aboutsummaryrefslogtreecommitdiff
path: root/gcc/unroll.c
blob: 66e63d7af0e65541ccee5f5582c4b669769fc2ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
/* Try to unroll loops, and split induction variables.
   Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
   Contributed by James E. Wilson, Cygnus Support/UC Berkeley.

This file is part of GNU CC.

GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING.  If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.  */

/* Try to unroll a loop, and split induction variables.

   Loops for which the number of iterations can be calculated exactly are
   handled specially.  If the number of iterations times the insn_count is
   less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
   Otherwise, we try to unroll the loop a number of times modulo the number
   of iterations, so that only one exit test will be needed.  It is unrolled
   a number of times approximately equal to MAX_UNROLLED_INSNS divided by
   the insn count.

   Otherwise, if the number of iterations can be calculated exactly at
   run time, and the loop is always entered at the top, then we try to
   precondition the loop.  That is, at run time, calculate how many times
   the loop will execute, and then execute the loop body a few times so
   that the remaining iterations will be some multiple of 4 (or 2 if the
   loop is large).  Then fall through to a loop unrolled 4 (or 2) times,
   with only one exit test needed at the end of the loop.

   Otherwise, if the number of iterations can not be calculated exactly,
   not even at run time, then we still unroll the loop a number of times
   approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
   but there must be an exit test after each copy of the loop body.

   For each induction variable, which is dead outside the loop (replaceable)
   or for which we can easily calculate the final value, if we can easily
   calculate its value at each place where it is set as a function of the
   current loop unroll count and the variable's value at loop entry, then
   the induction variable is split into `N' different variables, one for
   each copy of the loop body.  One variable is live across the backward
   branch, and the others are all calculated as a function of this variable.
   This helps eliminate data dependencies, and leads to further opportunities
   for cse.  */

/* Possible improvements follow:  */

/* ??? Add an extra pass somewhere to determine whether unrolling will
   give any benefit.  E.g. after generating all unrolled insns, compute the
   cost of all insns and compare against cost of insns in rolled loop.

   - On traditional architectures, unrolling a non-constant bound loop
     is a win if there is a giv whose only use is in memory addresses, the
     memory addresses can be split, and hence giv increments can be
     eliminated.
   - It is also a win if the loop is executed many times, and preconditioning
     can be performed for the loop.
   Add code to check for these and similar cases.  */

/* ??? Improve control of which loops get unrolled.  Could use profiling
   info to only unroll the most commonly executed loops.  Perhaps have
   a user specifyable option to control the amount of code expansion,
   or the percent of loops to consider for unrolling.  Etc.  */

/* ??? Look at the register copies inside the loop to see if they form a
   simple permutation.  If so, iterate the permutation until it gets back to
   the start state.  This is how many times we should unroll the loop, for
   best results, because then all register copies can be eliminated.
   For example, the lisp nreverse function should be unrolled 3 times
   while (this)
     {
       next = this->cdr;
       this->cdr = prev;
       prev = this;
       this = next;
     }

   ??? The number of times to unroll the loop may also be based on data
   references in the loop.  For example, if we have a loop that references
   x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times.  */

/* ??? Add some simple linear equation solving capability so that we can
   determine the number of loop iterations for more complex loops.
   For example, consider this loop from gdb
   #define SWAP_TARGET_AND_HOST(buffer,len)
     {
       char tmp;
       char *p = (char *) buffer;
       char *q = ((char *) buffer) + len - 1;
       int iterations = (len + 1) >> 1;
       int i;
       for (p; p < q; p++, q--;)
         {
           tmp = *q;
           *q = *p;
           *p = tmp;
         }
     }
   Note that:
     start value = p = &buffer + current_iteration
     end value   = q = &buffer + len - 1 - current_iteration
   Given the loop exit test of "p < q", then there must be "q - p" iterations,
   set equal to zero and solve for number of iterations:
     q - p = len - 1 - 2*current_iteration = 0
     current_iteration = (len - 1) / 2
   Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
   iterations of this loop.  */

/* ??? Currently, no labels are marked as loop invariant when doing loop
   unrolling.  This is because an insn inside the loop, that loads the address
   of a label inside the loop into a register, could be moved outside the loop
   by the invariant code motion pass if labels were invariant.  If the loop
   is subsequently unrolled, the code will be wrong because each unrolled
   body of the loop will use the same address, whereas each actually needs a
   different address.  A case where this happens is when a loop containing
   a switch statement is unrolled.

   It would be better to let labels be considered invariant.  When we
   unroll loops here, check to see if any insns using a label local to the
   loop were moved before the loop.  If so, then correct the problem, by
   moving the insn back into the loop, or perhaps replicate the insn before
   the loop, one copy for each time the loop is unrolled.  */

/* The prime factors looked for when trying to unroll a loop by some
   number which is modulo the total number of iterations.  Just checking
   for these 4 prime factors will find at least one factor for 75% of
   all numbers theoretically.  Practically speaking, this will succeed
   almost all of the time since loops are generally a multiple of 2
   and/or 5.  */

#define NUM_FACTORS 4

struct _factor { int factor, count; } factors[NUM_FACTORS]
  = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
      
/* Describes the different types of loop unrolling performed.  */

enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };

#include "config.h"
#include "rtl.h"
#include "insn-config.h"
#include "integrate.h"
#include "regs.h"
#include "flags.h"
#include "expr.h"
#include <stdio.h>
#include "loop.h"

/* This controls which loops are unrolled, and by how much we unroll
   them.  */

#ifndef MAX_UNROLLED_INSNS
#define MAX_UNROLLED_INSNS 100
#endif

/* Indexed by register number, if non-zero, then it contains a pointer
   to a struct induction for a DEST_REG giv which has been combined with
   one of more address givs.  This is needed because whenever such a DEST_REG
   giv is modified, we must modify the value of all split address givs
   that were combined with this DEST_REG giv.  */

static struct induction **addr_combined_regs;

/* Indexed by register number, if this is a splittable induction variable,
   then this will hold the current value of the register, which depends on the
   iteration number.  */

static rtx *splittable_regs;

/* Indexed by register number, if this is a splittable induction variable,
   then this will hold the number of instructions in the loop that modify
   the induction variable.  Used to ensure that only the last insn modifying
   a split iv will update the original iv of the dest.  */

static int *splittable_regs_updates;

/* Values describing the current loop's iteration variable.  These are set up
   by loop_iterations, and used by precondition_loop_p.  */

static rtx loop_iteration_var;
static rtx loop_initial_value;
static rtx loop_increment;
static rtx loop_final_value;

/* Forward declarations.  */

static void init_reg_map ();
static int precondition_loop_p ();
static void copy_loop_body ();
static void iteration_info ();
static rtx approx_final_value ();
static int find_splittable_regs ();
static int find_splittable_givs ();
static rtx fold_rtx_mult_add ();
static rtx remap_split_bivs ();

/* Try to unroll one loop and split induction variables in the loop.

   The loop is described by the arguments LOOP_END, INSN_COUNT, and
   LOOP_START.  END_INSERT_BEFORE indicates where insns should be added
   which need to be executed when the loop falls through.  STRENGTH_REDUCTION_P
   indicates whether information generated in the strength reduction pass
   is available.

   This function is intended to be called from within `strength_reduce'
   in loop.c.  */

void
unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
	     strength_reduce_p)
     rtx loop_end;
     int insn_count;
     rtx loop_start;
     rtx end_insert_before;
     int strength_reduce_p;
{
  int i, j, temp;
  int unroll_number = 1;
  rtx copy_start, copy_end;
  rtx insn, copy, sequence, pattern, tem;
  int max_labelno, max_insnno;
  rtx insert_before;
  struct inline_remap *map;
  char *local_label;
  int maxregnum;
  int new_maxregnum;
  rtx exit_label = 0;
  rtx start_label;
  struct iv_class *bl;
  int splitting_not_safe = 0;
  enum unroll_types unroll_type;
  int loop_preconditioned = 0;
  rtx safety_label;
  /* This points to the last real insn in the loop, which should be either
     a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
     jumps).  */
  rtx last_loop_insn;

  /* Don't bother unrolling huge loops.  Since the minimum factor is
     two, loops greater than one half of MAX_UNROLLED_INSNS will never
     be unrolled.  */
  if (insn_count > MAX_UNROLLED_INSNS / 2)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
      return;
    }

  /* When emitting debugger info, we can't unroll loops with unequal numbers
     of block_beg and block_end notes, because that would unbalance the block
     structure of the function.  This can happen as a result of the
     "if (foo) bar; else break;" optimization in jump.c.  */

  if (write_symbols != NO_DEBUG)
    {
      int block_begins = 0;
      int block_ends = 0;

      for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
	{
	  if (GET_CODE (insn) == NOTE)
	    {
	      if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
		block_begins++;
	      else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
		block_ends++;
	    }
	}

      if (block_begins != block_ends)
	{
	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
		     "Unrolling failure: Unbalanced block notes.\n");
	  return;
	}
    }

  /* Determine type of unroll to perform.  Depends on the number of iterations
     and the size of the loop.  */

  /* If there is no strength reduce info, then set loop_n_iterations to zero.
     This can happen if strength_reduce can't find any bivs in the loop.
     A value of zero indicates that the number of iterations could not be
     calculated.  */

  if (! strength_reduce_p)
    loop_n_iterations = 0;

  if (loop_dump_stream && loop_n_iterations > 0)
    fprintf (loop_dump_stream,
	     "Loop unrolling: %d iterations.\n", loop_n_iterations);

  /* Find and save a pointer to the last nonnote insn in the loop.  */

  last_loop_insn = prev_nonnote_insn (loop_end);

  /* Calculate how many times to unroll the loop.  Indicate whether or
     not the loop is being completely unrolled.  */

  if (loop_n_iterations == 1)
    {
      /* If number of iterations is exactly 1, then eliminate the compare and
	 branch at the end of the loop since they will never be taken.
	 Then return, since no other action is needed here.  */

      /* If the last instruction is not a BARRIER or a JUMP_INSN, then
	 don't do anything.  */

      if (GET_CODE (last_loop_insn) == BARRIER)
	{
	  /* Delete the jump insn.  This will delete the barrier also.  */
	  delete_insn (PREV_INSN (last_loop_insn));
	}
      else if (GET_CODE (last_loop_insn) == JUMP_INSN)
	{
#ifdef HAVE_cc0
	  /* The immediately preceding insn is a compare which must be
	     deleted.  */
	  delete_insn (last_loop_insn);
	  delete_insn (PREV_INSN (last_loop_insn));
#else
	  /* The immediately preceding insn may not be the compare, so don't
	     delete it.  */
	  delete_insn (last_loop_insn);
#endif
	}
      return;
    }
  else if (loop_n_iterations > 0
      && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
    {
      unroll_number = loop_n_iterations;
      unroll_type = UNROLL_COMPLETELY;
    }
  else if (loop_n_iterations > 0)
    {
      /* Try to factor the number of iterations.  Don't bother with the
	 general case, only using 2, 3, 5, and 7 will get 75% of all
	 numbers theoretically, and almost all in practice.  */

      for (i = 0; i < NUM_FACTORS; i++)
	factors[i].count = 0;

      temp = loop_n_iterations;
      for (i = NUM_FACTORS - 1; i >= 0; i--)
	while (temp % factors[i].factor == 0)
	  {
	    factors[i].count++;
	    temp = temp / factors[i].factor;
	  }

      /* Start with the larger factors first so that we generally
	 get lots of unrolling.  */

      unroll_number = 1;
      temp = insn_count;
      for (i = 3; i >= 0; i--)
	while (factors[i].count--)
	  {
	    if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
	      {
		unroll_number *= factors[i].factor;
		temp *= factors[i].factor;
	      }
	    else
	      break;
	  }

      /* If we couldn't find any factors, then unroll as in the normal
	 case.  */
      if (unroll_number == 1)
	{
	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
		     "Loop unrolling: No factors found.\n");
	}
      else
	unroll_type = UNROLL_MODULO;
    }


  /* Default case, calculate number of times to unroll loop based on its
     size.  */
  if (unroll_number == 1)
    {
      if (8 * insn_count < MAX_UNROLLED_INSNS)
	unroll_number = 8;
      else if (4 * insn_count < MAX_UNROLLED_INSNS)
	unroll_number = 4;
      else
	unroll_number = 2;

      unroll_type = UNROLL_NAIVE;
    }

  /* Now we know how many times to unroll the loop.  */

  if (loop_dump_stream)
    fprintf (loop_dump_stream,
	     "Unrolling loop %d times.\n", unroll_number);


  if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
    {
      /* Loops of these types should never start with a jump down to
	 the exit condition test.  For now, check for this case just to
	 be sure.  UNROLL_NAIVE loops can be of this form, this case is
	 handled below.  */
      insn = loop_start;
      while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
	insn = NEXT_INSN (insn);
      if (GET_CODE (insn) == JUMP_INSN)
	abort ();
    }

  if (unroll_type == UNROLL_COMPLETELY)
    {
      /* Completely unrolling the loop:  Delete the compare and branch at
	 the end (the last two instructions).   This delete must done at the
	 very end of loop unrolling, to avoid problems with calls to
	 back_branch_in_range_p, which is called by find_splittable_regs.
	 All increments of splittable bivs/givs are changed to load constant
	 instructions.  */

      copy_start = loop_start;

      /* Set insert_before to the instruction immediately after the JUMP_INSN
	 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
	 the loop will be correctly handled by copy_loop_body.  */
      insert_before = NEXT_INSN (last_loop_insn);

      /* Set copy_end to the insn before the jump at the end of the loop.  */
      if (GET_CODE (last_loop_insn) == BARRIER)
	copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
      else if (GET_CODE (last_loop_insn) == JUMP_INSN)
	{
#ifdef HAVE_cc0
	  /* The instruction immediately before the JUMP_INSN is a compare
	     instruction which we do not want to copy.  */
	  copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
#else
	  /* The instruction immediately before the JUMP_INSN may not be the
	     compare, so we must copy it.  */
	  copy_end = PREV_INSN (last_loop_insn);
#endif
	}
      else
	{
	  /* We currently can't unroll a loop if it doesn't end with a
	     JUMP_INSN.  There would need to be a mechanism that recognizes
	     this case, and then inserts a jump after each loop body, which
	     jumps to after the last loop body.  */
	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
	  return;
	}
    }
  else if (unroll_type == UNROLL_MODULO)
    {
      /* Partially unrolling the loop:  The compare and branch at the end
	 (the last two instructions) must remain.  Don't copy the compare
	 and branch instructions at the end of the loop.  Insert the unrolled
	 code immediately before the compare/branch at the end so that the
	 code will fall through to them as before.  */

      copy_start = loop_start;

      /* Set insert_before to the jump insn at the end of the loop.
	 Set copy_end to before the jump insn at the end of the loop.  */
      if (GET_CODE (last_loop_insn) == BARRIER)
	{
	  insert_before = PREV_INSN (last_loop_insn);
	  copy_end = PREV_INSN (insert_before);
	}
      else if (GET_CODE (last_loop_insn) == JUMP_INSN)
	{
#ifdef HAVE_cc0
	  /* The instruction immediately before the JUMP_INSN is a compare
	     instruction which we do not want to copy or delete.  */
	  insert_before = PREV_INSN (last_loop_insn);
	  copy_end = PREV_INSN (insert_before);
#else
	  /* The instruction immediately before the JUMP_INSN may not be the
	     compare, so we must copy it.  */
	  insert_before = last_loop_insn;
	  copy_end = PREV_INSN (last_loop_insn);
#endif
	}
      else
	{
	  /* We currently can't unroll a loop if it doesn't end with a
	     JUMP_INSN.  There would need to be a mechanism that recognizes
	     this case, and then inserts a jump after each loop body, which
	     jumps to after the last loop body.  */
	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
	  return;
	}
    }
  else
    {
      /* Normal case: Must copy the compare and branch instructions at the
	 end of the loop.  */

      if (GET_CODE (last_loop_insn) == BARRIER)
	{
	  /* Loop ends with an unconditional jump and a barrier.
	     Handle this like above, don't copy jump and barrier.
	     This is not strictly necessary, but doing so prevents generating
	     unconditional jumps to an immediately following label.

	     This will be corrected below if the target of this jump is
	     not the start_label.  */

	  insert_before = PREV_INSN (last_loop_insn);
	  copy_end = PREV_INSN (insert_before);
	}
      else if (GET_CODE (last_loop_insn) == JUMP_INSN)
	{
	  /* Set insert_before to immediately after the JUMP_INSN, so that
	     NOTEs at the end of the loop will be correctly handled by
	     copy_loop_body.  */
	  insert_before = NEXT_INSN (last_loop_insn);
	  copy_end = last_loop_insn;
	}
      else
	{
	  /* We currently can't unroll a loop if it doesn't end with a
	     JUMP_INSN.  There would need to be a mechanism that recognizes
	     this case, and then inserts a jump after each loop body, which
	     jumps to after the last loop body.  */
	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
		     "Unrolling failure: loop does not end with a JUMP_INSN.\n");
	  return;
	}

      /* If copying exit test branches because they can not be eliminated,
	 then must convert the fall through case of the branch to a jump past
	 the end of the loop.  Create a label to emit after the loop and save
	 it for later use.  Do not use the label after the loop, if any, since
	 it might be used by insns outside the loop, or there might be insns
	 added before it later by final_[bg]iv_value which must be after
	 the real exit label.  */
      exit_label = gen_label_rtx ();

      insn = loop_start;
      while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
	insn = NEXT_INSN (insn);

      if (GET_CODE (insn) == JUMP_INSN)
	{
	  /* The loop starts with a jump down to the exit condition test.
	     Start copying the loop after the barrier following this
	     jump insn.  */
	  copy_start = NEXT_INSN (insn);

	  /* Splitting induction variables doesn't work when the loop is
	     entered via a jump to the bottom, because then we end up doing
	     a comparison against a new register for a split variable, but
	     we did not execute the set insn for the new register because
	     it was skipped over.  */
	  splitting_not_safe = 1;
	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
		     "Splitting not safe, because loop not entered at top.\n");
	}
      else
	copy_start = loop_start;
    }

  /* This should always be the first label in the loop.  */
  start_label = NEXT_INSN (copy_start);
  /* There may be a line number note and/or a loop continue note here.  */
  while (GET_CODE (start_label) == NOTE)
    start_label = NEXT_INSN (start_label);
  if (GET_CODE (start_label) != CODE_LABEL)
    {
      /* This can happen as a result of jump threading.  If the first insns in
	 the loop test the same condition as the loop's backward jump, or the
	 opposite condition, then the backward jump will be modified to point
	 to elsewhere, and the loop's start label is deleted.

	 This case currently can not be handled by the loop unrolling code.  */

      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Unrolling failure: unknown insns between BEG note and loop label.\n");
      return;
    }
  if (LABEL_NAME (start_label))
    {
      /* The jump optimization pass must have combined the original start label
	 with a named label for a goto.  We can't unroll this case because
	 jumps which go to the named label must be handled differently than
	 jumps to the loop start, and it is impossible to differentiate them
	 in this case.  */
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Unrolling failure: loop start label is gone\n");
      return;
    }

  if (unroll_type == UNROLL_NAIVE
      && GET_CODE (last_loop_insn) == BARRIER
      && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
    {
      /* In this case, we must copy the jump and barrier, because they will
	 not be converted to jumps to an immediately following label.  */

      insert_before = NEXT_INSN (last_loop_insn);
      copy_end = last_loop_insn;
    }

  /* Allocate a translation table for the labels and insn numbers.
     They will be filled in as we copy the insns in the loop.  */

  max_labelno = max_label_num ();
  max_insnno = get_max_uid ();

  map = (struct inline_remap *) alloca (sizeof (struct inline_remap));

  map->integrating = 0;

  /* Allocate the label map.  */

  if (max_labelno > 0)
    {
      map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));

      local_label = (char *) alloca (max_labelno);
      bzero (local_label, max_labelno);
    }
  else
    map->label_map = 0;

  /* Search the loop and mark all local labels, i.e. the ones which have to
     be distinct labels when copied.  For all labels which might be
     non-local, set their label_map entries to point to themselves.
     If they happen to be local their label_map entries will be overwritten
     before the loop body is copied.  The label_map entries for local labels
     will be set to a different value each time the loop body is copied.  */

  for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
    {
      if (GET_CODE (insn) == CODE_LABEL)
	local_label[CODE_LABEL_NUMBER (insn)] = 1;
      else if (GET_CODE (insn) == JUMP_INSN)
	{
	  if (JUMP_LABEL (insn))
	    map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
	      = JUMP_LABEL (insn);
	  else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
		   || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
	    {
	      rtx pat = PATTERN (insn);
	      int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
	      int len = XVECLEN (pat, diff_vec_p);
	      rtx label;

	      for (i = 0; i < len; i++)
		{
		  label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
		  map->label_map[CODE_LABEL_NUMBER (label)] = label;
		}
	    }
	}
    }

  /* Allocate space for the insn map.  */

  map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));

  /* Set this to zero, to indicate that we are doing loop unrolling,
     not function inlining.  */
  map->inline_target = 0;

  /* The register and constant maps depend on the number of registers
     present, so the final maps can't be created until after
     find_splittable_regs is called.  However, they are needed for
     preconditioning, so we create temporary maps when preconditioning
     is performed.  */

  /* The preconditioning code may allocate two new pseudo registers.  */
  maxregnum = max_reg_num ();

  /* Allocate and zero out the splittable_regs and addr_combined_regs
     arrays.  These must be zeroed here because they will be used if
     loop preconditioning is performed, and must be zero for that case.

     It is safe to do this here, since the extra registers created by the
     preconditioning code and find_splittable_regs will never be used
     to access the splittable_regs[] and addr_combined_regs[] arrays.  */

  splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
  bzero (splittable_regs, maxregnum * sizeof (rtx));
  splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
  bzero (splittable_regs_updates, maxregnum * sizeof (int));
  addr_combined_regs
    = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
  bzero (addr_combined_regs, maxregnum * sizeof (struct induction *));

  /* If this loop requires exit tests when unrolled, check to see if we
     can precondition the loop so as to make the exit tests unnecessary.
     Just like variable splitting, this is not safe if the loop is entered
     via a jump to the bottom.  Also, can not do this if no strength
     reduce info, because precondition_loop_p uses this info.  */

  /* Must copy the loop body for preconditioning before the following
     find_splittable_regs call since that will emit insns which need to
     be after the preconditioned loop copies, but immediately before the
     unrolled loop copies.  */

  /* Also, it is not safe to split induction variables for the preconditioned
     copies of the loop body.  If we split induction variables, then the code
     assumes that each induction variable can be represented as a function
     of its initial value and the loop iteration number.  This is not true
     in this case, because the last preconditioned copy of the loop body
     could be any iteration from the first up to the `unroll_number-1'th,
     depending on the initial value of the iteration variable.  Therefore
     we can not split induction variables here, because we can not calculate
     their value.  Hence, this code must occur before find_splittable_regs
     is called.  */

  if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
    {
      rtx initial_value, final_value, increment;

      if (precondition_loop_p (&initial_value, &final_value, &increment,
			       loop_start, loop_end))
	{
	  register rtx diff, temp;
	  enum machine_mode mode;
	  rtx *labels;
	  int abs_inc, neg_inc;

	  map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));

	  map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
	  map->const_age_map = (unsigned *) alloca (maxregnum
						    * sizeof (unsigned));
	  map->const_equiv_map_size = maxregnum;
	  global_const_equiv_map = map->const_equiv_map;
	  global_const_equiv_map_size = maxregnum;

	  init_reg_map (map, maxregnum);

	  /* Limit loop unrolling to 4, since this will make 7 copies of
	     the loop body.  */
	  if (unroll_number > 4)
	    unroll_number = 4;

	  /* Save the absolute value of the increment, and also whether or
	     not it is negative.  */
	  neg_inc = 0;
	  abs_inc = INTVAL (increment);
	  if (abs_inc < 0)
	    {
	      abs_inc = - abs_inc;
	      neg_inc = 1;
	    }

	  start_sequence ();

	  /* Decide what mode to do these calculations in.  Choose the larger
	     of final_value's mode and initial_value's mode, or a full-word if
	     both are constants.  */
	  mode = GET_MODE (final_value);
	  if (mode == VOIDmode)
	    {
	      mode = GET_MODE (initial_value);
	      if (mode == VOIDmode)
		mode = word_mode;
	    }
	  else if (mode != GET_MODE (initial_value)
		   && (GET_MODE_SIZE (mode)
		       < GET_MODE_SIZE (GET_MODE (initial_value))))
	    mode = GET_MODE (initial_value);

	  /* Calculate the difference between the final and initial values.
	     Final value may be a (plus (reg x) (const_int 1)) rtx.
	     Let the following cse pass simplify this if initial value is
	     a constant. 

	     We must copy the final and initial values here to avoid
	     improperly shared rtl.  */

	  diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
			       copy_rtx (initial_value), NULL_RTX, 0,
			       OPTAB_LIB_WIDEN);

	  /* Now calculate (diff % (unroll * abs (increment))) by using an
	     and instruction.  */
	  diff = expand_binop (GET_MODE (diff), and_optab, diff,
			       GEN_INT (unroll_number * abs_inc - 1),
			       NULL_RTX, 0, OPTAB_LIB_WIDEN);

	  /* Now emit a sequence of branches to jump to the proper precond
	     loop entry point.  */

	  labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
	  for (i = 0; i < unroll_number; i++)
	    labels[i] = gen_label_rtx ();

	  /* Assuming the unroll_number is 4, and the increment is 2, then
	     for a negative increment:	for a positive increment:
	     diff = 0,1   precond 0	diff = 0,7   precond 0
	     diff = 2,3   precond 3     diff = 1,2   precond 1
	     diff = 4,5   precond 2     diff = 3,4   precond 2
	     diff = 6,7   precond 1     diff = 5,6   precond 3  */

	  /* We only need to emit (unroll_number - 1) branches here, the
	     last case just falls through to the following code.  */

	  /* ??? This would give better code if we emitted a tree of branches
	     instead of the current linear list of branches.  */

	  for (i = 0; i < unroll_number - 1; i++)
	    {
	      int cmp_const;

	      /* For negative increments, must invert the constant compared
		 against, except when comparing against zero.  */
	      if (i == 0)
		cmp_const = 0;
	      else if (neg_inc)
		cmp_const = unroll_number - i;
	      else
		cmp_const = i;

	      emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
			     EQ, NULL_RTX, mode, 0, 0);

	      if (i == 0)
		emit_jump_insn (gen_beq (labels[i]));
	      else if (neg_inc)
		emit_jump_insn (gen_bge (labels[i]));
	      else
		emit_jump_insn (gen_ble (labels[i]));
	      JUMP_LABEL (get_last_insn ()) = labels[i];
	      LABEL_NUSES (labels[i])++;
	    }

	  /* If the increment is greater than one, then we need another branch,
	     to handle other cases equivalent to 0.  */

	  /* ??? This should be merged into the code above somehow to help
	     simplify the code here, and reduce the number of branches emitted.
	     For the negative increment case, the branch here could easily
	     be merged with the `0' case branch above.  For the positive
	     increment case, it is not clear how this can be simplified.  */
	     
	  if (abs_inc != 1)
	    {
	      int cmp_const;

	      if (neg_inc)
		cmp_const = abs_inc - 1;
	      else
		cmp_const = abs_inc * (unroll_number - 1) + 1;

	      emit_cmp_insn (diff, GEN_INT (cmp_const), EQ, NULL_RTX,
			     mode, 0, 0);

	      if (neg_inc)
		emit_jump_insn (gen_ble (labels[0]));
	      else
		emit_jump_insn (gen_bge (labels[0]));
	      JUMP_LABEL (get_last_insn ()) = labels[0];
	      LABEL_NUSES (labels[0])++;
	    }

	  sequence = gen_sequence ();
	  end_sequence ();
	  emit_insn_before (sequence, loop_start);
	  
	  /* Only the last copy of the loop body here needs the exit
	     test, so set copy_end to exclude the compare/branch here,
	     and then reset it inside the loop when get to the last
	     copy.  */

	  if (GET_CODE (last_loop_insn) == BARRIER)
	    copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
	  else if (GET_CODE (last_loop_insn) == JUMP_INSN)
	    {
#ifdef HAVE_cc0
	      /* The immediately preceding insn is a compare which we do not
		 want to copy.  */
	      copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
#else
	      /* The immediately preceding insn may not be a compare, so we
		 must copy it.  */
	      copy_end = PREV_INSN (last_loop_insn);
#endif
	    }
	  else
	    abort ();

	  for (i = 1; i < unroll_number; i++)
	    {
	      emit_label_after (labels[unroll_number - i],
				PREV_INSN (loop_start));

	      bzero (map->insn_map, max_insnno * sizeof (rtx));
	      bzero (map->const_equiv_map, maxregnum * sizeof (rtx));
	      bzero (map->const_age_map, maxregnum * sizeof (unsigned));
	      map->const_age = 0;

	      for (j = 0; j < max_labelno; j++)
		if (local_label[j])
		  map->label_map[j] = gen_label_rtx ();

	      /* The last copy needs the compare/branch insns at the end,
		 so reset copy_end here if the loop ends with a conditional
		 branch.  */

	      if (i == unroll_number - 1)
		{
		  if (GET_CODE (last_loop_insn) == BARRIER)
		    copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
		  else
		    copy_end = last_loop_insn;
		}

	      /* None of the copies are the `last_iteration', so just
		 pass zero for that parameter.  */
	      copy_loop_body (copy_start, copy_end, map, exit_label, 0,
			      unroll_type, start_label, loop_end,
			      loop_start, copy_end);
	    }
	  emit_label_after (labels[0], PREV_INSN (loop_start));

	  if (GET_CODE (last_loop_insn) == BARRIER)
	    {
	      insert_before = PREV_INSN (last_loop_insn);
	      copy_end = PREV_INSN (insert_before);
	    }
	  else
	    {
#ifdef HAVE_cc0
	      /* The immediately preceding insn is a compare which we do not
		 want to copy.  */
	      insert_before = PREV_INSN (last_loop_insn);
	      copy_end = PREV_INSN (insert_before);
#else
	      /* The immediately preceding insn may not be a compare, so we
		 must copy it.  */
	      insert_before = last_loop_insn;
	      copy_end = PREV_INSN (last_loop_insn);
#endif
	    }

	  /* Set unroll type to MODULO now.  */
	  unroll_type = UNROLL_MODULO;
	  loop_preconditioned = 1;
	}
    }

  /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
     the loop unless all loops are being unrolled.  */
  if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
      return;
    }

  /* At this point, we are guaranteed to unroll the loop.  */

  /* For each biv and giv, determine whether it can be safely split into
     a different variable for each unrolled copy of the loop body.
     We precalculate and save this info here, since computing it is
     expensive.

     Do this before deleting any instructions from the loop, so that
     back_branch_in_range_p will work correctly.  */

  if (splitting_not_safe)
    temp = 0;
  else
    temp = find_splittable_regs (unroll_type, loop_start, loop_end,
				end_insert_before, unroll_number);

  /* find_splittable_regs may have created some new registers, so must
     reallocate the reg_map with the new larger size, and must realloc
     the constant maps also.  */

  maxregnum = max_reg_num ();
  map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));

  init_reg_map (map, maxregnum);

  /* Space is needed in some of the map for new registers, so new_maxregnum
     is an (over)estimate of how many registers will exist at the end.  */
  new_maxregnum = maxregnum + (temp * unroll_number * 2);

  /* Must realloc space for the constant maps, because the number of registers
     may have changed.  */

  map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
  map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));

  map->const_equiv_map_size = new_maxregnum;
  global_const_equiv_map = map->const_equiv_map;
  global_const_equiv_map_size = new_maxregnum;

  /* Search the list of bivs and givs to find ones which need to be remapped
     when split, and set their reg_map entry appropriately.  */

  for (bl = loop_iv_list; bl; bl = bl->next)
    {
      if (REGNO (bl->biv->src_reg) != bl->regno)
	map->reg_map[bl->regno] = bl->biv->src_reg;
#if 0
      /* Currently, non-reduced/final-value givs are never split.  */
      for (v = bl->giv; v; v = v->next_iv)
	if (REGNO (v->src_reg) != bl->regno)
	  map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
#endif
    }

  /* If the loop is being partially unrolled, and the iteration variables
     are being split, and are being renamed for the split, then must fix up
     the compare/jump instruction at the end of the loop to refer to the new
     registers.  This compare isn't copied, so the registers used in it
     will never be replaced if it isn't done here.  */

  if (unroll_type == UNROLL_MODULO)
    {
      insn = NEXT_INSN (copy_end);
      if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
	PATTERN (insn) = remap_split_bivs (PATTERN (insn));
    }

  /* For unroll_number - 1 times, make a copy of each instruction
     between copy_start and copy_end, and insert these new instructions
     before the end of the loop.  */

  for (i = 0; i < unroll_number; i++)
    {
      bzero (map->insn_map, max_insnno * sizeof (rtx));
      bzero (map->const_equiv_map, new_maxregnum * sizeof (rtx));
      bzero (map->const_age_map, new_maxregnum * sizeof (unsigned));
      map->const_age = 0;

      for (j = 0; j < max_labelno; j++)
	if (local_label[j])
	  map->label_map[j] = gen_label_rtx ();

      /* If loop starts with a branch to the test, then fix it so that
	 it points to the test of the first unrolled copy of the loop.  */
      if (i == 0 && loop_start != copy_start)
	{
	  insn = PREV_INSN (copy_start);
	  pattern = PATTERN (insn);
	  
	  tem = map->label_map[CODE_LABEL_NUMBER
			       (XEXP (SET_SRC (pattern), 0))];
	  SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);

	  /* Set the jump label so that it can be used by later loop unrolling
	     passes.  */
	  JUMP_LABEL (insn) = tem;
	  LABEL_NUSES (tem)++;
	}

      copy_loop_body (copy_start, copy_end, map, exit_label,
		      i == unroll_number - 1, unroll_type, start_label,
		      loop_end, insert_before, insert_before);
    }

  /* Before deleting any insns, emit a CODE_LABEL immediately after the last
     insn to be deleted.  This prevents any runaway delete_insn call from
     more insns that it should, as it always stops at a CODE_LABEL.  */

  /* Delete the compare and branch at the end of the loop if completely
     unrolling the loop.  Deleting the backward branch at the end also
     deletes the code label at the start of the loop.  This is done at
     the very end to avoid problems with back_branch_in_range_p.  */

  if (unroll_type == UNROLL_COMPLETELY)
    safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
  else
    safety_label = emit_label_after (gen_label_rtx (), copy_end);

  /* Delete all of the original loop instructions.  Don't delete the 
     LOOP_BEG note, or the first code label in the loop.  */

  insn = NEXT_INSN (copy_start);
  while (insn != safety_label)
    {
      if (insn != start_label)
	insn = delete_insn (insn);
      else
	insn = NEXT_INSN (insn);
    }

  /* Can now delete the 'safety' label emitted to protect us from runaway
     delete_insn calls.  */
  if (INSN_DELETED_P (safety_label))
    abort ();
  delete_insn (safety_label);

  /* If exit_label exists, emit it after the loop.  Doing the emit here
     forces it to have a higher INSN_UID than any insn in the unrolled loop.
     This is needed so that mostly_true_jump in reorg.c will treat jumps
     to this loop end label correctly, i.e. predict that they are usually
     not taken.  */
  if (exit_label)
    emit_label_after (exit_label, loop_end);
}

/* Return true if the loop can be safely, and profitably, preconditioned
   so that the unrolled copies of the loop body don't need exit tests.

   This only works if final_value, initial_value and increment can be
   determined, and if increment is a constant power of 2.
   If increment is not a power of 2, then the preconditioning modulo
   operation would require a real modulo instead of a boolean AND, and this
   is not considered `profitable'.  */

/* ??? If the loop is known to be executed very many times, or the machine
   has a very cheap divide instruction, then preconditioning is a win even
   when the increment is not a power of 2.  Use RTX_COST to compute
   whether divide is cheap.  */

static int
precondition_loop_p (initial_value, final_value, increment, loop_start,
		     loop_end)
     rtx *initial_value, *final_value, *increment;
     rtx loop_start, loop_end;
{

  if (loop_n_iterations > 0)
    {
      *initial_value = const0_rtx;
      *increment = const1_rtx;
      *final_value = GEN_INT (loop_n_iterations);

      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Preconditioning: Success, number of iterations known, %d.\n",
		 loop_n_iterations);
      return 1;
    }

  if (loop_initial_value == 0)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Preconditioning: Could not find initial value.\n");
      return 0;
    }
  else if (loop_increment == 0)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Preconditioning: Could not find increment value.\n");
      return 0;
    }
  else if (GET_CODE (loop_increment) != CONST_INT)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Preconditioning: Increment not a constant.\n");
      return 0;
    }
  else if ((exact_log2 (INTVAL (loop_increment)) < 0)
	   && (exact_log2 (- INTVAL (loop_increment)) < 0))
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Preconditioning: Increment not a constant power of 2.\n");
      return 0;
    }

  /* Unsigned_compare and compare_dir can be ignored here, since they do
     not matter for preconditioning.  */

  if (loop_final_value == 0)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Preconditioning: EQ comparison loop.\n");
      return 0;
    }

  /* Must ensure that final_value is invariant, so call invariant_p to
     check.  Before doing so, must check regno against max_reg_before_loop
     to make sure that the register is in the range covered by invariant_p.
     If it isn't, then it is most likely a biv/giv which by definition are
     not invariant.  */
  if ((GET_CODE (loop_final_value) == REG
       && REGNO (loop_final_value) >= max_reg_before_loop)
      || (GET_CODE (loop_final_value) == PLUS
	  && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
      || ! invariant_p (loop_final_value))
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Preconditioning: Final value not invariant.\n");
      return 0;
    }

  /* Fail for floating point values, since the caller of this function
     does not have code to deal with them.  */
  if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
      || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Preconditioning: Floating point final or initial value.\n");
      return 0;
    }

  /* Now set initial_value to be the iteration_var, since that may be a
     simpler expression, and is guaranteed to be correct if all of the
     above tests succeed.

     We can not use the initial_value as calculated, because it will be
     one too small for loops of the form "while (i-- > 0)".  We can not
     emit code before the loop_skip_over insns to fix this problem as this
     will then give a number one too large for loops of the form
     "while (--i > 0)".

     Note that all loops that reach here are entered at the top, because
     this function is not called if the loop starts with a jump.  */

  /* Fail if loop_iteration_var is not live before loop_start, since we need
     to test its value in the preconditioning code.  */

  if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
      > INSN_LUID (loop_start))
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Preconditioning: Iteration var not live before loop start.\n");
      return 0;
    }

  *initial_value = loop_iteration_var;
  *increment = loop_increment;
  *final_value = loop_final_value;

  /* Success! */
  if (loop_dump_stream)
    fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
  return 1;
}


/* All pseudo-registers must be mapped to themselves.  Two hard registers
   must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
   REGNUM, to avoid function-inlining specific conversions of these
   registers.  All other hard regs can not be mapped because they may be
   used with different
   modes.  */

static void
init_reg_map (map, maxregnum)
     struct inline_remap *map;
     int maxregnum;
{
  int i;

  for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
    map->reg_map[i] = regno_reg_rtx[i];
  /* Just clear the rest of the entries.  */
  for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
    map->reg_map[i] = 0;

  map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
    = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
  map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
    = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
}

/* Strength-reduction will often emit code for optimized biv/givs which
   calculates their value in a temporary register, and then copies the result
   to the iv.  This procedure reconstructs the pattern computing the iv;
   verifying that all operands are of the proper form.

   The return value is the amount that the giv is incremented by.  */

static rtx
calculate_giv_inc (pattern, src_insn, regno)
     rtx pattern, src_insn;
     int regno;
{
  rtx increment;
  rtx increment_total = 0;
  int tries = 0;

 retry:
  /* Verify that we have an increment insn here.  First check for a plus
     as the set source.  */
  if (GET_CODE (SET_SRC (pattern)) != PLUS)
    {
      /* SR sometimes computes the new giv value in a temp, then copies it
	 to the new_reg.  */
      src_insn = PREV_INSN (src_insn);
      pattern = PATTERN (src_insn);
      if (GET_CODE (SET_SRC (pattern)) != PLUS)
	abort ();
		  
      /* The last insn emitted is not needed, so delete it to avoid confusing
	 the second cse pass.  This insn sets the giv unnecessarily.  */
      delete_insn (get_last_insn ());
    }

  /* Verify that we have a constant as the second operand of the plus.  */
  increment = XEXP (SET_SRC (pattern), 1);
  if (GET_CODE (increment) != CONST_INT)
    {
      /* SR sometimes puts the constant in a register, especially if it is
	 too big to be an add immed operand.  */
      src_insn = PREV_INSN (src_insn);
      increment = SET_SRC (PATTERN (src_insn));

      /* SR may have used LO_SUM to compute the constant if it is too large
	 for a load immed operand.  In this case, the constant is in operand
	 one of the LO_SUM rtx.  */
      if (GET_CODE (increment) == LO_SUM)
	increment = XEXP (increment, 1);

      if (GET_CODE (increment) != CONST_INT)
	abort ();
		  
      /* The insn loading the constant into a register is not longer needed,
	 so delete it.  */
      delete_insn (get_last_insn ());
    }

  if (increment_total)
    increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
  else
    increment_total = increment;

  /* Check that the source register is the same as the register we expected
     to see as the source.  If not, something is seriously wrong.  */
  if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
      || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
    {
      /* Some machines (e.g. the romp), may emit two add instructions for
	 certain constants, so lets try looking for another add immediately
	 before this one if we have only seen one add insn so far.  */

      if (tries == 0)
	{
	  tries++;

	  src_insn = PREV_INSN (src_insn);
	  pattern = PATTERN (src_insn);

	  delete_insn (get_last_insn ());

	  goto retry;
	}

      abort ();
    }

  return increment_total;
}

/* Copy REG_NOTES, except for insn references, because not all insn_map
   entries are valid yet.  We do need to copy registers now though, because
   the reg_map entries can change during copying.  */

static rtx
initial_reg_note_copy (notes, map)
     rtx notes;
     struct inline_remap *map;
{
  rtx copy;

  if (notes == 0)
    return 0;

  copy = rtx_alloc (GET_CODE (notes));
  PUT_MODE (copy, GET_MODE (notes));

  if (GET_CODE (notes) == EXPR_LIST)
    XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
  else if (GET_CODE (notes) == INSN_LIST)
    /* Don't substitute for these yet.  */
    XEXP (copy, 0) = XEXP (notes, 0);
  else
    abort ();

  XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);

  return copy;
}

/* Fixup insn references in copied REG_NOTES.  */

static void
final_reg_note_copy (notes, map)
     rtx notes;
     struct inline_remap *map;
{
  rtx note;

  for (note = notes; note; note = XEXP (note, 1))
    if (GET_CODE (note) == INSN_LIST)
      XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
}

/* Copy each instruction in the loop, substituting from map as appropriate.
   This is very similar to a loop in expand_inline_function.  */
  
static void
copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
		unroll_type, start_label, loop_end, insert_before,
		copy_notes_from)
     rtx copy_start, copy_end;
     struct inline_remap *map;
     rtx exit_label;
     int last_iteration;
     enum unroll_types unroll_type;
     rtx start_label, loop_end, insert_before, copy_notes_from;
{
  rtx insn, pattern;
  rtx tem, copy;
  int dest_reg_was_split, i;
  rtx cc0_insn = 0;
  rtx final_label = 0;
  rtx giv_inc, giv_dest_reg, giv_src_reg;

  /* If this isn't the last iteration, then map any references to the
     start_label to final_label.  Final label will then be emitted immediately
     after the end of this loop body if it was ever used.

     If this is the last iteration, then map references to the start_label
     to itself.  */
  if (! last_iteration)
    {
      final_label = gen_label_rtx ();
      map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
    }
  else
    map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;

  start_sequence ();
  
  insn = copy_start;
  do
    {
      insn = NEXT_INSN (insn);
      
      map->orig_asm_operands_vector = 0;
      
      switch (GET_CODE (insn))
	{
	case INSN:
	  pattern = PATTERN (insn);
	  copy = 0;
	  giv_inc = 0;
	  
	  /* Check to see if this is a giv that has been combined with
	     some split address givs.  (Combined in the sense that 
	     `combine_givs' in loop.c has put two givs in the same register.)
	     In this case, we must search all givs based on the same biv to
	     find the address givs.  Then split the address givs.
	     Do this before splitting the giv, since that may map the
	     SET_DEST to a new register.  */
	  
	  if (GET_CODE (pattern) == SET
	      && GET_CODE (SET_DEST (pattern)) == REG
	      && addr_combined_regs[REGNO (SET_DEST (pattern))])
	    {
	      struct iv_class *bl;
	      struct induction *v, *tv;
	      int regno = REGNO (SET_DEST (pattern));
	      
	      v = addr_combined_regs[REGNO (SET_DEST (pattern))];
	      bl = reg_biv_class[REGNO (v->src_reg)];
	      
	      /* Although the giv_inc amount is not needed here, we must call
		 calculate_giv_inc here since it might try to delete the
		 last insn emitted.  If we wait until later to call it,
		 we might accidentally delete insns generated immediately
		 below by emit_unrolled_add.  */

	      giv_inc = calculate_giv_inc (pattern, insn, regno);

	      /* Now find all address giv's that were combined with this
		 giv 'v'.  */
	      for (tv = bl->giv; tv; tv = tv->next_iv)
		if (tv->giv_type == DEST_ADDR && tv->same == v)
		  {
		    int this_giv_inc = INTVAL (giv_inc);

		    /* Scale this_giv_inc if the multiplicative factors of
		       the two givs are different.  */
		    if (tv->mult_val != v->mult_val)
		      this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
				      * INTVAL (tv->mult_val));
		       
		    tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
		    *tv->location = tv->dest_reg;
		    
		    if (last_iteration && unroll_type != UNROLL_COMPLETELY)
		      {
			/* Must emit an insn to increment the split address
			   giv.  Add in the const_adjust field in case there
			   was a constant eliminated from the address.  */
			rtx value, dest_reg;
			
			/* tv->dest_reg will be either a bare register,
			   or else a register plus a constant.  */
			if (GET_CODE (tv->dest_reg) == REG)
			  dest_reg = tv->dest_reg;
			else
			  dest_reg = XEXP (tv->dest_reg, 0);
			
			/* Check for shared address givs, and avoid
			   incrementing the shared psuedo reg more than
			   once.  */
			if (! (tv != v && tv->insn == v->insn
			       && tv->new_reg == v->new_reg))
			  {
			    /* tv->dest_reg may actually be a (PLUS (REG)
			       (CONST)) here, so we must call plus_constant
			       to add the const_adjust amount before calling
			       emit_unrolled_add below.  */
			    value = plus_constant (tv->dest_reg,
						   tv->const_adjust);

			    /* The constant could be too large for an add
			       immediate, so can't directly emit an insn
			       here.  */
			    emit_unrolled_add (dest_reg, XEXP (value, 0),
					       XEXP (value, 1));
			  }
			
			/* Reset the giv to be just the register again, in case
			   it is used after the set we have just emitted.
			   We must subtract the const_adjust factor added in
			   above.  */
			tv->dest_reg = plus_constant (dest_reg,
						      - tv->const_adjust);
			*tv->location = tv->dest_reg;
		      }
		  }
	    }
	  
	  /* If this is a setting of a splittable variable, then determine
	     how to split the variable, create a new set based on this split,
	     and set up the reg_map so that later uses of the variable will
	     use the new split variable.  */
	  
	  dest_reg_was_split = 0;
	  
	  if (GET_CODE (pattern) == SET
	      && GET_CODE (SET_DEST (pattern)) == REG
	      && splittable_regs[REGNO (SET_DEST (pattern))])
	    {
	      int regno = REGNO (SET_DEST (pattern));
	      
	      dest_reg_was_split = 1;
	      
	      /* Compute the increment value for the giv, if it wasn't
		 already computed above.  */

	      if (giv_inc == 0)
		giv_inc = calculate_giv_inc (pattern, insn, regno);
	      giv_dest_reg = SET_DEST (pattern);
	      giv_src_reg = SET_DEST (pattern);

	      if (unroll_type == UNROLL_COMPLETELY)
		{
		  /* Completely unrolling the loop.  Set the induction
		     variable to a known constant value.  */
		  
		  /* The value in splittable_regs may be an invariant
		     value, so we must use plus_constant here.  */
		  splittable_regs[regno]
		    = plus_constant (splittable_regs[regno], INTVAL (giv_inc));

		  if (GET_CODE (splittable_regs[regno]) == PLUS)
		    {
		      giv_src_reg = XEXP (splittable_regs[regno], 0);
		      giv_inc = XEXP (splittable_regs[regno], 1);
		    }
		  else
		    {
		      /* The splittable_regs value must be a REG or a
			 CONST_INT, so put the entire value in the giv_src_reg
			 variable.  */
		      giv_src_reg = splittable_regs[regno];
		      giv_inc = const0_rtx;
		    }
		}
	      else
		{
		  /* Partially unrolling loop.  Create a new pseudo
		     register for the iteration variable, and set it to
		     be a constant plus the original register.  Except
		     on the last iteration, when the result has to
		     go back into the original iteration var register.  */
		  
		  /* Handle bivs which must be mapped to a new register
		     when split.  This happens for bivs which need their
		     final value set before loop entry.  The new register
		     for the biv was stored in the biv's first struct
		     induction entry by find_splittable_regs.  */

		  if (regno < max_reg_before_loop
		      && reg_iv_type[regno] == BASIC_INDUCT)
		    {
		      giv_src_reg = reg_biv_class[regno]->biv->src_reg;
		      giv_dest_reg = giv_src_reg;
		    }
		  
#if 0
		  /* If non-reduced/final-value givs were split, then
		     this would have to remap those givs also.  See
		     find_splittable_regs.  */
#endif
		  
		  splittable_regs[regno]
		    = GEN_INT (INTVAL (giv_inc)
			       + INTVAL (splittable_regs[regno]));
		  giv_inc = splittable_regs[regno];
		  
		  /* Now split the induction variable by changing the dest
		     of this insn to a new register, and setting its
		     reg_map entry to point to this new register.

		     If this is the last iteration, and this is the last insn
		     that will update the iv, then reuse the original dest,
		     to ensure that the iv will have the proper value when
		     the loop exits or repeats.

		     Using splittable_regs_updates here like this is safe,
		     because it can only be greater than one if all
		     instructions modifying the iv are always executed in
		     order.  */

		  if (! last_iteration
		      || (splittable_regs_updates[regno]-- != 1))
		    {
		      tem = gen_reg_rtx (GET_MODE (giv_src_reg));
		      giv_dest_reg = tem;
		      map->reg_map[regno] = tem;
		    }
		  else
		    map->reg_map[regno] = giv_src_reg;
		}

	      /* The constant being added could be too large for an add
		 immediate, so can't directly emit an insn here.  */
	      emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
	      copy = get_last_insn ();
	      pattern = PATTERN (copy);
	    }
	  else
	    {
	      pattern = copy_rtx_and_substitute (pattern, map);
	      copy = emit_insn (pattern);
	    }
	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
	  
#ifdef HAVE_cc0
	  /* If this insn is setting CC0, it may need to look at
	     the insn that uses CC0 to see what type of insn it is.
	     In that case, the call to recog via validate_change will
	     fail.  So don't substitute constants here.  Instead,
	     do it when we emit the following insn.

	     For example, see the pyr.md file.  That machine has signed and
	     unsigned compares.  The compare patterns must check the
	     following branch insn to see which what kind of compare to
	     emit.

	     If the previous insn set CC0, substitute constants on it as
	     well.  */
	  if (sets_cc0_p (copy) != 0)
	    cc0_insn = copy;
	  else
	    {
	      if (cc0_insn)
		try_constants (cc0_insn, map);
	      cc0_insn = 0;
	      try_constants (copy, map);
	    }
#else
	  try_constants (copy, map);
#endif

	  /* Make split induction variable constants `permanent' since we
	     know there are no backward branches across iteration variable
	     settings which would invalidate this.  */
	  if (dest_reg_was_split)
	    {
	      int regno = REGNO (SET_DEST (pattern));

	      if (regno < map->const_equiv_map_size
		  && map->const_age_map[regno] == map->const_age)
		map->const_age_map[regno] = -1;
	    }
	  break;
	  
	case JUMP_INSN:
	  pattern = copy_rtx_and_substitute (PATTERN (insn), map);
	  copy = emit_jump_insn (pattern);
	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);

	  if (JUMP_LABEL (insn) == start_label && insn == copy_end
	      && ! last_iteration)
	    {
	      /* This is a branch to the beginning of the loop; this is the
		 last insn being copied; and this is not the last iteration.
		 In this case, we want to change the original fall through
		 case to be a branch past the end of the loop, and the
		 original jump label case to fall_through.  */

	      if (! invert_exp (pattern, copy)
		  || ! redirect_exp (&pattern,
				     map->label_map[CODE_LABEL_NUMBER
						    (JUMP_LABEL (insn))],
				     exit_label, copy))
		abort ();
	    }
	  
#ifdef HAVE_cc0
	  if (cc0_insn)
	    try_constants (cc0_insn, map);
	  cc0_insn = 0;
#endif
	  try_constants (copy, map);

	  /* Set the jump label of COPY correctly to avoid problems with
	     later passes of unroll_loop, if INSN had jump label set.  */
	  if (JUMP_LABEL (insn))
	    {
	      rtx label = 0;

	      /* Can't use the label_map for every insn, since this may be
		 the backward branch, and hence the label was not mapped.  */
	      if (GET_CODE (pattern) == SET)
		{
		  tem = SET_SRC (pattern);
		  if (GET_CODE (tem) == LABEL_REF)
		    label = XEXP (tem, 0);
		  else if (GET_CODE (tem) == IF_THEN_ELSE)
		    {
		      if (XEXP (tem, 1) != pc_rtx)
			label = XEXP (XEXP (tem, 1), 0);
		      else
			label = XEXP (XEXP (tem, 2), 0);
		    }
		}

	      if (label && GET_CODE (label) == CODE_LABEL)
		JUMP_LABEL (copy) = label;
	      else
		{
		  /* An unrecognizable jump insn, probably the entry jump
		     for a switch statement.  This label must have been mapped,
		     so just use the label_map to get the new jump label.  */
		  JUMP_LABEL (copy) = map->label_map[CODE_LABEL_NUMBER
						     (JUMP_LABEL (insn))];
		}
	  
	      /* If this is a non-local jump, then must increase the label
		 use count so that the label will not be deleted when the
		 original jump is deleted.  */
	      LABEL_NUSES (JUMP_LABEL (copy))++;
	    }
	  else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
		   || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
	    {
	      rtx pat = PATTERN (copy);
	      int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
	      int len = XVECLEN (pat, diff_vec_p);
	      int i;

	      for (i = 0; i < len; i++)
		LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
	    }

	  /* If this used to be a conditional jump insn but whose branch
	     direction is now known, we must do something special.  */
	  if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
	    {
#ifdef HAVE_cc0
	      /* The previous insn set cc0 for us.  So delete it.  */
	      delete_insn (PREV_INSN (copy));
#endif

	      /* If this is now a no-op, delete it.  */
	      if (map->last_pc_value == pc_rtx)
		{
		  /* Don't let delete_insn delete the label referenced here,
		     because we might possibly need it later for some other
		     instruction in the loop.  */
		  if (JUMP_LABEL (copy))
		    LABEL_NUSES (JUMP_LABEL (copy))++;
		  delete_insn (copy);
		  if (JUMP_LABEL (copy))
		    LABEL_NUSES (JUMP_LABEL (copy))--;
		  copy = 0;
		}
	      else
		/* Otherwise, this is unconditional jump so we must put a
		   BARRIER after it.  We could do some dead code elimination
		   here, but jump.c will do it just as well.  */
		emit_barrier ();
	    }
	  break;
	  
	case CALL_INSN:
	  pattern = copy_rtx_and_substitute (PATTERN (insn), map);
	  copy = emit_call_insn (pattern);
	  REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);

#ifdef HAVE_cc0
	  if (cc0_insn)
	    try_constants (cc0_insn, map);
	  cc0_insn = 0;
#endif
	  try_constants (copy, map);

	  /* Be lazy and assume CALL_INSNs clobber all hard registers.  */
	  for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
	    map->const_equiv_map[i] = 0;
	  break;
	  
	case CODE_LABEL:
	  /* If this is the loop start label, then we don't need to emit a
	     copy of this label since no one will use it.  */

	  if (insn != start_label)
	    {
	      copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
	      map->const_age++;
	    }
	  break;
	  
	case BARRIER:
	  copy = emit_barrier ();
	  break;
	  
	case NOTE:
	  /* VTOP notes are valid only before the loop exit test.  If placed
	     anywhere else, loop may generate bad code.  */
	     
	  if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
	      && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
		  || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
	    copy = emit_note (NOTE_SOURCE_FILE (insn),
			      NOTE_LINE_NUMBER (insn));
	  else
	    copy = 0;
	  break;
	  
	default:
	  abort ();
	  break;
	}
      
      map->insn_map[INSN_UID (insn)] = copy;
    }
  while (insn != copy_end);
  
  /* Now finish coping the REG_NOTES.  */
  insn = copy_start;
  do
    {
      insn = NEXT_INSN (insn);
      if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
	   || GET_CODE (insn) == CALL_INSN)
	  && map->insn_map[INSN_UID (insn)])
	final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
    }
  while (insn != copy_end);

  /* There may be notes between copy_notes_from and loop_end.  Emit a copy of
     each of these notes here, since there may be some important ones, such as
     NOTE_INSN_BLOCK_END notes, in this group.  We don't do this on the last
     iteration, because the original notes won't be deleted.

     We can't use insert_before here, because when from preconditioning,
     insert_before points before the loop.  We can't use copy_end, because
     there may be insns already inserted after it (which we don't want to
     copy) when not from preconditioning code.  */

  if (! last_iteration)
    {
      for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
	{
	  if (GET_CODE (insn) == NOTE
	      && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
	    emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
	}
    }

  if (final_label && LABEL_NUSES (final_label) > 0)
    emit_label (final_label);

  tem = gen_sequence ();
  end_sequence ();
  emit_insn_before (tem, insert_before);
}

/* Emit an insn, using the expand_binop to ensure that a valid insn is
   emitted.  This will correctly handle the case where the increment value
   won't fit in the immediate field of a PLUS insns.  */

void
emit_unrolled_add (dest_reg, src_reg, increment)
     rtx dest_reg, src_reg, increment;
{
  rtx result;

  result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
			 dest_reg, 0, OPTAB_LIB_WIDEN);

  if (dest_reg != result)
    emit_move_insn (dest_reg, result);
}

/* Searches the insns between INSN and LOOP_END.  Returns 1 if there
   is a backward branch in that range that branches to somewhere between
   LOOP_START and INSN.  Returns 0 otherwise.  */

/* ??? This is quadratic algorithm.  Could be rewritten to be linear.
   In practice, this is not a problem, because this function is seldom called,
   and uses a negligible amount of CPU time on average.  */

static int
back_branch_in_range_p (insn, loop_start, loop_end)
     rtx insn;
     rtx loop_start, loop_end;
{
  rtx p, q, target_insn;

  /* Stop before we get to the backward branch at the end of the loop.  */
  loop_end = prev_nonnote_insn (loop_end);
  if (GET_CODE (loop_end) == BARRIER)
    loop_end = PREV_INSN (loop_end);

  /* Check in case insn has been deleted, search forward for first non
     deleted insn following it.  */
  while (INSN_DELETED_P (insn))
    insn = NEXT_INSN (insn);

  /* Check for the case where insn is the last insn in the loop.  */
  if (insn == loop_end)
    return 0;

  for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
    {
      if (GET_CODE (p) == JUMP_INSN)
	{
	  target_insn = JUMP_LABEL (p);
	  
	  /* Search from loop_start to insn, to see if one of them is
	     the target_insn.  We can't use INSN_LUID comparisons here,
	     since insn may not have an LUID entry.  */
	  for (q = loop_start; q != insn; q = NEXT_INSN (q))
	    if (q == target_insn)
	      return 1;
	}
    }

  return 0;
}

/* Try to generate the simplest rtx for the expression
   (PLUS (MULT mult1 mult2) add1).  This is used to calculate the initial
   value of giv's.  */

static rtx
fold_rtx_mult_add (mult1, mult2, add1, mode)
     rtx mult1, mult2, add1;
     enum machine_mode mode;
{
  rtx temp, mult_res;
  rtx result;

  /* The modes must all be the same.  This should always be true.  For now,
     check to make sure.  */
  if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
      || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
      || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
    abort ();

  /* Ensure that if at least one of mult1/mult2 are constant, then mult2
     will be a constant.  */
  if (GET_CODE (mult1) == CONST_INT)
    {
      temp = mult2;
      mult2 = mult1;
      mult1 = temp;
    }

  mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
  if (! mult_res)
    mult_res = gen_rtx (MULT, mode, mult1, mult2);

  /* Again, put the constant second.  */
  if (GET_CODE (add1) == CONST_INT)
    {
      temp = add1;
      add1 = mult_res;
      mult_res = temp;
    }

  result = simplify_binary_operation (PLUS, mode, add1, mult_res);
  if (! result)
    result = gen_rtx (PLUS, mode, add1, mult_res);

  return result;
}

/* Searches the list of induction struct's for the biv BL, to try to calculate
   the total increment value for one iteration of the loop as a constant.

   Returns the increment value as an rtx, simplified as much as possible,
   if it can be calculated.  Otherwise, returns 0.  */

rtx 
biv_total_increment (bl, loop_start, loop_end)
     struct iv_class *bl;
     rtx loop_start, loop_end;
{
  struct induction *v;
  rtx result;

  /* For increment, must check every instruction that sets it.  Each
     instruction must be executed only once each time through the loop.
     To verify this, we check that the the insn is always executed, and that
     there are no backward branches after the insn that branch to before it.
     Also, the insn must have a mult_val of one (to make sure it really is
     an increment).  */

  result = const0_rtx;
  for (v = bl->biv; v; v = v->next_iv)
    {
      if (v->always_computable && v->mult_val == const1_rtx
	  && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
	result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
      else
	return 0;
    }

  return result;
}

/* Determine the initial value of the iteration variable, and the amount
   that it is incremented each loop.  Use the tables constructed by
   the strength reduction pass to calculate these values.

   Initial_value and/or increment are set to zero if their values could not
   be calculated.  */

static void
iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
     rtx iteration_var, *initial_value, *increment;
     rtx loop_start, loop_end;
{
  struct iv_class *bl;
  struct induction *v, *b;

  /* Clear the result values, in case no answer can be found.  */
  *initial_value = 0;
  *increment = 0;

  /* The iteration variable can be either a giv or a biv.  Check to see
     which it is, and compute the variable's initial value, and increment
     value if possible.  */

  /* If this is a new register, can't handle it since we don't have any
     reg_iv_type entry for it.  */
  if (REGNO (iteration_var) >= max_reg_before_loop)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
      return;
    }
  /* Reject iteration variables larger than the host long size, since they
     could result in a number of iterations greater than the range of our
     `unsigned long' variable loop_n_iterations.  */
  else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
      return;
    }
  else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: Iteration var not an integer.\n");
      return;
    }
  else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
    {
      /* Grab initial value, only useful if it is a constant.  */
      bl = reg_biv_class[REGNO (iteration_var)];
      *initial_value = bl->initial_value;

      *increment = biv_total_increment (bl, loop_start, loop_end);
    }
  else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
    {
#if 1
      /* ??? The code below does not work because the incorrect number of
	 iterations is calculated when the biv is incremented after the giv
	 is set (which is the usual case).  This can probably be accounted
	 for by biasing the initial_value by subtracting the amount of the
	 increment that occurs between the giv set and the giv test.  However,
	 a giv as an iterator is very rare, so it does not seem worthwhile
	 to handle this.  */
      /* ??? An example failure is: i = 6; do {;} while (i++ < 9).  */
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: Giv iterators are not handled.\n");
      return;
#else
      /* Initial value is mult_val times the biv's initial value plus
	 add_val.  Only useful if it is a constant.  */
      v = reg_iv_info[REGNO (iteration_var)];
      bl = reg_biv_class[REGNO (v->src_reg)];
      *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
					  v->add_val, v->mode);
      
      /* Increment value is mult_val times the increment value of the biv.  */

      *increment = biv_total_increment (bl, loop_start, loop_end);
      if (*increment)
	*increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
					v->mode);
#endif
    }
  else
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: Not basic or general induction var.\n");
      return;
    }
}

/* Calculate the approximate final value of the iteration variable
   which has an loop exit test with code COMPARISON_CODE and comparison value
   of COMPARISON_VALUE.  Also returns an indication of whether the comparison
   was signed or unsigned, and the direction of the comparison.  This info is
   needed to calculate the number of loop iterations.  */

static rtx
approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
     enum rtx_code comparison_code;
     rtx comparison_value;
     int *unsigned_p;
     int *compare_dir;
{
  /* Calculate the final value of the induction variable.
     The exact final value depends on the branch operator, and increment sign.
     This is only an approximate value.  It will be wrong if the iteration
     variable is not incremented by one each time through the loop, and
     approx final value - start value % increment != 0.  */

  *unsigned_p = 0;
  switch (comparison_code)
    {
    case LEU:
      *unsigned_p = 1;
    case LE:
      *compare_dir = 1;
      return plus_constant (comparison_value, 1);
    case GEU:
      *unsigned_p = 1;
    case GE:
      *compare_dir = -1;
      return plus_constant (comparison_value, -1);
    case EQ:
      /* Can not calculate a final value for this case.  */
      *compare_dir = 0;
      return 0;
    case LTU:
      *unsigned_p = 1;
    case LT:
      *compare_dir = 1;
      return comparison_value;
      break;
    case GTU:
      *unsigned_p = 1;
    case GT:
      *compare_dir = -1;
      return comparison_value;
    case NE:
      *compare_dir = 0;
      return comparison_value;
    default:
      abort ();
    }
}

/* For each biv and giv, determine whether it can be safely split into
   a different variable for each unrolled copy of the loop body.  If it
   is safe to split, then indicate that by saving some useful info
   in the splittable_regs array.

   If the loop is being completely unrolled, then splittable_regs will hold
   the current value of the induction variable while the loop is unrolled.
   It must be set to the initial value of the induction variable here.
   Otherwise, splittable_regs will hold the difference between the current
   value of the induction variable and the value the induction variable had
   at the top of the loop.  It must be set to the value 0 here.

   Returns the total number of instructions that set registers that are
   splittable.  */

/* ?? If the loop is only unrolled twice, then most of the restrictions to
   constant values are unnecessary, since we can easily calculate increment
   values in this case even if nothing is constant.  The increment value
   should not involve a multiply however.  */

/* ?? Even if the biv/giv increment values aren't constant, it may still
   be beneficial to split the variable if the loop is only unrolled a few
   times, since multiplies by small integers (1,2,3,4) are very cheap.  */

static int
find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
		     unroll_number)
     enum unroll_types unroll_type;
     rtx loop_start, loop_end;
     rtx end_insert_before;
     int unroll_number;
{
  struct iv_class *bl;
  struct induction *v;
  rtx increment, tem;
  rtx biv_final_value;
  int biv_splittable;
  int result = 0;

  for (bl = loop_iv_list; bl; bl = bl->next)
    {
      /* Biv_total_increment must return a constant value,
	 otherwise we can not calculate the split values.  */

      increment = biv_total_increment (bl, loop_start, loop_end);
      if (! increment || GET_CODE (increment) != CONST_INT)
	continue;

      /* The loop must be unrolled completely, or else have a known number
	 of iterations and only one exit, or else the biv must be dead
	 outside the loop, or else the final value must be known.  Otherwise,
	 it is unsafe to split the biv since it may not have the proper
	 value on loop exit.  */

      /* loop_number_exit_labels is non-zero if the loop has an exit other than
	 a fall through at the end.  */

      biv_splittable = 1;
      biv_final_value = 0;
      if (unroll_type != UNROLL_COMPLETELY
	  && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
	      || unroll_type == UNROLL_NAIVE)
	  && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
	      || ! bl->init_insn
	      || INSN_UID (bl->init_insn) >= max_uid_for_loop
	      || (uid_luid[regno_first_uid[bl->regno]]
		  < INSN_LUID (bl->init_insn))
	      || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
	  && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
	biv_splittable = 0;

      /* If any of the insns setting the BIV don't do so with a simple
	 PLUS, we don't know how to split it.  */
      for (v = bl->biv; biv_splittable && v; v = v->next_iv)
	if ((tem = single_set (v->insn)) == 0
	    || GET_CODE (SET_DEST (tem)) != REG
	    || REGNO (SET_DEST (tem)) != bl->regno
	    || GET_CODE (SET_SRC (tem)) != PLUS)
	  biv_splittable = 0;

      /* If final value is non-zero, then must emit an instruction which sets
	 the value of the biv to the proper value.  This is done after
	 handling all of the givs, since some of them may need to use the
	 biv's value in their initialization code.  */

      /* This biv is splittable.  If completely unrolling the loop, save
	 the biv's initial value.  Otherwise, save the constant zero.  */

      if (biv_splittable == 1)
	{
	  if (unroll_type == UNROLL_COMPLETELY)
	    {
	      /* If the initial value of the biv is itself (i.e. it is too
		 complicated for strength_reduce to compute), or is a hard
		 register, then we must create a new pseudo reg to hold the
		 initial value of the biv.  */

	      if (GET_CODE (bl->initial_value) == REG
		  && (REGNO (bl->initial_value) == bl->regno
		      || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
		{
		  rtx tem = gen_reg_rtx (bl->biv->mode);
		  
		  emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
				    loop_start);

		  if (loop_dump_stream)
		    fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
			     bl->regno, REGNO (tem));

		  splittable_regs[bl->regno] = tem;
		}
	      else
		splittable_regs[bl->regno] = bl->initial_value;
	    }
	  else
	    splittable_regs[bl->regno] = const0_rtx;

	  /* Save the number of instructions that modify the biv, so that
	     we can treat the last one specially.  */

	  splittable_regs_updates[bl->regno] = bl->biv_count;
	  result += bl->biv_count;

	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
		     "Biv %d safe to split.\n", bl->regno);
	}

      /* Check every giv that depends on this biv to see whether it is
	 splittable also.  Even if the biv isn't splittable, givs which
	 depend on it may be splittable if the biv is live outside the
	 loop, and the givs aren't.  */

      result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
				     increment, unroll_number);

      /* If final value is non-zero, then must emit an instruction which sets
	 the value of the biv to the proper value.  This is done after
	 handling all of the givs, since some of them may need to use the
	 biv's value in their initialization code.  */
      if (biv_final_value)
	{
	  /* If the loop has multiple exits, emit the insns before the
	     loop to ensure that it will always be executed no matter
	     how the loop exits.  Otherwise emit the insn after the loop,
	     since this is slightly more efficient.  */
	  if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
	    emit_insn_before (gen_move_insn (bl->biv->src_reg,
					     biv_final_value),
			      end_insert_before);
	  else
	    {
	      /* Create a new register to hold the value of the biv, and then
		 set the biv to its final value before the loop start.  The biv
		 is set to its final value before loop start to ensure that
		 this insn will always be executed, no matter how the loop
		 exits.  */
	      rtx tem = gen_reg_rtx (bl->biv->mode);
	      emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
				loop_start);
	      emit_insn_before (gen_move_insn (bl->biv->src_reg,
					       biv_final_value),
				loop_start);

	      if (loop_dump_stream)
		fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
			 REGNO (bl->biv->src_reg), REGNO (tem));

	      /* Set up the mapping from the original biv register to the new
		 register.  */
	      bl->biv->src_reg = tem;
	    }
	}
    }
  return result;
}

/* For every giv based on the biv BL, check to determine whether it is
   splittable.  This is a subroutine to find_splittable_regs ().

   Return the number of instructions that set splittable registers.  */

static int
find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
		      unroll_number)
     struct iv_class *bl;
     enum unroll_types unroll_type;
     rtx loop_start, loop_end;
     rtx increment;
     int unroll_number;
{
  struct induction *v;
  rtx final_value;
  rtx tem;
  int result = 0;

  for (v = bl->giv; v; v = v->next_iv)
    {
      rtx giv_inc, value;

      /* Only split the giv if it has already been reduced, or if the loop is
	 being completely unrolled.  */
      if (unroll_type != UNROLL_COMPLETELY && v->ignore)
	continue;

      /* The giv can be split if the insn that sets the giv is executed once
	 and only once on every iteration of the loop.  */
      /* An address giv can always be split.  v->insn is just a use not a set,
	 and hence it does not matter whether it is always executed.  All that
	 matters is that all the biv increments are always executed, and we
	 won't reach here if they aren't.  */
      if (v->giv_type != DEST_ADDR
	  && (! v->always_computable
	      || back_branch_in_range_p (v->insn, loop_start, loop_end)))
	continue;
      
      /* The giv increment value must be a constant.  */
      giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
				   v->mode);
      if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
	continue;

      /* The loop must be unrolled completely, or else have a known number of
	 iterations and only one exit, or else the giv must be dead outside
	 the loop, or else the final value of the giv must be known.
	 Otherwise, it is not safe to split the giv since it may not have the
	 proper value on loop exit.  */
	  
      /* The used outside loop test will fail for DEST_ADDR givs.  They are
	 never used outside the loop anyways, so it is always safe to split a
	 DEST_ADDR giv.  */

      final_value = 0;
      if (unroll_type != UNROLL_COMPLETELY
	  && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
	      || unroll_type == UNROLL_NAIVE)
	  && v->giv_type != DEST_ADDR
	  && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
	       /* Check for the case where the pseudo is set by a shift/add
		  sequence, in which case the first insn setting the pseudo
		  is the first insn of the shift/add sequence.  */
	       && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
		   || (regno_first_uid[REGNO (v->dest_reg)]
		       != INSN_UID (XEXP (tem, 0)))))
	      /* Line above always fails if INSN was moved by loop opt.  */
	      || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
		  >= INSN_LUID (loop_end)))
	  && ! (final_value = v->final_value))
	continue;

#if 0
      /* Currently, non-reduced/final-value givs are never split.  */
      /* Should emit insns after the loop if possible, as the biv final value
	 code below does.  */

      /* If the final value is non-zero, and the giv has not been reduced,
	 then must emit an instruction to set the final value.  */
      if (final_value && !v->new_reg)
	{
	  /* Create a new register to hold the value of the giv, and then set
	     the giv to its final value before the loop start.  The giv is set
	     to its final value before loop start to ensure that this insn
	     will always be executed, no matter how we exit.  */
	  tem = gen_reg_rtx (v->mode);
	  emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
	  emit_insn_before (gen_move_insn (v->dest_reg, final_value),
			    loop_start);
	  
	  if (loop_dump_stream)
	    fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
		     REGNO (v->dest_reg), REGNO (tem));
	  
	  v->src_reg = tem;
	}
#endif

      /* This giv is splittable.  If completely unrolling the loop, save the
	 giv's initial value.  Otherwise, save the constant zero for it.  */

      if (unroll_type == UNROLL_COMPLETELY)
	{
	  /* It is not safe to use bl->initial_value here, because it may not
	     be invariant.  It is safe to use the initial value stored in
	     the splittable_regs array if it is set.  In rare cases, it won't
	     be set, so then we do exactly the same thing as
	     find_splittable_regs does to get a safe value.  */
	  rtx biv_initial_value;

	  if (splittable_regs[bl->regno])
	    biv_initial_value = splittable_regs[bl->regno];
	  else if (GET_CODE (bl->initial_value) != REG
		   || (REGNO (bl->initial_value) != bl->regno
		       && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
	    biv_initial_value = bl->initial_value;
	  else
	    {
	      rtx tem = gen_reg_rtx (bl->biv->mode);

	      emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
				loop_start);
	      biv_initial_value = tem;
	    }
	  value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
				     v->add_val, v->mode);
	}
      else
	value = const0_rtx;

      if (v->new_reg)
	{
	  /* If a giv was combined with another giv, then we can only split
	     this giv if the giv it was combined with was reduced.  This
	     is because the value of v->new_reg is meaningless in this
	     case.  */
	  if (v->same && ! v->same->new_reg)
	    {
	      if (loop_dump_stream)
		fprintf (loop_dump_stream,
			 "giv combined with unreduced giv not split.\n");
	      continue;
	    }
	  /* If the giv is an address destination, it could be something other
	     than a simple register, these have to be treated differently.  */
	  else if (v->giv_type == DEST_REG)
	    {
	      /* If value is not a constant, register, or register plus
		 constant, then compute its value into a register before
		 loop start.  This prevents illegal rtx sharing, and should
		 generate better code.  We can use bl->initial_value here
		 instead of splittable_regs[bl->regno] because this code
		 is going before the loop start.  */
	      if (unroll_type == UNROLL_COMPLETELY
		  && GET_CODE (value) != CONST_INT
		  && GET_CODE (value) != REG
		  && (GET_CODE (value) != PLUS
		      || GET_CODE (XEXP (value, 0)) != REG
		      || GET_CODE (XEXP (value, 1)) != CONST_INT))
		{
		  rtx tem = gen_reg_rtx (v->mode);
		  emit_iv_add_mult (bl->initial_value, v->mult_val,
				    v->add_val, tem, loop_start);
		  value = tem;
		}
		
	      splittable_regs[REGNO (v->new_reg)] = value;
	    }
	  else
	    {
	      /* Splitting address givs is useful since it will often allow us
		 to eliminate some increment insns for the base giv as
		 unnecessary.  */

	      /* If the addr giv is combined with a dest_reg giv, then all
		 references to that dest reg will be remapped, which is NOT
		 what we want for split addr regs. We always create a new
		 register for the split addr giv, just to be safe.  */

	      /* ??? If there are multiple address givs which have been
		 combined with the same dest_reg giv, then we may only need
		 one new register for them.  Pulling out constants below will
		 catch some of the common cases of this.  Currently, I leave
		 the work of simplifying multiple address givs to the
		 following cse pass.  */
	      
	      /* As a special case, if we have multiple identical address givs
		 within a single instruction, then we do use a single psuedo
		 reg for both.  This is necessary in case one is a match_dup
		 of the other.  */

	      v->const_adjust = 0;

	      if (v->same && v->same->insn == v->insn
		  && v->new_reg == v->same->new_reg)
		{
		  v->dest_reg = v->same->dest_reg;
		  if (loop_dump_stream)
		    fprintf (loop_dump_stream,
			     "Sharing address givs with reg %d\n",
			     REGNO (v->dest_reg));
		}
	      else if (unroll_type != UNROLL_COMPLETELY)
		{
		  /* If not completely unrolling the loop, then create a new
		     register to hold the split value of the DEST_ADDR giv.
		     Emit insn to initialize its value before loop start.  */
		  tem = gen_reg_rtx (v->mode);

		  /* If the address giv has a constant in its new_reg value,
		     then this constant can be pulled out and put in value,
		     instead of being part of the initialization code.  */
		  
		  if (GET_CODE (v->new_reg) == PLUS
		      && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
		    {
		      v->dest_reg
			= plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
		      
		      /* Only succeed if this will give valid addresses.
			 Try to validate both the first and the last
			 address resulting from loop unrolling, if
			 one fails, then can't do const elim here.  */
		      if (memory_address_p (v->mem_mode, v->dest_reg)
			  && memory_address_p (v->mem_mode,
				       plus_constant (v->dest_reg,
						      INTVAL (giv_inc)
						      * (unroll_number - 1))))
			{
			  /* Save the negative of the eliminated const, so
			     that we can calculate the dest_reg's increment
			     value later.  */
			  v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));

			  v->new_reg = XEXP (v->new_reg, 0);
			  if (loop_dump_stream)
			    fprintf (loop_dump_stream,
				     "Eliminating constant from giv %d\n",
				     REGNO (tem));
			}
		      else
			v->dest_reg = tem;
		    }
		  else
		    v->dest_reg = tem;
		  
		  /* If the address hasn't been checked for validity yet, do so
		     now, and fail completely if either the first or the last
		     unrolled copy of the address is not a valid address.  */
		  if (v->dest_reg == tem
		      && (! memory_address_p (v->mem_mode, v->dest_reg)
			  || ! memory_address_p (v->mem_mode,
				 plus_constant (v->dest_reg,
						INTVAL (giv_inc)
						* (unroll_number -1)))))
		    {
		      if (loop_dump_stream)
			fprintf (loop_dump_stream,
				 "Illegal address for giv at insn %d\n",
				 INSN_UID (v->insn));
		      continue;
		    }
		  
		  /* To initialize the new register, just move the value of
		     new_reg into it.  This is not guaranteed to give a valid
		     instruction on machines with complex addressing modes.
		     If we can't recognize it, then delete it and emit insns
		     to calculate the value from scratch.  */
		  emit_insn_before (gen_rtx (SET, VOIDmode, tem,
					     copy_rtx (v->new_reg)),
				    loop_start);
		  if (recog_memoized (PREV_INSN (loop_start)) < 0)
		    {
		      rtx sequence, ret;

		      /* We can't use bl->initial_value to compute the initial
			 value, because the loop may have been preconditioned.
			 We must calculate it from NEW_REG.  Try using
			 force_operand instead of emit_iv_add_mult.  */
		      delete_insn (PREV_INSN (loop_start));

		      start_sequence ();
		      ret = force_operand (v->new_reg, tem);
		      if (ret != tem)
			emit_move_insn (tem, ret);
		      sequence = gen_sequence ();
		      end_sequence ();
		      emit_insn_before (sequence, loop_start);

		      if (loop_dump_stream)
			fprintf (loop_dump_stream,
				 "Illegal init insn, rewritten.\n");
		    }
		}
	      else
		{
		  v->dest_reg = value;
		  
		  /* Check the resulting address for validity, and fail
		     if the resulting address would be illegal.  */
		  if (! memory_address_p (v->mem_mode, v->dest_reg)
		      || ! memory_address_p (v->mem_mode,
				     plus_constant (v->dest_reg,
						    INTVAL (giv_inc) *
						    (unroll_number -1))))
		    {
		      if (loop_dump_stream)
			fprintf (loop_dump_stream,
				 "Illegal address for giv at insn %d\n",
				 INSN_UID (v->insn));
		      continue;
		    }
		}
	      
	      /* Store the value of dest_reg into the insn.  This sharing
		 will not be a problem as this insn will always be copied
		 later.  */
	      
	      *v->location = v->dest_reg;
	      
	      /* If this address giv is combined with a dest reg giv, then
		 save the base giv's induction pointer so that we will be
		 able to handle this address giv properly.  The base giv
		 itself does not have to be splittable.  */
	      
	      if (v->same && v->same->giv_type == DEST_REG)
		addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
	      
	      if (GET_CODE (v->new_reg) == REG)
		{
		  /* This giv maybe hasn't been combined with any others.
		     Make sure that it's giv is marked as splittable here.  */
		  
		  splittable_regs[REGNO (v->new_reg)] = value;
		  
		  /* Make it appear to depend upon itself, so that the
		     giv will be properly split in the main loop above.  */
		  if (! v->same)
		    {
		      v->same = v;
		      addr_combined_regs[REGNO (v->new_reg)] = v;
		    }
		}

	      if (loop_dump_stream)
		fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
	    }
	}
      else
	{
#if 0
	  /* Currently, unreduced giv's can't be split.  This is not too much
	     of a problem since unreduced giv's are not live across loop
	     iterations anyways.  When unrolling a loop completely though,
	     it makes sense to reduce&split givs when possible, as this will
	     result in simpler instructions, and will not require that a reg
	     be live across loop iterations.  */
	  
	  splittable_regs[REGNO (v->dest_reg)] = value;
	  fprintf (stderr, "Giv %d at insn %d not reduced\n",
		   REGNO (v->dest_reg), INSN_UID (v->insn));
#else
	  continue;
#endif
	}
      
      /* Givs are only updated once by definition.  Mark it so if this is
	 a splittable register.  Don't need to do anything for address givs
	 where this may not be a register.  */

      if (GET_CODE (v->new_reg) == REG)
	splittable_regs_updates[REGNO (v->new_reg)] = 1;

      result++;
      
      if (loop_dump_stream)
	{
	  int regnum;
	  
	  if (GET_CODE (v->dest_reg) == CONST_INT)
	    regnum = -1;
	  else if (GET_CODE (v->dest_reg) != REG)
	    regnum = REGNO (XEXP (v->dest_reg, 0));
	  else
	    regnum = REGNO (v->dest_reg);
	  fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
		   regnum, INSN_UID (v->insn));
	}
    }

  return result;
}

/* Try to prove that the register is dead after the loop exits.  Trace every
   loop exit looking for an insn that will always be executed, which sets
   the register to some value, and appears before the first use of the register
   is found.  If successful, then return 1, otherwise return 0.  */

/* ?? Could be made more intelligent in the handling of jumps, so that
   it can search past if statements and other similar structures.  */

static int
reg_dead_after_loop (reg, loop_start, loop_end)
     rtx reg, loop_start, loop_end;
{
  rtx insn, label;
  enum rtx_code code;
  int jump_count = 0;

  /* HACK: Must also search the loop fall through exit, create a label_ref
     here which points to the loop_end, and append the loop_number_exit_labels
     list to it.  */
  label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
  LABEL_NEXTREF (label)
    = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];

  for ( ; label; label = LABEL_NEXTREF (label))
    {
      /* Succeed if find an insn which sets the biv or if reach end of
	 function.  Fail if find an insn that uses the biv, or if come to
	 a conditional jump.  */

      insn = NEXT_INSN (XEXP (label, 0));
      while (insn)
	{
	  code = GET_CODE (insn);
	  if (GET_RTX_CLASS (code) == 'i')
	    {
	      rtx set;

	      if (reg_referenced_p (reg, PATTERN (insn)))
		return 0;

	      set = single_set (insn);
	      if (set && rtx_equal_p (SET_DEST (set), reg))
		break;
	    }

	  if (code == JUMP_INSN)
	    {
	      if (GET_CODE (PATTERN (insn)) == RETURN)
		break;
	      else if (! simplejump_p (insn)
		       /* Prevent infinite loop following infinite loops. */
		       || jump_count++ > 20)
		return 0;
	      else
		insn = JUMP_LABEL (insn);
	    }

	  insn = NEXT_INSN (insn);
	}
    }

  /* Success, the register is dead on all loop exits.  */
  return 1;
}

/* Try to calculate the final value of the biv, the value it will have at
   the end of the loop.  If we can do it, return that value.  */
  
rtx
final_biv_value (bl, loop_start, loop_end)
     struct iv_class *bl;
     rtx loop_start, loop_end;
{
  rtx increment, tem;

  /* ??? This only works for MODE_INT biv's.  Reject all others for now.  */

  if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
    return 0;

  /* The final value for reversed bivs must be calculated differently than
      for ordinary bivs.  In this case, there is already an insn after the
     loop which sets this biv's final value (if necessary), and there are
     no other loop exits, so we can return any value.  */
  if (bl->reversed)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Final biv value for %d, reversed biv.\n", bl->regno);
		 
      return const0_rtx;
    }

  /* Try to calculate the final value as initial value + (number of iterations
     * increment).  For this to work, increment must be invariant, the only
     exit from the loop must be the fall through at the bottom (otherwise
     it may not have its final value when the loop exits), and the initial
     value of the biv must be invariant.  */

  if (loop_n_iterations != 0
      && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
      && invariant_p (bl->initial_value))
    {
      increment = biv_total_increment (bl, loop_start, loop_end);
      
      if (increment && invariant_p (increment))
	{
	  /* Can calculate the loop exit value, emit insns after loop
	     end to calculate this value into a temporary register in
	     case it is needed later.  */

	  tem = gen_reg_rtx (bl->biv->mode);
	  /* Make sure loop_end is not the last insn.  */
	  if (NEXT_INSN (loop_end) == 0)
	    emit_note_after (NOTE_INSN_DELETED, loop_end);
	  emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
			    bl->initial_value, tem, NEXT_INSN (loop_end));

	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
		     "Final biv value for %d, calculated.\n", bl->regno);
	  
	  return tem;
	}
    }

  /* Check to see if the biv is dead at all loop exits.  */
  if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Final biv value for %d, biv dead after loop exit.\n",
		 bl->regno);

      return const0_rtx;
    }

  return 0;
}

/* Try to calculate the final value of the giv, the value it will have at
   the end of the loop.  If we can do it, return that value.  */

rtx
final_giv_value (v, loop_start, loop_end)
     struct induction *v;
     rtx loop_start, loop_end;
{
  struct iv_class *bl;
  rtx insn;
  rtx increment, tem;
  rtx insert_before, seq;

  bl = reg_biv_class[REGNO (v->src_reg)];

  /* The final value for givs which depend on reversed bivs must be calculated
     differently than for ordinary givs.  In this case, there is already an
     insn after the loop which sets this giv's final value (if necessary),
     and there are no other loop exits, so we can return any value.  */
  if (bl->reversed)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Final giv value for %d, depends on reversed biv\n",
		 REGNO (v->dest_reg));
      return const0_rtx;
    }

  /* Try to calculate the final value as a function of the biv it depends
     upon.  The only exit from the loop must be the fall through at the bottom
     (otherwise it may not have its final value when the loop exits).  */
      
  /* ??? Can calculate the final giv value by subtracting off the
     extra biv increments times the giv's mult_val.  The loop must have
     only one exit for this to work, but the loop iterations does not need
     to be known.  */

  if (loop_n_iterations != 0
      && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
    {
      /* ?? It is tempting to use the biv's value here since these insns will
	 be put after the loop, and hence the biv will have its final value
	 then.  However, this fails if the biv is subsequently eliminated.
	 Perhaps determine whether biv's are eliminable before trying to
	 determine whether giv's are replaceable so that we can use the
	 biv value here if it is not eliminable.  */

      increment = biv_total_increment (bl, loop_start, loop_end);

      if (increment && invariant_p (increment))
	{
	  /* Can calculate the loop exit value of its biv as
	     (loop_n_iterations * increment) + initial_value */
	      
	  /* The loop exit value of the giv is then
	     (final_biv_value - extra increments) * mult_val + add_val.
	     The extra increments are any increments to the biv which
	     occur in the loop after the giv's value is calculated.
	     We must search from the insn that sets the giv to the end
	     of the loop to calculate this value.  */

	  insert_before = NEXT_INSN (loop_end);

	  /* Put the final biv value in tem.  */
	  tem = gen_reg_rtx (bl->biv->mode);
	  emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
			    bl->initial_value, tem, insert_before);

	  /* Subtract off extra increments as we find them.  */
	  for (insn = NEXT_INSN (v->insn); insn != loop_end;
	       insn = NEXT_INSN (insn))
	    {
	      struct induction *biv;

	      for (biv = bl->biv; biv; biv = biv->next_iv)
		if (biv->insn == insn)
		  {
		    start_sequence ();
		    tem = expand_binop (GET_MODE (tem), sub_optab, tem,
					biv->add_val, NULL_RTX, 0,
					OPTAB_LIB_WIDEN);
		    seq = gen_sequence ();
		    end_sequence ();
		    emit_insn_before (seq, insert_before);
		  }
	    }
	  
	  /* Now calculate the giv's final value.  */
	  emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
			    insert_before);
	  
	  if (loop_dump_stream)
	    fprintf (loop_dump_stream,
		     "Final giv value for %d, calc from biv's value.\n",
		     REGNO (v->dest_reg));

	  return tem;
	}
    }

  /* Replaceable giv's should never reach here.  */
  if (v->replaceable)
    abort ();

  /* Check to see if the biv is dead at all loop exits.  */
  if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Final giv value for %d, giv dead after loop exit.\n",
		 REGNO (v->dest_reg));

      return const0_rtx;
    }

  return 0;
}


/* Calculate the number of loop iterations.  Returns the exact number of loop
   iterations if it can be calculated, otherwise returns zero.  */

unsigned HOST_WIDE_INT
loop_iterations (loop_start, loop_end)
     rtx loop_start, loop_end;
{
  rtx comparison, comparison_value;
  rtx iteration_var, initial_value, increment, final_value;
  enum rtx_code comparison_code;
  HOST_WIDE_INT i;
  int increment_dir;
  int unsigned_compare, compare_dir, final_larger;
  unsigned long tempu;
  rtx last_loop_insn;

  /* First find the iteration variable.  If the last insn is a conditional
     branch, and the insn before tests a register value, make that the
     iteration variable.  */
  
  loop_initial_value = 0;
  loop_increment = 0;
  loop_final_value = 0;
  loop_iteration_var = 0;

  last_loop_insn = prev_nonnote_insn (loop_end);

  comparison = get_condition_for_loop (last_loop_insn);
  if (comparison == 0)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: No final conditional branch found.\n");
      return 0;
    }

  /* ??? Get_condition may switch position of induction variable and
     invariant register when it canonicalizes the comparison.  */

  comparison_code = GET_CODE (comparison);
  iteration_var = XEXP (comparison, 0);
  comparison_value = XEXP (comparison, 1);

  if (GET_CODE (iteration_var) != REG)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: Comparison not against register.\n");
      return 0;
    }

  /* Loop iterations is always called before any new registers are created
     now, so this should never occur.  */

  if (REGNO (iteration_var) >= max_reg_before_loop)
    abort ();

  iteration_info (iteration_var, &initial_value, &increment,
		  loop_start, loop_end);
  if (initial_value == 0)
    /* iteration_info already printed a message.  */
    return 0;

  if (increment == 0)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: Increment value can't be calculated.\n");
      return 0;
    }
  if (GET_CODE (increment) != CONST_INT)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: Increment value not constant.\n");
      return 0;
    }
  if (GET_CODE (initial_value) != CONST_INT)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: Initial value not constant.\n");
      return 0;
    }

  /* If the comparison value is an invariant register, then try to find
     its value from the insns before the start of the loop.  */

  if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
    {
      rtx insn, set;
    
      for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
	{
	  if (GET_CODE (insn) == CODE_LABEL)
	    break;

	  else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
		   && reg_set_p (comparison_value, insn))
	    {
	      /* We found the last insn before the loop that sets the register.
		 If it sets the entire register, and has a REG_EQUAL note,
		 then use the value of the REG_EQUAL note.  */
	      if ((set = single_set (insn))
		  && (SET_DEST (set) == comparison_value))
		{
		  rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);

		  if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
		    comparison_value = XEXP (note, 0);
		}
	      break;
	    }
	}
    }

  final_value = approx_final_value (comparison_code, comparison_value,
				    &unsigned_compare, &compare_dir);

  /* Save the calculated values describing this loop's bounds, in case
     precondition_loop_p will need them later.  These values can not be
     recalculated inside precondition_loop_p because strength reduction
     optimizations may obscure the loop's structure.  */

  loop_iteration_var = iteration_var;
  loop_initial_value = initial_value;
  loop_increment = increment;
  loop_final_value = final_value;

  if (final_value == 0)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: EQ comparison loop.\n");
      return 0;
    }
  else if (GET_CODE (final_value) != CONST_INT)
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: Final value not constant.\n");
      return 0;
    }

  /* ?? Final value and initial value do not have to be constants.
     Only their difference has to be constant.  When the iteration variable
     is an array address, the final value and initial value might both
     be addresses with the same base but different constant offsets.
     Final value must be invariant for this to work.

     To do this, need some way to find the values of registers which are
     invariant.  */

  /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1.  */
  if (unsigned_compare)
    final_larger
      = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
	 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
	- ((unsigned HOST_WIDE_INT) INTVAL (final_value)
	   < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
  else
    final_larger = (INTVAL (final_value) > INTVAL (initial_value))
      - (INTVAL (final_value) < INTVAL (initial_value));

  if (INTVAL (increment) > 0)
    increment_dir = 1;
  else if (INTVAL (increment) == 0)
    increment_dir = 0;
  else
    increment_dir = -1;

  /* There are 27 different cases: compare_dir = -1, 0, 1;
     final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
     There are 4 normal cases, 4 reverse cases (where the iteration variable
     will overflow before the loop exits), 4 infinite loop cases, and 15
     immediate exit (0 or 1 iteration depending on loop type) cases.
     Only try to optimize the normal cases.  */
     
  /* (compare_dir/final_larger/increment_dir)
     Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
     Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
     Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
     Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */

  /* ?? If the meaning of reverse loops (where the iteration variable
     will overflow before the loop exits) is undefined, then could
     eliminate all of these special checks, and just always assume
     the loops are normal/immediate/infinite.  Note that this means
     the sign of increment_dir does not have to be known.  Also,
     since it does not really hurt if immediate exit loops or infinite loops
     are optimized, then that case could be ignored also, and hence all
     loops can be optimized.

     According to ANSI Spec, the reverse loop case result is undefined,
     because the action on overflow is undefined.

     See also the special test for NE loops below.  */

  if (final_larger == increment_dir && final_larger != 0
      && (final_larger == compare_dir || compare_dir == 0))
    /* Normal case.  */
    ;
  else
    {
      if (loop_dump_stream)
	fprintf (loop_dump_stream,
		 "Loop unrolling: Not normal loop.\n");
      return 0;
    }

  /* Calculate the number of iterations, final_value is only an approximation,
     so correct for that.  Note that tempu and loop_n_iterations are
     unsigned, because they can be as large as 2^n - 1.  */

  i = INTVAL (increment);
  if (i > 0)
    tempu = INTVAL (final_value) - INTVAL (initial_value);
  else if (i < 0)
    {
      tempu = INTVAL (initial_value) - INTVAL (final_value);
      i = -i;
    }
  else
    abort ();

  /* For NE tests, make sure that the iteration variable won't miss the
     final value.  If tempu mod i is not zero, then the iteration variable
     will overflow before the loop exits, and we can not calculate the
     number of iterations.  */
  if (compare_dir == 0 && (tempu % i) != 0)
    return 0;

  return tempu / i + ((tempu % i) != 0);
}

/* Replace uses of split bivs with their split psuedo register.  This is
   for original instructions which remain after loop unrolling without
   copying.  */

static rtx
remap_split_bivs (x)
     rtx x;
{
  register enum rtx_code code;
  register int i;
  register char *fmt;

  if (x == 0)
    return x;

  code = GET_CODE (x);
  switch (code)
    {
    case SCRATCH:
    case PC:
    case CC0:
    case CONST_INT:
    case CONST_DOUBLE:
    case CONST:
    case SYMBOL_REF:
    case LABEL_REF:
      return x;

    case REG:
#if 0
      /* If non-reduced/final-value givs were split, then this would also
	 have to remap those givs also.  */
#endif
      if (REGNO (x) < max_reg_before_loop
	  && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
	return reg_biv_class[REGNO (x)]->biv->src_reg;
    }

  fmt = GET_RTX_FORMAT (code);
  for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
    {
      if (fmt[i] == 'e')
	XEXP (x, i) = remap_split_bivs (XEXP (x, i));
      if (fmt[i] == 'E')
	{
	  register int j;
	  for (j = 0; j < XVECLEN (x, i); j++)
	    XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
	}
    }
  return x;
}