aboutsummaryrefslogtreecommitdiff
path: root/gcc/value-prof.c
blob: c3a70f9e391aabcd9f4b7da3ddca67ffcf6bb16c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
/* Transformations based on profile information for values.
   Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "expr.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "value-prof.h"
#include "output.h"
#include "flags.h"
#include "insn-config.h"
#include "recog.h"
#include "optabs.h"
#include "regs.h"
#include "ggc.h"

static struct value_prof_hooks *value_prof_hooks;

/* In this file value profile based optimizations are placed.  Currently the
   following optimizations are implemented (for more detailed descriptions
   see comments at value_profile_transformations):

   1) Division/modulo specialization.  Provided that we can determine that the
      operands of the division have some special properties, we may use it to
      produce more effective code.
   2) Speculative prefetching.  If we are able to determine that the difference
      between addresses accessed by a memory reference is usually constant, we
      may add the prefetch instructions.

   Every such optimization should add its requirements for profiled values to
   insn_values_to_profile function.  This function is called from branch_prob
   in profile.c and the requested values are instrumented by it in the first
   compilation with -fprofile-arcs.  The optimization may then read the
   gathered data in the second compilation with -fbranch-probabilities.
   The measured data is appended as REG_VALUE_PROFILE note to the instrumented
   insn.  The argument to the note consists of an EXPR_LIST where its
   members have the following meaning (from the first to the last):
   
   -- type of information gathered (HIST_TYPE*)
   -- the expression that is profiled
   -- list of counters starting from the first one.  */

/* For speculative prefetching, the range in that we do not prefetch (because
   we assume that it will be in cache anyway).  The asymmetry between min and
   max range is trying to reflect the fact that the sequential prefetching
   of the data is commonly done directly by hardware.  Nevertheless, these
   values are just a guess and should of course be target-specific.  */

#ifndef NOPREFETCH_RANGE_MIN
#define NOPREFETCH_RANGE_MIN (-16)
#endif
#ifndef NOPREFETCH_RANGE_MAX
#define NOPREFETCH_RANGE_MAX 32
#endif

static void insn_divmod_values_to_profile (rtx, histogram_values *);
#ifdef HAVE_prefetch
static bool insn_prefetch_values_to_profile (rtx, histogram_values *);
static int find_mem_reference_1 (rtx *, void *);
static void find_mem_reference_2 (rtx, rtx, void *);
static bool find_mem_reference (rtx, rtx *, int *);
#endif

static void insn_values_to_profile (rtx, histogram_values *);
static rtx gen_divmod_fixed_value (enum machine_mode, enum rtx_code, rtx, rtx,
				   rtx, gcov_type, int);
static rtx gen_mod_pow2 (enum machine_mode, enum rtx_code, rtx, rtx, rtx, int);
static rtx gen_mod_subtract (enum machine_mode, enum rtx_code, rtx, rtx, rtx,
			     int, int, int);
#ifdef HAVE_prefetch
static rtx gen_speculative_prefetch (rtx, gcov_type, int);
#endif
static bool divmod_fixed_value_transform (rtx insn);
static bool mod_pow2_value_transform (rtx);
static bool mod_subtract_transform (rtx);
#ifdef HAVE_prefetch
static bool speculative_prefetching_transform (rtx);
#endif

/* Find values inside INSN for that we want to measure histograms for
   division/modulo optimization and stores them to VALUES.  */
static void
insn_divmod_values_to_profile (rtx insn, histogram_values *values)
{
  rtx set, set_src, op1, op2;
  enum machine_mode mode;
  histogram_value hist;

  if (!INSN_P (insn))
    return;

  set = single_set (insn);
  if (!set)
    return;

  mode = GET_MODE (SET_DEST (set));
  if (!INTEGRAL_MODE_P (mode))
    return;

  set_src = SET_SRC (set);
  switch (GET_CODE (set_src))
    {
    case DIV:
    case MOD:
    case UDIV:
    case UMOD:
      op1 = XEXP (set_src, 0);
      op2 = XEXP (set_src, 1);
      if (side_effects_p (op2))
	return;

      /* Check for a special case where the divisor is power of 2.  */
      if ((GET_CODE (set_src) == UMOD) && !CONSTANT_P (op2))
	{
	  hist = ggc_alloc (sizeof (*hist));
	  hist->value = op2;
	  hist->seq = NULL_RTX;
	  hist->mode = mode;
	  hist->insn = insn;
	  hist->type = HIST_TYPE_POW2;
	  hist->hdata.pow2.may_be_other = 1;
	  VEC_safe_push (histogram_value, *values, hist);
	}

      /* Check whether the divisor is not in fact a constant.  */
      if (!CONSTANT_P (op2))
	{
	  hist = ggc_alloc (sizeof (*hist));
	  hist->value = op2;
	  hist->mode = mode;
	  hist->seq = NULL_RTX;
	  hist->insn = insn;
	  hist->type = HIST_TYPE_SINGLE_VALUE;
	  VEC_safe_push (histogram_value, *values, hist);
	}

      /* For mod, check whether it is not often a noop (or replaceable by
	 a few subtractions).  */
      if (GET_CODE (set_src) == UMOD && !side_effects_p (op1))
	{
	  rtx tmp;

	  hist = ggc_alloc (sizeof (*hist));
	  start_sequence ();
	  tmp = simplify_gen_binary (DIV, mode, copy_rtx (op1), copy_rtx (op2));
	  hist->value = force_operand (tmp, NULL_RTX);
	  hist->seq = get_insns ();
	  end_sequence ();
	  hist->mode = mode;
	  hist->insn = insn;
	  hist->type = HIST_TYPE_INTERVAL;
	  hist->hdata.intvl.int_start = 0;
	  hist->hdata.intvl.steps = 2;
	  hist->hdata.intvl.may_be_less = 1;
	  hist->hdata.intvl.may_be_more = 1;
	  VEC_safe_push (histogram_value, *values, hist);
	}
      return;

    default:
      return;
    }
}

#ifdef HAVE_prefetch

/* Called from find_mem_reference through for_each_rtx, finds a memory
   reference.  I.e. if *EXPR is a MEM, the reference to this MEM is stored
   to *RET and the traversing of the expression is interrupted by returning 1.
   Otherwise 0 is returned.  */

static int
find_mem_reference_1 (rtx *expr, void *ret)
{
  rtx *mem = ret;

  if (GET_CODE (*expr) == MEM)
    {
      *mem = *expr;
      return 1;
    }
  return 0;
}

/* Called form find_mem_reference through note_stores to find out whether
   the memory reference MEM is a store.  I.e. if EXPR == MEM, the variable
   FMR2_WRITE is set to true.  */

static int fmr2_write;
static void
find_mem_reference_2 (rtx expr, rtx pat ATTRIBUTE_UNUSED, void *mem)
{
  if (expr == mem)
    fmr2_write = true;
}

/* Find a memory reference inside INSN, return it in MEM. Set WRITE to true
   if it is a write of the mem.  Return false if no memory reference is found,
   true otherwise.  */

static bool
find_mem_reference (rtx insn, rtx *mem, int *write)
{
  *mem = NULL_RTX;
  for_each_rtx (&PATTERN (insn), find_mem_reference_1, mem);

  if (!*mem)
    return false;
  
  fmr2_write = false;
  note_stores (PATTERN (insn), find_mem_reference_2, *mem);
  *write = fmr2_write;
  return true;
}

/* Find values inside INSN for that we want to measure histograms for
   a speculative prefetching.  Add them to the list VALUES.
   Returns true if such we found any such value, false otherwise.  */

static bool
insn_prefetch_values_to_profile (rtx insn, histogram_values *values)
{
  rtx mem, address;
  int write;
  histogram_value hist;

  /* It only makes sense to look for memory references in ordinary insns.  */
  if (GET_CODE (insn) != INSN)
    return false;

  if (!find_mem_reference (insn, &mem, &write))
    return false;

  address = XEXP (mem, 0);
  if (side_effects_p (address))
    return false;
      
  if (CONSTANT_P (address))
    return false;

  hist = ggc_alloc (sizeof (*hist));
  hist->value = address;
  hist->mode = GET_MODE (address);
  hist->seq = NULL_RTX;
  hist->insn = insn;
  hist->type = HIST_TYPE_CONST_DELTA;
  VEC_safe_push (histogram_value, *values, hist);

  return true;
}
#endif
/* Find values inside INSN for that we want to measure histograms and adds
   them to list VALUES (increasing the record of its length in N_VALUES).  */
static void
insn_values_to_profile (rtx insn, histogram_values *values)
{
  if (flag_value_profile_transformations)
    insn_divmod_values_to_profile (insn, values);

#ifdef HAVE_prefetch
  if (flag_speculative_prefetching)
    insn_prefetch_values_to_profile (insn, values);
#endif
}

/* Find list of values for that we want to measure histograms.  */
static void
rtl_find_values_to_profile (histogram_values *values)
{
  rtx insn;
  unsigned i, libcall_level;

  life_analysis (NULL, PROP_DEATH_NOTES);

  *values = VEC_alloc (histogram_value, 0);
  libcall_level = 0;
  for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
    {
      if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
	libcall_level++;

      /* Do not instrument values inside libcalls (we are going to split block
	 due to instrumentation, and libcall blocks should be local to a single
	 basic block).  */
      if (!libcall_level)
	insn_values_to_profile (insn, values);

      if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
	{
	  gcc_assert (libcall_level > 0);
	  libcall_level--;
	}
    }
  gcc_assert (libcall_level == 0);

  for (i = 0; i < VEC_length (histogram_value, *values); i++)
    {
      histogram_value hist = VEC_index (histogram_value, *values, i);

      switch (hist->type)
	{
	case HIST_TYPE_INTERVAL:
	  if (dump_file)
	    fprintf (dump_file,
		     "Interval counter for insn %d, range %d -- %d.\n",
		     INSN_UID ((rtx)hist->insn),
		     hist->hdata.intvl.int_start,
		     (hist->hdata.intvl.int_start
		      + hist->hdata.intvl.steps - 1));
	  hist->n_counters = hist->hdata.intvl.steps +
		  (hist->hdata.intvl.may_be_less ? 1 : 0) +
		  (hist->hdata.intvl.may_be_more ? 1 : 0);
	  break;

	case HIST_TYPE_POW2:
	  if (dump_file)
	    fprintf (dump_file,
		     "Pow2 counter for insn %d.\n",
		     INSN_UID ((rtx)hist->insn));
	  hist->n_counters 
		= GET_MODE_BITSIZE (hist->mode)
		  +  (hist->hdata.pow2.may_be_other ? 1 : 0);
	  break;

	case HIST_TYPE_SINGLE_VALUE:
	  if (dump_file)
	    fprintf (dump_file,
		     "Single value counter for insn %d.\n",
		     INSN_UID ((rtx)hist->insn));
	  hist->n_counters = 3;
	  break;

	case HIST_TYPE_CONST_DELTA:
	  if (dump_file)
	    fprintf (dump_file,
		     "Constant delta counter for insn %d.\n",
		     INSN_UID ((rtx)hist->insn));
	  hist->n_counters = 4;
	  break;

	default:
	  gcc_unreachable ();
	}
    }
  allocate_reg_info (max_reg_num (), FALSE, FALSE);
}

/* Main entry point.  Finds REG_VALUE_PROFILE notes from profiler and uses
   them to identify and exploit properties of values that are hard to analyze
   statically.

   We do following transformations:

   1)

   x = a / b;

   where b is almost always a constant N is transformed to

   if (b == N)
     x = a / N;
   else
     x = a / b;

   Analogically with %

   2)

   x = a % b

   where b is almost always a power of 2 and the division is unsigned
   TODO -- handle signed case as well

   if ((b & (b - 1)) == 0)
     x = a & (b - 1);
   else
     x = x % b;

   Note that when b = 0, no error will occur and x = a; this is correct,
   as result of such operation is undefined.

   3)

   x = a % b

   where a is almost always less then b and the division is unsigned
   TODO -- handle signed case as well

   x = a;
   if (x >= b)
     x %= b;

   4)

   x = a % b

   where a is almost always less then 2 * b and the division is unsigned
   TODO -- handle signed case as well

   x = a;
   if (x >= b)
     x -= b;
   if (x >= b)
     x %= b;

   It would be possible to continue analogically for K * b for other small
   K's, but it is probably not useful.

   5)

   Read or write of mem[address], where the value of address changes usually
   by a constant C != 0 between the following accesses to the computation; with
   -fspeculative-prefetching we then add a prefetch of address + C before
   the insn.  This handles prefetching of several interesting cases in addition
   to a simple prefetching for addresses that are induction variables, e. g.
   linked lists allocated sequentially (even in case they are processed
   recursively).

   TODO -- we should also check whether there is not (usually) a small
	   difference with the adjacent memory references, so that we do
	   not issue overlapping prefetches.  Also we should employ some
	   heuristics to eliminate cases where prefetching evidently spoils
	   the code.
	-- it should somehow cooperate with the loop optimizer prefetching

   TODO:

   There are other useful cases that could be handled by a similar mechanism,
   for example:
   
   for (i = 0; i < n; i++)
     ...
   
   transform to (for constant N):
   
   if (n == N)
     for (i = 0; i < N; i++)
       ...
   else
     for (i = 0; i < n; i++)
       ...
   making unroller happy.  Since this may grow the code significantly,
   we would have to be very careful here.  */

static bool
rtl_value_profile_transformations (void)
{
  rtx insn, next;
  int changed = false;

  for (insn = get_insns (); insn; insn = next)
    {
      next = NEXT_INSN (insn);

      if (!INSN_P (insn))
	continue;

      /* Scan for insn carrying a histogram.  */
      if (!find_reg_note (insn, REG_VALUE_PROFILE, 0))
	continue;

      /* Ignore cold areas -- we are growing a code.  */
      if (!maybe_hot_bb_p (BLOCK_FOR_INSN (insn)))
	continue;

      if (dump_file)
	{
	  fprintf (dump_file, "Trying transformations on insn %d\n",
		   INSN_UID (insn));
	  print_rtl_single (dump_file, insn);
	}

      /* Transformations:  */
      if (flag_value_profile_transformations
	  && (mod_subtract_transform (insn)
	      || divmod_fixed_value_transform (insn)
	      || mod_pow2_value_transform (insn)))
	changed = true;
#ifdef HAVE_prefetch
      if (flag_speculative_prefetching
	  && speculative_prefetching_transform (insn))
	changed = true;
#endif
    }

  if (changed)
    {
      commit_edge_insertions ();
      allocate_reg_info (max_reg_num (), FALSE, FALSE);
    }

  return changed;
}

/* Generate code for transformation 1 (with MODE and OPERATION, operands OP1
   and OP2, whose value is expected to be VALUE, result TARGET and
   probability of taking the optimal path PROB).  */
static rtx
gen_divmod_fixed_value (enum machine_mode mode, enum rtx_code operation,
			rtx target, rtx op1, rtx op2, gcov_type value,
			int prob)
{
  rtx tmp, tmp1, jump;
  rtx neq_label = gen_label_rtx ();
  rtx end_label = gen_label_rtx ();
  rtx sequence;

  start_sequence ();
  
  if (!REG_P (op2))
    {
      tmp = gen_reg_rtx (mode);
      emit_move_insn (tmp, copy_rtx (op2));
    }
  else
    tmp = op2;

  do_compare_rtx_and_jump (tmp, GEN_INT (value), NE, 0, mode, NULL_RTX,
			   NULL_RTX, neq_label);

  /* Add branch probability to jump we just created.  */
  jump = get_last_insn ();
  REG_NOTES (jump) = gen_rtx_EXPR_LIST (REG_BR_PROB,
					GEN_INT (REG_BR_PROB_BASE - prob),
					REG_NOTES (jump));

  tmp1 = simplify_gen_binary (operation, mode,
			      copy_rtx (op1), GEN_INT (value));
  tmp1 = force_operand (tmp1, target);
  if (tmp1 != target)
    emit_move_insn (copy_rtx (target), copy_rtx (tmp1));

  emit_jump_insn (gen_jump (end_label));
  emit_barrier ();

  emit_label (neq_label);
  tmp1 = simplify_gen_binary (operation, mode,
			      copy_rtx (op1), copy_rtx (tmp));
  tmp1 = force_operand (tmp1, target);
  if (tmp1 != target)
    emit_move_insn (copy_rtx (target), copy_rtx (tmp1));
  
  emit_label (end_label);

  sequence = get_insns ();
  end_sequence ();
  rebuild_jump_labels (sequence);
  return sequence;
}

/* Do transform 1) on INSN if applicable.  */
static bool
divmod_fixed_value_transform (rtx insn)
{
  rtx set, set_src, set_dest, op1, op2, value, histogram;
  enum rtx_code code;
  enum machine_mode mode;
  gcov_type val, count, all;
  edge e;
  int prob;

  set = single_set (insn);
  if (!set)
    return false;

  set_src = SET_SRC (set);
  set_dest = SET_DEST (set);
  code = GET_CODE (set_src);
  mode = GET_MODE (set_dest);
  
  if (code != DIV && code != MOD && code != UDIV && code != UMOD)
    return false;
  op1 = XEXP (set_src, false);
  op2 = XEXP (set_src, 1);

  for (histogram = REG_NOTES (insn);
       histogram;
       histogram = XEXP (histogram, 1))
    if (REG_NOTE_KIND (histogram) == REG_VALUE_PROFILE
	&& XEXP (XEXP (histogram, 0), 0) == GEN_INT (HIST_TYPE_SINGLE_VALUE))
      break;

  if (!histogram)
    return false;

  histogram = XEXP (XEXP (histogram, 0), 1);
  value = XEXP (histogram, 0);
  histogram = XEXP (histogram, 1);
  val = INTVAL (XEXP (histogram, 0));
  histogram = XEXP (histogram, 1);
  count = INTVAL (XEXP (histogram, 0));
  histogram = XEXP (histogram, 1);
  all = INTVAL (XEXP (histogram, 0));

  /* We require that count be at least half of all; this means
     that for the transformation to fire the value must be constant
     at least 50% of time (and 75% gives the guarantee of usage).  */
  if (!rtx_equal_p (op2, value) || 2 * count < all)
    return false;

  if (dump_file)
    fprintf (dump_file, "Div/mod by constant transformation on insn %d\n",
	     INSN_UID (insn));

  /* Compute probability of taking the optimal path.  */
  prob = (count * REG_BR_PROB_BASE + all / 2) / all;

  e = split_block (BLOCK_FOR_INSN (insn), PREV_INSN (insn));
  delete_insn (insn);
  
  insert_insn_on_edge (
	gen_divmod_fixed_value (mode, code, set_dest,
				op1, op2, val, prob), e);

  return true;
}

/* Generate code for transformation 2 (with MODE and OPERATION, operands OP1
   and OP2, result TARGET and probability of taking the optimal path PROB).  */
static rtx
gen_mod_pow2 (enum machine_mode mode, enum rtx_code operation, rtx target,
	      rtx op1, rtx op2, int prob)
{
  rtx tmp, tmp1, tmp2, tmp3, jump;
  rtx neq_label = gen_label_rtx ();
  rtx end_label = gen_label_rtx ();
  rtx sequence;

  start_sequence ();
  
  if (!REG_P (op2))
    {
      tmp = gen_reg_rtx (mode);
      emit_move_insn (tmp, copy_rtx (op2));
    }
  else
    tmp = op2;

  tmp1 = expand_simple_binop (mode, PLUS, tmp, constm1_rtx, NULL_RTX,
			      0, OPTAB_WIDEN);
  tmp2 = expand_simple_binop (mode, AND, tmp, tmp1, NULL_RTX,
			      0, OPTAB_WIDEN);
  do_compare_rtx_and_jump (tmp2, const0_rtx, NE, 0, mode, NULL_RTX,
			   NULL_RTX, neq_label);

  /* Add branch probability to jump we just created.  */
  jump = get_last_insn ();
  REG_NOTES (jump) = gen_rtx_EXPR_LIST (REG_BR_PROB,
					GEN_INT (REG_BR_PROB_BASE - prob),
					REG_NOTES (jump));

  tmp3 = expand_simple_binop (mode, AND, op1, tmp1, target,
			      0, OPTAB_WIDEN);
  if (tmp3 != target)
    emit_move_insn (copy_rtx (target), tmp3);
  emit_jump_insn (gen_jump (end_label));
  emit_barrier ();

  emit_label (neq_label);
  tmp1 = simplify_gen_binary (operation, mode, copy_rtx (op1), copy_rtx (tmp));
  tmp1 = force_operand (tmp1, target);
  if (tmp1 != target)
    emit_move_insn (target, tmp1);
  
  emit_label (end_label);

  sequence = get_insns ();
  end_sequence ();
  rebuild_jump_labels (sequence);
  return sequence;
}

/* Do transform 2) on INSN if applicable.  */
static bool
mod_pow2_value_transform (rtx insn)
{
  rtx set, set_src, set_dest, op1, op2, value, histogram;
  enum rtx_code code;
  enum machine_mode mode;
  gcov_type wrong_values, count;
  edge e;
  int i, all, prob;

  set = single_set (insn);
  if (!set)
    return false;

  set_src = SET_SRC (set);
  set_dest = SET_DEST (set);
  code = GET_CODE (set_src);
  mode = GET_MODE (set_dest);
  
  if (code != UMOD)
    return false;
  op1 = XEXP (set_src, 0);
  op2 = XEXP (set_src, 1);

  for (histogram = REG_NOTES (insn);
       histogram;
       histogram = XEXP (histogram, 1))
    if (REG_NOTE_KIND (histogram) == REG_VALUE_PROFILE
	&& XEXP (XEXP (histogram, 0), 0) == GEN_INT (HIST_TYPE_POW2))
      break;

  if (!histogram)
    return false;

  histogram = XEXP (XEXP (histogram, 0), 1);
  value = XEXP (histogram, 0);
  histogram = XEXP (histogram, 1);
  wrong_values =INTVAL (XEXP (histogram, 0));
  histogram = XEXP (histogram, 1);

  count = 0;
  for (i = 0; i < GET_MODE_BITSIZE (mode); i++)
    {
      count += INTVAL (XEXP (histogram, 0));
      histogram = XEXP (histogram, 1);
    }

  if (!rtx_equal_p (op2, value))
    return false;

  /* We require that we hit a power of two at least half of all evaluations.  */
  if (count < wrong_values)
    return false;

  if (dump_file)
    fprintf (dump_file, "Mod power of 2 transformation on insn %d\n",
	     INSN_UID (insn));

  /* Compute probability of taking the optimal path.  */
  all = count + wrong_values;
  prob = (count * REG_BR_PROB_BASE + all / 2) / all;

  e = split_block (BLOCK_FOR_INSN (insn), PREV_INSN (insn));
  delete_insn (insn);
  
  insert_insn_on_edge (
	gen_mod_pow2 (mode, code, set_dest, op1, op2, prob), e);

  return true;
}

/* Generate code for transformations 3 and 4 (with MODE and OPERATION,
   operands OP1 and OP2, result TARGET, at most SUB subtractions, and
   probability of taking the optimal path(s) PROB1 and PROB2).  */
static rtx
gen_mod_subtract (enum machine_mode mode, enum rtx_code operation,
		  rtx target, rtx op1, rtx op2, int sub, int prob1, int prob2)
{
  rtx tmp, tmp1, jump;
  rtx end_label = gen_label_rtx ();
  rtx sequence;
  int i;

  start_sequence ();
  
  if (!REG_P (op2))
    {
      tmp = gen_reg_rtx (mode);
      emit_move_insn (tmp, copy_rtx (op2));
    }
  else
    tmp = op2;

  emit_move_insn (target, copy_rtx (op1));
  do_compare_rtx_and_jump (target, tmp, LTU, 0, mode, NULL_RTX,
			   NULL_RTX, end_label);

  /* Add branch probability to jump we just created.  */
  jump = get_last_insn ();
  REG_NOTES (jump) = gen_rtx_EXPR_LIST (REG_BR_PROB,
					GEN_INT (prob1), REG_NOTES (jump));

  for (i = 0; i < sub; i++)
    {
      tmp1 = expand_simple_binop (mode, MINUS, target, tmp, target,
	    			  0, OPTAB_WIDEN);
      if (tmp1 != target)
	emit_move_insn (target, tmp1);
      do_compare_rtx_and_jump (target, tmp, LTU, 0, mode, NULL_RTX,
    			       NULL_RTX, end_label);

      /* Add branch probability to jump we just created.  */
      jump = get_last_insn ();
      REG_NOTES (jump) = gen_rtx_EXPR_LIST (REG_BR_PROB,
					    GEN_INT (prob2), REG_NOTES (jump));
    }

  tmp1 = simplify_gen_binary (operation, mode, copy_rtx (target), copy_rtx (tmp));
  tmp1 = force_operand (tmp1, target);
  if (tmp1 != target)
    emit_move_insn (target, tmp1);
  
  emit_label (end_label);

  sequence = get_insns ();
  end_sequence ();
  rebuild_jump_labels (sequence);
  return sequence;
}

/* Do transforms 3) and 4) on INSN if applicable.  */
static bool
mod_subtract_transform (rtx insn)
{
  rtx set, set_src, set_dest, op1, op2, histogram;
  enum rtx_code code;
  enum machine_mode mode;
  gcov_type wrong_values, counts[2], count, all;
  edge e;
  int i, prob1, prob2;

  set = single_set (insn);
  if (!set)
    return false;

  set_src = SET_SRC (set);
  set_dest = SET_DEST (set);
  code = GET_CODE (set_src);
  mode = GET_MODE (set_dest);
  
  if (code != UMOD)
    return false;
  op1 = XEXP (set_src, 0);
  op2 = XEXP (set_src, 1);

  for (histogram = REG_NOTES (insn);
       histogram;
       histogram = XEXP (histogram, 1))
    if (REG_NOTE_KIND (histogram) == REG_VALUE_PROFILE
	&& XEXP (XEXP (histogram, 0), 0) == GEN_INT (HIST_TYPE_INTERVAL))
      break;

  if (!histogram)
    return false;

  histogram = XEXP (XEXP (histogram, 0), 1);
  histogram = XEXP (histogram, 1);

  all = 0;
  for (i = 0; i < 2; i++)
    {
      counts[i] = INTVAL (XEXP (histogram, 0));
      all += counts[i];
      histogram = XEXP (histogram, 1);
    }
  wrong_values = INTVAL (XEXP (histogram, 0));
  histogram = XEXP (histogram, 1);
  wrong_values += INTVAL (XEXP (histogram, 0));
  all += wrong_values;

  /* We require that we use just subtractions in at least 50% of all
     evaluations.  */
  count = 0;
  for (i = 0; i < 2; i++)
    {
      count += counts[i];
      if (count * 2 >= all)
	break;
    }
  
  if (i == 2)
    return false;

  if (dump_file)
    fprintf (dump_file, "Mod subtract transformation on insn %d\n",
	     INSN_UID (insn));

  /* Compute probability of taking the optimal path(s).  */
  prob1 = (counts[0] * REG_BR_PROB_BASE + all / 2) / all;
  prob2 = (counts[1] * REG_BR_PROB_BASE + all / 2) / all;

  e = split_block (BLOCK_FOR_INSN (insn), PREV_INSN (insn));
  delete_insn (insn);
  
  insert_insn_on_edge (
	gen_mod_subtract (mode, code, set_dest,
			  op1, op2, i, prob1, prob2), e);

  return true;
}

#ifdef HAVE_prefetch
/* Generate code for transformation 5 for mem with ADDRESS and a constant
   step DELTA.  WRITE is true if the reference is a store to mem.  */

static rtx
gen_speculative_prefetch (rtx address, gcov_type delta, int write)
{
  rtx tmp;
  rtx sequence;

  /* TODO: we do the prefetching for just one iteration ahead, which
     often is not enough.  */
  start_sequence ();
  if (offsettable_address_p (0, VOIDmode, address))
    tmp = plus_constant (copy_rtx (address), delta);
  else
    {
      tmp = simplify_gen_binary (PLUS, Pmode,
				 copy_rtx (address), GEN_INT (delta));
      tmp = force_operand (tmp, NULL);
    }
  if (! (*insn_data[(int)CODE_FOR_prefetch].operand[0].predicate)
      (tmp, insn_data[(int)CODE_FOR_prefetch].operand[0].mode))
    tmp = force_reg (Pmode, tmp);
  emit_insn (gen_prefetch (tmp, GEN_INT (write), GEN_INT (3)));
  sequence = get_insns ();
  end_sequence ();

  return sequence;
}

/* Do transform 5) on INSN if applicable.  */

static bool
speculative_prefetching_transform (rtx insn)
{
  rtx histogram, value;
  gcov_type val, count, all;
  edge e;
  rtx mem, address;
  int write;

  if (!maybe_hot_bb_p (BLOCK_FOR_INSN (insn)))
    return false;

  if (!find_mem_reference (insn, &mem, &write))
    return false;

  address = XEXP (mem, 0);
  if (side_effects_p (address))
    return false;
      
  if (CONSTANT_P (address))
    return false;

  for (histogram = REG_NOTES (insn);
       histogram;
       histogram = XEXP (histogram, 1))
    if (REG_NOTE_KIND (histogram) == REG_VALUE_PROFILE
	&& XEXP (XEXP (histogram, 0), 0) == GEN_INT (HIST_TYPE_CONST_DELTA))
      break;

  if (!histogram)
    return false;

  histogram = XEXP (XEXP (histogram, 0), 1);
  value = XEXP (histogram, 0);
  histogram = XEXP (histogram, 1);
  /* Skip last value referenced.  */
  histogram = XEXP (histogram, 1);
  val = INTVAL (XEXP (histogram, 0));
  histogram = XEXP (histogram, 1);
  count = INTVAL (XEXP (histogram, 0));
  histogram = XEXP (histogram, 1);
  all = INTVAL (XEXP (histogram, 0));

  /* With that few executions we do not really have a reason to optimize the
     statement, and more importantly, the data about differences of addresses
     are spoiled by the first item that had no previous value to compare
     with.  */
  if (all < 4)
    return false;

  /* We require that count be at least half of all; this means
     that for the transformation to fire the value must be constant
     at least 50% of time (and 75% gives the guarantee of usage).  */
  if (!rtx_equal_p (address, value) || 2 * count < all)
    return false;

  /* If the difference is too small, it does not make too much sense to
     prefetch, as the memory is probably already in cache.  */
  if (val >= NOPREFETCH_RANGE_MIN && val <= NOPREFETCH_RANGE_MAX)
    return false;

  if (dump_file)
    fprintf (dump_file, "Speculative prefetching for insn %d\n",
	     INSN_UID (insn));

  e = split_block (BLOCK_FOR_INSN (insn), PREV_INSN (insn));
  
  insert_insn_on_edge (gen_speculative_prefetch (address, val, write), e);

  return true;
}
#endif  /* HAVE_prefetch */

/* Connection to the outside world.  */
/* Struct for IR-dependent hooks.  */
struct value_prof_hooks {
  /* Find list of values for which we want to measure histograms.  */
  void (*find_values_to_profile) (histogram_values *);

  /* Identify and exploit properties of values that are hard to analyze
     statically.  See value-prof.c for more detail.  */
  bool (*value_profile_transformations) (void);  
};

/* Hooks for RTL-based versions (the only ones that currently work).  */
static struct value_prof_hooks rtl_value_prof_hooks =
{
  rtl_find_values_to_profile,
  rtl_value_profile_transformations
};

void 
rtl_register_value_prof_hooks (void)
{
  value_prof_hooks = &rtl_value_prof_hooks;
  gcc_assert (!ir_type ());
}

/* Tree-based versions are stubs for now.  */
static void
tree_find_values_to_profile (histogram_values *values ATTRIBUTE_UNUSED)
{
  gcc_unreachable ();
}

static bool
tree_value_profile_transformations (void)
{
  gcc_unreachable ();
}

static struct value_prof_hooks tree_value_prof_hooks = {
  tree_find_values_to_profile,
  tree_value_profile_transformations
};

void
tree_register_value_prof_hooks (void)
{
  value_prof_hooks = &tree_value_prof_hooks;
  gcc_assert (ir_type ());
}

/* IR-independent entry points.  */
void
find_values_to_profile (histogram_values *values)
{
  (value_prof_hooks->find_values_to_profile) (values);
}

bool
value_profile_transformations (void)
{
  return (value_prof_hooks->value_profile_transformations) ();
}