aboutsummaryrefslogtreecommitdiff
path: root/gcc/value-prof.c
blob: 42748771192f8302cfe637d23d589848d9b8fcb7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
/* Transformations based on profile information for values.
   Copyright (C) 2003-2021 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "ssa.h"
#include "cgraph.h"
#include "coverage.h"
#include "data-streamer.h"
#include "diagnostic.h"
#include "fold-const.h"
#include "tree-nested.h"
#include "calls.h"
#include "expr.h"
#include "value-prof.h"
#include "tree-eh.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "tree-cfg.h"
#include "gimple-pretty-print.h"
#include "dumpfile.h"
#include "builtins.h"

/* In this file value profile based optimizations are placed.  Currently the
   following optimizations are implemented (for more detailed descriptions
   see comments at value_profile_transformations):

   1) Division/modulo specialization.  Provided that we can determine that the
      operands of the division have some special properties, we may use it to
      produce more effective code.

   2) Indirect/virtual call specialization. If we can determine most
      common function callee in indirect/virtual call. We can use this
      information to improve code effectiveness (especially info for
      the inliner).

   3) Speculative prefetching.  If we are able to determine that the difference
      between addresses accessed by a memory reference is usually constant, we
      may add the prefetch instructions.
      FIXME: This transformation was removed together with RTL based value
      profiling.


   Value profiling internals
   ==========================

   Every value profiling transformation starts with defining what values
   to profile.  There are different histogram types (see HIST_TYPE_* in
   value-prof.h) and each transformation can request one or more histogram
   types per GIMPLE statement.  The function gimple_find_values_to_profile()
   collects the values to profile in a vec, and adds the number of counters
   required for the different histogram types.

   For a -fprofile-generate run, the statements for which values should be
   recorded, are instrumented in instrument_values().  The instrumentation
   is done by helper functions that can be found in tree-profile.c, where
   new types of histograms can be added if necessary.

   After a -fprofile-use, the value profiling data is read back in by
   compute_value_histograms() that translates the collected data to
   histograms and attaches them to the profiled statements via
   gimple_add_histogram_value().  Histograms are stored in a hash table
   that is attached to every intrumented function, see VALUE_HISTOGRAMS
   in function.h.
   
   The value-profile transformations driver is the function
   gimple_value_profile_transformations().  It traverses all statements in
   the to-be-transformed function, and looks for statements with one or
   more histograms attached to it.  If a statement has histograms, the
   transformation functions are called on the statement.

   Limitations / FIXME / TODO:
   * Only one histogram of each type can be associated with a statement.
   * Some value profile transformations are done in builtins.c (?!)
   * Updating of histograms needs some TLC.
   * The value profiling code could be used to record analysis results
     from non-profiling (e.g. VRP).
   * Adding new profilers should be simplified, starting with a cleanup
     of what-happens-where and with making gimple_find_values_to_profile
     and gimple_value_profile_transformations table-driven, perhaps...
*/

static bool gimple_divmod_fixed_value_transform (gimple_stmt_iterator *);
static bool gimple_mod_pow2_value_transform (gimple_stmt_iterator *);
static bool gimple_mod_subtract_transform (gimple_stmt_iterator *);
static bool gimple_stringops_transform (gimple_stmt_iterator *);
static void dump_ic_profile (gimple_stmt_iterator *gsi);

/* Allocate histogram value.  */

histogram_value
gimple_alloc_histogram_value (struct function *fun ATTRIBUTE_UNUSED,
			      enum hist_type type, gimple *stmt, tree value)
{
   histogram_value hist = (histogram_value) xcalloc (1, sizeof (*hist));
   hist->hvalue.value = value;
   hist->hvalue.stmt = stmt;
   hist->type = type;
   return hist;
}

/* Hash value for histogram.  */

static hashval_t
histogram_hash (const void *x)
{
  return htab_hash_pointer (((const_histogram_value)x)->hvalue.stmt);
}

/* Return nonzero if statement for histogram_value X is Y.  */

static int
histogram_eq (const void *x, const void *y)
{
  return ((const_histogram_value) x)->hvalue.stmt == (const gimple *) y;
}

/* Set histogram for STMT.  */

static void
set_histogram_value (struct function *fun, gimple *stmt, histogram_value hist)
{
  void **loc;
  if (!hist && !VALUE_HISTOGRAMS (fun))
    return;
  if (!VALUE_HISTOGRAMS (fun))
    VALUE_HISTOGRAMS (fun) = htab_create (1, histogram_hash,
				           histogram_eq, NULL);
  loc = htab_find_slot_with_hash (VALUE_HISTOGRAMS (fun), stmt,
                                  htab_hash_pointer (stmt),
				  hist ? INSERT : NO_INSERT);
  if (!hist)
    {
      if (loc)
	htab_clear_slot (VALUE_HISTOGRAMS (fun), loc);
      return;
    }
  *loc = hist;
}

/* Get histogram list for STMT.  */

histogram_value
gimple_histogram_value (struct function *fun, gimple *stmt)
{
  if (!VALUE_HISTOGRAMS (fun))
    return NULL;
  return (histogram_value) htab_find_with_hash (VALUE_HISTOGRAMS (fun), stmt,
						htab_hash_pointer (stmt));
}

/* Add histogram for STMT.  */

void
gimple_add_histogram_value (struct function *fun, gimple *stmt,
			    histogram_value hist)
{
  hist->hvalue.next = gimple_histogram_value (fun, stmt);
  set_histogram_value (fun, stmt, hist);
  hist->fun = fun;
}

/* Remove histogram HIST from STMT's histogram list.  */

void
gimple_remove_histogram_value (struct function *fun, gimple *stmt,
			       histogram_value hist)
{
  histogram_value hist2 = gimple_histogram_value (fun, stmt);
  if (hist == hist2)
    {
      set_histogram_value (fun, stmt, hist->hvalue.next);
    }
  else
    {
      while (hist2->hvalue.next != hist)
	hist2 = hist2->hvalue.next;
      hist2->hvalue.next = hist->hvalue.next;
    }
  free (hist->hvalue.counters);
  if (flag_checking)
    memset (hist, 0xab, sizeof (*hist));
  free (hist);
}

/* Lookup histogram of type TYPE in the STMT.  */

histogram_value
gimple_histogram_value_of_type (struct function *fun, gimple *stmt,
				enum hist_type type)
{
  histogram_value hist;
  for (hist = gimple_histogram_value (fun, stmt); hist;
       hist = hist->hvalue.next)
    if (hist->type == type)
      return hist;
  return NULL;
}

/* Dump information about HIST to DUMP_FILE.  */

static void
dump_histogram_value (FILE *dump_file, histogram_value hist)
{
  switch (hist->type)
    {
    case HIST_TYPE_INTERVAL:
      if (hist->hvalue.counters)
	{
	  fprintf (dump_file, "Interval counter range [%d,%d]: [",
		   hist->hdata.intvl.int_start,
		   (hist->hdata.intvl.int_start
		    + hist->hdata.intvl.steps - 1));

	  unsigned int i;
	  for (i = 0; i < hist->hdata.intvl.steps; i++)
	    {
	      fprintf (dump_file, "%d:%" PRId64,
		       hist->hdata.intvl.int_start + i,
		       (int64_t) hist->hvalue.counters[i]);
	      if (i != hist->hdata.intvl.steps - 1)
		fprintf (dump_file, ", ");
	    }
	  fprintf (dump_file, "] outside range: %" PRId64 ".\n",
		   (int64_t) hist->hvalue.counters[i]);
	}
      break;

    case HIST_TYPE_POW2:
      if (hist->hvalue.counters)
	fprintf (dump_file, "Pow2 counter pow2:%" PRId64
		 " nonpow2:%" PRId64 ".\n",
		 (int64_t) hist->hvalue.counters[1],
		 (int64_t) hist->hvalue.counters[0]);
      break;

    case HIST_TYPE_TOPN_VALUES:
    case HIST_TYPE_INDIR_CALL:
      if (hist->hvalue.counters)
	{
	  fprintf (dump_file,
		   (hist->type == HIST_TYPE_TOPN_VALUES
		    ? "Top N value counter" : "Indirect call counter"));
	  if (hist->hvalue.counters)
	    {
	      unsigned count = hist->hvalue.counters[1];
	      fprintf (dump_file, " all: %" PRId64 ", %" PRId64 " values: ",
		       (int64_t) hist->hvalue.counters[0], (int64_t) count);
	      for (unsigned i = 0; i < count; i++)
		{
		  fprintf (dump_file, "[%" PRId64 ":%" PRId64 "]",
			   (int64_t) hist->hvalue.counters[2 * i + 2],
			   (int64_t) hist->hvalue.counters[2 * i + 3]);
		  if (i != count - 1)
		    fprintf (dump_file, ", ");
		}
	      fprintf (dump_file, ".\n");
	    }
	}
      break;

    case HIST_TYPE_AVERAGE:
      if (hist->hvalue.counters)
	fprintf (dump_file, "Average value sum:%" PRId64
		 " times:%" PRId64 ".\n",
		 (int64_t) hist->hvalue.counters[0],
		 (int64_t) hist->hvalue.counters[1]);
      break;

    case HIST_TYPE_IOR:
      if (hist->hvalue.counters)
	fprintf (dump_file, "IOR value ior:%" PRId64 ".\n",
		 (int64_t) hist->hvalue.counters[0]);
      break;

    case HIST_TYPE_TIME_PROFILE:
      if (hist->hvalue.counters)
	fprintf (dump_file, "Time profile time:%" PRId64 ".\n",
		 (int64_t) hist->hvalue.counters[0]);
      break;
    default:
      gcc_unreachable ();
   }
}

/* Dump information about HIST to DUMP_FILE.  */

void
stream_out_histogram_value (struct output_block *ob, histogram_value hist)
{
  struct bitpack_d bp;
  unsigned int i;

  bp = bitpack_create (ob->main_stream);
  bp_pack_enum (&bp, hist_type, HIST_TYPE_MAX, hist->type);
  bp_pack_value (&bp, hist->hvalue.next != NULL, 1);
  streamer_write_bitpack (&bp);
  switch (hist->type)
    {
    case HIST_TYPE_INTERVAL:
      streamer_write_hwi (ob, hist->hdata.intvl.int_start);
      streamer_write_uhwi (ob, hist->hdata.intvl.steps);
      break;
    default:
      break;
    }
  for (i = 0; i < hist->n_counters; i++)
    {
      /* When user uses an unsigned type with a big value, constant converted
	 to gcov_type (a signed type) can be negative.  */
      gcov_type value = hist->hvalue.counters[i];
      if (hist->type == HIST_TYPE_TOPN_VALUES
	  || hist->type == HIST_TYPE_IOR)
	/* Note that the IOR counter tracks pointer values and these can have
	   sign bit set.  */
	;
      else
	gcc_assert (value >= 0);

      streamer_write_gcov_count (ob, value);
    }
  if (hist->hvalue.next)
    stream_out_histogram_value (ob, hist->hvalue.next);
}

/* Dump information about HIST to DUMP_FILE.  */

void
stream_in_histogram_value (class lto_input_block *ib, gimple *stmt)
{
  enum hist_type type;
  unsigned int ncounters = 0;
  struct bitpack_d bp;
  unsigned int i;
  histogram_value new_val;
  bool next;
  histogram_value *next_p = NULL;

  do
    {
      bp = streamer_read_bitpack (ib);
      type = bp_unpack_enum (&bp, hist_type, HIST_TYPE_MAX);
      next = bp_unpack_value (&bp, 1);
      new_val = gimple_alloc_histogram_value (cfun, type, stmt);
      switch (type)
	{
	case HIST_TYPE_INTERVAL:
	  new_val->hdata.intvl.int_start = streamer_read_hwi (ib);
	  new_val->hdata.intvl.steps = streamer_read_uhwi (ib);
	  ncounters = new_val->hdata.intvl.steps + 2;
	  break;

	case HIST_TYPE_POW2:
	case HIST_TYPE_AVERAGE:
	  ncounters = 2;
	  break;

	case HIST_TYPE_TOPN_VALUES:
	case HIST_TYPE_INDIR_CALL:
	  break;

	case HIST_TYPE_IOR:
        case HIST_TYPE_TIME_PROFILE:
	  ncounters = 1;
	  break;

	default:
	  gcc_unreachable ();
	}

      /* TOP N counters have variable number of counters.  */
      if (type == HIST_TYPE_INDIR_CALL || type == HIST_TYPE_TOPN_VALUES)
	{
	  gcov_type total = streamer_read_gcov_count (ib);
	  gcov_type ncounters = streamer_read_gcov_count (ib);
	  new_val->hvalue.counters = XNEWVAR (gcov_type,
					      sizeof (*new_val->hvalue.counters)
					      * (2 + 2 * ncounters));
	  new_val->hvalue.counters[0] = total;
	  new_val->hvalue.counters[1] = ncounters;
	  new_val->n_counters = 2 + 2 * ncounters;
	  for (i = 0; i < 2 * ncounters; i++)
	    new_val->hvalue.counters[2 + i] = streamer_read_gcov_count (ib);
	}
      else
	{
	  new_val->hvalue.counters = XNEWVAR (gcov_type,
					      sizeof (*new_val->hvalue.counters)
					      * ncounters);
	  new_val->n_counters = ncounters;
	  for (i = 0; i < ncounters; i++)
	    new_val->hvalue.counters[i] = streamer_read_gcov_count (ib);
	}

      if (!next_p)
	gimple_add_histogram_value (cfun, stmt, new_val);
      else
	*next_p = new_val;
      next_p = &new_val->hvalue.next;
    }
  while (next);
}

/* Dump all histograms attached to STMT to DUMP_FILE.  */

void
dump_histograms_for_stmt (struct function *fun, FILE *dump_file, gimple *stmt)
{
  histogram_value hist;
  for (hist = gimple_histogram_value (fun, stmt); hist; hist = hist->hvalue.next)
    dump_histogram_value (dump_file, hist);
}

/* Remove all histograms associated with STMT.  */

void
gimple_remove_stmt_histograms (struct function *fun, gimple *stmt)
{
  histogram_value val;
  while ((val = gimple_histogram_value (fun, stmt)) != NULL)
    gimple_remove_histogram_value (fun, stmt, val);
}

/* Duplicate all histograms associates with OSTMT to STMT.  */

void
gimple_duplicate_stmt_histograms (struct function *fun, gimple *stmt,
				  struct function *ofun, gimple *ostmt)
{
  histogram_value val;
  for (val = gimple_histogram_value (ofun, ostmt); val != NULL; val = val->hvalue.next)
    {
      histogram_value new_val = gimple_alloc_histogram_value (fun, val->type);
      memcpy (new_val, val, sizeof (*val));
      new_val->hvalue.stmt = stmt;
      new_val->hvalue.counters = XNEWVAR (gcov_type, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
      memcpy (new_val->hvalue.counters, val->hvalue.counters, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
      gimple_add_histogram_value (fun, stmt, new_val);
    }
}

/* Move all histograms associated with OSTMT to STMT.  */

void
gimple_move_stmt_histograms (struct function *fun, gimple *stmt, gimple *ostmt)
{
  histogram_value val = gimple_histogram_value (fun, ostmt);
  if (val)
    {
      /* The following three statements can't be reordered,
         because histogram hashtab relies on stmt field value
	 for finding the exact slot. */
      set_histogram_value (fun, ostmt, NULL);
      for (; val != NULL; val = val->hvalue.next)
	val->hvalue.stmt = stmt;
      set_histogram_value (fun, stmt, val);
    }
}

static bool error_found = false;

/* Helper function for verify_histograms.  For each histogram reachable via htab
   walk verify that it was reached via statement walk.  */

static int
visit_hist (void **slot, void *data)
{
  hash_set<histogram_value> *visited = (hash_set<histogram_value> *) data;
  histogram_value hist = *(histogram_value *) slot;

  if (!visited->contains (hist)
      && hist->type != HIST_TYPE_TIME_PROFILE)
    {
      error ("dead histogram");
      dump_histogram_value (stderr, hist);
      debug_gimple_stmt (hist->hvalue.stmt);
      error_found = true;
    }
  return 1;
}

/* Verify sanity of the histograms.  */

DEBUG_FUNCTION void
verify_histograms (void)
{
  basic_block bb;
  gimple_stmt_iterator gsi;
  histogram_value hist;

  error_found = false;
  hash_set<histogram_value> visited_hists;
  FOR_EACH_BB_FN (bb, cfun)
    for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      {
	gimple *stmt = gsi_stmt (gsi);

	for (hist = gimple_histogram_value (cfun, stmt); hist;
	     hist = hist->hvalue.next)
	  {
	    if (hist->hvalue.stmt != stmt)
	      {
		error ("histogram value statement does not correspond to "
		       "the statement it is associated with");
		debug_gimple_stmt (stmt);
		dump_histogram_value (stderr, hist);
		error_found = true;
	      }
            visited_hists.add (hist);
	  }
      }
  if (VALUE_HISTOGRAMS (cfun))
    htab_traverse (VALUE_HISTOGRAMS (cfun), visit_hist, &visited_hists);
  if (error_found)
    internal_error ("%qs failed", __func__);
}

/* Helper function for verify_histograms.  For each histogram reachable via htab
   walk verify that it was reached via statement walk.  */

static int
free_hist (void **slot, void *data ATTRIBUTE_UNUSED)
{
  histogram_value hist = *(histogram_value *) slot;
  free (hist->hvalue.counters);
  free (hist);
  return 1;
}

void
free_histograms (struct function *fn)
{
  if (VALUE_HISTOGRAMS (fn))
    {
      htab_traverse (VALUE_HISTOGRAMS (fn), free_hist, NULL);
      htab_delete (VALUE_HISTOGRAMS (fn));
      VALUE_HISTOGRAMS (fn) = NULL;
    }
}

/* The overall number of invocations of the counter should match
   execution count of basic block.  Report it as error rather than
   internal error as it might mean that user has misused the profile
   somehow.  */

static bool
check_counter (gimple *stmt, const char * name,
	       gcov_type *count, gcov_type *all, profile_count bb_count_d)
{
  gcov_type bb_count = bb_count_d.ipa ().to_gcov_type ();
  if (*all != bb_count || *count > *all)
    {
      dump_user_location_t locus;
      locus = ((stmt != NULL)
	       ? dump_user_location_t (stmt)
	       : dump_user_location_t::from_function_decl
		   (current_function_decl));
      if (flag_profile_correction)
        {
          if (dump_enabled_p ())
            dump_printf_loc (MSG_MISSED_OPTIMIZATION, locus,
                             "correcting inconsistent value profile: %s "
                             "profiler overall count (%d) does not match BB "
                             "count (%d)\n", name, (int)*all, (int)bb_count);
	  *all = bb_count;
	  if (*count > *all)
            *count = *all;
	  return false;
	}
      else
	{
	  error_at (locus.get_location_t (), "corrupted value profile: %s "
		    "profile counter (%d out of %d) inconsistent with "
		    "basic-block count (%d)",
		    name,
		    (int) *count,
		    (int) *all,
		    (int) bb_count);
	  return true;
	}
    }

  return false;
}

/* GIMPLE based transformations. */

bool
gimple_value_profile_transformations (void)
{
  basic_block bb;
  gimple_stmt_iterator gsi;
  bool changed = false;

  FOR_EACH_BB_FN (bb, cfun)
    {
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gimple *stmt = gsi_stmt (gsi);
	  histogram_value th = gimple_histogram_value (cfun, stmt);
	  if (!th)
	    continue;

	  if (dump_file)
	    {
	      fprintf (dump_file, "Trying transformations on stmt ");
	      print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
	      dump_histograms_for_stmt (cfun, dump_file, stmt);
	    }

	  /* Transformations:  */
	  /* The order of things in this conditional controls which
	     transformation is used when more than one is applicable.  */
	  /* It is expected that any code added by the transformations
	     will be added before the current statement, and that the
	     current statement remain valid (although possibly
	     modified) upon return.  */
	  if (gimple_mod_subtract_transform (&gsi)
	      || gimple_divmod_fixed_value_transform (&gsi)
	      || gimple_mod_pow2_value_transform (&gsi)
	      || gimple_stringops_transform (&gsi))
	    {
	      stmt = gsi_stmt (gsi);
	      changed = true;
	      /* Original statement may no longer be in the same block. */
	      if (bb != gimple_bb (stmt))
		{
	          bb = gimple_bb (stmt);
		  gsi = gsi_for_stmt (stmt);
		}
	    }

	  /* The function never thansforms a GIMPLE statement.  */
	  if (dump_enabled_p ())
	    dump_ic_profile (&gsi);
        }
    }

  return changed;
}

/* Generate code for transformation 1 (with parent gimple assignment
   STMT and probability of taking the optimal path PROB, which is
   equivalent to COUNT/ALL within roundoff error).  This generates the
   result into a temp and returns the temp; it does not replace or
   alter the original STMT.  */

static tree
gimple_divmod_fixed_value (gassign *stmt, tree value, profile_probability prob,
			   gcov_type count, gcov_type all)
{
  gassign *stmt1, *stmt2;
  gcond *stmt3;
  tree tmp0, tmp1, tmp2;
  gimple *bb1end, *bb2end, *bb3end;
  basic_block bb, bb2, bb3, bb4;
  tree optype, op1, op2;
  edge e12, e13, e23, e24, e34;
  gimple_stmt_iterator gsi;

  gcc_assert (is_gimple_assign (stmt)
	      && (gimple_assign_rhs_code (stmt) == TRUNC_DIV_EXPR
		  || gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR));

  optype = TREE_TYPE (gimple_assign_lhs (stmt));
  op1 = gimple_assign_rhs1 (stmt);
  op2 = gimple_assign_rhs2 (stmt);

  bb = gimple_bb (stmt);
  gsi = gsi_for_stmt (stmt);

  tmp0 = make_temp_ssa_name (optype, NULL, "PROF");
  tmp1 = make_temp_ssa_name (optype, NULL, "PROF");
  stmt1 = gimple_build_assign (tmp0, fold_convert (optype, value));
  stmt2 = gimple_build_assign (tmp1, op2);
  stmt3 = gimple_build_cond (NE_EXPR, tmp1, tmp0, NULL_TREE, NULL_TREE);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
  bb1end = stmt3;

  tmp2 = create_tmp_reg (optype, "PROF");
  stmt1 = gimple_build_assign (tmp2, gimple_assign_rhs_code (stmt), op1, tmp0);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  bb2end = stmt1;

  stmt1 = gimple_build_assign (tmp2, gimple_assign_rhs_code (stmt), op1, op2);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  bb3end = stmt1;

  /* Fix CFG. */
  /* Edge e23 connects bb2 to bb3, etc. */
  e12 = split_block (bb, bb1end);
  bb2 = e12->dest;
  bb2->count = profile_count::from_gcov_type (count);
  e23 = split_block (bb2, bb2end);
  bb3 = e23->dest;
  bb3->count = profile_count::from_gcov_type (all - count);
  e34 = split_block (bb3, bb3end);
  bb4 = e34->dest;
  bb4->count = profile_count::from_gcov_type (all);

  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->probability = prob;

  e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
  e13->probability = prob.invert ();

  remove_edge (e23);

  e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
  e24->probability = profile_probability::always ();

  e34->probability = profile_probability::always ();

  return tmp2;
}

/* Return the n-th value count of TOPN_VALUE histogram.  If
   there's a value, return true and set VALUE and COUNT
   arguments.

   Counters have the following meaning.

   abs (counters[0]) is the number of executions
   for i in 0 ... TOPN-1
     counters[2 * i + 2] is target
     counters[2 * i + 3] is corresponding hitrate counter.

   Value of counters[0] negative when counter became
   full during merging and some values are lost.  */

bool
get_nth_most_common_value (gimple *stmt, const char *counter_type,
			   histogram_value hist, gcov_type *value,
			   gcov_type *count, gcov_type *all, unsigned n)
{
  unsigned counters = hist->hvalue.counters[1];
  if (n >= counters)
    return false;

  *count = 0;
  *value = 0;

  gcov_type read_all = abs_hwi (hist->hvalue.counters[0]);
  gcov_type covered = 0;
  for (unsigned i = 0; i < counters; ++i)
    covered += hist->hvalue.counters[2 * i + 3];

  gcov_type v = hist->hvalue.counters[2 * n + 2];
  gcov_type c = hist->hvalue.counters[2 * n + 3];

  if (hist->hvalue.counters[0] < 0
      && flag_profile_reproducible == PROFILE_REPRODUCIBILITY_PARALLEL_RUNS)
    {
      if (dump_file)
	fprintf (dump_file, "Histogram value dropped in '%s' mode\n",
		 "-fprofile-reproducible=parallel-runs");
      return false;
    }
  else if (covered != read_all
	   && flag_profile_reproducible == PROFILE_REPRODUCIBILITY_MULTITHREADED)
    {
      if (dump_file)
	fprintf (dump_file, "Histogram value dropped in '%s' mode\n",
		 "-fprofile-reproducible=multithreaded");
      return false;
    }

  /* Indirect calls can't be verified.  */
  if (stmt
      && check_counter (stmt, counter_type, &c, &read_all,
			gimple_bb (stmt)->count))
    return false;

  *all = read_all;

  *value = v;
  *count = c;
  return true;
}

/* Do transform 1) on INSN if applicable.  */

static bool
gimple_divmod_fixed_value_transform (gimple_stmt_iterator *si)
{
  histogram_value histogram;
  enum tree_code code;
  gcov_type val, count, all;
  tree result, value, tree_val;
  profile_probability prob;
  gassign *stmt;

  stmt = dyn_cast <gassign *> (gsi_stmt (*si));
  if (!stmt)
    return false;

  if (!INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt))))
    return false;

  code = gimple_assign_rhs_code (stmt);

  if (code != TRUNC_DIV_EXPR && code != TRUNC_MOD_EXPR)
    return false;

  histogram = gimple_histogram_value_of_type (cfun, stmt,
					      HIST_TYPE_TOPN_VALUES);
  if (!histogram)
    return false;

  if (!get_nth_most_common_value (stmt, "divmod", histogram, &val, &count,
				  &all))
    return false;

  value = histogram->hvalue.value;
  gimple_remove_histogram_value (cfun, stmt, histogram);

  /* We require that count is at least half of all.  */
  if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
      || 2 * count < all
      || optimize_bb_for_size_p (gimple_bb (stmt)))
    return false;

  /* Compute probability of taking the optimal path.  */
  if (all > 0)
    prob = profile_probability::probability_in_gcov_type (count, all);
  else
    prob = profile_probability::never ();

  if (sizeof (gcov_type) == sizeof (HOST_WIDE_INT))
    tree_val = build_int_cst (get_gcov_type (), val);
  else
    {
      HOST_WIDE_INT a[2];
      a[0] = (unsigned HOST_WIDE_INT) val;
      a[1] = val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1;

      tree_val = wide_int_to_tree (get_gcov_type (), wide_int::from_array (a, 2,
	TYPE_PRECISION (get_gcov_type ()), false));
    }
  result = gimple_divmod_fixed_value (stmt, tree_val, prob, count, all);

  if (dump_enabled_p ())
    dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
		     "Transformation done: div/mod by constant %T\n", tree_val);

  gimple_assign_set_rhs_from_tree (si, result);
  update_stmt (gsi_stmt (*si));

  return true;
}

/* Generate code for transformation 2 (with parent gimple assign STMT and
   probability of taking the optimal path PROB, which is equivalent to COUNT/ALL
   within roundoff error).  This generates the result into a temp and returns
   the temp; it does not replace or alter the original STMT.  */

static tree
gimple_mod_pow2 (gassign *stmt, profile_probability prob, gcov_type count, gcov_type all)
{
  gassign *stmt1, *stmt2, *stmt3;
  gcond *stmt4;
  tree tmp2, tmp3;
  gimple *bb1end, *bb2end, *bb3end;
  basic_block bb, bb2, bb3, bb4;
  tree optype, op1, op2;
  edge e12, e13, e23, e24, e34;
  gimple_stmt_iterator gsi;
  tree result;

  gcc_assert (is_gimple_assign (stmt)
	      && gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);

  optype = TREE_TYPE (gimple_assign_lhs (stmt));
  op1 = gimple_assign_rhs1 (stmt);
  op2 = gimple_assign_rhs2 (stmt);

  bb = gimple_bb (stmt);
  gsi = gsi_for_stmt (stmt);

  result = create_tmp_reg (optype, "PROF");
  tmp2 = make_temp_ssa_name (optype, NULL, "PROF");
  tmp3 = make_temp_ssa_name (optype, NULL, "PROF");
  stmt2 = gimple_build_assign (tmp2, PLUS_EXPR, op2,
			       build_int_cst (optype, -1));
  stmt3 = gimple_build_assign (tmp3, BIT_AND_EXPR, tmp2, op2);
  stmt4 = gimple_build_cond (NE_EXPR, tmp3, build_int_cst (optype, 0),
			     NULL_TREE, NULL_TREE);
  gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt4, GSI_SAME_STMT);
  bb1end = stmt4;

  /* tmp2 == op2-1 inherited from previous block.  */
  stmt1 = gimple_build_assign (result, BIT_AND_EXPR, op1, tmp2);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  bb2end = stmt1;

  stmt1 = gimple_build_assign (result, gimple_assign_rhs_code (stmt),
			       op1, op2);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  bb3end = stmt1;

  /* Fix CFG. */
  /* Edge e23 connects bb2 to bb3, etc. */
  e12 = split_block (bb, bb1end);
  bb2 = e12->dest;
  bb2->count = profile_count::from_gcov_type (count);
  e23 = split_block (bb2, bb2end);
  bb3 = e23->dest;
  bb3->count = profile_count::from_gcov_type (all - count);
  e34 = split_block (bb3, bb3end);
  bb4 = e34->dest;
  bb4->count = profile_count::from_gcov_type (all);

  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->probability = prob;

  e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
  e13->probability = prob.invert ();

  remove_edge (e23);

  e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
  e24->probability = profile_probability::always ();

  e34->probability = profile_probability::always ();

  return result;
}

/* Do transform 2) on INSN if applicable.  */

static bool
gimple_mod_pow2_value_transform (gimple_stmt_iterator *si)
{
  histogram_value histogram;
  enum tree_code code;
  gcov_type count, wrong_values, all;
  tree lhs_type, result, value;
  profile_probability prob;
  gassign *stmt;

  stmt = dyn_cast <gassign *> (gsi_stmt (*si));
  if (!stmt)
    return false;

  lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
  if (!INTEGRAL_TYPE_P (lhs_type))
    return false;

  code = gimple_assign_rhs_code (stmt);

  if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
    return false;

  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_POW2);
  if (!histogram)
    return false;

  value = histogram->hvalue.value;
  wrong_values = histogram->hvalue.counters[0];
  count = histogram->hvalue.counters[1];

  gimple_remove_histogram_value (cfun, stmt, histogram);

  /* We require that we hit a power of 2 at least half of all evaluations.  */
  if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
      || count < wrong_values
      || optimize_bb_for_size_p (gimple_bb (stmt)))
    return false;

  /* Compute probability of taking the optimal path.  */
  all = count + wrong_values;

  if (check_counter (stmt, "pow2", &count, &all, gimple_bb (stmt)->count))
    return false;

  if (dump_enabled_p ())
    dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
		     "Transformation done: mod power of 2\n");

  if (all > 0)
    prob = profile_probability::probability_in_gcov_type (count, all);
  else
    prob = profile_probability::never ();

  result = gimple_mod_pow2 (stmt, prob, count, all);

  gimple_assign_set_rhs_from_tree (si, result);
  update_stmt (gsi_stmt (*si));

  return true;
}

/* Generate code for transformations 3 and 4 (with parent gimple assign STMT, and
   NCOUNTS the number of cases to support.  Currently only NCOUNTS==0 or 1 is
   supported and this is built into this interface.  The probabilities of taking
   the optimal paths are PROB1 and PROB2, which are equivalent to COUNT1/ALL and
   COUNT2/ALL respectively within roundoff error).  This generates the
   result into a temp and returns the temp; it does not replace or alter
   the original STMT.  */
/* FIXME: Generalize the interface to handle NCOUNTS > 1.  */

static tree
gimple_mod_subtract (gassign *stmt, profile_probability prob1,
		     profile_probability prob2, int ncounts,
		     gcov_type count1, gcov_type count2, gcov_type all)
{
  gassign *stmt1;
  gimple *stmt2;
  gcond *stmt3;
  tree tmp1;
  gimple *bb1end, *bb2end = NULL, *bb3end;
  basic_block bb, bb2, bb3, bb4;
  tree optype, op1, op2;
  edge e12, e23 = 0, e24, e34, e14;
  gimple_stmt_iterator gsi;
  tree result;

  gcc_assert (is_gimple_assign (stmt)
	      && gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);

  optype = TREE_TYPE (gimple_assign_lhs (stmt));
  op1 = gimple_assign_rhs1 (stmt);
  op2 = gimple_assign_rhs2 (stmt);

  bb = gimple_bb (stmt);
  gsi = gsi_for_stmt (stmt);

  result = create_tmp_reg (optype, "PROF");
  tmp1 = make_temp_ssa_name (optype, NULL, "PROF");
  stmt1 = gimple_build_assign (result, op1);
  stmt2 = gimple_build_assign (tmp1, op2);
  stmt3 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
  gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
  bb1end = stmt3;

  if (ncounts)	/* Assumed to be 0 or 1 */
    {
      stmt1 = gimple_build_assign (result, MINUS_EXPR, result, tmp1);
      stmt2 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
      gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
      gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
      bb2end = stmt2;
    }

  /* Fallback case. */
  stmt1 = gimple_build_assign (result, gimple_assign_rhs_code (stmt),
			       result, tmp1);
  gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
  bb3end = stmt1;

  /* Fix CFG. */
  /* Edge e23 connects bb2 to bb3, etc. */
  /* However block 3 is optional; if it is not there, references
     to 3 really refer to block 2. */
  e12 = split_block (bb, bb1end);
  bb2 = e12->dest;
  bb2->count = profile_count::from_gcov_type (all - count1);

  if (ncounts)	/* Assumed to be 0 or 1.  */
    {
      e23 = split_block (bb2, bb2end);
      bb3 = e23->dest;
      bb3->count = profile_count::from_gcov_type (all - count1 - count2);
    }

  e34 = split_block (ncounts ? bb3 : bb2, bb3end);
  bb4 = e34->dest;
  bb4->count = profile_count::from_gcov_type (all);

  e12->flags &= ~EDGE_FALLTHRU;
  e12->flags |= EDGE_FALSE_VALUE;
  e12->probability = prob1.invert ();

  e14 = make_edge (bb, bb4, EDGE_TRUE_VALUE);
  e14->probability = prob1;

  if (ncounts)  /* Assumed to be 0 or 1.  */
    {
      e23->flags &= ~EDGE_FALLTHRU;
      e23->flags |= EDGE_FALSE_VALUE;
      e23->probability = prob2.invert ();

      e24 = make_edge (bb2, bb4, EDGE_TRUE_VALUE);
      e24->probability = prob2;
    }

  e34->probability = profile_probability::always ();

  return result;
}

/* Do transforms 3) and 4) on the statement pointed-to by SI if applicable.  */

static bool
gimple_mod_subtract_transform (gimple_stmt_iterator *si)
{
  histogram_value histogram;
  enum tree_code code;
  gcov_type count, wrong_values, all;
  tree lhs_type, result;
  profile_probability prob1, prob2;
  unsigned int i, steps;
  gcov_type count1, count2;
  gassign *stmt;
  stmt = dyn_cast <gassign *> (gsi_stmt (*si));
  if (!stmt)
    return false;

  lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
  if (!INTEGRAL_TYPE_P (lhs_type))
    return false;

  code = gimple_assign_rhs_code (stmt);

  if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
    return false;

  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INTERVAL);
  if (!histogram)
    return false;

  all = 0;
  wrong_values = 0;
  for (i = 0; i < histogram->hdata.intvl.steps; i++)
    all += histogram->hvalue.counters[i];

  wrong_values += histogram->hvalue.counters[i];
  wrong_values += histogram->hvalue.counters[i+1];
  steps = histogram->hdata.intvl.steps;
  all += wrong_values;
  count1 = histogram->hvalue.counters[0];
  count2 = histogram->hvalue.counters[1];

  if (check_counter (stmt, "interval", &count1, &all, gimple_bb (stmt)->count))
    {
      gimple_remove_histogram_value (cfun, stmt, histogram);
      return false;
    }

  if (flag_profile_correction && count1 + count2 > all)
      all = count1 + count2;

  gcc_assert (count1 + count2 <= all);

  /* We require that we use just subtractions in at least 50% of all
     evaluations.  */
  count = 0;
  for (i = 0; i < histogram->hdata.intvl.steps; i++)
    {
      count += histogram->hvalue.counters[i];
      if (count * 2 >= all)
	break;
    }
  if (i == steps
      || optimize_bb_for_size_p (gimple_bb (stmt)))
    return false;

  gimple_remove_histogram_value (cfun, stmt, histogram);
  if (dump_enabled_p ())
    dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
		     "Transformation done: mod subtract\n");

  /* Compute probability of taking the optimal path(s).  */
  if (all > 0)
    {
      prob1 = profile_probability::probability_in_gcov_type (count1, all);
      prob2 = profile_probability::probability_in_gcov_type (count2, all);
    }
  else
    {
      prob1 = prob2 = profile_probability::never ();
    }

  /* In practice, "steps" is always 2.  This interface reflects this,
     and will need to be changed if "steps" can change.  */
  result = gimple_mod_subtract (stmt, prob1, prob2, i, count1, count2, all);

  gimple_assign_set_rhs_from_tree (si, result);
  update_stmt (gsi_stmt (*si));

  return true;
}

typedef int_hash <unsigned int, 0, UINT_MAX> profile_id_hash;

static hash_map<profile_id_hash, cgraph_node *> *cgraph_node_map = 0;

/* Returns true if node graph is initialized. This
   is used to test if profile_id has been created
   for cgraph_nodes.  */

bool
coverage_node_map_initialized_p (void)
{
  return cgraph_node_map != 0;
}

/* Initialize map from PROFILE_ID to CGRAPH_NODE.
   When LOCAL is true, the PROFILE_IDs are computed.  when it is false we assume
   that the PROFILE_IDs was already assigned.  */

void
init_node_map (bool local)
{
  struct cgraph_node *n;
  cgraph_node_map = new hash_map<profile_id_hash, cgraph_node *>;

  FOR_EACH_DEFINED_FUNCTION (n)
    if (n->has_gimple_body_p () || n->thunk)
      {
	cgraph_node **val;
	dump_user_location_t loc
	  = dump_user_location_t::from_function_decl (n->decl);
	if (local)
	  {
	    n->profile_id = coverage_compute_profile_id (n);
	    while ((val = cgraph_node_map->get (n->profile_id))
		   || !n->profile_id)
	      {
		if (dump_enabled_p ())
		  dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
				   "Local profile-id %i conflict"
				   " with nodes %s %s\n",
				   n->profile_id,
				   n->dump_name (),
				   (*val)->dump_name ());
		n->profile_id = (n->profile_id + 1) & 0x7fffffff;
	      }
	  }
	else if (!n->profile_id)
	  {
	    if (dump_enabled_p ())
	      dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
			       "Node %s has no profile-id"
			       " (profile feedback missing?)\n",
			       n->dump_name ());
	    continue;
	  }
	else if ((val = cgraph_node_map->get (n->profile_id)))
	  {
	    if (dump_enabled_p ())
	      dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
			       "Node %s has IP profile-id %i conflict. "
			       "Giving up.\n",
			       n->dump_name (), n->profile_id);
	    *val = NULL;
	    continue;
	  }
	cgraph_node_map->put (n->profile_id, n);
      }
}

/* Delete the CGRAPH_NODE_MAP.  */

void
del_node_map (void)
{
  delete cgraph_node_map;
}

/* Return cgraph node for function with pid */

struct cgraph_node*
find_func_by_profile_id (int profile_id)
{
  cgraph_node **val = cgraph_node_map->get (profile_id);
  if (val)
    return *val;
  else
    return NULL;
}

/* Do transformation

  if (actual_callee_address == address_of_most_common_function/method)
    do direct call
  else
    old call
 */

gcall *
gimple_ic (gcall *icall_stmt, struct cgraph_node *direct_call,
	   profile_probability prob)
{
  gcall *dcall_stmt;
  gassign *load_stmt;
  gcond *cond_stmt;
  tree tmp0, tmp1, tmp;
  basic_block cond_bb, dcall_bb, icall_bb, join_bb = NULL;
  edge e_cd, e_ci, e_di, e_dj = NULL, e_ij;
  gimple_stmt_iterator gsi;
  int lp_nr, dflags;
  edge e_eh, e;
  edge_iterator ei;

  cond_bb = gimple_bb (icall_stmt);
  gsi = gsi_for_stmt (icall_stmt);

  tmp0 = make_temp_ssa_name (ptr_type_node, NULL, "PROF");
  tmp1 = make_temp_ssa_name (ptr_type_node, NULL, "PROF");
  tmp = unshare_expr (gimple_call_fn (icall_stmt));
  load_stmt = gimple_build_assign (tmp0, tmp);
  gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);

  tmp = fold_convert (ptr_type_node, build_addr (direct_call->decl));
  load_stmt = gimple_build_assign (tmp1, tmp);
  gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);

  cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmp0, NULL_TREE, NULL_TREE);
  gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);

  if (TREE_CODE (gimple_vdef (icall_stmt)) == SSA_NAME)
    {
      unlink_stmt_vdef (icall_stmt);
      release_ssa_name (gimple_vdef (icall_stmt));
    }
  gimple_set_vdef (icall_stmt, NULL_TREE);
  gimple_set_vuse (icall_stmt, NULL_TREE);
  update_stmt (icall_stmt);
  dcall_stmt = as_a <gcall *> (gimple_copy (icall_stmt));
  gimple_call_set_fndecl (dcall_stmt, direct_call->decl);
  dflags = flags_from_decl_or_type (direct_call->decl);
  if ((dflags & ECF_NORETURN) != 0
      && should_remove_lhs_p (gimple_call_lhs (dcall_stmt)))
    gimple_call_set_lhs (dcall_stmt, NULL_TREE);
  gsi_insert_before (&gsi, dcall_stmt, GSI_SAME_STMT);

  /* Fix CFG. */
  /* Edge e_cd connects cond_bb to dcall_bb, etc; note the first letters. */
  e_cd = split_block (cond_bb, cond_stmt);
  dcall_bb = e_cd->dest;
  dcall_bb->count = cond_bb->count.apply_probability (prob);

  e_di = split_block (dcall_bb, dcall_stmt);
  icall_bb = e_di->dest;
  icall_bb->count = cond_bb->count - dcall_bb->count;

  /* Do not disturb existing EH edges from the indirect call.  */
  if (!stmt_ends_bb_p (icall_stmt))
    e_ij = split_block (icall_bb, icall_stmt);
  else
    {
      e_ij = find_fallthru_edge (icall_bb->succs);
      /* The indirect call might be noreturn.  */
      if (e_ij != NULL)
	{
	  e_ij->probability = profile_probability::always ();
	  e_ij = single_pred_edge (split_edge (e_ij));
	}
    }
  if (e_ij != NULL)
    {
      join_bb = e_ij->dest;
      join_bb->count = cond_bb->count;
    }

  e_cd->flags = (e_cd->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
  e_cd->probability = prob;

  e_ci = make_edge (cond_bb, icall_bb, EDGE_FALSE_VALUE);
  e_ci->probability = prob.invert ();

  remove_edge (e_di);

  if (e_ij != NULL)
    {
      if ((dflags & ECF_NORETURN) == 0)
	{
	  e_dj = make_edge (dcall_bb, join_bb, EDGE_FALLTHRU);
	  e_dj->probability = profile_probability::always ();
	}
      e_ij->probability = profile_probability::always ();
    }

  /* Insert PHI node for the call result if necessary.  */
  if (gimple_call_lhs (icall_stmt)
      && TREE_CODE (gimple_call_lhs (icall_stmt)) == SSA_NAME
      && (dflags & ECF_NORETURN) == 0)
    {
      tree result = gimple_call_lhs (icall_stmt);
      gphi *phi = create_phi_node (result, join_bb);
      gimple_call_set_lhs (icall_stmt,
			   duplicate_ssa_name (result, icall_stmt));
      add_phi_arg (phi, gimple_call_lhs (icall_stmt), e_ij, UNKNOWN_LOCATION);
      gimple_call_set_lhs (dcall_stmt,
			   duplicate_ssa_name (result, dcall_stmt));
      add_phi_arg (phi, gimple_call_lhs (dcall_stmt), e_dj, UNKNOWN_LOCATION);
    }

  /* Build an EH edge for the direct call if necessary.  */
  lp_nr = lookup_stmt_eh_lp (icall_stmt);
  if (lp_nr > 0 && stmt_could_throw_p (cfun, dcall_stmt))
    {
      add_stmt_to_eh_lp (dcall_stmt, lp_nr);
    }

  FOR_EACH_EDGE (e_eh, ei, icall_bb->succs)
    if (e_eh->flags & (EDGE_EH | EDGE_ABNORMAL))
      {
	e = make_edge (dcall_bb, e_eh->dest, e_eh->flags);
	e->probability = e_eh->probability;
	for (gphi_iterator psi = gsi_start_phis (e_eh->dest);
	     !gsi_end_p (psi); gsi_next (&psi))
	  {
	    gphi *phi = psi.phi ();
	    SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e),
		     PHI_ARG_DEF_FROM_EDGE (phi, e_eh));
	  }
       }
  if (!stmt_could_throw_p (cfun, dcall_stmt))
    gimple_purge_dead_eh_edges (dcall_bb);
  return dcall_stmt;
}

/* Dump info about indirect call profile.  */

static void
dump_ic_profile (gimple_stmt_iterator *gsi)
{
  gcall *stmt;
  histogram_value histogram;
  gcov_type val, count, all;
  struct cgraph_node *direct_call;

  stmt = dyn_cast <gcall *> (gsi_stmt (*gsi));
  if (!stmt)
    return;

  if (gimple_call_fndecl (stmt) != NULL_TREE)
    return;

  if (gimple_call_internal_p (stmt))
    return;

  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INDIR_CALL);
  if (!histogram)
    return;

  count = 0;
  all = histogram->hvalue.counters[0];

  for (unsigned j = 0; j < GCOV_TOPN_MAXIMUM_TRACKED_VALUES; j++)
    {
      if (!get_nth_most_common_value (NULL, "indirect call", histogram, &val,
				      &count, &all, j))
	return;
      if (!count)
	continue;

      direct_call = find_func_by_profile_id ((int) val);

      if (direct_call == NULL)
	dump_printf_loc (
	  MSG_MISSED_OPTIMIZATION, stmt,
	  "Indirect call -> direct call from other "
	  "module %T=> %i (will resolve by ipa-profile only with LTO)\n",
	  gimple_call_fn (stmt), (int) val);
      else
	dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
			 "Indirect call -> direct call "
			 "%T => %T (will resolve by ipa-profile)\n",
			 gimple_call_fn (stmt), direct_call->decl);
      dump_printf_loc (MSG_NOTE, stmt,
		       "hist->count %" PRId64 " hist->all %" PRId64 "\n",
		       count, all);
    }
}

/* Return true if the stringop CALL shall be profiled.  SIZE_ARG be
   set to the argument index for the size of the string operation.  */

static bool
interesting_stringop_to_profile_p (gcall *call, int *size_arg)
{
  enum built_in_function fcode;

  fcode = DECL_FUNCTION_CODE (gimple_call_fndecl (call));
  switch (fcode)
    {
     case BUILT_IN_MEMCPY:
     case BUILT_IN_MEMPCPY:
     case BUILT_IN_MEMMOVE:
       *size_arg = 2;
       return validate_gimple_arglist (call, POINTER_TYPE, POINTER_TYPE,
				       INTEGER_TYPE, VOID_TYPE);
     case BUILT_IN_MEMSET:
       *size_arg = 2;
       return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
				      INTEGER_TYPE, VOID_TYPE);
     case BUILT_IN_BZERO:
       *size_arg = 1;
       return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
				       VOID_TYPE);
     default:
       return false;
    }
}

/* Convert stringop (..., vcall_size)
   into
   if (vcall_size == icall_size)
     stringop (..., icall_size);
   else
     stringop (..., vcall_size);
   assuming we'll propagate a true constant into ICALL_SIZE later.  */

static void
gimple_stringop_fixed_value (gcall *vcall_stmt, tree icall_size, profile_probability prob,
			     gcov_type count, gcov_type all)
{
  gassign *tmp_stmt;
  gcond *cond_stmt;
  gcall *icall_stmt;
  tree tmp0, tmp1, vcall_size, optype;
  basic_block cond_bb, icall_bb, vcall_bb, join_bb;
  edge e_ci, e_cv, e_iv, e_ij, e_vj;
  gimple_stmt_iterator gsi;
  int size_arg;

  if (!interesting_stringop_to_profile_p (vcall_stmt, &size_arg))
    gcc_unreachable ();

  cond_bb = gimple_bb (vcall_stmt);
  gsi = gsi_for_stmt (vcall_stmt);

  vcall_size = gimple_call_arg (vcall_stmt, size_arg);
  optype = TREE_TYPE (vcall_size);

  tmp0 = make_temp_ssa_name (optype, NULL, "PROF");
  tmp1 = make_temp_ssa_name (optype, NULL, "PROF");
  tmp_stmt = gimple_build_assign (tmp0, fold_convert (optype, icall_size));
  gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);

  tmp_stmt = gimple_build_assign (tmp1, vcall_size);
  gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);

  cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmp0, NULL_TREE, NULL_TREE);
  gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);

  if (TREE_CODE (gimple_vdef (vcall_stmt)) == SSA_NAME)
    {
      unlink_stmt_vdef (vcall_stmt);
      release_ssa_name (gimple_vdef (vcall_stmt));
    }
  gimple_set_vdef (vcall_stmt, NULL);
  gimple_set_vuse (vcall_stmt, NULL);
  update_stmt (vcall_stmt);
  icall_stmt = as_a <gcall *> (gimple_copy (vcall_stmt));
  gimple_call_set_arg (icall_stmt, size_arg,
		       fold_convert (optype, icall_size));
  gsi_insert_before (&gsi, icall_stmt, GSI_SAME_STMT);

  /* Fix CFG. */
  /* Edge e_ci connects cond_bb to icall_bb, etc. */
  e_ci = split_block (cond_bb, cond_stmt);
  icall_bb = e_ci->dest;
  icall_bb->count = profile_count::from_gcov_type (count);

  e_iv = split_block (icall_bb, icall_stmt);
  vcall_bb = e_iv->dest;
  vcall_bb->count = profile_count::from_gcov_type (all - count);

  e_vj = split_block (vcall_bb, vcall_stmt);
  join_bb = e_vj->dest;
  join_bb->count = profile_count::from_gcov_type (all);

  e_ci->flags = (e_ci->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
  e_ci->probability = prob;

  e_cv = make_edge (cond_bb, vcall_bb, EDGE_FALSE_VALUE);
  e_cv->probability = prob.invert ();

  remove_edge (e_iv);

  e_ij = make_edge (icall_bb, join_bb, EDGE_FALLTHRU);
  e_ij->probability = profile_probability::always ();

  e_vj->probability = profile_probability::always ();

  /* Insert PHI node for the call result if necessary.  */
  if (gimple_call_lhs (vcall_stmt)
      && TREE_CODE (gimple_call_lhs (vcall_stmt)) == SSA_NAME)
    {
      tree result = gimple_call_lhs (vcall_stmt);
      gphi *phi = create_phi_node (result, join_bb);
      gimple_call_set_lhs (vcall_stmt,
			   duplicate_ssa_name (result, vcall_stmt));
      add_phi_arg (phi, gimple_call_lhs (vcall_stmt), e_vj, UNKNOWN_LOCATION);
      gimple_call_set_lhs (icall_stmt,
			   duplicate_ssa_name (result, icall_stmt));
      add_phi_arg (phi, gimple_call_lhs (icall_stmt), e_ij, UNKNOWN_LOCATION);
    }

  /* Because these are all string op builtins, they're all nothrow.  */
  gcc_assert (!stmt_could_throw_p (cfun, vcall_stmt));
  gcc_assert (!stmt_could_throw_p (cfun, icall_stmt));
}

/* Find values inside STMT for that we want to measure histograms for
   division/modulo optimization.  */

static bool
gimple_stringops_transform (gimple_stmt_iterator *gsi)
{
  gcall *stmt;
  tree blck_size;
  enum built_in_function fcode;
  histogram_value histogram;
  gcov_type count, all, val;
  tree dest, src;
  unsigned int dest_align, src_align;
  profile_probability prob;
  tree tree_val;
  int size_arg;

  stmt = dyn_cast <gcall *> (gsi_stmt (*gsi));
  if (!stmt)
    return false;

  if (!gimple_call_builtin_p (gsi_stmt (*gsi), BUILT_IN_NORMAL))
    return false;

  if (!interesting_stringop_to_profile_p (stmt, &size_arg))
    return false;

  blck_size = gimple_call_arg (stmt, size_arg);
  if (TREE_CODE (blck_size) == INTEGER_CST)
    return false;

  histogram = gimple_histogram_value_of_type (cfun, stmt,
					      HIST_TYPE_TOPN_VALUES);
  if (!histogram)
    return false;

  if (!get_nth_most_common_value (stmt, "stringops", histogram, &val, &count,
				  &all))
    return false;

  gimple_remove_histogram_value (cfun, stmt, histogram);

  /* We require that count is at least half of all.  */
  if (2 * count < all || optimize_bb_for_size_p (gimple_bb (stmt)))
    return false;
  if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count))
    return false;
  if (all > 0)
    prob = profile_probability::probability_in_gcov_type (count, all);
  else
    prob = profile_probability::never ();

  dest = gimple_call_arg (stmt, 0);
  dest_align = get_pointer_alignment (dest);
  fcode = DECL_FUNCTION_CODE (gimple_call_fndecl (stmt));
  switch (fcode)
    {
    case BUILT_IN_MEMCPY:
    case BUILT_IN_MEMPCPY:
    case BUILT_IN_MEMMOVE:
      src = gimple_call_arg (stmt, 1);
      src_align = get_pointer_alignment (src);
      if (!can_move_by_pieces (val, MIN (dest_align, src_align)))
	return false;
      break;
    case BUILT_IN_MEMSET:
      if (!can_store_by_pieces (val, builtin_memset_read_str,
				gimple_call_arg (stmt, 1),
				dest_align, true))
	return false;
      break;
    case BUILT_IN_BZERO:
      if (!can_store_by_pieces (val, builtin_memset_read_str,
				integer_zero_node,
				dest_align, true))
	return false;
      break;
    default:
      gcc_unreachable ();
    }

  if (sizeof (gcov_type) == sizeof (HOST_WIDE_INT))
    tree_val = build_int_cst (get_gcov_type (), val);
  else
    {
      HOST_WIDE_INT a[2];
      a[0] = (unsigned HOST_WIDE_INT) val;
      a[1] = val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1;

      tree_val = wide_int_to_tree (get_gcov_type (), wide_int::from_array (a, 2,
	TYPE_PRECISION (get_gcov_type ()), false));
    }

  if (dump_enabled_p ())
    dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
		     "Transformation done: single value %i stringop for %s\n",
		     (int)val, built_in_names[(int)fcode]);

  gimple_stringop_fixed_value (stmt, tree_val, prob, count, all);

  return true;
}

void
stringop_block_profile (gimple *stmt, unsigned int *expected_align,
			HOST_WIDE_INT *expected_size)
{
  histogram_value histogram;
  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_AVERAGE);

  if (!histogram)
    *expected_size = -1;
  else if (!histogram->hvalue.counters[1])
    {
      *expected_size = -1;
      gimple_remove_histogram_value (cfun, stmt, histogram);
    }
  else
    {
      gcov_type size;
      size = ((histogram->hvalue.counters[0]
	      + histogram->hvalue.counters[1] / 2)
	       / histogram->hvalue.counters[1]);
      /* Even if we can hold bigger value in SIZE, INT_MAX
	 is safe "infinity" for code generation strategies.  */
      if (size > INT_MAX)
	size = INT_MAX;
      *expected_size = size;
      gimple_remove_histogram_value (cfun, stmt, histogram);
    }

  histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_IOR);

  if (!histogram)
    *expected_align = 0;
  else if (!histogram->hvalue.counters[0])
    {
      gimple_remove_histogram_value (cfun, stmt, histogram);
      *expected_align = 0;
    }
  else
    {
      gcov_type count;
      unsigned int alignment;

      count = histogram->hvalue.counters[0];
      alignment = 1;
      while (!(count & alignment)
	     && (alignment <= UINT_MAX / 2 / BITS_PER_UNIT))
	alignment <<= 1;
      *expected_align = alignment * BITS_PER_UNIT;
      gimple_remove_histogram_value (cfun, stmt, histogram);
    }
}


/* Find values inside STMT for that we want to measure histograms for
   division/modulo optimization.  */

static void
gimple_divmod_values_to_profile (gimple *stmt, histogram_values *values)
{
  tree lhs, divisor, op0, type;
  histogram_value hist;

  if (gimple_code (stmt) != GIMPLE_ASSIGN)
    return;

  lhs = gimple_assign_lhs (stmt);
  type = TREE_TYPE (lhs);
  if (!INTEGRAL_TYPE_P (type))
    return;

  switch (gimple_assign_rhs_code (stmt))
    {
    case TRUNC_DIV_EXPR:
    case TRUNC_MOD_EXPR:
      divisor = gimple_assign_rhs2 (stmt);
      op0 = gimple_assign_rhs1 (stmt);

      if (TREE_CODE (divisor) == SSA_NAME)
	/* Check for the case where the divisor is the same value most
	   of the time.  */
	values->safe_push (gimple_alloc_histogram_value (cfun,
							 HIST_TYPE_TOPN_VALUES,
							 stmt, divisor));

      /* For mod, check whether it is not often a noop (or replaceable by
	 a few subtractions).  */
      if (gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR
	  && TYPE_UNSIGNED (type)
	  && TREE_CODE (divisor) == SSA_NAME)
	{
          tree val;
          /* Check for a special case where the divisor is power of 2.  */
	  values->safe_push (gimple_alloc_histogram_value (cfun,
							   HIST_TYPE_POW2,
							   stmt, divisor));
	  val = build2 (TRUNC_DIV_EXPR, type, op0, divisor);
	  hist = gimple_alloc_histogram_value (cfun, HIST_TYPE_INTERVAL,
					       stmt, val);
	  hist->hdata.intvl.int_start = 0;
	  hist->hdata.intvl.steps = 2;
	  values->safe_push (hist);
	}
      return;

    default:
      return;
    }
}

/* Find calls inside STMT for that we want to measure histograms for
   indirect/virtual call optimization. */

static void
gimple_indirect_call_to_profile (gimple *stmt, histogram_values *values)
{
  tree callee;

  if (gimple_code (stmt) != GIMPLE_CALL
      || gimple_call_internal_p (stmt)
      || gimple_call_fndecl (stmt) != NULL_TREE)
    return;

  callee = gimple_call_fn (stmt);
  histogram_value v = gimple_alloc_histogram_value (cfun, HIST_TYPE_INDIR_CALL,
						    stmt, callee);
  values->safe_push (v);

  return;
}

/* Find values inside STMT for that we want to measure histograms for
   string operations.  */

static void
gimple_stringops_values_to_profile (gimple *gs, histogram_values *values)
{
  gcall *stmt;
  tree blck_size;
  tree dest;
  int size_arg;

  stmt = dyn_cast <gcall *> (gs);
  if (!stmt)
    return;

  if (!gimple_call_builtin_p (gs, BUILT_IN_NORMAL))
    return;

  if (!interesting_stringop_to_profile_p (stmt, &size_arg))
    return;

  dest = gimple_call_arg (stmt, 0);
  blck_size = gimple_call_arg (stmt, size_arg);

  if (TREE_CODE (blck_size) != INTEGER_CST)
    {
      values->safe_push (gimple_alloc_histogram_value (cfun,
						       HIST_TYPE_TOPN_VALUES,
						       stmt, blck_size));
      values->safe_push (gimple_alloc_histogram_value (cfun, HIST_TYPE_AVERAGE,
						       stmt, blck_size));
    }

  if (TREE_CODE (blck_size) != INTEGER_CST)
    values->safe_push (gimple_alloc_histogram_value (cfun, HIST_TYPE_IOR,
						     stmt, dest));
}

/* Find values inside STMT for that we want to measure histograms and adds
   them to list VALUES.  */

static void
gimple_values_to_profile (gimple *stmt, histogram_values *values)
{
  gimple_divmod_values_to_profile (stmt, values);
  gimple_stringops_values_to_profile (stmt, values);
  gimple_indirect_call_to_profile (stmt, values);
}

void
gimple_find_values_to_profile (histogram_values *values)
{
  basic_block bb;
  gimple_stmt_iterator gsi;
  unsigned i;
  histogram_value hist = NULL;
  values->create (0);

  FOR_EACH_BB_FN (bb, cfun)
    for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
      gimple_values_to_profile (gsi_stmt (gsi), values);

  values->safe_push (gimple_alloc_histogram_value (cfun,
						   HIST_TYPE_TIME_PROFILE));

  FOR_EACH_VEC_ELT (*values, i, hist)
    {
      switch (hist->type)
        {
	case HIST_TYPE_INTERVAL:
	  hist->n_counters = hist->hdata.intvl.steps + 2;
	  break;

	case HIST_TYPE_POW2:
	  hist->n_counters = 2;
	  break;

	case HIST_TYPE_TOPN_VALUES:
	case HIST_TYPE_INDIR_CALL:
	  hist->n_counters = GCOV_TOPN_MEM_COUNTERS;
	  break;

        case HIST_TYPE_TIME_PROFILE:
          hist->n_counters = 1;
          break;

	case HIST_TYPE_AVERAGE:
	  hist->n_counters = 2;
	  break;

	case HIST_TYPE_IOR:
	  hist->n_counters = 1;
	  break;

	default:
	  gcc_unreachable ();
	}
      if (dump_file && hist->hvalue.stmt != NULL)
        {
	  fprintf (dump_file, "Stmt ");
          print_gimple_stmt (dump_file, hist->hvalue.stmt, 0, TDF_SLIM);
	  dump_histogram_value (dump_file, hist);
        }
    }
}