offset = sizeof (vec_prefix);
  size_t elt_size = sizeof (T);
  alloc = (size - vec_offset) / elt_size;

  /* And finally, recalculate the amount of space we ask for.  */
  size = vec_offset + alloc * elt_size;

  unsigned nelem = v ? v->length () : 0;
  v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
							       PASS_MEM_STAT));
  v->embedded_init (alloc, nelem);
}


/* Allocator type for GC vectors.  This is for vectors of types
   atomics w.r.t. collection, so allocation and deallocation is
   completely inherited from va_gc.  */
struct va_gc_atomic : va_gc
{
};


/* Generic vector template.  Default values for A and L indicate the
   most commonly used strategies.

   FIXME - Ideally, they would all be vl_ptr to encourage using regular
           instances for vectors, but the existing GTY machinery is limited
	   in that it can only deal with GC objects that are pointers
	   themselves.

	   This means that vector operations that need to deal with
	   potentially NULL pointers, must be provided as free
	   functions (see the vec_safe_* functions above).  */
template<typename T,
         typename A = va_heap,
         typename L = typename A::default_layout>
struct GTY((user)) vec
{
};

/* Allow C++11 range-based 'for' to work directly on vec<T>*.  */
template<typename T, typename A, typename L>
T* begin (vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
template<typename T, typename A, typename L>
T* end (vec<T,A,L> *v) { return v ? v->end () : nullptr; }
template<typename T, typename A, typename L>
const T* begin (const vec<T,A,L> *v) { return v ? v->begin () : nullptr; }
template<typename T, typename A, typename L>
const T* end (const vec<T,A,L> *v) { return v ? v->end () : nullptr; }

/* Generic vec<> debug helpers.

   These need to be instantiated for each vec<TYPE> used throughout
   the compiler like this:

    DEFINE_DEBUG_VEC (TYPE)

   The reason we have a debug_helper() is because GDB can't
   disambiguate a plain call to debug(some_vec), and it must be called
   like debug<TYPE>(some_vec).  */

template<typename T>
void
debug_helper (vec<T> &ref)
{
  unsigned i;
  for (i = 0; i < ref.length (); ++i)
    {
      fprintf (stderr, "[%d] = ", i);
      debug_slim (ref[i]);
      fputc ('\n', stderr);
    }
}

/* We need a separate va_gc variant here because default template
   argument for functions cannot be used in c++-98.  Once this
   restriction is removed, those variant should be folded with the
   above debug_helper.  */

template<typename T>
void
debug_helper (vec<T, va_gc> &ref)
{
  unsigned i;
  for (i = 0; i < ref.length (); ++i)
    {
      fprintf (stderr, "[%d] = ", i);
      debug_slim (ref[i]);
      fputc ('\n', stderr);
    }
}

/* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
   functions for a type T.  */

#define DEFINE_DEBUG_VEC(T) \
  template void debug_helper (vec<T> &);		\
  template void debug_helper (vec<T, va_gc> &);		\
  /* Define the vec<T> debug functions.  */		\
  DEBUG_FUNCTION void					\
  debug (vec<T> &ref)					\
  {							\
    debug_helper <T> (ref);				\
  }							\
  DEBUG_FUNCTION void					\
  debug (vec<T> *ptr)					\
  {							\
    if (ptr)						\
      debug (*ptr);					\
    else						\
      fprintf (stderr, "<nil>\n");			\
  }							\
  /* Define the vec<T, va_gc> debug functions.  */	\
  DEBUG_FUNCTION void					\
  debug (vec<T, va_gc> &ref)				\
  {							\
    debug_helper <T> (ref);				\
  }							\
  DEBUG_FUNCTION void					\
  debug (vec<T, va_gc> *ptr)				\
  {							\
    if (ptr)						\
      debug (*ptr);					\
    else						\
      fprintf (stderr, "<nil>\n");			\
  }

/* Default-construct N elements in DST.  */

template <typename T>
inline void
vec_default_construct (T *dst, unsigned n)
{
  for ( ; n; ++dst, --n)
    ::new (static_cast<void*>(dst)) T ();
}

/* Copy-construct N elements in DST from *SRC.  */

template <typename T>
inline void
vec_copy_construct (T *dst, const T *src, unsigned n)
{
  for ( ; n; ++dst, ++src, --n)
    ::new (static_cast<void*>(dst)) T (*src);
}

/* Type to provide zero-initialized values for vec<T, A, L>.  This is
   used to  provide nil initializers for vec instances.  Since vec must
   be a trivially copyable type that can be copied by memcpy and zeroed
   out by memset, it must have defaulted default and copy ctor and copy
   assignment.  To initialize a vec either use value initialization
   (e.g., vec() or vec v{ };) or assign it the value vNULL.  This isn't
   needed for file-scope and function-local static vectors, which are
   zero-initialized by default.  */
struct vnull { };
constexpr vnull vNULL{ };


/* Embeddable vector.  These vectors are suitable to be embedded
   in other data structures so that they can be pre-allocated in a
   contiguous memory block.

   Embeddable vectors are implemented using the trailing array idiom,
   thus they are not resizeable without changing the address of the
   vector object itself.  This means you cannot have variables or
   fields of embeddable vector type -- always use a pointer to a
   vector.  The one exception is the final field of a structure, which
   could be a vector type.

   You will have to use the embedded_size & embedded_init calls to
   create such objects, and they will not be resizeable (so the 'safe'
   allocation variants are not available).

   Properties:

	- The whole vector and control data are allocated in a single
	  contiguous block.  It uses the trailing-vector idiom, so
	  allocation must reserve enough space for all the elements
  	  in the vector plus its control data.
  	- The vector cannot be re-allocated.
  	- The vector cannot grow nor shrink.
  	- No indirections needed for access/manipulation.
  	- It requires 2 words of storage (prior to vector allocation).  */

template<typename T, typename A>
struct GTY((user)) vec<T, A, vl_embed>
{
public:
  unsigned allocated (void) const { return m_vecpfx.m_alloc; }
  unsigned length (void) const { return m_vecpfx.m_num; }
  bool is_empty (void) const { return m_vecpfx.m_num == 0; }
  T *address (void) { return reinterpret_cast <T *> (this + 1); }
  const T *address (void) const
    { return reinterpret_cast <const T *> (this + 1); }
  T *begin () { return address (); }
  const T *begin () const { return address (); }
  T *end () { return address () + length (); }
  const T *end () const { return address () + length (); }
  const T &operator[] (unsigned) const;
  T &operator[] (unsigned);
  T &last (void);
  bool space (unsigned) const;
  bool iterate (unsigned, T *) const;
  bool iterate (unsigned, T **) const;
  vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
  void splice (const vec &);
  void splice (const vec *src);
  T *quick_push (const T &);
  using pop_ret_type
    = typename std::conditional <std::is_trivially_destructible <T>::value,
				 T &, void>::type;
  pop_ret_type pop (void);
  void truncate (unsigned);
  void quick_insert (unsigned, const T &);
  void ordered_remove (unsigned);
  void unordered_remove (unsigned);
  void block_remove (unsigned, unsigned);
  void qsort (int (*) (const void *, const void *));
  void sort (int (*) (const void *, const void *, void *), void *);
  void stablesort (int (*) (const void *, const void *, void *), void *);
  T *bsearch (const void *key, int (*compar) (const void *, const void *));
  T *bsearch (const void *key,
	      int (*compar)(const void *, const void *, void *), void *);
  unsigned lower_bound (const T &, bool (*) (const T &, const T &)) const;
  bool contains (const T &search) const;
  static size_t embedded_size (unsigned);
  void embedded_init (unsigned, unsigned = 0, unsigned = 0);
  void quick_grow (unsigned len);
  void quick_grow_cleared (unsigned len);

  /* vec class can access our internal data and functions.  */
  template <typename, typename, typename> friend struct vec;

  /* The allocator types also need access to our internals.  */
  friend struct va_gc;
  friend struct va_gc_atomic;
  friend struct va_heap;

  /* FIXME - This field should be private, but we need to cater to
	     compilers that have stricter notions of PODness for types.  */
  /* Align m_vecpfx to simplify address ().  */
  alignas (T) alignas (vec_prefix) vec_prefix m_vecpfx;
};


/* Convenience wrapper functions to use when dealing with pointers to
   embedded vectors.  Some functionality for these vectors must be
   provided via free functions for these reasons:

	1- The pointer may be NULL (e.g., before initial allocation).

  	2- When the vector needs to grow, it must be reallocated, so
  	   the pointer will change its value.

   Because of limitations with the current GC machinery, all vectors
   in GC memory *must* be pointers.  */


/* If V contains no room for NELEMS elements, return false. Otherwise,
   return true.  */
template<typename T, typename A>
inline bool
vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
{
  return v ? v->space (nelems) : nelems == 0;
}


/* If V is NULL, return 0.  Otherwise, return V->length().  */
template<typename T, typename A>
inline unsigned
vec_safe_length (const vec<T, A, vl_embed> *v)
{
  return v ? v->length () : 0;
}


/* If V is NULL, return NULL.  Otherwise, return V->address().  */
template<typename T, typename A>
inline T *
vec_safe_address (vec<T, A, vl_embed> *v)
{
  return v ? v->address () : NULL;
}


/* If V is NULL, return true.  Otherwise, return V->is_empty().  */
template<typename T, typename A>
inline bool
vec_safe_is_empty (vec<T, A, vl_embed> *v)
{
  return v ? v->is_empty () : true;
}

/* If V does not have space for NELEMS elements, call
   V->reserve(NELEMS, EXACT).  */
template<typename T, typename A>
inline bool
vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
		  CXX_MEM_STAT_INFO)
{
  bool extend = nelems ? !vec_safe_space (v, nelems) : false;
  if (extend)
    A::reserve (v, nelems, exact PASS_MEM_STAT);
  return extend;
}

template<typename T, typename A>
inline bool
vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
			CXX_MEM_STAT_INFO)
{
  return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
}


/* Allocate GC memory for V with space for NELEMS slots.  If NELEMS
   is 0, V is initialized to NULL.  */

template<typename T, typename A>
inline void
vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
{
  v = NULL;
  vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
}


/* Free the GC memory allocated by vector V and set it to NULL.  */

template<typename T, typename A>
inline void
vec_free (vec<T, A, vl_embed> *&v)
{
  A::release (v);
}


/* Grow V to length LEN.  Allocate it, if necessary.  */
template<typename T, typename A>
inline void
vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len,
	       bool exact = false CXX_MEM_STAT_INFO)
{
  unsigned oldlen = vec_safe_length (v);
  gcc_checking_assert (len >= oldlen);
  vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT);
  v->quick_grow (len);
}


/* If V is NULL, allocate it.  Call V->safe_grow_cleared(LEN).  */
template<typename T, typename A>
inline void
vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len,
		       bool exact = false CXX_MEM_STAT_INFO)
{
  unsigned oldlen = vec_safe_length (v);
  gcc_checking_assert (len >= oldlen);
  vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT);
  v->quick_grow_cleared (len);
}


/* Assume V is not NULL.  */

template<typename T>
inline void
vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
		       unsigned len, bool exact = false CXX_MEM_STAT_INFO)
{
  v->safe_grow_cleared (len, exact PASS_MEM_STAT);
}

/* If V does not have space for NELEMS elements, call
   V->reserve(NELEMS, EXACT).  */

template<typename T>
inline bool
vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false
		  CXX_MEM_STAT_INFO)
{
  return v->reserve (nelems, exact);
}


/* If V is NULL return false, otherwise return V->iterate(IX, PTR).  */
template<typename T, typename A>
inline bool
vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
{
  if (v)
    return v->iterate (ix, ptr);
  else
    {
      *ptr = 0;
      return false;
    }
}

template<typename T, typename A>
inline bool
vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
{
  if (v)
    return v->iterate (ix, ptr);
  else
    {
      *ptr = 0;
      return false;
    }
}


/* If V has no room for one more element, reallocate it.  Then call
   V->quick_push(OBJ).  */
template<typename T, typename A>
inline T *
vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
{
  vec_safe_reserve (v, 1, false PASS_MEM_STAT);
  return v->quick_push (obj);
}


/* if V has no room for one more element, reallocate it.  Then call
   V->quick_insert(IX, OBJ).  */
template<typename T, typename A>
inline void
vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
		 CXX_MEM_STAT_INFO)
{
  vec_safe_reserve (v, 1, false PASS_MEM_STAT);
  v->quick_insert (ix, obj);
}


/* If V is NULL, do nothing.  Otherwise, call V->truncate(SIZE).  */
template<typename T, typename A>
inline void
vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
{
  if (v)
    v->truncate (size);
}


/* If SRC is not NULL, return a pointer to a copy of it.  */
template<typename T, typename A>
inline vec<T, A, vl_embed> *
vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
{
  return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
}

/* Copy the elements from SRC to the end of DST as if by memcpy.
   Reallocate DST, if necessary.  */
template<typename T, typename A>
inline void
vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
		 CXX_MEM_STAT_INFO)
{
  unsigned src_len = vec_safe_length (src);
  if (src_len)
    {
      vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
			      PASS_MEM_STAT);
      dst->splice (*src);
    }
}

/* Return true if SEARCH is an element of V.  Note that this is O(N) in the
   size of the vector and so should be used with care.  */

template<typename T, typename A>
inline bool
vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
{
  return v ? v->contains (search) : false;
}

/* Index into vector.  Return the IX'th element.  IX must be in the
   domain of the vector.  */

template<typename T, typename A>
inline const T &
vec<T, A, vl_embed>::operator[] (unsigned ix) const
{
  gcc_checking_assert (ix < m_vecpfx.m_num);
  return address ()[ix];
}

template<typename T, typename A>
inline T &
vec<T, A, vl_embed>::operator[] (unsigned ix)
{
  gcc_checking_assert (ix < m_vecpfx.m_num);
  return address ()[ix];
}


/* Get the final element of the vector, which must not be empty.  */

template<typename T, typename A>
inline T &
vec<T, A, vl_embed>::last (void)
{
  gcc_checking_assert (m_vecpfx.m_num > 0);
  return (*this)[m_vecpfx.m_num - 1];
}


/* If this vector has space for NELEMS additional entries, return
   true.  You usually only need to use this if you are doing your
   own vector reallocation, for instance on an embedded vector.  This
   returns true in exactly the same circumstances that vec::reserve
   will.  */

template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::space (unsigned nelems) const
{
  return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
}


/* Return iteration condition and update *PTR to (a copy of) the IX'th
   element of this vector.  Use this to iterate over the elements of a
   vector as follows,

     for (ix = 0; v->iterate (ix, &val); ix++)
       continue;  */

template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
{
  if (ix < m_vecpfx.m_num)
    {
      *ptr = address ()[ix];
      return true;
    }
  else
    {
      *ptr = 0;
      return false;
    }
}


/* Return iteration condition and update *PTR to point to the
   IX'th element of this vector.  Use this to iterate over the
   elements of a vector as follows,

     for (ix = 0; v->iterate (ix, &ptr); ix++)
       continue;

   This variant is for vectors of objects.  */

template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
{
  if (ix < m_vecpfx.m_num)
    {
      *ptr = CONST_CAST (T *, &address ()[ix]);
      return true;
    }
  else
    {
      *ptr = 0;
      return false;
    }
}


/* Return a pointer to a copy of this vector.  */

template<typename T, typename A>
inline vec<T, A, vl_embed> *
vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
{
  vec<T, A, vl_embed> *new_vec = NULL;
  unsigned len = length ();
  if (len)
    {
      vec_alloc (new_vec, len PASS_MEM_STAT);
      new_vec->embedded_init (len, len);
      vec_copy_construct (new_vec->address (), address (), len);
    }
  return new_vec;
}


/* Copy the elements from SRC to the end of this vector as if by memcpy.
   The vector must have sufficient headroom available.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
{
  unsigned len = src.length ();
  if (len)
    {
      gcc_checking_assert (space (len));
      vec_copy_construct (end (), src.address (), len);
      m_vecpfx.m_num += len;
    }
}

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
{
  if (src)
    splice (*src);
}


/* Push OBJ (a new element) onto the end of the vector.  There must be
   sufficient space in the vector.  Return a pointer to the slot
   where OBJ was inserted.  */

template<typename T, typename A>
inline T *
vec<T, A, vl_embed>::quick_push (const T &obj)
{
  gcc_checking_assert (space (1));
  T *slot = &address ()[m_vecpfx.m_num++];
  ::new (static_cast<void*>(slot)) T (obj);
  return slot;
}


/* Pop and return a reference to the last element off the end of the
   vector.  If T has non-trivial destructor, this method just pops
   the element and returns void type.  */

template<typename T, typename A>
inline typename vec<T, A, vl_embed>::pop_ret_type
vec<T, A, vl_embed>::pop (void)
{
  gcc_checking_assert (length () > 0);
  T &last = address ()[--m_vecpfx.m_num];
  if (!std::is_trivially_destructible <T>::value)
    last.~T ();
  return static_cast <pop_ret_type> (last);
}


/* Set the length of the vector to SIZE.  The new length must be less
   than or equal to the current length.  This is an O(1) operation.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::truncate (unsigned size)
{
  unsigned l = length ();
  gcc_checking_assert (l >= size);
  if (!std::is_trivially_destructible <T>::value)
    vec_destruct (address () + size, l - size);
  m_vecpfx.m_num = size;
}


/* Insert an element, OBJ, at the IXth position of this vector.  There
   must be sufficient space.  This operation is not suitable for non-trivially
   copyable types.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
{
  gcc_checking_assert (length () < allocated ());
  gcc_checking_assert (ix <= length ());
#if GCC_VERSION >= 5000
  /* GCC 4.8 and 4.9 only implement std::is_trivially_destructible,
     but not std::is_trivially_copyable nor
     std::is_trivially_default_constructible.  */
  static_assert (std::is_trivially_copyable <T>::value, "");
#endif
  T *slot = &address ()[ix];
  memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
  *slot = obj;
}


/* Remove an element from the IXth position of this vector.  Ordering of
   remaining elements is preserved.  This is an O(N) operation due to
   memmove.  Not suitable for non-trivially copyable types.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::ordered_remove (unsigned ix)
{
  gcc_checking_assert (ix < length ());
#if GCC_VERSION >= 5000
  static_assert (std::is_trivially_copyable <T>::value, "");
#endif
  T *slot = &address ()[ix];
  memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
}


/* Remove elements in [START, END) from VEC for which COND holds.  Ordering of
   remaining elements is preserved.  This is an O(N) operation.  */

#define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index,	\
				      elem_ptr, start, end, cond)	\
  {									\
    gcc_assert ((end) <= (vec).length ());				\
    for (read_index = write_index = (start); read_index < (end);	\
	 ++read_index)							\
      {									\
	elem_ptr = &(vec)[read_index];					\
	bool remove_p = (cond);						\
	if (remove_p)							\
	  continue;							\
									\
	if (read_index != write_index)					\
	  (vec)[write_index] = (vec)[read_index];			\
									\
	write_index++;							\
      }									\
									\
    if (read_index - write_index > 0)					\
      (vec).block_remove (write_index, read_index - write_index);	\
  }


/* Remove elements from VEC for which COND holds.  Ordering of remaining
   elements is preserved.  This is an O(N) operation.  */

#define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr,	\
			      cond)					\
  VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index,	\
				 elem_ptr, 0, (vec).length (), (cond))

/* Remove an element from the IXth position of this vector.  Ordering of
   remaining elements is destroyed.  This is an O(1) operation.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::unordered_remove (unsigned ix)
{
  gcc_checking_assert (ix < length ());
#if GCC_VERSION >= 5000
  static_assert (std::is_trivially_copyable <T>::value, "");
#endif
  T *p = address ();
  p[ix] = p[--m_vecpfx.m_num];
}


/* Remove LEN elements starting at the IXth.  Ordering is retained.
   This is an O(N) operation due to memmove.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
{
  gcc_checking_assert (ix + len <= length ());
#if GCC_VERSION >= 5000
  static_assert (std::is_trivially_copyable <T>::value, "");
#endif
  T *slot = &address ()[ix];
  m_vecpfx.m_num -= len;
  memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
}


#if GCC_VERSION >= 5000
namespace vec_detail
{
  /* gcc_{qsort,qsort_r,stablesort_r} implementation under the hood
     uses memcpy/memmove to reorder the array elements.
     We want to assert these methods aren't used on types for which
     that isn't appropriate, but unfortunately std::pair of 2 trivially
     copyable types isn't trivially copyable and we use qsort on many
     such std::pair instantiations.  Let's allow both trivially
     copyable types and std::pair of 2 trivially copyable types as
     exception for qsort/sort/stablesort.  */
  template<typename T>
  struct is_trivially_copyable_or_pair : std::is_trivially_copyable<T> { };

  template<typename T, typename U>
  struct is_trivially_copyable_or_pair<std::pair<T, U> >
  : std::integral_constant<bool, std::is_trivially_copyable<T>::value
    && std::is_trivially_copyable<U>::value> { };
}
#endif

/* Sort the contents of this vector with qsort.  CMP is the comparison
   function to pass to qsort.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
{
#if GCC_VERSION >= 5000
  static_assert (vec_detail::is_trivially_copyable_or_pair <T>::value, "");
#endif
  if (length () > 1)
    gcc_qsort (address (), length (), sizeof (T), cmp);
}

/* Sort the contents of this vector with qsort.  CMP is the comparison
   function to pass to qsort.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *),
			   void *data)
{
#if GCC_VERSION >= 5000
  static_assert (vec_detail::is_trivially_copyable_or_pair <T>::value, "");
#endif
  if (length () > 1)
    gcc_sort_r (address (), length (), sizeof (T), cmp, data);
}

/* Sort the contents of this vector with gcc_stablesort_r.  CMP is the
   comparison function to pass to qsort.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::stablesort (int (*cmp) (const void *, const void *,
					     void *), void *data)
{
#if GCC_VERSION >= 5000
  static_assert (vec_detail::is_trivially_copyable_or_pair <T>::value, "");
#endif
  if (length () > 1)
    gcc_stablesort_r (address (), length (), sizeof (T), cmp, data);
}

/* Search the contents of the sorted vector with a binary search.
   CMP is the comparison function to pass to bsearch.  */

template<typename T, typename A>
inline T *
vec<T, A, vl_embed>::bsearch (const void *key,
			      int (*compar) (const void *, const void *))
{
  const void *base = this->address ();
  size_t nmemb = this->length ();
  size_t size = sizeof (T);
  /* The following is a copy of glibc stdlib-bsearch.h.  */
  size_t l, u, idx;
  const void *p;
  int comparison;

  l = 0;
  u = nmemb;
  while (l < u)
    {
      idx = (l + u) / 2;
      p = (const void *) (((const char *) base) + (idx * size));
      comparison = (*compar) (key, p);
      if (comparison < 0)
	u = idx;
      else if (comparison > 0)
	l = idx + 1;
      else
	return (T *)const_cast<void *>(p);
    }

  return NULL;
}

/* Search the contents of the sorted vector with a binary search.
   CMP is the comparison function to pass to bsearch.  */

template<typename T, typename A>
inline T *
vec<T, A, vl_embed>::bsearch (const void *key,
			      int (*compar) (const void *, const void *,
					     void *), void *data)
{
  const void *base = this->address ();
  size_t nmemb = this->length ();
  size_t size = sizeof (T);
  /* The following is a copy of glibc stdlib-bsearch.h.  */
  size_t l, u, idx;
  const void *p;
  int comparison;

  l = 0;
  u = nmemb;
  while (l < u)
    {
      idx = (l + u) / 2;
      p = (const void *) (((const char *) base) + (idx * size));
      comparison = (*compar) (key, p, data);
      if (comparison < 0)
	u = idx;
      else if (comparison > 0)
	l = idx + 1;
      else
	return (T *)const_cast<void *>(p);
    }

  return NULL;
}

/* Return true if SEARCH is an element of V.  Note that this is O(N) in the
   size of the vector and so should be used with care.  */

template<typename T, typename A>
inline bool
vec<T, A, vl_embed>::contains (const T &search) const
{
  unsigned int len = length ();
  const T *p = address ();
  for (unsigned int i = 0; i < len; i++)
    {
      const T *slot = &p[i];
      if (*slot == search)
	return true;
    }

  return false;
}

/* Find and return the first position in which OBJ could be inserted
   without changing the ordering of this vector.  LESSTHAN is a
   function that returns true if the first argument is strictly less
   than the second.  */

template<typename T, typename A>
unsigned
vec<T, A, vl_embed>::lower_bound (const T &obj,
				  bool (*lessthan)(const T &, const T &))
  const
{
  unsigned int len = length ();
  unsigned int half, middle;
  unsigned int first = 0;
  while (len > 0)
    {
      half = len / 2;
      middle = first;
      middle += half;
      const T &middle_elem = address ()[middle];
      if (lessthan (middle_elem, obj))
	{
	  first = middle;
	  ++first;
	  len = len - half - 1;
	}
      else
	len = half;
    }
  return first;
}


/* Return the number of bytes needed to embed an instance of an
   embeddable vec inside another data structure.

   Use these methods to determine the required size and initialization
   of a vector V of type T embedded within another structure (as the
   final member):

   size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
   void v->embedded_init (unsigned alloc, unsigned num);

   These allow the caller to perform the memory allocation.  */

template<typename T, typename A>
inline size_t
vec<T, A, vl_embed>::embedded_size (unsigned alloc)
{
  struct alignas (T) U { char data[sizeof (T)]; };
  typedef vec<U, A, vl_embed> vec_embedded;
  typedef typename std::conditional<std::is_standard_layout<T>::value,
				    vec, vec_embedded>::type vec_stdlayout;
  static_assert (sizeof (vec_stdlayout) == sizeof (vec), "");
  static_assert (alignof (vec_stdlayout) == alignof (vec), "");
  return sizeof (vec_stdlayout) + alloc * sizeof (T);
}


/* Initialize the vector to contain room for ALLOC elements and
   NUM active elements.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
{
  m_vecpfx.m_alloc = alloc;
  m_vecpfx.m_using_auto_storage = aut;
  m_vecpfx.m_num = num;
}


/* Grow the vector to a specific length.  LEN must be as long or longer than
   the current length.  The new elements are uninitialized.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_grow (unsigned len)
{
  gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
#if GCC_VERSION >= 5000
  static_assert (std::is_trivially_default_constructible <T>::value, "");
#endif
  m_vecpfx.m_num = len;
}


/* Grow the vector to a specific length.  LEN must be as long or longer than
   the current length.  The new elements are initialized to zero.  */

template<typename T, typename A>
inline void
vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
{
  unsigned oldlen = length ();
  size_t growby = len - oldlen;
  gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
  m_vecpfx.m_num = len;
  if (growby != 0)
    vec_default_construct (address () + oldlen, growby);
}

/* Garbage collection support for vec<T, A, vl_embed>.  */

template<typename T>
void
gt_ggc_mx (vec<T, va_gc> *v)
{
  static_assert (std::is_trivially_destructible <T>::value, "");
  extern void gt_ggc_mx (T &);
  for (unsigned i = 0; i < v->length (); i++)
    gt_ggc_mx ((*v)[i]);
}

template<typename T>
void
gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
{
  static_assert (std::is_trivially_destructible <T>::value, "");
  /* Nothing to do.  Vectors of atomic types wrt GC do not need to
     be traversed.  */
}


/* PCH support for vec<T, A, vl_embed>.  */

template<typename T, typename A>
void
gt_pch_nx (vec<T, A, vl_embed> *v)
{
  extern void gt_pch_nx (T &);
  for (unsigned i = 0; i < v->length (); i++)
    gt_pch_nx ((*v)[i]);
}

template<typename T>
void
gt_pch_nx (vec<T, va_gc_atomic, vl_embed> *)
{
  /* No pointers to note.  */
}

template<typename T, typename A>
void
gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
{
  for (unsigned i = 0; i < v->length (); i++)
    op (&((*v)[i]), NULL, cookie);
}

template<typename T, typename A>
void
gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
{
  extern void gt_pch_nx (T *, gt_pointer_operator, void *);
  for (unsigned i = 0; i < v->length (); i++)
    gt_pch_nx (&((*v)[i]), op, cookie);
}

template<typename T>
void
gt_pch_nx (vec<T, va_gc_atomic, vl_embed> *, gt_pointer_operator, void *)
{
  /* No pointers to note.  */
}


/* Space efficient vector.  These vectors can grow dynamically and are
   allocated together with their control data.  They are suited to be
   included in data structures.  Prior to initial allocation, they
   only take a single word of storage.

   These vectors are implemented as a pointer to an embeddable vector.
   The semantics allow for this pointer to be NULL to represent empty
   vectors.  This way, empty vectors occupy minimal space in the
   structure containing them.

   Properties:

	- The whole vector and control data are allocated in a single
	  contiguous block.
  	- The whole vector may be re-allocated.
  	- Vector data may grow and shrink.
  	- Access and manipulation requires a pointer test and
	  indirection.
	- It requires 1 word of storage (prior to vector allocation).


   Limitations:

   These vectors must be PODs because they are stored in unions.
   (http://en.wikipedia.org/wiki/Plain_old_data_structures).
   As long as we use C++03, we cannot have constructors nor
   destructors in classes that are stored in unions.  */

template<typename T, size_t N = 0>
class auto_vec;

template<typename T>
struct vec<T, va_heap, vl_ptr>
{
public:
  /* Default ctors to ensure triviality.  Use value-initialization
     (e.g., vec() or vec v{ };) or vNULL to create a zero-initialized
     instance.  */
  vec () = default;
  vec (const vec &) = default;
  /* Initialization from the generic vNULL.  */
  vec (vnull): m_vec () { }
  /* Same as default ctor: vec storage must be released manually.  */
  ~vec () = default;

  /* Defaulted same as copy ctor.  */
  vec& operator= (const vec &) = default;

  /* Prevent implicit conversion from auto_vec.  Use auto_vec::to_vec()
     instead.  */
  template <size_t N>
  vec (auto_vec<T, N> &) = delete;

  template <size_t N>
  void operator= (auto_vec<T, N> &) = delete;

  /* Memory allocation and deallocation for the embedded vector.
     Needed because we cannot have proper ctors/dtors defined.  */
  void create (unsigned nelems CXX_MEM_STAT_INFO);
  void release (void);

  /* Vector operations.  */
  bool exists (void) const
  { return m_vec != NULL; }

  bool is_empty (void) const
  { return m_vec ? m_vec->is_empty () : true; }

  unsigned allocated (void) const
  { return m_vec ? m_vec->allocated () : 0; }

  unsigned length (void) const
  { return m_vec ? m_vec->length () : 0; }

  T *address (void)
  { return m_vec ? m_vec->address () : NULL; }

  const T *address (void) const
  { return m_vec ? m_vec->address () : NULL; }

  T *begin () { return address (); }
  const T *begin () const { return address (); }
  T *end () { return begin () + length (); }
  const T *end () const { return begin () + length (); }
  const T &operator[] (unsigned ix) const
  { return (*m_vec)[ix]; }

  bool operator!=(const vec &other) const
  { return !(*this == other); }

  bool operator==(const vec &other) const
  { return address () == other.address (); }

  T &operator[] (unsigned ix)
  { return (*m_vec)[ix]; }

  T &last (void)
  { return m_vec->last (); }

  bool space (int nelems) const
  { return m_vec ? m_vec->space (nelems) : nelems == 0; }

  bool iterate (unsigned ix, T *p) const;
  bool iterate (unsigned ix, T **p) const;
  vec copy (ALONE_CXX_MEM_STAT_INFO) const;
  bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
  bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
  void splice (const vec &);
  void safe_splice (const vec & CXX_MEM_STAT_INFO);
  T *quick_push (const T &);
  T *safe_push (const T &CXX_MEM_STAT_INFO);
  using pop_ret_type
    = typename std::conditional <std::is_trivially_destructible <T>::value,
				 T &, void>::type;
  pop_ret_type pop (void);
  void truncate (unsigned);
  void safe_grow (unsigned, bool = false CXX_MEM_STAT_INFO);
  void safe_grow_cleared (unsigned, bool = false CXX_MEM_STAT_INFO);
  void quick_grow (unsigned);
  void quick_grow_cleared (unsigned);
  void quick_insert (unsigned, const T &);
  void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
  void ordered_remove (unsigned);
  void unordered_remove (unsigned);
  void block_remove (unsigned, unsigned);
  void qsort (int (*) (const void *, const void *));
  void sort (int (*) (const void *, const void *, void *), void *);
  void stablesort (int (*) (const void *, const void *, void *), void *);
  T *bsearch (const void *key, int (*compar)(const void *, const void *));
  T *bsearch (const void *key,
	      int (*compar)(const void *, const void *, void *), void *);
  unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
  bool contains (const T &search) const;
  void reverse (void);

  bool using_auto_storage () const;

  /* FIXME - This field should be private, but we need to cater to
	     compilers that have stricter notions of PODness for types.  */
  vec<T, va_heap, vl_embed> *m_vec;
};


/* auto_vec is a subclass of vec that automatically manages creating and
   releasing the internal vector. If N is non zero then it has N elements of
   internal storage.  The default is no internal storage, and you probably only
   want to ask for internal storage for vectors on the stack because if the
   size of the vector is larger than the internal storage that space is wasted.
   */
template<typename T, size_t N /* = 0 */>
class auto_vec : public vec<T, va_heap>
{
public:
  auto_vec ()
  {
    m_auto.embedded_init (N, 0, 1);
    /* ???  Instead of initializing m_vec from &m_auto directly use an
       expression that avoids refering to a specific member of 'this'
       to derail the -Wstringop-overflow diagnostic code, avoiding
       the impression that data accesses are supposed to be to the
       m_auto member storage.  */
    size_t off = (char *) &m_auto - (char *) this;
    this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off);
  }

  auto_vec (size_t s CXX_MEM_STAT_INFO)
  {
    if (s > N)
      {
	this->create (s PASS_MEM_STAT);
	return;
      }

    m_auto.embedded_init (N, 0, 1);
    /* ???  See above.  */
    size_t off = (char *) &m_auto - (char *) this;
    this->m_vec = (vec<T, va_heap, vl_embed> *) ((char *) this + off);
  }

  ~auto_vec ()
  {
    this->release ();
  }

  /* Explicitly convert to the base class.  There is no conversion
     from a const auto_vec because a copy of the returned vec can
     be used to modify *THIS.
     This is a legacy function not to be used in new code.  */
  vec<T, va_heap> to_vec_legacy () {
    return *static_cast<vec<T, va_heap> *>(this);
  }

private:
  vec<T, va_heap, vl_embed> m_auto;
  unsigned char m_data[sizeof (T) * N];
};

/* auto_vec is a sub class of vec whose storage is released when it is
  destroyed. */
template<typename T>
class auto_vec<T, 0> : public vec<T, va_heap>
{
public:
  auto_vec () { this->m_vec = NULL; }
  auto_vec (size_t n CXX_MEM_STAT_INFO) { this->create (n PASS_MEM_STAT); }
  ~auto_vec () { this->release (); }

  auto_vec (vec<T, va_heap>&& r)
    {
      gcc_assert (!r.using_auto_storage ());
      this->m_vec = r.m_vec;
      r.m_vec = NULL;
    }

  auto_vec (auto_vec<T> &&r)
    {
      gcc_assert (!r.using_auto_storage ());
      this->m_vec = r.m_vec;
      r.m_vec = NULL;
    }

  auto_vec& operator= (vec<T, va_heap>&& r)
    {
      if (this == &r)
	return *this;

      gcc_assert (!r.using_auto_storage ());
      this->release ();
      this->m_vec = r.m_vec;
      r.m_vec = NULL;
      return *this;
    }

  auto_vec& operator= (auto_vec<T> &&r)
    {
      if (this == &r)
	return *this;

      gcc_assert (!r.using_auto_storage ());
      this->release ();
      this->m_vec = r.m_vec;
      r.m_vec = NULL;
      return *this;
    }

  /* Explicitly convert to the base class.  There is no conversion
     from a const auto_vec because a copy of the returned vec can
     be used to modify *THIS.
     This is a legacy function not to be used in new code.  */
  vec<T, va_heap> to_vec_legacy () {
    return *static_cast<vec<T, va_heap> *>(this);
  }

  // You probably don't want to copy a vector, so these are deleted to prevent
  // unintentional use.  If you really need a copy of the vectors contents you
  // can use copy ().
  auto_vec (const auto_vec &) = delete;
  auto_vec &operator= (const auto_vec &) = delete;
};


/* Allocate heap memory for pointer V and create the internal vector
   with space for NELEMS elements.  If NELEMS is 0, the internal
   vector is initialized to empty.  */

template<typename T>
inline void
vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
{
  v = new vec<T>;
  v->create (nelems PASS_MEM_STAT);
}


/* A subclass of auto_vec <char *> that frees all of its elements on
   deletion.  */

class auto_string_vec : public auto_vec <char *>
{
 public:
  ~auto_string_vec ();
};

/* A subclass of auto_vec <T *> that deletes all of its elements on
   destruction.

   This is a crude way for a vec to "own" the objects it points to
   and clean up automatically.

   For example, no attempt is made to delete elements when an item
   within the vec is overwritten.

   We can't rely on gnu::unique_ptr within a container,
   since we can't rely on move semantics in C++98.  */

template <typename T>
class auto_delete_vec : public auto_vec <T *>
{
 public:
  auto_delete_vec () {}
  auto_delete_vec (size_t s) : auto_vec <T *> (s) {}

  ~auto_delete_vec ();

private:
  DISABLE_COPY_AND_ASSIGN(auto_delete_vec);
};

/* Conditionally allocate heap memory for VEC and its internal vector.  */

template<typename T>
inline void
vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
{
  if (!vec)
    vec_alloc (vec, nelems PASS_MEM_STAT);
}


/* Free the heap memory allocated by vector V and set it to NULL.  */

template<typename T>
inline void
vec_free (vec<T> *&v)
{
  if (v == NULL)
    return;

  v->release ();
  delete v;
  v = NULL;
}


/* Return iteration condition and update PTR to point to the IX'th
   element of this vector.  Use this to iterate over the elements of a
   vector as follows,

     for (ix = 0; v.iterate (ix, &ptr); ix++)
       continue;  */

template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
{
  if (m_vec)
    return m_vec->iterate (ix, ptr);
  else
    {
      *ptr = 0;
      return false;
    }
}


/* Return iteration condition and update *PTR to point to the
   IX'th element of this vector.  Use this to iterate over the
   elements of a vector as follows,

     for (ix = 0; v->iterate (ix, &ptr); ix++)
       continue;

   This variant is for vectors of objects.  */

template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
{
  if (m_vec)
    return m_vec->iterate (ix, ptr);
  else
    {
      *ptr = 0;
      return false;
    }
}


/* Convenience macro for forward iteration.  */
#define FOR_EACH_VEC_ELT(V, I, P)			\
  for (I = 0; (V).iterate ((I), &(P)); ++(I))

#define FOR_EACH_VEC_SAFE_ELT(V, I, P)			\
  for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))

/* Likewise, but start from FROM rather than 0.  */
#define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM)		\
  for (I = (FROM); (V).iterate ((I), &(P)); ++(I))

/* Convenience macro for reverse iteration.  */
#define FOR_EACH_VEC_ELT_REVERSE(V, I, P)		\
  for (I = (V).length () - 1;				\
       (V).iterate ((I), &(P));				\
       (I)--)

#define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P)		\
  for (I = vec_safe_length (V) - 1;			\
       vec_safe_iterate ((V), (I), &(P));	\
       (I)--)

/* auto_string_vec's dtor, freeing all contained strings, automatically
   chaining up to ~auto_vec <char *>, which frees the internal buffer.  */

inline
auto_string_vec::~auto_string_vec ()
{
  int i;
  char *str;
  FOR_EACH_VEC_ELT (*this, i, str)
    free (str);
}

/* auto_delete_vec's dtor, deleting all contained items, automatically
   chaining up to ~auto_vec <T*>, which frees the internal buffer.  */

template <typename T>
inline
auto_delete_vec<T>::~auto_delete_vec ()
{
  int i;
  T *item;
  FOR_EACH_VEC_ELT (*this, i, item)
    delete item;
}


/* Return a copy of this vector.  */

template<typename T>
inline vec<T, va_heap, vl_ptr>
vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
{
  vec<T, va_heap, vl_ptr> new_vec{ };
  if (length ())
    new_vec.m_vec = m_vec->copy (ALONE_PASS_MEM_STAT);
  return new_vec;
}


/* Ensure that the vector has at least RESERVE slots available (if
   EXACT is false), or exactly RESERVE slots available (if EXACT is
   true).

   This may create additional headroom if EXACT is false.

   Note that this can cause the embedded vector to be reallocated.
   Returns true iff reallocation actually occurred.  */

template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
{
  if (space (nelems))
    return false;

  /* For now play a game with va_heap::reserve to hide our auto storage if any,
     this is necessary because it doesn't have enough information to know the
     embedded vector is in auto storage, and so should not be freed.  */
  vec<T, va_heap, vl_embed> *oldvec = m_vec;
  unsigned int oldsize = 0;
  bool handle_auto_vec = m_vec && using_auto_storage ();
  if (handle_auto_vec)
    {
      m_vec = NULL;
      oldsize = oldvec->length ();
      nelems += oldsize;
    }

  va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
  if (handle_auto_vec)
    {
      vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
      m_vec->m_vecpfx.m_num = oldsize;
    }

  return true;
}


/* Ensure that this vector has exactly NELEMS slots available.  This
   will not create additional headroom.  Note this can cause the
   embedded vector to be reallocated.  Returns true iff reallocation
   actually occurred.  */

template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
{
  return reserve (nelems, true PASS_MEM_STAT);
}


/* Create the internal vector and reserve NELEMS for it.  This is
   exactly like vec::reserve, but the internal vector is
   unconditionally allocated from scratch.  The old one, if it
   existed, is lost.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
{
  m_vec = NULL;
  if (nelems > 0)
    reserve_exact (nelems PASS_MEM_STAT);
}


/* Free the memory occupied by the embedded vector.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::release (void)
{
  if (!m_vec)
    return;

  if (using_auto_storage ())
    {
      m_vec->m_vecpfx.m_num = 0;
      return;
    }

  va_heap::release (m_vec);
}

/* Copy the elements from SRC to the end of this vector as if by memcpy.
   SRC and this vector must be allocated with the same memory
   allocation mechanism. This vector is assumed to have sufficient
   headroom available.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
{
  if (src.length ())
    m_vec->splice (*(src.m_vec));
}


/* Copy the elements in SRC to the end of this vector as if by memcpy.
   SRC and this vector must be allocated with the same mechanism.
   If there is not enough headroom in this vector, it will be reallocated
   as needed.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
				      MEM_STAT_DECL)
{
  if (src.length ())
    {
      reserve_exact (src.length ());
      splice (src);
    }
}


/* Push OBJ (a new element) onto the end of the vector.  There must be
   sufficient space in the vector.  Return a pointer to the slot
   where OBJ was inserted.  */

template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
{
  return m_vec->quick_push (obj);
}


/* Push a new element OBJ onto the end of this vector.  Reallocates
   the embedded vector, if needed.  Return a pointer to the slot where
   OBJ was inserted.  */

template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
{
  reserve (1, false PASS_MEM_STAT);
  return quick_push (obj);
}


/* Pop and return a reference to the last element off the end of the
   vector.  If T has non-trivial destructor, this method just pops
   last element and returns void.  */

template<typename T>
inline typename vec<T, va_heap, vl_ptr>::pop_ret_type
vec<T, va_heap, vl_ptr>::pop (void)
{
  return m_vec->pop ();
}


/* Set the length of the vector to LEN.  The new length must be less
   than or equal to the current length.  This is an O(1) operation.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::truncate (unsigned size)
{
  if (m_vec)
    m_vec->truncate (size);
  else
    gcc_checking_assert (size == 0);
}


/* Grow the vector to a specific length.  LEN must be as long or
   longer than the current length.  The new elements are
   uninitialized.  Reallocate the internal vector, if needed.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_grow (unsigned len, bool exact MEM_STAT_DECL)
{
  unsigned oldlen = length ();
  gcc_checking_assert (oldlen <= len);
  reserve (len - oldlen, exact PASS_MEM_STAT);
  if (m_vec)
    m_vec->quick_grow (len);
  else
    gcc_checking_assert (len == 0);
}


/* Grow the embedded vector to a specific length.  LEN must be as
   long or longer than the current length.  The new elements are
   initialized to zero.  Reallocate the internal vector, if needed.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len, bool exact
					    MEM_STAT_DECL)
{
  unsigned oldlen = length ();
  gcc_checking_assert (oldlen <= len);
  reserve (len - oldlen, exact PASS_MEM_STAT);
  if (m_vec)
    m_vec->quick_grow_cleared (len);
  else
    gcc_checking_assert (len == 0);
}


/* Same as vec::safe_grow but without reallocation of the internal vector.
   If the vector cannot be extended, a runtime assertion will be triggered.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
{
  gcc_checking_assert (m_vec);
  m_vec->quick_grow (len);
}


/* Same as vec::quick_grow_cleared but without reallocation of the
   internal vector. If the vector cannot be extended, a runtime
   assertion will be triggered.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
{
  gcc_checking_assert (m_vec);
  m_vec->quick_grow_cleared (len);
}


/* Insert an element, OBJ, at the IXth position of this vector.  There
   must be sufficient space.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
{
  m_vec->quick_insert (ix, obj);
}


/* Insert an element, OBJ, at the IXth position of the vector.
   Reallocate the embedded vector, if necessary.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
{
  reserve (1, false PASS_MEM_STAT);
  quick_insert (ix, obj);
}


/* Remove an element from the IXth position of this vector.  Ordering of
   remaining elements is preserved.  This is an O(N) operation due to
   a memmove.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
{
  m_vec->ordered_remove (ix);
}


/* Remove an element from the IXth position of this vector.  Ordering
   of remaining elements is destroyed.  This is an O(1) operation.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
{
  m_vec->unordered_remove (ix);
}


/* Remove LEN elements starting at the IXth.  Ordering is retained.
   This is an O(N) operation due to memmove.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
{
  m_vec->block_remove (ix, len);
}


/* Sort the contents of this vector with qsort.  CMP is the comparison
   function to pass to qsort.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
{
  if (m_vec)
    m_vec->qsort (cmp);
}

/* Sort the contents of this vector with qsort.  CMP is the comparison
   function to pass to qsort.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *,
					   void *), void *data)
{
  if (m_vec)
    m_vec->sort (cmp, data);
}

/* Sort the contents of this vector with gcc_stablesort_r.  CMP is the
   comparison function to pass to qsort.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::stablesort (int (*cmp) (const void *, const void *,
						 void *), void *data)
{
  if (m_vec)
    m_vec->stablesort (cmp, data);
}

/* Search the contents of the sorted vector with a binary search.
   CMP is the comparison function to pass to bsearch.  */

template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::bsearch (const void *key,
				  int (*cmp) (const void *, const void *))
{
  if (m_vec)
    return m_vec->bsearch (key, cmp);
  return NULL;
}

/* Search the contents of the sorted vector with a binary search.
   CMP is the comparison function to pass to bsearch.  */

template<typename T>
inline T *
vec<T, va_heap, vl_ptr>::bsearch (const void *key,
				  int (*cmp) (const void *, const void *,
					      void *), void *data)
{
  if (m_vec)
    return m_vec->bsearch (key, cmp, data);
  return NULL;
}


/* Find and return the first position in which OBJ could be inserted
   without changing the ordering of this vector.  LESSTHAN is a
   function that returns true if the first argument is strictly less
   than the second.  */

template<typename T>
inline unsigned
vec<T, va_heap, vl_ptr>::lower_bound (T obj,
				      bool (*lessthan)(const T &, const T &))
    const
{
  return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
}

/* Return true if SEARCH is an element of V.  Note that this is O(N) in the
   size of the vector and so should be used with care.  */

template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::contains (const T &search) const
{
  return m_vec ? m_vec->contains (search) : false;
}

/* Reverse content of the vector.  */

template<typename T>
inline void
vec<T, va_heap, vl_ptr>::reverse (void)
{
  unsigned l = length ();
  T *ptr = address ();

  for (unsigned i = 0; i < l / 2; i++)
    std::swap (ptr[i], ptr[l - i - 1]);
}

template<typename T>
inline bool
vec<T, va_heap, vl_ptr>::using_auto_storage () const
{
  return m_vec ? m_vec->m_vecpfx.m_using_auto_storage : false;
}

/* Release VEC and call release of all element vectors.  */

template<typename T>
inline void
release_vec_vec (vec<vec<T> > &vec)
{
  for (unsigned i = 0; i < vec.length (); i++)
    vec[i].release ();

  vec.release ();
}

// Provide a subset of the std::span functionality.  (We can't use std::span
// itself because it's a C++20 feature.)
//
// In addition, provide an invalid value that is distinct from all valid
// sequences (including the empty sequence).  This can be used to return
// failure without having to use std::optional.
//
// There is no operator bool because it would be ambiguous whether it is
// testing for a valid value or an empty sequence.
template<typename T>
class array_slice
{
  template<typename OtherT> friend class array_slice;

public:
  using value_type = T;
  using iterator = T *;
  using const_iterator = const T *;

  array_slice () : m_base (nullptr), m_size (0) {}

  template<typename OtherT>
  array_slice (array_slice<OtherT> other)
    : m_base (other.m_base), m_size (other.m_size) {}

  array_slice (iterator base, unsigned int size)
    : m_base (base), m_size (size) {}

  template<size_t N>
  array_slice (T (&array)[N]) : m_base (array), m_size (N) {}

  template<typename OtherT>
  array_slice (const vec<OtherT> &v)
    : m_base (v.address ()), m_size (v.length ()) {}

  template<typename OtherT>
  array_slice (vec<OtherT> &v)
    : m_base (v.address ()), m_size (v.length ()) {}

  template<typename OtherT, typename A>
  array_slice (const vec<OtherT, A, vl_embed> *v)
    : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {}

  template<typename OtherT, typename A>
  array_slice (vec<OtherT, A, vl_embed> *v)
    : m_base (v ? v->address () : nullptr), m_size (v ? v->length () : 0) {}

  iterator begin () { return m_base; }
  iterator end () { return m_base + m_size; }

  const_iterator begin () const { return m_base; }
  const_iterator end () const { return m_base + m_size; }

  value_type &front ();
  value_type &back ();
  value_type &operator[] (unsigned int i);

  const value_type &front () const;
  const value_type &back () const;
  const value_type &operator[] (unsigned int i) const;

  unsigned size () const { return m_size; }
  size_t size_bytes () const { return m_size * sizeof (T); }
  bool empty () const { return m_size == 0; }

  // An invalid array_slice that represents a failed operation.  This is
  // distinct from an empty slice, which is a valid result in some contexts.
  static array_slice invalid () { return { nullptr, ~0U }; }

  // True if the array is valid, false if it is an array like INVALID.
  bool is_valid () const { return m_base || m_size == 0; }

private:
  iterator m_base;
  unsigned int m_size;
};

template<typename T>
inline typename array_slice<T>::value_type &
array_slice<T>::front ()
{
  gcc_checking_assert (m_size);
  return m_base[0];
}

template<typename T>
inline const typename array_slice<T>::value_type &
array_slice<T>::front () const
{
  gcc_checking_assert (m_size);
  return m_base[0];
}

template<typename T>
inline typename array_slice<T>::value_type &
array_slice<T>::back ()
{
  gcc_checking_assert (m_size);
  return m_base[m_size - 1];
}

template<typename T>
inline const typename array_slice<T>::value_type &
array_slice<T>::back () const
{
  gcc_checking_assert (m_size);
  return m_base[m_size - 1];
}

template<typename T>
inline typename array_slice<T>::value_type &
array_slice<T>::operator[] (unsigned int i)
{
  gcc_checking_assert (i < m_size);
  return m_base[i];
}

template<typename T>
inline const typename array_slice<T>::value_type &
array_slice<T>::operator[] (unsigned int i) const
{
  gcc_checking_assert (i < m_size);
  return m_base[i];
}

template<typename T>
array_slice<T>
make_array_slice (T *base, unsigned int size)
{
  return array_slice<T> (base, size);
}

#if (GCC_VERSION >= 3000)
# pragma GCC poison m_vec m_vecpfx m_vecdata
#endif

#endif // GCC_VEC_H