1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
|
/* Header file for the value range relational processing.
Copyright (C) 2020-2023 Free Software Foundation, Inc.
Contributed by Andrew MacLeod <amacleod@redhat.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#ifndef GCC_VALUE_RELATION_H
#define GCC_VALUE_RELATION_H
// This file provides access to a relation oracle which can be used to
// maintain and query relations and equivalences between SSA_NAMES.
//
// The general range_query object provided in value-query.h provides
// access to an oracle, if one is available, via the oracle() method.
// There are also a couple of access routines provided, which even if there is
// no oracle, will return the default VREL_VARYING no relation.
//
// Typically, when a ranger object is active, there will be an oracle, and
// any information available can be directly queried. Ranger also sets and
// utilizes the relation information to enhance it's range calculations, this
// is totally transparent to the client, and they are free to make queries.
//
// relation_kind is a new enum which represents the different relations,
// often with a direct mapping to tree codes. ie VREL_EQ is equivalent to
// EQ_EXPR.
//
// A query is made requesting the relation between SSA1 and SSA@ in a basic
// block, or on an edge, the possible return values are:
//
// VREL_EQ, VREL_NE, VREL_LT, VREL_LE, VREL_GT, and VREL_GE mean the same.
// VREL_VARYING : No relation between the 2 names.
// VREL_UNDEFINED : Impossible relation (ie, A < B && A > B)
//
// The oracle maintains VREL_EQ relations with equivalency sets, so if a
// relation comes back VREL_EQ, it is also possible to query the set of
// equivalencies. These are basically bitmaps over ssa_names. An iterator is
// provided later for this activity.
//
// Relations are maintained via the dominance trees and are optimized assuming
// they are registered in dominance order. When a new relation is added, it
// is intersected with whatever existing relation exists in the dominance tree
// and registered at the specified block.
// These codes are arranged such that VREL_VARYING is the first code, and all
// the rest are contiguous.
typedef enum relation_kind_t
{
VREL_VARYING = 0, // No known relation, AKA varying.
VREL_UNDEFINED, // Impossible relation, ie (r1 < r2) && (r2 > r1)
VREL_LT, // r1 < r2
VREL_LE, // r1 <= r2
VREL_GT, // r1 > r2
VREL_GE, // r1 >= r2
VREL_EQ, // r1 == r2
VREL_NE, // r1 != r2
VREL_PE8, // 8 bit partial equivalency
VREL_PE16, // 16 bit partial equivalency
VREL_PE32, // 32 bit partial equivalency
VREL_PE64, // 64 bit partial equivalency
VREL_LAST // terminate, not a real relation.
} relation_kind;
// General relation kind transformations.
relation_kind relation_union (relation_kind r1, relation_kind r2);
relation_kind relation_intersect (relation_kind r1, relation_kind r2);
relation_kind relation_negate (relation_kind r);
relation_kind relation_swap (relation_kind r);
inline bool relation_lt_le_gt_ge_p (relation_kind r)
{ return (r >= VREL_LT && r <= VREL_GE); }
inline bool relation_partial_equiv_p (relation_kind r)
{ return (r >= VREL_PE8 && r <= VREL_PE64); }
inline bool relation_equiv_p (relation_kind r)
{ return r == VREL_EQ || relation_partial_equiv_p (r); }
void print_relation (FILE *f, relation_kind rel);
// Return relation for NAME == NAME with RANGE.
relation_kind get_identity_relation (tree name, vrange &range);
class relation_oracle
{
public:
virtual ~relation_oracle () { }
// register a relation between 2 ssa names at a stmt.
void register_stmt (gimple *, relation_kind, tree, tree);
// register a relation between 2 ssa names on an edge.
void register_edge (edge, relation_kind, tree, tree);
// register a relation between 2 ssa names in a basic block.
virtual void register_relation (basic_block, relation_kind, tree, tree) = 0;
// Query for a relation between two ssa names in a basic block.
virtual relation_kind query_relation (basic_block, tree, tree) = 0;
relation_kind validate_relation (relation_kind, tree, tree);
relation_kind validate_relation (relation_kind, vrange &, vrange &);
virtual void dump (FILE *, basic_block) const = 0;
virtual void dump (FILE *) const = 0;
void debug () const;
protected:
friend class equiv_relation_iterator;
// Return equivalency set for an SSA name in a basic block.
virtual const_bitmap equiv_set (tree, basic_block) = 0;
// Return partial equivalency record for an SSA name.
virtual const class pe_slice *partial_equiv_set (tree) { return NULL; }
void valid_equivs (bitmap b, const_bitmap equivs, basic_block bb);
// Query for a relation between two equivalency sets in a basic block.
virtual relation_kind query_relation (basic_block, const_bitmap,
const_bitmap) = 0;
friend class path_oracle;
};
// This class represents an equivalency set, and contains a link to the next
// one in the list to be searched.
class equiv_chain
{
public:
bitmap m_names; // ssa-names in equiv set.
basic_block m_bb; // Block this belongs to
equiv_chain *m_next; // Next in block list.
void dump (FILE *f) const; // Show names in this list.
equiv_chain *find (unsigned ssa);
};
class pe_slice
{
public:
tree ssa_base; // Slice of this name.
relation_kind code; // bits that are equivalent.
bitmap members; // Other members in the partial equivalency.
};
// The equivalency oracle maintains equivalencies using the dominator tree.
// Equivalencies apply to an entire basic block. Equivalencies on edges
// can be represented only on edges whose destination is a single-pred block,
// and the equivalence is simply applied to that successor block.
class equiv_oracle : public relation_oracle
{
public:
equiv_oracle ();
~equiv_oracle ();
const_bitmap equiv_set (tree ssa, basic_block bb) final override;
const pe_slice *partial_equiv_set (tree name) final override;
void register_relation (basic_block bb, relation_kind k, tree ssa1,
tree ssa2) override;
void add_partial_equiv (relation_kind, tree, tree);
relation_kind partial_equiv (tree ssa1, tree ssa2, tree *base = NULL) const;
relation_kind query_relation (basic_block, tree, tree) override;
relation_kind query_relation (basic_block, const_bitmap, const_bitmap)
override;
void dump (FILE *f, basic_block bb) const override;
void dump (FILE *f) const override;
protected:
inline bool has_equiv_p (unsigned v) { return bitmap_bit_p (m_equiv_set, v); }
bitmap_obstack m_bitmaps;
struct obstack m_chain_obstack;
private:
bitmap m_equiv_set; // Index by ssa-name. true if an equivalence exists.
vec <equiv_chain *> m_equiv; // Index by BB. list of equivalences.
vec <bitmap> m_self_equiv; // Index by ssa-name, self equivalency set.
vec <pe_slice> m_partial; // Partial equivalencies.
void limit_check (basic_block bb = NULL);
equiv_chain *find_equiv_block (unsigned ssa, int bb) const;
equiv_chain *find_equiv_dom (tree name, basic_block bb) const;
bitmap register_equiv (basic_block bb, unsigned v, equiv_chain *equiv_1);
bitmap register_equiv (basic_block bb, equiv_chain *equiv_1,
equiv_chain *equiv_2);
void register_initial_def (tree ssa);
void add_equiv_to_block (basic_block bb, bitmap equiv);
};
// Summary block header for relations.
class relation_chain_head
{
public:
bitmap m_names; // ssa_names with relations in this block.
class relation_chain *m_head; // List of relations in block.
int m_num_relations; // Number of relations in block.
relation_kind find_relation (const_bitmap b1, const_bitmap b2) const;
};
// A relation oracle maintains a set of relations between ssa_names using the
// dominator tree structures. Equivalencies are considered a subset of
// a general relation and maintained by an equivalence oracle by transparently
// passing any EQ_EXPR relations to it.
// Relations are handled at the basic block level. All relations apply to
// an entire block, and are thus kept in a summary index by block.
// Similar to the equivalence oracle, edges are handled by applying the
// relation to the destination block of the edge, but ONLY if that block
// has a single successor. For now.
class dom_oracle : public equiv_oracle
{
public:
dom_oracle ();
~dom_oracle ();
void register_relation (basic_block bb, relation_kind k, tree op1, tree op2)
final override;
relation_kind query_relation (basic_block bb, tree ssa1, tree ssa2)
final override;
relation_kind query_relation (basic_block bb, const_bitmap b1,
const_bitmap b2) final override;
void dump (FILE *f, basic_block bb) const final override;
void dump (FILE *f) const final override;
private:
bitmap m_tmp, m_tmp2;
bitmap m_relation_set; // Index by ssa-name. True if a relation exists
vec <relation_chain_head> m_relations; // Index by BB, list of relations.
relation_kind find_relation_block (unsigned bb, const_bitmap b1,
const_bitmap b2) const;
relation_kind find_relation_block (int bb, unsigned v1, unsigned v2,
relation_chain **obj = NULL) const;
relation_kind find_relation_dom (basic_block bb, unsigned v1, unsigned v2) const;
relation_chain *set_one_relation (basic_block bb, relation_kind k, tree op1,
tree op2);
void register_transitives (basic_block, const class value_relation &);
};
// A path_oracle implements relations in a list. The only sense of ordering
// is the latest registered relation is the first found during a search.
// It can be constructed with an optional "root" oracle which will be used
// to look up any relations not found in the list.
// This allows the client to walk paths starting at some block and register
// and query relations along that path, ignoring other edges.
//
// For registering a relation, a query if made of the root oracle if there is
// any known relationship at block BB, and it is combined with this new
// relation and entered in the list.
//
// Queries are resolved by looking first in the list, and only if nothing is
// found is the root oracle queried at block BB.
//
// reset_path is used to clear all locally registered paths to initial state.
class path_oracle : public relation_oracle
{
public:
path_oracle (relation_oracle *oracle = NULL);
~path_oracle ();
const_bitmap equiv_set (tree, basic_block) final override;
void register_relation (basic_block, relation_kind, tree, tree) final override;
void killing_def (tree);
relation_kind query_relation (basic_block, tree, tree) final override;
relation_kind query_relation (basic_block, const_bitmap, const_bitmap)
final override;
void reset_path (relation_oracle *oracle = NULL);
void set_root_oracle (relation_oracle *oracle) { m_root = oracle; }
void dump (FILE *, basic_block) const final override;
void dump (FILE *) const final override;
private:
void register_equiv (basic_block bb, tree ssa1, tree ssa2);
equiv_chain m_equiv;
relation_chain_head m_relations;
relation_oracle *m_root;
bitmap m_killed_defs;
bitmap_obstack m_bitmaps;
struct obstack m_chain_obstack;
};
// Used to assist with iterating over the equivalence list.
class equiv_relation_iterator {
public:
equiv_relation_iterator (relation_oracle *oracle, basic_block bb, tree name,
bool full = true, bool partial = false);
void next ();
tree get_name (relation_kind *rel = NULL);
protected:
relation_oracle *m_oracle;
const_bitmap m_bm;
const pe_slice *m_pe;
bitmap_iterator m_bi;
unsigned m_y;
tree m_name;
};
#define FOR_EACH_EQUIVALENCE(oracle, bb, name, equiv_name) \
for (equiv_relation_iterator iter (oracle, bb, name, true, false); \
((equiv_name) = iter.get_name ()); \
iter.next ())
#define FOR_EACH_PARTIAL_EQUIV(oracle, bb, name, equiv_name, equiv_rel) \
for (equiv_relation_iterator iter (oracle, bb, name, false, true); \
((equiv_name) = iter.get_name (&equiv_rel)); \
iter.next ())
#define FOR_EACH_PARTIAL_AND_FULL_EQUIV(oracle, bb, name, equiv_name, \
equiv_rel) \
for (equiv_relation_iterator iter (oracle, bb, name, true, true); \
((equiv_name) = iter.get_name (&equiv_rel)); \
iter.next ())
// -----------------------------------------------------------------------
// Range-ops deals with a LHS and 2 operands. A relation trio is a set of
// 3 potential relations packed into a single unsigned value.
// 1 - LHS relation OP1
// 2 - LHS relation OP2
// 3 - OP1 relation OP2
// VREL_VARYING is a value of 0, and is the default for each position.
class relation_trio
{
public:
relation_trio ();
relation_trio (relation_kind lhs_op1, relation_kind lhs_op2,
relation_kind op1_op2);
relation_kind lhs_op1 ();
relation_kind lhs_op2 ();
relation_kind op1_op2 ();
relation_trio swap_op1_op2 ();
static relation_trio lhs_op1 (relation_kind k);
static relation_trio lhs_op2 (relation_kind k);
static relation_trio op1_op2 (relation_kind k);
protected:
unsigned m_val;
};
// Default VREL_VARYING for all 3 relations.
#define TRIO_VARYING relation_trio ()
#define TRIO_SHIFT 4
#define TRIO_MASK 0x000F
// These 3 classes are shortcuts for when a caller has a single relation to
// pass as a trio, it can simply construct the appropriate one. The other
// unspecified relations will be VREL_VARYING.
inline relation_trio::relation_trio ()
{
STATIC_ASSERT (VREL_LAST <= (1 << TRIO_SHIFT));
m_val = 0;
}
inline relation_trio::relation_trio (relation_kind lhs_op1,
relation_kind lhs_op2,
relation_kind op1_op2)
{
STATIC_ASSERT (VREL_LAST <= (1 << TRIO_SHIFT));
unsigned i1 = (unsigned) lhs_op1;
unsigned i2 = ((unsigned) lhs_op2) << TRIO_SHIFT;
unsigned i3 = ((unsigned) op1_op2) << (TRIO_SHIFT * 2);
m_val = i1 | i2 | i3;
}
inline relation_trio
relation_trio::lhs_op1 (relation_kind k)
{
return relation_trio (k, VREL_VARYING, VREL_VARYING);
}
inline relation_trio
relation_trio::lhs_op2 (relation_kind k)
{
return relation_trio (VREL_VARYING, k, VREL_VARYING);
}
inline relation_trio
relation_trio::op1_op2 (relation_kind k)
{
return relation_trio (VREL_VARYING, VREL_VARYING, k);
}
inline relation_kind
relation_trio::lhs_op1 ()
{
return (relation_kind) (m_val & TRIO_MASK);
}
inline relation_kind
relation_trio::lhs_op2 ()
{
return (relation_kind) ((m_val >> TRIO_SHIFT) & TRIO_MASK);
}
inline relation_kind
relation_trio::op1_op2 ()
{
return (relation_kind) ((m_val >> (TRIO_SHIFT * 2)) & TRIO_MASK);
}
inline relation_trio
relation_trio::swap_op1_op2 ()
{
return relation_trio (lhs_op2 (), lhs_op1 (), relation_swap (op1_op2 ()));
}
// -----------------------------------------------------------------------
// The value-relation class is used to encapsulate the representation of an
// individual relation between 2 ssa-names, and to facilitate operating on
// the relation.
class value_relation
{
public:
value_relation ();
value_relation (relation_kind kind, tree n1, tree n2);
void set_relation (relation_kind kind, tree n1, tree n2);
inline relation_kind kind () const { return related; }
inline tree op1 () const { return name1; }
inline tree op2 () const { return name2; }
relation_trio create_trio (tree lhs, tree op1, tree op2);
bool union_ (value_relation &p);
bool intersect (value_relation &p);
void negate ();
bool apply_transitive (const value_relation &rel);
void dump (FILE *f) const;
private:
relation_kind related;
tree name1, name2;
};
// Set relation R between ssa_name N1 and N2.
inline void
value_relation::set_relation (relation_kind r, tree n1, tree n2)
{
gcc_checking_assert (TREE_CODE (n1) == SSA_NAME
&& TREE_CODE (n2) == SSA_NAME);
related = r;
name1 = n1;
name2 = n2;
}
// Default constructor.
inline
value_relation::value_relation ()
{
related = VREL_VARYING;
name1 = NULL_TREE;
name2 = NULL_TREE;
}
// Constructor for relation R between SSA version N1 and N2.
inline
value_relation::value_relation (relation_kind kind, tree n1, tree n2)
{
set_relation (kind, n1, n2);
}
// Return the number of bits associated with partial equivalency T.
// Return 0 if this is not a supported partial equivalency relation.
inline int
pe_to_bits (relation_kind t)
{
switch (t)
{
case VREL_PE8:
return 8;
case VREL_PE16:
return 16;
case VREL_PE32:
return 32;
case VREL_PE64:
return 64;
default:
return 0;
}
}
// Return the partial equivalency code associated with the number of BITS.
// return VREL_VARYING if there is no exact match.
inline relation_kind
bits_to_pe (int bits)
{
switch (bits)
{
case 8:
return VREL_PE8;
case 16:
return VREL_PE16;
case 32:
return VREL_PE32;
case 64:
return VREL_PE64;
default:
return VREL_VARYING;
}
}
// Given partial equivalencies T1 and T2, return the smallest kind.
inline relation_kind
pe_min (relation_kind t1, relation_kind t2)
{
gcc_checking_assert (relation_partial_equiv_p (t1));
gcc_checking_assert (relation_partial_equiv_p (t2));
// VREL_PE are declared small to large, so simple min will suffice.
return MIN (t1, t2);
}
#endif /* GCC_VALUE_RELATION_H */
|