aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-vectorizer.c
blob: e4de78637d3ac34dc1e22b9e95628f66fae36bda (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
/* Loop Vectorization
   Copyright (C) 2003, 2004 Free Software Foundation, Inc.
   Contributed by Dorit Naishlos <dorit@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.  */

/* Loop Vectorization Pass.

   This pass tries to vectorize loops. This first implementation focuses on
   simple inner-most loops, with no conditional control flow, and a set of
   simple operations which vector form can be expressed using existing
   tree codes (PLUS, MULT etc).

   For example, the vectorizer transforms the following simple loop:

	short a[N]; short b[N]; short c[N]; int i;

	for (i=0; i<N; i++){
	  a[i] = b[i] + c[i];
	}

   as if it was manually vectorized by rewriting the source code into:

	typedef int __attribute__((mode(V8HI))) v8hi;
	short a[N];  short b[N]; short c[N];   int i;
	v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
	v8hi va, vb, vc;

	for (i=0; i<N/8; i++){
	  vb = pb[i];
	  vc = pc[i];
	  va = vb + vc;
	  pa[i] = va;
	}

	The main entry to this pass is vectorize_loops(), in which
   the vectorizer applies a set of analyses on a given set of loops,
   followed by the actual vectorization transformation for the loops that
   had successfully passed the analysis phase.

	Throughout this pass we make a distinction between two types of
   data: scalars (which are represented by SSA_NAMES), and memory references
   ("data-refs"). These two types of data require different handling both 
   during analysis and transformation. The types of data-refs that the 
   vectorizer currently supports are ARRAY_REFS which base is an array DECL 
   (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
   accesses are required to have a  simple (consecutive) access pattern.

   Analysis phase:
   ===============
	The driver for the analysis phase is vect_analyze_loop_nest().
   It applies a set of analyses, some of which rely on the scalar evolution 
   analyzer (scev) developed by Sebastian Pop.

	During the analysis phase the vectorizer records some information
   per stmt in a "stmt_vec_info" struct which is attached to each stmt in the 
   loop, as well as general information about the loop as a whole, which is
   recorded in a "loop_vec_info" struct attached to each loop.

   Transformation phase:
   =====================
	The loop transformation phase scans all the stmts in the loop, and
   creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
   the loop that needs to be vectorized. It insert the vector code sequence
   just before the scalar stmt S, and records a pointer to the vector code
   in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct 
   attached to S). This pointer will be used for the vectorization of following
   stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
   otherwise, we rely on dead code elimination for removing it.

	For example, say stmt S1 was vectorized into stmt VS1:

   VS1: vb = px[i];
   S1:	b = x[i];    STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
   S2:  a = b;

   To vectorize stmt S2, the vectorizer first finds the stmt that defines
   the operand 'b' (S1), and gets the relevant vector def 'vb' from the
   vector stmt VS1 pointed by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
   resulting sequence would be:

   VS1: vb = px[i];
   S1:	b = x[i];	STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
   VS2: va = vb;
   S2:  a = b;          STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2

	Operands that are not SSA_NAMEs, are data-refs that appear in 
   load/store operations (like 'x[i]' in S1), and are handled differently.

   Target modeling:
   =================
	Currently the only target specific information that is used is the
   size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can 
   support different sizes of vectors, for now will need to specify one value 
   for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.

	Since we only vectorize operations which vector form can be
   expressed using existing tree codes, to verify that an operation is
   supported, the vectorizer checks the relevant optab at the relevant
   machine_mode (e.g, add_optab->handlers[(int) V8HImode].insn_code). If
   the value found is CODE_FOR_nothing, then there's no target support, and
   we can't vectorize the stmt.

   For additional information on this project see:
   http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"

#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "expr.h"
#include "optabs.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "tree-pass.h"

/* Main analysis functions.  */
static loop_vec_info vect_analyze_loop (struct loop *);
static loop_vec_info vect_analyze_loop_form (struct loop *);
static bool vect_analyze_data_refs (loop_vec_info);
static bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
static bool vect_analyze_scalar_cycles (loop_vec_info);
static bool vect_analyze_data_ref_accesses (loop_vec_info);
static bool vect_analyze_data_refs_alignment (loop_vec_info);
static void vect_compute_data_refs_alignment (loop_vec_info);
static bool vect_analyze_operations (loop_vec_info);

/* Main code transformation functions.  */
static void vect_transform_loop (loop_vec_info, struct loops *);
static void vect_transform_loop_bound (loop_vec_info);
static bool vect_transform_stmt (tree, block_stmt_iterator *);
static bool vectorizable_load (tree, block_stmt_iterator *, tree *);
static bool vectorizable_store (tree, block_stmt_iterator *, tree *);
static bool vectorizable_operation (tree, block_stmt_iterator *, tree *);
static bool vectorizable_assignment (tree, block_stmt_iterator *, tree *);
static void vect_align_data_ref (tree);
static void vect_enhance_data_refs_alignment (loop_vec_info);

/* Utility functions for the analyses.  */
static bool vect_is_simple_use (tree , struct loop *, tree *);
static bool exist_non_indexing_operands_for_use_p (tree, tree);
static bool vect_is_simple_iv_evolution (unsigned, tree, tree *, tree *, bool);
static void vect_mark_relevant (varray_type, tree);
static bool vect_stmt_relevant_p (tree, loop_vec_info);
static tree vect_get_loop_niters (struct loop *, HOST_WIDE_INT *);
static bool vect_compute_data_ref_alignment 
  (struct data_reference *, loop_vec_info);
static bool vect_analyze_data_ref_access (struct data_reference *);
static bool vect_get_first_index (tree, tree *);
static bool vect_can_force_dr_alignment_p (tree, unsigned int);
static struct data_reference * vect_analyze_pointer_ref_access 
  (tree, tree, bool);
static tree vect_get_base_and_bit_offset
  (struct data_reference *, tree, tree, loop_vec_info, tree *, bool*);
static struct data_reference * vect_analyze_pointer_ref_access
  (tree, tree, bool);
static tree vect_compute_array_base_alignment (tree, tree, tree *, tree *);
static tree vect_compute_array_ref_alignment
  (struct data_reference *, loop_vec_info, tree, tree *);
static tree vect_get_ptr_offset (tree, tree, tree *);
static tree vect_get_symbl_and_dr
  (tree, tree, bool, loop_vec_info, struct data_reference **);

/* Utility functions for the code transformation.  */
static tree vect_create_destination_var (tree, tree);
static tree vect_create_data_ref_ptr 
  (tree, block_stmt_iterator *, tree, tree *, bool); 
static tree vect_create_index_for_vector_ref 
  (struct loop *, block_stmt_iterator *);
static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree);
static tree get_vectype_for_scalar_type (tree);
static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
static tree vect_get_vec_def_for_operand (tree, tree);
static tree vect_init_vector (tree, tree);
static void vect_finish_stmt_generation 
  (tree stmt, tree vec_stmt, block_stmt_iterator *bsi);

/* Utilities for creation and deletion of vec_info structs.  */
loop_vec_info new_loop_vec_info (struct loop *loop);
void destroy_loop_vec_info (loop_vec_info);
stmt_vec_info new_stmt_vec_info (tree stmt, struct loop *loop);

static bool vect_debug_stats (struct loop *loop);
static bool vect_debug_details (struct loop *loop);


/* Function new_stmt_vec_info.

   Create and initialize a new stmt_vec_info struct for STMT.  */

stmt_vec_info
new_stmt_vec_info (tree stmt, struct loop *loop)
{
  stmt_vec_info res;
  res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));

  STMT_VINFO_TYPE (res) = undef_vec_info_type;
  STMT_VINFO_STMT (res) = stmt;
  STMT_VINFO_LOOP (res) = loop;
  STMT_VINFO_RELEVANT_P (res) = 0;
  STMT_VINFO_VECTYPE (res) = NULL;
  STMT_VINFO_VEC_STMT (res) = NULL;
  STMT_VINFO_DATA_REF (res) = NULL;
  STMT_VINFO_MEMTAG (res) = NULL;
  STMT_VINFO_VECT_DR_BASE (res) = NULL;

  return res;
}


/* Function new_loop_vec_info.

   Create and initialize a new loop_vec_info struct for LOOP, as well as
   stmt_vec_info structs for all the stmts in LOOP.  */

loop_vec_info
new_loop_vec_info (struct loop *loop)
{
  loop_vec_info res;
  basic_block *bbs;
  block_stmt_iterator si;
  unsigned int i;

  res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));

  bbs = get_loop_body (loop);

  /* Create stmt_info for all stmts in the loop.  */
  for (i = 0; i < loop->num_nodes; i++)
    {
      basic_block bb = bbs[i];
      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  tree stmt = bsi_stmt (si);
	  stmt_ann_t ann;

	  get_stmt_operands (stmt);
	  ann = stmt_ann (stmt);
	  set_stmt_info (ann, new_stmt_vec_info (stmt, loop));
	}
    }

  LOOP_VINFO_LOOP (res) = loop;
  LOOP_VINFO_BBS (res) = bbs;
  LOOP_VINFO_EXIT_COND (res) = NULL;
  LOOP_VINFO_NITERS (res) = -1;
  LOOP_VINFO_VECTORIZABLE_P (res) = 0;
  LOOP_VINFO_VECT_FACTOR (res) = 0;
  VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_WRITES (res), 20,
			   "loop_write_datarefs");
  VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_READS (res), 20,
			   "loop_read_datarefs");
  return res;
}


/* Function destroy_loop_vec_info.
 
   Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the 
   stmts in the loop.  */

void
destroy_loop_vec_info (loop_vec_info loop_vinfo)
{
  struct loop *loop;
  basic_block *bbs;
  int nbbs;
  block_stmt_iterator si;
  int j;

  if (!loop_vinfo)
    return;

  loop = LOOP_VINFO_LOOP (loop_vinfo);

  bbs = LOOP_VINFO_BBS (loop_vinfo);
  nbbs = loop->num_nodes;

  for (j = 0; j < nbbs; j++)
    {
      basic_block bb = bbs[j];
      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  tree stmt = bsi_stmt (si);
	  stmt_ann_t ann = stmt_ann (stmt);
	  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
	  free (stmt_info);
	  set_stmt_info (ann, NULL);
	}
    }

  free (LOOP_VINFO_BBS (loop_vinfo));
  varray_clear (LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
  varray_clear (LOOP_VINFO_DATAREF_READS (loop_vinfo));

  free (loop_vinfo);
}


/* Function debug_loop_stats.

   For vectorization statistics dumps.  */

static bool
vect_debug_stats (struct loop *loop)
{
  basic_block bb;
  block_stmt_iterator si;
  tree node = NULL_TREE;

  if (!dump_file || !(dump_flags & TDF_STATS))
    return false;

  if (!loop)
    {
      fprintf (dump_file, "\n");
      return true;
    }

  if (!loop->header)
    return false;

  bb = loop->header;

  for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
    {
      node = bsi_stmt (si);
      if (node && EXPR_P (node) && EXPR_LOCUS (node))
        break;
    }

  if (node && EXPR_P (node) && EXPR_LOCUS (node) 
      && EXPR_FILENAME (node) && EXPR_LINENO (node))
    {
      fprintf (dump_file, "\nloop at %s:%d: ", 
	EXPR_FILENAME (node), EXPR_LINENO (node));
      return true;
    }

  return false;
}


/* Function debug_loop_details.

   For vectorization debug dumps.  */

static bool
vect_debug_details (struct loop *loop)
{
   basic_block bb;
   block_stmt_iterator si;
   tree node = NULL_TREE;

  if (!dump_file || !(dump_flags & TDF_DETAILS))
    return false;

  if (!loop)
    {
      fprintf (dump_file, "\n");
      return true;
    }

  if (!loop->header)
    return false;

  bb = loop->header;

  for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
    {
      node = bsi_stmt (si);
      if (node && EXPR_P (node) && EXPR_LOCUS (node))
	break;
    }

  if (node && EXPR_P (node) && EXPR_LOCUS (node)
      && EXPR_FILENAME (node) && EXPR_LINENO (node))
    {
      fprintf (dump_file, "\nloop at %s:%d: ", 
               EXPR_FILENAME (node), EXPR_LINENO (node));
      return true;
    }

  return false;
}


/* Function vect_get_ptr_offset

   Compute the OFFSET modulo vector-type alignment of pointer REF in bits.  */

static tree 
vect_get_ptr_offset (tree ref ATTRIBUTE_UNUSED, 
		     tree vectype ATTRIBUTE_UNUSED, 
		     tree *offset ATTRIBUTE_UNUSED)
{
  /* TODO: Use alignment information.  */
  return NULL_TREE; 
}


/* Function vect_get_base_and_bit_offset

   Return the BASE of the data reference EXPR.
   If VECTYPE is given, also compute the OFFSET from BASE in bits.
   E.g., for EXPR a.b[i] + 4B, BASE is a, and OFFSET is the overall offset in 
   bits of 'a.b[i] + 4B' from a.

   Input:
   EXPR - the memory reference that is being analyzed
   DR - the data_reference struct of the _original_ memory reference
        (Note: DR_REF (DR) is not necessarily EXPR)
   VECTYPE - the type that defines the alignment (i.e, we compute
             alignment relative to TYPE_ALIGN(VECTYPE))
   
   Output:
   BASE (returned value) - the base of the data reference EXPR.
                           E.g, if EXPR is a.b[k].c[i][j] the returned
			   base is a.
   OFFSET - offset of EXPR from BASE in bits
   BASE_ALIGNED_P - indicates if BASE is aligned
 
   If something unexpected is encountered (an unsupported form of data-ref),
   or if VECTYPE is given but OFFSET cannot be determined:
   then NULL_TREE is returned.  */

static tree 
vect_get_base_and_bit_offset (struct data_reference *dr, 
			      tree expr, 
			      tree vectype, 
			      loop_vec_info loop_vinfo,
			      tree *offset,
			      bool *base_aligned_p)
{
  tree this_offset = size_zero_node;
  tree base = NULL_TREE;
  tree next_ref;
  tree oprnd0, oprnd1;
  struct data_reference *array_dr;
  enum tree_code code = TREE_CODE (expr);

  *base_aligned_p = false;

  switch (code)
    {
    /* These cases end the recursion:  */
    case VAR_DECL:
      *offset = size_zero_node;
      if (vectype && DECL_ALIGN (expr) >= TYPE_ALIGN (vectype))
	*base_aligned_p = true;
      return expr;

    case SSA_NAME:
      if (!vectype)
	return expr;

      if (TREE_CODE (TREE_TYPE (expr)) != POINTER_TYPE)
	return NULL_TREE;
      
      if (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (expr))) < TYPE_ALIGN (vectype)) 
	{
	  base = vect_get_ptr_offset (expr, vectype, offset);
	  if (base)
	    *base_aligned_p = true;
	}
      else
	{	  
	  *base_aligned_p = true;
	  *offset = size_zero_node;
	  base = expr;
	}
      return base;
      
    case INTEGER_CST:      
      *offset = int_const_binop (MULT_EXPR, expr,     
				 build_int_cst (NULL_TREE, BITS_PER_UNIT), 1);
      return expr;

    /* These cases continue the recursion:  */
    case COMPONENT_REF:
      oprnd0 = TREE_OPERAND (expr, 0);
      oprnd1 = TREE_OPERAND (expr, 1);

      this_offset = bit_position (oprnd1);
      if (vectype && !host_integerp (this_offset, 1))
        return NULL_TREE;
      next_ref = oprnd0;
      break;

    case ADDR_EXPR:
      oprnd0 = TREE_OPERAND (expr, 0);
      next_ref = oprnd0;
      break;

    case INDIRECT_REF:
      oprnd0 = TREE_OPERAND (expr, 0);
      next_ref = oprnd0;
      break;
    
    case ARRAY_REF:
      if (DR_REF (dr) != expr)
	/* Build array data_reference struct if the existing DR_REF 
	   doesn't match EXPR. This happens, for example, when the 
	   EXPR is *T and T is initialized to &arr[indx]. The DR struct
	   contains information on the access of T, not of arr. In order
	   to continue  the analysis, we create a new DR struct that
	   describes the access of arr.  
	*/
	array_dr = analyze_array (DR_STMT (dr), expr, DR_IS_READ (dr));
      else
	array_dr = dr;
	  
      next_ref = vect_compute_array_ref_alignment (array_dr, loop_vinfo,  
						   vectype, &this_offset);
      if (!next_ref)
	return NULL_TREE;

      if (vectype &&
	  TYPE_ALIGN (TREE_TYPE (TREE_TYPE (next_ref))) >= TYPE_ALIGN (vectype))
	{
	  *offset = this_offset;
	  *base_aligned_p = true;
	  return next_ref;
	}
      break;

    case PLUS_EXPR:
    case MINUS_EXPR:
      /* In case we have a PLUS_EXPR of the form
	 (oprnd0 + oprnd1), we assume that only oprnd0 determines the base. 
	 This is verified in  vect_get_symbl_and_dr.  */ 
      oprnd0 = TREE_OPERAND (expr, 0);
      oprnd1 = TREE_OPERAND (expr, 1);

      base = vect_get_base_and_bit_offset 
	(dr, oprnd1, vectype, loop_vinfo, &this_offset, base_aligned_p);  
      if (vectype && !base) 
	return NULL_TREE;

      next_ref = oprnd0;
      break;

    default:
      return NULL_TREE;
    }

  base = vect_get_base_and_bit_offset (dr, next_ref, vectype, 
				       loop_vinfo, offset, base_aligned_p);  

  if (vectype && base)
    {
      *offset = int_const_binop (PLUS_EXPR, *offset, this_offset, 1);
      if (!host_integerp (*offset, 1) || TREE_OVERFLOW (*offset))
        return NULL_TREE;

      if (vect_debug_details (NULL))
        {
          print_generic_expr (dump_file, expr, TDF_SLIM);
          fprintf (dump_file, " --> total offset for ref: ");
          print_generic_expr (dump_file, *offset, TDF_SLIM);
        }
    }    
  return base;
}



/* Function vect_force_dr_alignment_p.

   Returns whether the alignment of a DECL can be forced to be aligned
   on ALIGNMENT bit boundary.  */

static bool 
vect_can_force_dr_alignment_p (tree decl, unsigned int alignment)
{
  if (TREE_CODE (decl) != VAR_DECL)
    return false;

  if (DECL_EXTERNAL (decl))
    return false;

  if (TREE_STATIC (decl))
    return (alignment <= MAX_OFILE_ALIGNMENT);
  else
    /* This is not 100% correct.  The absolute correct stack alignment
       is STACK_BOUNDARY.  We're supposed to hope, but not assume, that
       PREFERRED_STACK_BOUNDARY is honored by all translation units.
       However, until someone implements forced stack alignment, SSE
       isn't really usable without this.  */  
    return (alignment <= PREFERRED_STACK_BOUNDARY); 
}


/* Function vect_get_new_vect_var.

   Returns a name for a new variable. The current naming scheme appends the 
   prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to 
   the name of vectorizer generated variables, and appends that to NAME if 
   provided.  */

static tree
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
{
  const char *prefix;
  int prefix_len;
  tree new_vect_var;

  if (var_kind == vect_simple_var)
    prefix = "vect_"; 
  else
    prefix = "vect_p";

  prefix_len = strlen (prefix);

  if (name)
    new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
  else
    new_vect_var = create_tmp_var (type, prefix);

  return new_vect_var;
}


/* Function vect_create_index_for_vector_ref.

   Create (and return) an index variable, along with it's update chain in the
   loop. This variable will be used to access a memory location in a vector
   operation.

   Input:
   LOOP: The loop being vectorized.
   BSI: The block_stmt_iterator where STMT is. Any new stmts created by this
        function can be added here, or in the loop pre-header.

   Output:
   Return an index that will be used to index a vector array.  It is expected
   that a pointer to the first vector will be used as the base address for the
   indexed reference.

   FORNOW: we are not trying to be efficient, just creating a new index each
   time from scratch.  At this time all vector references could use the same
   index.

   TODO: create only one index to be used by all vector references.  Record
   the index in the LOOP_VINFO the first time this procedure is called and
   return it on subsequent calls.  The increment of this index must be placed
   just before the conditional expression that ends the single block loop.  */

static tree
vect_create_index_for_vector_ref (struct loop *loop, block_stmt_iterator *bsi)
{
  tree init, step;
  tree indx_before_incr, indx_after_incr;

  /* It is assumed that the base pointer used for vectorized access contains
     the address of the first vector.  Therefore the index used for vectorized
     access must be initialized to zero and incremented by 1.  */

  init = integer_zero_node;
  step = integer_one_node;

  /* Assuming that bsi_insert is used with BSI_NEW_STMT  */
  create_iv (init, step, NULL_TREE, loop, bsi, false,
	&indx_before_incr, &indx_after_incr);

  return indx_before_incr;
}


/* Function vect_create_addr_base_for_vector_ref.

   Create an expression that computes the address of the first memory location
   that will be accessed for a data reference.

   Input:
   STMT: The statement containing the data reference.
   NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
   OFFSET: Optional. If supplied, it is be added to the initial address.

   Output:
   1. Return an SSA_NAME whose value is the address of the memory location of the
      first vector of the data reference.
   2. If new_stmt_list is not NULL_TREE after return then the caller must insert
      these statement(s) which define the returned SSA_NAME.

   FORNOW: We are only handling array accesses with step 1.  */

static tree
vect_create_addr_base_for_vector_ref (tree stmt,
                                      tree *new_stmt_list,
				      tree offset)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct loop *loop = STMT_VINFO_LOOP (stmt_info);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  tree data_ref_base = unshare_expr (STMT_VINFO_VECT_DR_BASE (stmt_info));
  tree base_name = unshare_expr (DR_BASE_NAME (dr));
  tree ref = DR_REF (dr);
  tree data_ref_base_type = TREE_TYPE (data_ref_base);
  tree scalar_type = TREE_TYPE (ref);
  tree scalar_ptr_type = build_pointer_type (scalar_type);
  tree access_fn;
  tree init_val, step, init_oval;
  bool ok;
  bool is_ptr_ref, is_array_ref, is_addr_expr;
  tree array_base;
  tree vec_stmt;
  tree new_temp;
  tree array_ref;
  tree addr_base, addr_expr;
  tree dest, new_stmt;

  /* Only the access function of the last index is relevant (i_n in
     a[i_1][i_2]...[i_n]), the others correspond to loop invariants. */
  access_fn = DR_ACCESS_FN (dr, 0);
  ok = vect_is_simple_iv_evolution (loop->num, access_fn, &init_oval, &step, true);
  if (!ok)
    init_oval = integer_zero_node;

  is_ptr_ref = TREE_CODE (data_ref_base_type) == POINTER_TYPE
	       && TREE_CODE (data_ref_base) == SSA_NAME;
  is_array_ref = TREE_CODE (data_ref_base_type) == ARRAY_TYPE
		 && (TREE_CODE (data_ref_base) == VAR_DECL
		     || TREE_CODE (data_ref_base) == COMPONENT_REF
		     || TREE_CODE (data_ref_base) == ARRAY_REF);
  is_addr_expr = TREE_CODE (data_ref_base) == ADDR_EXPR
                 || TREE_CODE (data_ref_base) == PLUS_EXPR
                 || TREE_CODE (data_ref_base) == MINUS_EXPR;
  gcc_assert (is_ptr_ref || is_array_ref || is_addr_expr);

  /** Create: &(base[init_val])

      if data_ref_base is an ARRAY_TYPE:
	 base = data_ref_base

      if data_ref_base is the SSA_NAME of a POINTER_TYPE:
	 base = *((scalar_array *) data_ref_base)
   **/

  if (is_array_ref)
    array_base = data_ref_base;
  else /* is_ptr_ref  or is_addr_expr */
    {
      /* array_ptr = (scalar_array_ptr_type *) data_ref_base;  */
      tree scalar_array_type = build_array_type (scalar_type, 0);
      tree scalar_array_ptr_type = build_pointer_type (scalar_array_type);
      tree array_ptr = create_tmp_var (scalar_array_ptr_type, "array_ptr");
      add_referenced_tmp_var (array_ptr);

      dest = create_tmp_var (TREE_TYPE (data_ref_base), "dataref");
      add_referenced_tmp_var (dest);
      data_ref_base = 
	force_gimple_operand (data_ref_base, &new_stmt, false, dest);  
      append_to_statement_list_force (new_stmt, new_stmt_list);

      vec_stmt = fold_convert (scalar_array_ptr_type, data_ref_base);
      vec_stmt = build2 (MODIFY_EXPR, void_type_node, array_ptr, vec_stmt);
      new_temp = make_ssa_name (array_ptr, vec_stmt);
      TREE_OPERAND (vec_stmt, 0) = new_temp;
      append_to_statement_list_force (vec_stmt, new_stmt_list);

      /* (*array_ptr)  */
      array_base = build_fold_indirect_ref (new_temp);
    }

  dest = create_tmp_var (TREE_TYPE (init_oval), "newinit");
  add_referenced_tmp_var (dest);
  init_val = force_gimple_operand (init_oval, &new_stmt, false, dest);  
  append_to_statement_list_force (new_stmt, new_stmt_list);

  if (offset)
    {
      tree tmp = create_tmp_var (TREE_TYPE (init_val), "offset");
      add_referenced_tmp_var (tmp);
      vec_stmt = build2 (PLUS_EXPR, TREE_TYPE (init_val), init_val, offset);
      vec_stmt = build2 (MODIFY_EXPR, TREE_TYPE (init_val), tmp, vec_stmt);
      init_val = make_ssa_name (tmp, vec_stmt);
      TREE_OPERAND (vec_stmt, 0) = init_val;
      append_to_statement_list_force (vec_stmt, new_stmt_list);
    }

  array_ref = build4 (ARRAY_REF, scalar_type, array_base, init_val, 
		      NULL_TREE, NULL_TREE);
  addr_base = build_fold_addr_expr (array_ref);

  /* addr_expr = addr_base */
  addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
                                     get_name (base_name));
  add_referenced_tmp_var (addr_expr);
  vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base);
  new_temp = make_ssa_name (addr_expr, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = new_temp;
  append_to_statement_list_force (vec_stmt, new_stmt_list);

  return new_temp;
}


/* Function get_vectype_for_scalar_type.

   Returns the vector type corresponding to SCALAR_TYPE as supported
   by the target.  */

static tree
get_vectype_for_scalar_type (tree scalar_type)
{
  enum machine_mode inner_mode = TYPE_MODE (scalar_type);
  int nbytes = GET_MODE_SIZE (inner_mode);
  int nunits;
  tree vectype;

  if (nbytes == 0)
    return NULL_TREE;

  /* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
     is expected.  */
  nunits = UNITS_PER_SIMD_WORD / nbytes;

  vectype = build_vector_type (scalar_type, nunits);
  if (TYPE_MODE (vectype) == BLKmode)
    return NULL_TREE;
  return vectype;
}


/* Function vect_align_data_ref.

   Handle mislignment of a memory accesses.

   FORNOW: Can't handle misaligned accesses. 
   Make sure that the dataref is aligned.  */

static void
vect_align_data_ref (tree stmt)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);

  /* FORNOW: can't handle misaligned accesses; 
             all accesses expected to be aligned.  */
  gcc_assert (aligned_access_p (dr));
}


/* Function vect_create_data_ref_ptr.

   Create a memory reference expression for vector access, to be used in a
   vector load/store stmt. The reference is based on a new pointer to vector
   type (vp).

   Input:
   1. STMT: a stmt that references memory. Expected to be of the form
         MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
   2. BSI: block_stmt_iterator where new stmts can be added.
   3. OFFSET (optional): an offset to be added to the initial address accessed
        by the data-ref in STMT.
   4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
        pointing to the initial address.

   Output:
   1. Declare a new ptr to vector_type, and have it point to the base of the
      data reference (initial addressed accessed by the data reference).
      For example, for vector of type V8HI, the following code is generated:

      v8hi *vp;
      vp = (v8hi *)initial_address;

      if OFFSET is not supplied:
         initial_address = &a[init];
      if OFFSET is supplied:
         initial_address = &a[init + OFFSET];

      Return the initial_address in INITIAL_ADDRESS.

   2. Create a data-reference in the loop based on the new vector pointer vp,
      and using a new index variable 'idx' as follows:

      vp' = vp + update

      where if ONLY_INIT is true:
         update = zero
      and otherwise
         update = idx + vector_type_size

      Return the pointer vp'.


   FORNOW: handle only aligned and consecutive accesses.  */

static tree
vect_create_data_ref_ptr (tree stmt, block_stmt_iterator *bsi, tree offset,
                          tree *initial_address, bool only_init)
{
  tree base_name;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  struct loop *loop = STMT_VINFO_LOOP (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree vect_ptr_type;
  tree vect_ptr;
  tree tag;
  v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
  v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
  vuse_optype vuses = STMT_VUSE_OPS (stmt);
  int nvuses, nv_may_defs, nv_must_defs;
  int i;
  tree new_temp;
  tree vec_stmt;
  tree new_stmt_list = NULL_TREE;
  tree idx;
  edge pe = loop_preheader_edge (loop);
  basic_block new_bb;
  tree vect_ptr_init;
  tree vectype_size;
  tree ptr_update;
  tree data_ref_ptr;

  base_name = unshare_expr (DR_BASE_NAME (dr));
  if (vect_debug_details (NULL))
    {
      tree data_ref_base = base_name;
      fprintf (dump_file, "create array_ref of type: ");
      print_generic_expr (dump_file, vectype, TDF_SLIM);
      if (TREE_CODE (data_ref_base) == VAR_DECL)
        fprintf (dump_file, "vectorizing a one dimensional array ref: ");
      else if (TREE_CODE (data_ref_base) == ARRAY_REF)
        fprintf (dump_file, "vectorizing a multidimensional array ref: ");
      else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
        fprintf (dump_file, "vectorizing a record based array ref: ");
      else if (TREE_CODE (data_ref_base) == SSA_NAME)
        fprintf (dump_file, "vectorizing a pointer ref: ");
      print_generic_expr (dump_file, base_name, TDF_SLIM);
    }

  /** (1) Create the new vector-pointer variable:  **/

  vect_ptr_type = build_pointer_type (vectype);
  vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
                                    get_name (base_name));
  add_referenced_tmp_var (vect_ptr);
  
  
  /** (2) Handle aliasing information of the new vector-pointer:  **/
  
  tag = STMT_VINFO_MEMTAG (stmt_info);
  gcc_assert (tag);
  get_var_ann (vect_ptr)->type_mem_tag = tag;
  
  /* Mark for renaming all aliased variables
     (i.e, the may-aliases of the type-mem-tag).  */
  nvuses = NUM_VUSES (vuses);
  nv_may_defs = NUM_V_MAY_DEFS (v_may_defs);
  nv_must_defs = NUM_V_MUST_DEFS (v_must_defs);
  for (i = 0; i < nvuses; i++)
    {
      tree use = VUSE_OP (vuses, i);
      if (TREE_CODE (use) == SSA_NAME)
        bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (use))->uid);
    }
  for (i = 0; i < nv_may_defs; i++)
    {
      tree def = V_MAY_DEF_RESULT (v_may_defs, i);
      if (TREE_CODE (def) == SSA_NAME)
        bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid);
    }
  for (i = 0; i < nv_must_defs; i++)
    {
      tree def = V_MUST_DEF_OP (v_must_defs, i);
      if (TREE_CODE (def) == SSA_NAME)
        bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid);
    }


  /** (3) Calculate the initial address the vector-pointer, and set
          the vector-pointer to point to it before the loop:  **/

  /* Create: (&(base[init_val+offset]) in the loop preheader.  */
  new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
                                                   offset);
  pe = loop_preheader_edge (loop);
  new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
  gcc_assert (!new_bb);
  *initial_address = new_temp;

  /* Create: p = (vectype *) initial_base  */
  vec_stmt = fold_convert (vect_ptr_type, new_temp);
  vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
  new_temp = make_ssa_name (vect_ptr, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = new_temp;
  new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
  gcc_assert (!new_bb);
  vect_ptr_init = TREE_OPERAND (vec_stmt, 0);


  /** (4) Handle the updating of the vector-pointer inside the loop: **/

  if (only_init) /* No update in loop is required.  */
    return vect_ptr_init;

  idx = vect_create_index_for_vector_ref (loop, bsi);

  /* Create: update = idx * vectype_size  */
  ptr_update = create_tmp_var (integer_type_node, "update");
  add_referenced_tmp_var (ptr_update);
  vectype_size = build_int_cst (integer_type_node,
                                GET_MODE_SIZE (TYPE_MODE (vectype)));
  vec_stmt = build2 (MULT_EXPR, integer_type_node, idx, vectype_size);
  vec_stmt = build2 (MODIFY_EXPR, void_type_node, ptr_update, vec_stmt);
  new_temp = make_ssa_name (ptr_update, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = new_temp;
  bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);

  /* Create: data_ref_ptr = vect_ptr_init + update  */
  vec_stmt = build2 (PLUS_EXPR, vect_ptr_type, vect_ptr_init, new_temp);
  vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
  new_temp = make_ssa_name (vect_ptr, vec_stmt);
  TREE_OPERAND (vec_stmt, 0) = new_temp;
  bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
  data_ref_ptr = TREE_OPERAND (vec_stmt, 0);

  return data_ref_ptr;
}


/* Function vect_create_destination_var.

   Create a new temporary of type VECTYPE.  */

static tree
vect_create_destination_var (tree scalar_dest, tree vectype)
{
  tree vec_dest;
  const char *new_name;

  gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);

  new_name = get_name (scalar_dest);
  if (!new_name)
    new_name = "var_";
  vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, new_name);
  add_referenced_tmp_var (vec_dest);

  return vec_dest;
}


/* Function vect_init_vector.

   Insert a new stmt (INIT_STMT) that initializes a new vector variable with
   the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
   used in the vectorization of STMT.  */

static tree
vect_init_vector (tree stmt, tree vector_var)
{
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo);
  tree new_var;
  tree init_stmt;
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo); 
  tree vec_oprnd;
  edge pe;
  tree new_temp;
  basic_block new_bb;
 
  new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
  add_referenced_tmp_var (new_var); 
 
  init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
  new_temp = make_ssa_name (new_var, init_stmt);
  TREE_OPERAND (init_stmt, 0) = new_temp;

  pe = loop_preheader_edge (loop);
  new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
  gcc_assert (!new_bb);

  if (vect_debug_details (NULL))
    {
      fprintf (dump_file, "created new init_stmt: ");
      print_generic_expr (dump_file, init_stmt, TDF_SLIM);
    }

  vec_oprnd = TREE_OPERAND (init_stmt, 0);
  return vec_oprnd;
}


/* Function vect_get_vec_def_for_operand.

   OP is an operand in STMT. This function returns a (vector) def that will be
   used in the vectorized stmt for STMT.

   In the case that OP is an SSA_NAME which is defined in the loop, then
   STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.

   In case OP is an invariant or constant, a new stmt that creates a vector def
   needs to be introduced.  */

static tree
vect_get_vec_def_for_operand (tree op, tree stmt)
{
  tree vec_oprnd;
  tree vec_stmt;
  tree def_stmt;
  stmt_vec_info def_stmt_info = NULL;
  stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
  int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
  struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo);
  basic_block bb;
  tree vec_inv;
  tree t = NULL_TREE;
  tree def;
  int i;

  if (vect_debug_details (NULL))
    {
      fprintf (dump_file, "vect_get_vec_def_for_operand: ");
      print_generic_expr (dump_file, op, TDF_SLIM);
    }

  /** ===> Case 1: operand is a constant.  **/

  if (TREE_CODE (op) == INTEGER_CST || TREE_CODE (op) == REAL_CST)
    {
      /* Create 'vect_cst_ = {cst,cst,...,cst}'  */

      tree vec_cst;
      stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
      tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
      int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
      tree t = NULL_TREE;
      int i;

      /* Build a tree with vector elements.  */
      if (vect_debug_details (NULL))
        fprintf (dump_file, "Create vector_cst. nunits = %d", nunits);

      for (i = nunits - 1; i >= 0; --i)
        {
          t = tree_cons (NULL_TREE, op, t);
        }
      vec_cst = build_vector (vectype, t);
      return vect_init_vector (stmt, vec_cst);
    }

  gcc_assert (TREE_CODE (op) == SSA_NAME);
 
  /** ===> Case 2: operand is an SSA_NAME - find the stmt that defines it.  **/

  def_stmt = SSA_NAME_DEF_STMT (op);
  def_stmt_info = vinfo_for_stmt (def_stmt);

  if (vect_debug_details (NULL))
    {
      fprintf (dump_file, "vect_get_vec_def_for_operand: def_stmt: ");
      print_generic_expr (dump_file, def_stmt, TDF_SLIM);
    }


  /** ==> Case 2.1: operand is defined inside the loop.  **/

  if (def_stmt_info)
    {
      /* Get the def from the vectorized stmt.  */

      vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
      gcc_assert (vec_stmt);
      vec_oprnd = TREE_OPERAND (vec_stmt, 0);
      return vec_oprnd;
    }


  /** ==> Case 2.2: operand is defined by the loop-header phi-node - 
                    it is a reduction/induction.  **/

  bb = bb_for_stmt (def_stmt);
  if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
    {
      if (vect_debug_details (NULL))
	fprintf (dump_file, "reduction/induction - unsupported.");
      internal_error ("no support for reduction/induction"); /* FORNOW */
    }


  /** ==> Case 2.3: operand is defined outside the loop - 
                    it is a loop invariant.  */

  switch (TREE_CODE (def_stmt))
    {
    case PHI_NODE:
      def = PHI_RESULT (def_stmt);
      break;
    case MODIFY_EXPR:
      def = TREE_OPERAND (def_stmt, 0);
      break;
    case NOP_EXPR:
      def = TREE_OPERAND (def_stmt, 0);
      gcc_assert (IS_EMPTY_STMT (def_stmt));
      def = op;
      break;
    default:
      if (vect_debug_details (NULL))
	{
          fprintf (dump_file, "unsupported defining stmt: ");
	  print_generic_expr (dump_file, def_stmt, TDF_SLIM);
	}
      internal_error ("unsupported defining stmt");
    }

  /* Build a tree with vector elements. Create 'vec_inv = {inv,inv,..,inv}'  */

  if (vect_debug_details (NULL))
    fprintf (dump_file, "Create vector_inv.");

  for (i = nunits - 1; i >= 0; --i)
    {
      t = tree_cons (NULL_TREE, def, t);
    }

  vec_inv = build_constructor (vectype, t);
  return vect_init_vector (stmt, vec_inv);
}


/* Function vect_finish_stmt_generation.

   Insert a new stmt.  */

static void
vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
{
  bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);

  if (vect_debug_details (NULL))
    {
      fprintf (dump_file, "add new stmt: ");
      print_generic_expr (dump_file, vec_stmt, TDF_SLIM);
    }

  /* Make sure bsi points to the stmt that is being vectorized.  */

  /* Assumption: any stmts created for the vectorization of stmt S were
     inserted before S. BSI is expected to point to S or some new stmt before S.  */

  while (stmt != bsi_stmt (*bsi) && !bsi_end_p (*bsi))
    bsi_next (bsi);
  gcc_assert (stmt == bsi_stmt (*bsi));
}


/* Function vectorizable_assignment.

   Check if STMT performs an assignment (copy) that can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
  tree vec_dest;
  tree scalar_dest;
  tree op;
  tree vec_oprnd;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  struct loop *loop = STMT_VINFO_LOOP (stmt_info);
  tree new_temp;

  /* Is vectorizable assignment?  */

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    return false;

  op = TREE_OPERAND (stmt, 1);
  if (!vect_is_simple_use (op, loop, NULL))
    {
      if (vect_debug_details (NULL))
        fprintf (dump_file, "use not simple.");
      return false;
    }

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
      return true;
    }

  /** Trasform.  **/
  if (vect_debug_details (NULL))
    fprintf (dump_file, "transform assignment.");

  /* Handle def.  */
  vec_dest = vect_create_destination_var (scalar_dest, vectype);

  /* Handle use.  */
  op = TREE_OPERAND (stmt, 1);
  vec_oprnd = vect_get_vec_def_for_operand (op, stmt);

  /* Arguments are ready. create the new vector stmt.  */
  *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
  
  return true;
}


/* Function vectorizable_operation.

   Check if STMT performs a binary or unary operation that can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
  tree vec_dest;
  tree scalar_dest;
  tree operation;
  tree op0, op1 = NULL;
  tree vec_oprnd0, vec_oprnd1=NULL;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  struct loop *loop = STMT_VINFO_LOOP (stmt_info);
  int i;
  enum tree_code code;
  enum machine_mode vec_mode;
  tree new_temp;
  int op_type;
  tree op;
  optab optab;

  /* Is STMT a vectorizable binary/unary operation?   */
  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
    return false;

  operation = TREE_OPERAND (stmt, 1);
  code = TREE_CODE (operation);
  optab = optab_for_tree_code (code, vectype);

  /* Support only unary or binary operations.  */
  op_type = TREE_CODE_LENGTH (code);
  if (op_type != unary_op && op_type != binary_op)
    {
      if (vect_debug_details (NULL))
	fprintf (dump_file, "num. args = %d (not unary/binary op).", op_type);
      return false;
    }

  for (i = 0; i < op_type; i++)
    {
      op = TREE_OPERAND (operation, i);
      if (!vect_is_simple_use (op, loop, NULL))
	{
	  if (vect_debug_details (NULL))
	    fprintf (dump_file, "use not simple.");
	  return false;
	}	
    } 

  /* Supportable by target?  */
  if (!optab)
    {
      if (vect_debug_details (NULL))
	fprintf (dump_file, "no optab.");
      return false;
    }
  vec_mode = TYPE_MODE (vectype);
  if (!VECTOR_MODE_P (vec_mode))
    {
      /* TODO: tree-complex.c sometimes can parallelize operations
	 on generic vectors.  We can vectorize the loop in that case,
	 but then we should re-run the lowering pass.  */
      if (vect_debug_details (NULL))
	fprintf (dump_file, "mode not supported by target.");
      return false;
    }

  if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
    {
      if (vect_debug_details (NULL))
	fprintf (dump_file, "op not supported by target.");
      return false;
    }

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
      return true;
    }

  /** Transform.  **/

  if (vect_debug_details (NULL))
    fprintf (dump_file, "transform binary/unary operation.");

  /* Handle def.  */
  scalar_dest = TREE_OPERAND (stmt, 0);
  vec_dest = vect_create_destination_var (scalar_dest, vectype);

  /* Handle uses.  */
  op0 = TREE_OPERAND (operation, 0);
  vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt);

  if (op_type == binary_op)
    {
      op1 = TREE_OPERAND (operation, 1);
      vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt); 
    }

  /* Arguments are ready. create the new vector stmt.  */

  if (op_type == binary_op)
    *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
		build2 (code, vectype, vec_oprnd0, vec_oprnd1));
  else
    *vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
		build1 (code, vectype, vec_oprnd0));
  new_temp = make_ssa_name (vec_dest, *vec_stmt);
  TREE_OPERAND (*vec_stmt, 0) = new_temp;
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);

  return true;
}


/* Function vectorizable_store.

   Check if STMT defines a non scalar data-ref (array/pointer/structure) that 
   can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
  tree scalar_dest;
  tree data_ref;
  tree op;
  tree vec_oprnd1;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  struct loop *loop = STMT_VINFO_LOOP (stmt_info);
  enum machine_mode vec_mode;
  tree dummy;

  /* Is vectorizable store? */

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != ARRAY_REF
      && TREE_CODE (scalar_dest) != INDIRECT_REF)
    return false;

  op = TREE_OPERAND (stmt, 1);
  if (!vect_is_simple_use (op, loop, NULL))
    {
      if (vect_debug_details (NULL))
        fprintf (dump_file, "use not simple.");
      return false;
    }

  vec_mode = TYPE_MODE (vectype);
  /* FORNOW. In some cases can vectorize even if data-type not supported
     (e.g. - array initialization with 0).  */
  if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
    return false;

  if (!STMT_VINFO_DATA_REF (stmt_info))
    return false;

  if (!aligned_access_p (STMT_VINFO_DATA_REF (stmt_info)))
    return false;

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
      return true;
    }

  /** Trasform.  **/

  if (vect_debug_details (NULL))
    fprintf (dump_file, "transform store");

  /* Handle use - get the vectorized def from the defining stmt.  */
  vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt);

  /* Handle def.  */
  /* FORNOW: make sure the data reference is aligned.  */
  vect_align_data_ref (stmt);
  data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
  data_ref = build_fold_indirect_ref (data_ref);

  /* Arguments are ready. create the new vector stmt.  */
  *vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
  vect_finish_stmt_generation (stmt, *vec_stmt, bsi);

  return true;
}


/* vectorizable_load.

   Check if STMT reads a non scalar data-ref (array/pointer/structure) that 
   can be vectorized. 
   If VEC_STMT is also passed, vectorize the STMT: create a vectorized 
   stmt to replace it, put it in VEC_STMT, and insert it at BSI.
   Return FALSE if not a vectorizable STMT, TRUE otherwise.  */

static bool
vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
  tree scalar_dest;
  tree vec_dest = NULL;
  tree data_ref = NULL;
  tree op;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  tree new_temp;
  int mode;
  tree init_addr;
  tree new_stmt;
  tree dummy;
  basic_block new_bb;
  struct loop *loop = STMT_VINFO_LOOP (stmt_info);
  edge pe = loop_preheader_edge (loop);
  bool software_pipeline_loads_p = false;

  /* Is vectorizable load? */

  if (TREE_CODE (stmt) != MODIFY_EXPR)
    return false;

  scalar_dest = TREE_OPERAND (stmt, 0);
  if (TREE_CODE (scalar_dest) != SSA_NAME)
    return false;

  op = TREE_OPERAND (stmt, 1);
  if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
    return false;

  if (!STMT_VINFO_DATA_REF (stmt_info))
    return false;

  mode = (int) TYPE_MODE (vectype);

  /* FORNOW. In some cases can vectorize even if data-type not supported
    (e.g. - data copies).  */
  if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing)
    {
      if (vect_debug_details (loop))
	fprintf (dump_file, "Aligned load, but unsupported type.");
      return false;
    }

  if (!aligned_access_p (dr))
    {
      if (vec_realign_load_optab->handlers[mode].insn_code != CODE_FOR_nothing
	  && (!targetm.vectorize.builtin_mask_for_load
	      || targetm.vectorize.builtin_mask_for_load ()))
	software_pipeline_loads_p = true;
      else if (!targetm.vectorize.misaligned_mem_ok (mode))
	{
	  /* Possibly unaligned access, and can't software pipeline the loads  */
	  if (vect_debug_details (loop))
	    fprintf (dump_file, "Arbitrary load not supported.");
	  return false;
	}
    }

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
      return true;
    }

  /** Trasform.  **/

  if (vect_debug_details (NULL))
    fprintf (dump_file, "transform load.");

  if (!software_pipeline_loads_p)
    {
      /* Create:
         p = initial_addr;
         indx = 0;
         loop {
           vec_dest = *(p);
           indx = indx + 1;
         }
      */

      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
      if (aligned_access_p (dr))
        data_ref = build_fold_indirect_ref (data_ref);
      else
	{
	  int mis = DR_MISALIGNMENT (dr);
	  tree tmis = (mis == -1 ?
		       integer_zero_node : 
		       build_int_cst (integer_type_node, mis));
	  tmis = int_const_binop (MULT_EXPR, tmis, 
			build_int_cst (integer_type_node, BITS_PER_UNIT), 1);
	  data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis);
	}
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      TREE_OPERAND (new_stmt, 0) = new_temp;
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
    }
  else /* software-pipeline the loads  */
    {
      /* Create:
	 p1 = initial_addr;
	 msq_init = *(floor(p1))
	 p2 = initial_addr + VS - 1;
	 magic = have_builtin ? builtin_result : initial_address;
	 indx = 0;
	 loop {
	   p2' = p2 + indx * vectype_size
	   lsq = *(floor(p2'))
	   vec_dest = realign_load (msq, lsq, magic)
	   indx = indx + 1;
	   msq = lsq;
	 }
      */

      tree offset;
      tree magic;
      tree phi_stmt;
      tree msq_init;
      tree msq, lsq;
      tree dataref_ptr;
      tree params;

      /* <1> Create msq_init = *(floor(p1)) in the loop preheader  */
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, 
					   &init_addr, true);
      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      TREE_OPERAND (new_stmt, 0) = new_temp;
      new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
      gcc_assert (!new_bb);
      msq_init = TREE_OPERAND (new_stmt, 0);


      /* <2> Create lsq = *(floor(p2')) in the loop  */ 
      offset = build_int_cst (integer_type_node, 
			      GET_MODE_NUNITS (TYPE_MODE (vectype)));
      offset = int_const_binop (MINUS_EXPR, offset, integer_one_node, 1);
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false);
      data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
      new_temp = make_ssa_name (vec_dest, new_stmt);
      TREE_OPERAND (new_stmt, 0) = new_temp;
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
      lsq = TREE_OPERAND (new_stmt, 0);


      /* <3> */
      if (targetm.vectorize.builtin_mask_for_load)
	{
	  /* Create permutation mask, if required, in loop preheader.  */
	  tree builtin_decl;
	  params = build_tree_list (NULL_TREE, init_addr);
	  vec_dest = vect_create_destination_var (scalar_dest, vectype);
	  builtin_decl = targetm.vectorize.builtin_mask_for_load ();
	  new_stmt = build_function_call_expr (builtin_decl, params);
	  new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
	  new_temp = make_ssa_name (vec_dest, new_stmt);
	  TREE_OPERAND (new_stmt, 0) = new_temp;
	  new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
	  gcc_assert (!new_bb);
	  magic = TREE_OPERAND (new_stmt, 0);
	}
      else
	{
	  /* Use current address instead of init_addr for reduced reg pressure.  */
	  magic = dataref_ptr;
	}


      /* <4> Create msq = phi <msq_init, lsq> in loop  */ 
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      msq = make_ssa_name (vec_dest, NULL_TREE);
      phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */
      SSA_NAME_DEF_STMT (msq) = phi_stmt;
      add_phi_arg (&phi_stmt, msq_init, loop_preheader_edge (loop));
      add_phi_arg (&phi_stmt, lsq, loop_latch_edge (loop));


      /* <5> Create <vec_dest = realign_load (msq, lsq, magic)> in loop  */
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic);
      new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
      new_temp = make_ssa_name (vec_dest, new_stmt); 
      TREE_OPERAND (new_stmt, 0) = new_temp;
      vect_finish_stmt_generation (stmt, new_stmt, bsi);
    }

  *vec_stmt = new_stmt;
  return true;
}


/* Function vect_transform_stmt.

   Create a vectorized stmt to replace STMT, and insert it at BSI.  */

static bool
vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
{
  bool is_store = false;
  tree vec_stmt = NULL_TREE;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  bool done;

  switch (STMT_VINFO_TYPE (stmt_info))
    {
    case op_vec_info_type:
      done = vectorizable_operation (stmt, bsi, &vec_stmt);
      gcc_assert (done);
      break;

    case assignment_vec_info_type:
      done = vectorizable_assignment (stmt, bsi, &vec_stmt);
      gcc_assert (done);
      break;

    case load_vec_info_type:
      done = vectorizable_load (stmt, bsi, &vec_stmt);
      gcc_assert (done);
      break;

    case store_vec_info_type:
      done = vectorizable_store (stmt, bsi, &vec_stmt);
      gcc_assert (done);
      is_store = true;
      break;
    default:
      if (vect_debug_details (NULL))
        fprintf (dump_file, "stmt not supported.");
      gcc_unreachable ();
    }

  STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;

  return is_store;
}


/* Function vect_transform_loop_bound.

   Create a new exit condition for the loop.  */

static void
vect_transform_loop_bound (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  edge exit_edge = loop->single_exit;
  block_stmt_iterator loop_exit_bsi = bsi_last (exit_edge->src);
  tree indx_before_incr, indx_after_incr;
  tree orig_cond_expr;
  HOST_WIDE_INT old_N = 0;
  int vf;
  tree cond_stmt;
  tree new_loop_bound;
  tree cond;
  tree lb_type;

  gcc_assert (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo));
  old_N = LOOP_VINFO_NITERS (loop_vinfo);
  vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);

  /* FORNOW: 
     assuming number-of-iterations divides by the vectorization factor.  */
  gcc_assert (!(old_N % vf));

  orig_cond_expr = LOOP_VINFO_EXIT_COND (loop_vinfo);
  gcc_assert (orig_cond_expr);
  gcc_assert (orig_cond_expr == bsi_stmt (loop_exit_bsi));

  create_iv (integer_zero_node, integer_one_node, NULL_TREE, loop, 
	     &loop_exit_bsi, false, &indx_before_incr, &indx_after_incr);

  /* bsi_insert is using BSI_NEW_STMT. We need to bump it back 
     to point to the exit condition.  */
  bsi_next (&loop_exit_bsi);
  gcc_assert (bsi_stmt (loop_exit_bsi) == orig_cond_expr);

  /* new loop exit test:  */
  lb_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (orig_cond_expr, 0), 1));
  new_loop_bound = build_int_cst (lb_type, old_N/vf);

  if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop.  */
    cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, new_loop_bound);
  else /* 'then' edge loops back.   */
    cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, new_loop_bound);

  cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond_expr), cond,
	TREE_OPERAND (orig_cond_expr, 1), TREE_OPERAND (orig_cond_expr, 2));

  bsi_insert_before (&loop_exit_bsi, cond_stmt, BSI_SAME_STMT);   

  /* remove old loop exit test:  */
  bsi_remove (&loop_exit_bsi);

  if (vect_debug_details (NULL))
    print_generic_expr (dump_file, cond_stmt, TDF_SLIM);
}


/* Function vect_transform_loop.

   The analysis phase has determined that the loop is vectorizable.
   Vectorize the loop - created vectorized stmts to replace the scalar
   stmts in the loop, and update the loop exit condition.  */

static void
vect_transform_loop (loop_vec_info loop_vinfo, 
		     struct loops *loops ATTRIBUTE_UNUSED)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes;
  block_stmt_iterator si;
  int i;
#ifdef ENABLE_CHECKING
  int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
#endif

  if (vect_debug_details (NULL))
    fprintf (dump_file, "\n<<vec_transform_loop>>\n");

  /* 1) Make sure the loop header has exactly two entries
     2) Make sure we have a preheader basic block.  */

  gcc_assert (EDGE_COUNT (loop->header->preds) == 2);

  loop_split_edge_with (loop_preheader_edge (loop), NULL);


  /* FORNOW: the vectorizer supports only loops which body consist
     of one basic block (header + empty latch). When the vectorizer will 
     support more involved loop forms, the order by which the BBs are 
     traversed need to be reconsidered.  */

  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];

      for (si = bsi_start (bb); !bsi_end_p (si);)
	{
	  tree stmt = bsi_stmt (si);
	  stmt_vec_info stmt_info;
	  bool is_store;
#ifdef ENABLE_CHECKING
	  tree vectype;
#endif

	  if (vect_debug_details (NULL))
	    {
	      fprintf (dump_file, "------>vectorizing statement: ");
	      print_generic_expr (dump_file, stmt, TDF_SLIM);
	    }	
	  stmt_info = vinfo_for_stmt (stmt);
	  gcc_assert (stmt_info);
	  if (!STMT_VINFO_RELEVANT_P (stmt_info))
	    {
	      bsi_next (&si);
	      continue;
	    }
#ifdef ENABLE_CHECKING
	  /* FORNOW: Verify that all stmts operate on the same number of
	             units and no inner unrolling is necessary.  */
	  vectype = STMT_VINFO_VECTYPE (stmt_info);
	  gcc_assert (GET_MODE_NUNITS (TYPE_MODE (vectype))
		      == vectorization_factor);
#endif
	  /* -------- vectorize statement ------------ */
	  if (vect_debug_details (NULL))
	    fprintf (dump_file, "transform statement.");

	  is_store = vect_transform_stmt (stmt, &si);
	  if (is_store)
	    {
	      /* free the attached stmt_vec_info and remove the stmt.  */
	      stmt_ann_t ann = stmt_ann (stmt);
	      free (stmt_info);
	      set_stmt_info (ann, NULL);
	      bsi_remove (&si);
	      continue;
	    }

	  bsi_next (&si);
	}		        /* stmts in BB */
    }				/* BBs in loop */

  vect_transform_loop_bound (loop_vinfo);

  if (vect_debug_details (loop))
    fprintf (dump_file,"Success! loop vectorized.");
  if (vect_debug_stats (loop))
    fprintf (dump_file, "LOOP VECTORIZED.");
}


/* Function vect_is_simple_use.

   Input:
   LOOP - the loop that is being vectorized.
   OPERAND - operand of a stmt in LOOP.
   DEF - the defining stmt in case OPERAND is an SSA_NAME.

   Returns whether a stmt with OPERAND can be vectorized.
   Supportable operands are constants, loop invariants, and operands that are
   defined by the current iteration of the loop. Unsupportable operands are 
   those that are defined by a previous iteration of the loop (as is the case
   in reduction/induction computations).  */

static bool
vect_is_simple_use (tree operand, struct loop *loop, tree *def)
{ 
  tree def_stmt;
  basic_block bb;

  if (def)
    *def = NULL_TREE;

  if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
    return true;

  if (TREE_CODE (operand) != SSA_NAME)
    return false;

  def_stmt = SSA_NAME_DEF_STMT (operand);
  if (def_stmt == NULL_TREE )
    {
      if (vect_debug_details (NULL))
        fprintf (dump_file, "no def_stmt.");
      return false;
    }

  /* empty stmt is expected only in case of a function argument.
     (Otherwise - we expect a phi_node or a modify_expr).  */
  if (IS_EMPTY_STMT (def_stmt))
    {
      tree arg = TREE_OPERAND (def_stmt, 0);
      if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST)
	return true;
      if (vect_debug_details (NULL))
	{
	  fprintf (dump_file, "Unexpected empty stmt: ");
	  print_generic_expr (dump_file, def_stmt, TDF_SLIM);
	}
      return false;  
    }

  /* phi_node inside the loop indicates an induction/reduction pattern.
     This is not supported yet.  */
  bb = bb_for_stmt (def_stmt);
  if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
    {
      if (vect_debug_details (NULL))
	fprintf (dump_file, "reduction/induction - unsupported.");
      return false; /* FORNOW: not supported yet.  */
    }

  /* Expecting a modify_expr or a phi_node.  */
  if (TREE_CODE (def_stmt) == MODIFY_EXPR
      || TREE_CODE (def_stmt) == PHI_NODE)
    {
      if (def)
        *def = def_stmt; 	
      return true;
    }

  return false;
}


/* Function vect_analyze_operations.

   Scan the loop stmts and make sure they are all vectorizable.  */

static bool
vect_analyze_operations (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes;
  block_stmt_iterator si;
  int vectorization_factor = 0;
  int i;
  bool ok;
  tree scalar_type;

  if (vect_debug_details (NULL))
    fprintf (dump_file, "\n<<vect_analyze_operations>>\n");

  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];

      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  tree stmt = bsi_stmt (si);
	  int nunits;
	  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
	  tree vectype;

	  if (vect_debug_details (NULL))
	    {
	      fprintf (dump_file, "==> examining statement: ");
	      print_generic_expr (dump_file, stmt, TDF_SLIM);
	    }

	  gcc_assert (stmt_info);

	  /* skip stmts which do not need to be vectorized.
	     this is expected to include:
	     - the COND_EXPR which is the loop exit condition
	     - any LABEL_EXPRs in the loop
	     - computations that are used only for array indexing or loop
	     control  */

	  if (!STMT_VINFO_RELEVANT_P (stmt_info))
	    {
	      if (vect_debug_details (NULL))
	        fprintf (dump_file, "irrelevant.");
	      continue;
	    }

	  if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))))
	    {
	      if (vect_debug_stats (loop) || vect_debug_details (loop))
		{
                  fprintf (dump_file, "not vectorized: vector stmt in loop:");
		  print_generic_expr (dump_file, stmt, TDF_SLIM);
		}
	      return false;
	    }

          if (STMT_VINFO_DATA_REF (stmt_info))
            scalar_type = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info)));    
          else if (TREE_CODE (stmt) == MODIFY_EXPR)
	    scalar_type = TREE_TYPE (TREE_OPERAND (stmt, 0));
	  else
	    scalar_type = TREE_TYPE (stmt);

	  if (vect_debug_details (NULL))
	    {
	      fprintf (dump_file, "get vectype for scalar type:  ");
	      print_generic_expr (dump_file, scalar_type, TDF_SLIM);
	    }

	  vectype = get_vectype_for_scalar_type (scalar_type);
	  if (!vectype)
	    {
	      if (vect_debug_stats (loop) || vect_debug_details (loop))
		{
                  fprintf (dump_file, "not vectorized: unsupported data-type ");
		  print_generic_expr (dump_file, scalar_type, TDF_SLIM);
		}
	      return false;
	    }

	  if (vect_debug_details (NULL))
	    {
	      fprintf (dump_file, "vectype: ");
	      print_generic_expr (dump_file, vectype, TDF_SLIM);
	    }
	  STMT_VINFO_VECTYPE (stmt_info) = vectype;

	  ok = (vectorizable_operation (stmt, NULL, NULL)
		|| vectorizable_assignment (stmt, NULL, NULL)
		|| vectorizable_load (stmt, NULL, NULL)
		|| vectorizable_store (stmt, NULL, NULL));

	  if (!ok)
	    {
	      if (vect_debug_stats (loop) || vect_debug_details (loop))
		{
                  fprintf (dump_file, "not vectorized: stmt not supported: ");
		  print_generic_expr (dump_file, stmt, TDF_SLIM);
		}
	      return false;
	    }

	  nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
	  if (vect_debug_details (NULL))
	    fprintf (dump_file, "nunits = %d", nunits);

	  if (vectorization_factor)
	    {
	      /* FORNOW: don't allow mixed units.
	         This restriction will be relaxed in the future.  */
	      if (nunits != vectorization_factor)
		{
	          if (vect_debug_stats (loop) || vect_debug_details (loop))
		    fprintf (dump_file, "not vectorized: mixed data-types");
		  return false;
		}
	    }
	  else
	    vectorization_factor = nunits;
	}
    }

  /* TODO: Analyze cost. Decide if worth while to vectorize.  */
  if (!vectorization_factor)
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))
        fprintf (dump_file, "not vectorized: unsupported data-type");
      return false;
    }
  LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;

  /* FORNOW: handle only cases where the loop bound divides by the
     vectorization factor.  */

  if (vect_debug_details (NULL))
    fprintf (dump_file, 
	"vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
	vectorization_factor, LOOP_VINFO_NITERS (loop_vinfo));

  if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)) 
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))
	fprintf (dump_file, "not vectorized: Unknown loop bound.");
      return false;
    }

  if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) 
      && LOOP_VINFO_NITERS (loop_vinfo) % vectorization_factor != 0)
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))
        fprintf (dump_file, "not vectorized: loop bound doesn't divided by %d.",
		 vectorization_factor);
      return false;
    }

  return true;
}


/* Function exist_non_indexing_operands_for_use_p 

   USE is one of the uses attached to STMT. Check if USE is 
   used in STMT for anything other than indexing an array.  */

static bool
exist_non_indexing_operands_for_use_p (tree use, tree stmt)
{
  tree operand;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
 
  /* USE corresponds to some operand in STMT. If there is no data
     reference in STMT, then any operand that corresponds to USE
     is not indexing an array.  */
  if (!STMT_VINFO_DATA_REF (stmt_info))
    return true;
 
  /* STMT has a data_ref. FORNOW this means that its of one of
     the following forms:
     -1- ARRAY_REF = var
     -2- var = ARRAY_REF
     (This should have been verified in analyze_data_refs).

     'var' in the second case corresponds to a def, not a use,
     so USE cannot correspond to any operands that are not used 
     for array indexing.

     Therefore, all we need to check is if STMT falls into the
     first case, and whether var corresponds to USE.  */
 
  if (TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME)
    return false;

  operand = TREE_OPERAND (stmt, 1);

  if (TREE_CODE (operand) != SSA_NAME)
    return false;

  if (operand == use)
    return true;

  return false;
}


/* Function vect_is_simple_iv_evolution.

   FORNOW: A simple evolution of an induction variables in the loop is
   considered a polynomial evolution with constant step.  */

static bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init, 
				tree * step, bool strict)
{
  tree init_expr;
  tree step_expr;
  
  tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);

  /* When there is no evolution in this loop, the evolution function
     is not "simple".  */  
  if (evolution_part == NULL_TREE)
    return false;
  
  /* When the evolution is a polynomial of degree >= 2
     the evolution function is not "simple".  */
  if (tree_is_chrec (evolution_part))
    return false;
  
  step_expr = evolution_part;
  init_expr = initial_condition (access_fn);

  if (vect_debug_details (NULL))
    {
      fprintf (dump_file, "step: ");
      print_generic_expr (dump_file, step_expr, TDF_SLIM);
      fprintf (dump_file, ",  init: ");
      print_generic_expr (dump_file, init_expr, TDF_SLIM);
    }

  *init = init_expr;
  *step = step_expr;

  if (TREE_CODE (step_expr) != INTEGER_CST)
    {
      if (vect_debug_details (NULL))
        fprintf (dump_file, "step unknown.");
      return false;
    }

  if (strict)
    if (!integer_onep (step_expr))
      {
        if (vect_debug_details (NULL))
	  print_generic_expr (dump_file, step_expr, TDF_SLIM);
        return false;
      }

  return true;
}


/* Function vect_analyze_scalar_cycles.

   Examine the cross iteration def-use cycles of scalar variables, by
   analyzing the loop (scalar) PHIs; verify that the cross iteration def-use
   cycles that they represent do not impede vectorization.

   FORNOW: Reduction as in the following loop, is not supported yet:
              loop1:
              for (i=0; i<N; i++)
                 sum += a[i];
	   The cross-iteration cycle corresponding to variable 'sum' will be
	   considered too complicated and will impede vectorization.

   FORNOW: Induction as in the following loop, is not supported yet:
              loop2:
              for (i=0; i<N; i++)
                 a[i] = i;

           However, the following loop *is* vectorizable:
              loop3:
              for (i=0; i<N; i++)
                 a[i] = b[i];

           In both loops there exists a def-use cycle for the variable i:
              loop: i_2 = PHI (i_0, i_1)
                    a[i_2] = ...;
                    i_1 = i_2 + 1;
                    GOTO loop;

           The evolution of the above cycle is considered simple enough,
	   however, we also check that the cycle does not need to be
	   vectorized, i.e - we check that the variable that this cycle
	   defines is only used for array indexing or in stmts that do not
	   need to be vectorized. This is not the case in loop2, but it
	   *is* the case in loop3.  */

static bool
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
{
  tree phi;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block bb = loop->header;
  tree dummy;

  if (vect_debug_details (NULL))
    fprintf (dump_file, "\n<<vect_analyze_scalar_cycles>>\n");

  for (phi = phi_nodes (bb); phi; phi = TREE_CHAIN (phi))
    {
      tree access_fn = NULL;

      if (vect_debug_details (NULL))
	{
          fprintf (dump_file, "Analyze phi: ");
          print_generic_expr (dump_file, phi, TDF_SLIM);
	}

      /* Skip virtual phi's. The data dependences that are associated with
         virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.  */

      if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
	{
	  if (vect_debug_details (NULL))
	    fprintf (dump_file, "virtual phi. skip.");
	  continue;
	}

      /* Analyze the evolution function.  */

      /* FORNOW: The only scalar cross-iteration cycles that we allow are
         those of loop induction variables; This property is verified here.

         Furthermore, if that induction variable is used in an operation
         that needs to be vectorized (i.e, is not solely used to index
         arrays and check the exit condition) - we do not support its
         vectorization yet. This property is verified in vect_is_simple_use,
         during vect_analyze_operations.  */

      access_fn = /* instantiate_parameters
		     (loop,*/
	 analyze_scalar_evolution (loop, PHI_RESULT (phi));

      if (!access_fn)
	{
	  if (vect_debug_stats (loop) || vect_debug_details (loop))
	    fprintf (dump_file, "not vectorized: unsupported scalar cycle.");
	  return false;
	}

      if (vect_debug_details (NULL))
        {
           fprintf (dump_file, "Access function of PHI: ");
           print_generic_expr (dump_file, access_fn, TDF_SLIM);
        }

      if (!vect_is_simple_iv_evolution (loop->num, access_fn, &dummy, 
					&dummy, false))
	{
	  if (vect_debug_stats (loop) || vect_debug_details (loop))
	    fprintf (dump_file, "not vectorized: unsupported scalar cycle.");
	  return false;
	}
    }

  return true;
}


/* Function vect_analyze_data_ref_dependence.

   Return TRUE if there (might) exist a dependence between a memory-reference
   DRA and a memory-reference DRB.  */

static bool
vect_analyze_data_ref_dependence (struct data_reference *dra,
				  struct data_reference *drb, 
				  struct loop *loop)
{
  bool differ_p; 
  struct data_dependence_relation *ddr;
  
  if (!array_base_name_differ_p (dra, drb, &differ_p))
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))   
        {
          fprintf (dump_file,
                "not vectorized: can't determine dependence between: ");
          print_generic_expr (dump_file, DR_REF (dra), TDF_SLIM);
          fprintf (dump_file, " and ");
          print_generic_expr (dump_file, DR_REF (drb), TDF_SLIM);
        }
      return true;
    }

  if (differ_p)
    return false;

  ddr = initialize_data_dependence_relation (dra, drb);
  compute_affine_dependence (ddr);

  if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
    return false;
  
  if (vect_debug_stats (loop) || vect_debug_details (loop))
    {
      fprintf (dump_file,
	"not vectorized: possible dependence between data-refs ");
      print_generic_expr (dump_file, DR_REF (dra), TDF_SLIM);
      fprintf (dump_file, " and ");
      print_generic_expr (dump_file, DR_REF (drb), TDF_SLIM);
    }

  return true;
}


/* Function vect_analyze_data_ref_dependences.

   Examine all the data references in the loop, and make sure there do not
   exist any data dependences between them.

   TODO: dependences which distance is greater than the vectorization factor
         can be ignored.   */

static bool
vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo)
{
  unsigned int i, j;
  varray_type loop_write_refs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
  varray_type loop_read_refs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);

  /* Examine store-store (output) dependences.  */

  if (vect_debug_details (NULL))
    fprintf (dump_file, "\n<<vect_analyze_dependences>>\n");

  if (vect_debug_details (NULL))
    fprintf (dump_file, "compare all store-store pairs.");

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_refs); i++)
    {
      for (j = i + 1; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
	{
	  struct data_reference *dra =
	    VARRAY_GENERIC_PTR (loop_write_refs, i);
	  struct data_reference *drb =
	    VARRAY_GENERIC_PTR (loop_write_refs, j);
	  if (vect_analyze_data_ref_dependence (dra, drb, loop))
	    return false;
	}
    }

  /* Examine load-store (true/anti) dependences.  */

  if (vect_debug_details (NULL))
    fprintf (dump_file, "compare all load-store pairs.");

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_refs); i++)
    {
      for (j = 0; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
	{
	  struct data_reference *dra = VARRAY_GENERIC_PTR (loop_read_refs, i);
	  struct data_reference *drb =
	    VARRAY_GENERIC_PTR (loop_write_refs, j);
	  if (vect_analyze_data_ref_dependence (dra, drb, loop))
	    return false;
	}
    }

  return true;
}


/* Function vect_get_first_index.

   REF is a data reference.  
   If it is an ARRAY_REF: if its lower bound is simple enough, 
   put it in ARRAY_FIRST_INDEX and return TRUE; otherwise - return FALSE.
   If it is not an ARRAY_REF: REF has no "first index";
   ARRAY_FIRST_INDEX in zero, and the function returns TRUE.  */

static bool
vect_get_first_index (tree ref, tree *array_first_index)
{
  tree array_start;

  if (TREE_CODE (ref) != ARRAY_REF)
    *array_first_index = size_zero_node;
  else
    {
      array_start = array_ref_low_bound (ref);
      if (!host_integerp (array_start,0))
	{
	  if (vect_debug_details (NULL))
	    {
	      fprintf (dump_file, "array min val not simple integer cst.");
	      print_generic_expr (dump_file, array_start, TDF_DETAILS);
	    }
	  return false;
	}
      *array_first_index = array_start;
    }

  return true;
}


/* Function vect_compute_array_base_alignment.
   A utility function of vect_compute_array_ref_alignment.

   Compute the misalignment of ARRAY in bits.

   Input:
   ARRAY - an array_ref (possibly multidimensional) of type ARRAY_TYPE.
   VECTYPE - we are interested in the misalignment modulo the size of vectype.
	     if NULL: don't compute misalignment, just return the base of ARRAY.
   PREV_DIMENSIONS - initialized to one.
   MISALIGNMENT - the computed misalignment in bits.

   Output:
   If VECTYPE is not NULL:
     Return NULL_TREE if the misalignment cannot be computed. Otherwise, return 
     the base of the array, and put the computed misalignment in MISALIGNMENT. 
   If VECTYPE is NULL:
     Return the base of the array.

   For a[idx_N]...[idx_2][idx_1][idx_0], the address of 
   a[idx_N]...[idx_2][idx_1] is 
   {&a + idx_1 * dim_0 + idx_2 * dim_0 * dim_1 + ...  
    ... + idx_N * dim_0 * ... * dim_N-1}. 
   (The misalignment of &a is not checked here).
   Note, that every term contains dim_0, therefore, if dim_0 is a 
   multiple of NUNITS, the whole sum is a multiple of NUNITS.
   Otherwise, if idx_1 is constant, and dim_1 is a multiple of
   NUINTS, we can say that the misalignment of the sum is equal to
   the misalignment of {idx_1 * dim_0}.  If idx_1 is not constant,
   we can't determine this array misalignment, and we return
   false. 
   We proceed recursively in this manner, accumulating total misalignment
   and the multiplication of previous dimensions for correct misalignment
   calculation.  */

static tree
vect_compute_array_base_alignment (tree array,
				   tree vectype,
				   tree *prev_dimensions,
				   tree *misalignment)
{
  tree index;
  tree domain;
  tree dimension_size;
  tree mis;
  tree bits_per_vectype;
  tree bits_per_vectype_unit;

  /* The 'stop condition' of the recursion.  */
  if (TREE_CODE (array) != ARRAY_REF)
    return array;
  
  if (!vectype)
    /* Just get the base decl.  */
    return vect_compute_array_base_alignment 
		(TREE_OPERAND (array, 0), NULL, NULL, NULL);

  if (!host_integerp (*misalignment, 1) || TREE_OVERFLOW (*misalignment) || 
      !host_integerp (*prev_dimensions, 1) || TREE_OVERFLOW (*prev_dimensions))
    return NULL_TREE;

  domain = TYPE_DOMAIN (TREE_TYPE (array));
  dimension_size = 
	int_const_binop (PLUS_EXPR,
		int_const_binop (MINUS_EXPR, TYPE_MAX_VALUE (domain), 
					     TYPE_MIN_VALUE (domain), 1),
		size_one_node, 1);

  /* Check if the dimension size is a multiple of NUNITS, the remaining sum
     is a multiple of NUNITS: 

     dimension_size % GET_MODE_NUNITS (TYPE_MODE (vectype)) == 0 ?
   */
  mis = int_const_binop (TRUNC_MOD_EXPR, dimension_size,
	 build_int_cst (NULL_TREE, GET_MODE_NUNITS (TYPE_MODE (vectype))), 1);
  if (integer_zerop (mis))
    /* This array is aligned. Continue just in order to get the base decl.  */
    return vect_compute_array_base_alignment 
		(TREE_OPERAND (array, 0), NULL, NULL, NULL);

  index = TREE_OPERAND (array, 1);
  if (!host_integerp (index, 1))
    /* The current index is not constant.  */
    return NULL_TREE;
   
  index = int_const_binop (MINUS_EXPR, index, TYPE_MIN_VALUE (domain), 0);

  bits_per_vectype = fold_convert (unsigned_type_node, 
    build_int_cst (NULL_TREE, BITS_PER_UNIT * 
		 GET_MODE_SIZE (TYPE_MODE (vectype))));
  bits_per_vectype_unit =  fold_convert (unsigned_type_node,
    build_int_cst (NULL_TREE, BITS_PER_UNIT * 
		 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (vectype)))));
  
  /* Add {idx_i * dim_i-1 * ... * dim_0 } to the misalignment computed
     earlier:

     *misalignment = 
       (*misalignment + index_val * dimension_size * *prev_dimensions) 
							% vectype_nunits;
   */

  mis = int_const_binop (MULT_EXPR, index, dimension_size, 1);
  mis = int_const_binop (MULT_EXPR, mis, *prev_dimensions, 1);
  mis = int_const_binop (MULT_EXPR, mis, bits_per_vectype_unit, 1);
  mis = int_const_binop (PLUS_EXPR, *misalignment, mis, 1);
  *misalignment = int_const_binop (TRUNC_MOD_EXPR, mis, bits_per_vectype, 1);


  *prev_dimensions = int_const_binop (MULT_EXPR, 
				*prev_dimensions, dimension_size, 1);

  return vect_compute_array_base_alignment (TREE_OPERAND (array, 0), vectype,
					    prev_dimensions,
					    misalignment);
}

 
/* Function vect_compute_data_ref_alignment

   Compute the misalignment of the data reference DR.

   Output:
   1. If during the misalignment computation it is found that the data reference
      cannot be vectorized then false is returned.
   2. DR_MISALIGNMENT (DR) is defined.

   FOR NOW: No analysis is actually performed. Misalignment is calculated
   only for trivial cases. TODO.  */

static bool
vect_compute_data_ref_alignment (struct data_reference *dr, 
				 loop_vec_info loop_vinfo)
{
  tree stmt = DR_STMT (dr);
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);  
  tree ref = DR_REF (dr);
  tree vectype;
  tree scalar_type;
  tree offset = size_zero_node;
  tree base, bit_offset, alignment;
  tree unit_bits = fold_convert (unsigned_type_node, 
				 build_int_cst (NULL_TREE, BITS_PER_UNIT));
  tree dr_base;
  bool base_aligned_p;
   
  if (vect_debug_details (NULL))
    fprintf (dump_file, "vect_compute_data_ref_alignment:");

  /* Initialize misalignment to unknown.  */
  DR_MISALIGNMENT (dr) = -1;

  scalar_type = TREE_TYPE (ref);
  vectype = get_vectype_for_scalar_type (scalar_type);
  if (!vectype)
    {
      if (vect_debug_details (NULL))
        {
          fprintf (dump_file, "no vectype for stmt: ");
          print_generic_expr (dump_file, stmt, TDF_SLIM);
          fprintf (dump_file, " scalar_type: ");
          print_generic_expr (dump_file, scalar_type, TDF_DETAILS);
        }
      /* It is not possible to vectorize this data reference. */
      return false;
    }
  gcc_assert (TREE_CODE (ref) == ARRAY_REF || TREE_CODE (ref) == INDIRECT_REF);
  
  if (TREE_CODE (ref) == ARRAY_REF)
    dr_base = ref;
  else
    dr_base = STMT_VINFO_VECT_DR_BASE (stmt_info);

  base = vect_get_base_and_bit_offset (dr, dr_base, vectype, 
			  loop_vinfo, &bit_offset, &base_aligned_p);
  if (!base)
    {
      if (vect_debug_details (NULL)) 
	{
	  fprintf (dump_file, "Unknown alignment for access: ");
	  print_generic_expr (dump_file, 
			      STMT_VINFO_VECT_DR_BASE (stmt_info), TDF_SLIM);
	}
      return true;
    }

  if (!base_aligned_p) 
    {
      if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype)))
	{
	  if (vect_debug_details (NULL))
	    {
	      fprintf (dump_file, "can't force alignment of ref: ");
	      print_generic_expr (dump_file, ref, TDF_SLIM);
	    }
	  return true;
	}
      
      /* Force the alignment of the decl.
	 NOTE: This is the only change to the code we make during
	 the analysis phase, before deciding to vectorize the loop.  */
      if (vect_debug_details (NULL))
	fprintf (dump_file, "force alignment");
      DECL_ALIGN (base) = TYPE_ALIGN (vectype);
      DECL_USER_ALIGN (base) = TYPE_ALIGN (vectype);
    }

  /* At this point we assume that the base is aligned, and the offset from it
     (including index, if relevant) has been computed and is in BIT_OFFSET.  */
  gcc_assert (base_aligned_p 
	      || (TREE_CODE (base) == VAR_DECL 
		  && DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));

  /* Convert into bytes.  */
  offset = int_const_binop (TRUNC_DIV_EXPR, bit_offset, unit_bits, 1);
  /* Check that there is no remainder in bits.  */
  bit_offset = int_const_binop (TRUNC_MOD_EXPR, bit_offset, unit_bits, 1);
  if (!integer_zerop (bit_offset))
    {
      if (vect_debug_details (NULL))
	{
	  fprintf (dump_file, "bit offset alignment: ");
	  print_generic_expr (dump_file, bit_offset, TDF_SLIM);
	}
      return false;
    }
  
  /* Alignment required, in bytes:  */
  alignment = fold_convert (unsigned_type_node,
	    build_int_cst (NULL_TREE, TYPE_ALIGN (vectype)/BITS_PER_UNIT));

  /* Modulo alignment.  */
  offset = int_const_binop (TRUNC_MOD_EXPR, offset, alignment, 0);
  if (!host_integerp (offset, 1) || TREE_OVERFLOW (offset))
    {
      if (vect_debug_details (NULL))
	fprintf (dump_file, "unexpected misalign value");
      return false;
    }

  DR_MISALIGNMENT (dr) = tree_low_cst (offset, 1);

  if (vect_debug_details (NULL))
    fprintf (dump_file, "misalign = %d", DR_MISALIGNMENT (dr));

  return true;
}


/* Function vect_compute_array_ref_alignment

   Compute the alignment of an array-ref.
   The alignment we compute here is relative to 
   TYPE_ALIGN(VECTYPE) boundary.  

   Output:
   OFFSET - the alignment in bits
   Return value - the base of the array-ref. E.g, 
                  if the array-ref is a.b[k].c[i][j] the returned
		  base is a.b[k].c
*/

static tree
vect_compute_array_ref_alignment (struct data_reference *dr,
				  loop_vec_info loop_vinfo,
				  tree vectype,
				  tree *offset)
{
  tree array_first_index = size_zero_node;
  tree init;
  tree ref = DR_REF (dr);
  tree scalar_type = TREE_TYPE (ref);
  tree oprnd0 = TREE_OPERAND (ref, 0);
  tree dims = size_one_node;  
  tree misalign = size_zero_node;
  tree next_ref, this_offset = size_zero_node;
  tree nunits;
  tree nbits;

  if (TREE_CODE (TREE_TYPE (ref)) == ARRAY_TYPE)
      /* The reference is an array without its last index. */
      next_ref = vect_compute_array_base_alignment (ref, vectype, &dims, &misalign);
  else
      next_ref = 
	vect_compute_array_base_alignment (oprnd0, vectype, &dims, &misalign);
  if (!vectype)
    /* Alignment is not requested. Just return the base.  */
    return next_ref;

  /* Compute alignment.  */
  if (!host_integerp (misalign, 1) || TREE_OVERFLOW (misalign) || !next_ref)
    return NULL_TREE;
  this_offset = misalign;

  /* Check the first index accessed.  */
  if (!vect_get_first_index (ref, &array_first_index))
    {
      if (vect_debug_details (NULL))
        fprintf (dump_file, "no first_index for array.");
      return NULL_TREE;
    }

  /* Check the index of the array_ref.  */
  init = initial_condition_in_loop_num (DR_ACCESS_FN (dr, 0), 
					LOOP_VINFO_LOOP (loop_vinfo)->num);

  /* FORNOW: In order to simplify the handling of alignment, we make sure
     that the first location at which the array is accessed ('init') is on an
     'NUNITS' boundary, since we are assuming here that 'array base' is aligned. 
     This is too conservative, since we require that
     both {'array_base' is a multiple of NUNITS} && {'init' is a multiple of
     NUNITS}, instead of just {('array_base' + 'init') is a multiple of NUNITS}.
     This should be relaxed in the future.  */

  if (!init || !host_integerp (init, 0))
    {
      if (vect_debug_details (NULL))
	fprintf (dump_file, "non constant init. ");
      return NULL_TREE;
    }

  /* bytes per scalar element: */
  nunits = fold_convert (unsigned_type_node,
	build_int_cst (NULL_TREE, GET_MODE_SIZE (TYPE_MODE (scalar_type))));
  nbits = int_const_binop (MULT_EXPR, nunits,     
			   build_int_cst (NULL_TREE, BITS_PER_UNIT), 1);

  /* misalign = offset + (init-array_first_index)*nunits*bits_in_byte */
  misalign = int_const_binop (MINUS_EXPR, init, array_first_index, 0);
  misalign = int_const_binop (MULT_EXPR, misalign, nbits, 0);
  misalign = int_const_binop (PLUS_EXPR, misalign, this_offset, 0);

  /* TODO: allow negative misalign values.  */
  if (!host_integerp (misalign, 1) || TREE_OVERFLOW (misalign))
    {
      if (vect_debug_details (NULL))
        fprintf (dump_file, "unexpected misalign value");
      return NULL_TREE;
    }
  *offset = misalign;
  return next_ref;
}


/* Function vect_compute_data_refs_alignment

   Compute the misalignment of data references in the loop.
   This pass may take place at function granularity instead of at loop
   granularity.

   FOR NOW: No analysis is actually performed. Misalignment is calculated
   only for trivial cases. TODO.  */

static void
vect_compute_data_refs_alignment (loop_vec_info loop_vinfo)
{
  varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
  varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
  unsigned int i;

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
      vect_compute_data_ref_alignment (dr, loop_vinfo);
    }

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
      vect_compute_data_ref_alignment (dr, loop_vinfo);
    }
}


/* Function vect_enhance_data_refs_alignment

   This pass will use loop versioning and loop peeling in order to enhance
   the alignment of data references in the loop.

   FOR NOW: we assume that whatever versioning/peeling takes place, only the
   original loop is to be vectorized; Any other loops that are created by
   the transformations performed in this pass - are not supposed to be
   vectorized. This restriction will be relaxed.

   FOR NOW: No transformation is actually performed. TODO.  */

static void
vect_enhance_data_refs_alignment (loop_vec_info loop_info ATTRIBUTE_UNUSED)
{
  /*
     This pass will require a cost model to guide it whether to apply peeling 
     or versioning or a combination of the two. For example, the scheme that
     intel uses when given a loop with several memory accesses, is as follows:
     choose one memory access ('p') which alignment you want to force by doing 
     peeling. Then, either (1) generate a loop in which 'p' is aligned and all 
     other accesses are not necessarily aligned, or (2) use loop versioning to 
     generate one loop in which all accesses are aligned, and another loop in 
     which only 'p' is necessarily aligned. 

     ("Automatic Intra-Register Vectorization for the Intel Architecture",
      Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
      Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)	

     Devising a cost model is the most critical aspect of this work. It will 
     guide us on which access to peel for, whether to use loop versioning, how 
     many versions to create, etc. The cost model will probably consist of 
     generic considerations as well as target specific considerations (on 
     powerpc for example, misaligned stores are more painful than misaligned 
     loads). 

     Here is the general steps involved in alignment enhancements:
    
     -- original loop, before alignment analysis:
	for (i=0; i<N; i++){
	  x = q[i];			# DR_MISALIGNMENT(q) = unknown
	  p[i] = y;			# DR_MISALIGNMENT(p) = unknown
	}

     -- After vect_compute_data_refs_alignment:
	for (i=0; i<N; i++){
	  x = q[i];			# DR_MISALIGNMENT(q) = 3
	  p[i] = y;			# DR_MISALIGNMENT(p) = unknown
	}

     -- Possibility 1: we do loop versioning:
     if (p is aligned) {
	for (i=0; i<N; i++){	# loop 1A
	  x = q[i];			# DR_MISALIGNMENT(q) = 3
	  p[i] = y;			# DR_MISALIGNMENT(p) = 0
	}
     } 
     else {
	for (i=0; i<N; i++){	# loop 1B
	  x = q[i];			# DR_MISALIGNMENT(q) = 3
	  p[i] = y;			# DR_MISALIGNMENT(p) = unaligned
	}
     }
   
     -- Possibility 2: we do loop peeling:
     for (i = 0; i < 3; i++){	# (scalar loop, not to be vectorized).
	x = q[i];
	p[i] = y;
     }
     for (i = 3; i < N; i++){	# loop 2A
	x = q[i];			# DR_MISALIGNMENT(q) = 0
	p[i] = y;			# DR_MISALIGNMENT(p) = unknown
     }

     -- Possibility 3: combination of loop peeling and versioning:
     for (i = 0; i < 3; i++){	# (scalar loop, not to be vectorized).
	x = q[i];
	p[i] = y;
     }
     if (p is aligned) {
	for (i = 3; i<N; i++){  # loop 3A
	  x = q[i];			# DR_MISALIGNMENT(q) = 0
	  p[i] = y;			# DR_MISALIGNMENT(p) = 0
	}
     } 
     else {
	for (i = 3; i<N; i++){	# loop 3B
	  x = q[i];			# DR_MISALIGNMENT(q) = 0
	  p[i] = y;			# DR_MISALIGNMENT(p) = unaligned
	}
     }

     These loops are later passed to loop_transform to be vectorized. The 
     vectorizer will use the alignment information to guide the transformation 
     (whether to generate regular loads/stores, or with special handling for 
     misalignment). 
   */
}


/* Function vect_analyze_data_refs_alignment

   Analyze the alignment of the data-references in the loop.
   FOR NOW: Until support for misliagned accesses is in place, only if all
   accesses are aligned can the loop be vectorized. This restriction will be 
   relaxed.  */ 

static bool
vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
{
  varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
  /*varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);*/

  unsigned int i;

  if (vect_debug_details (NULL))
    fprintf (dump_file, "\n<<vect_analyze_data_refs_alignment>>\n");


  /* This pass may take place at function granularity instead of at loop
     granularity.  */

  vect_compute_data_refs_alignment (loop_vinfo);


  /* This pass will use loop versioning and loop peeling in order to enhance
     the alignment of data references in the loop.
     FOR NOW: we assume that whatever versioning/peeling took place, the 
     original loop is to be vectorized. Any other loops that were created by
     the transformations performed in this pass - are not supposed to be 
     vectorized. This restriction will be relaxed.  */

  vect_enhance_data_refs_alignment (loop_vinfo);


  /* Finally, check that loop can be vectorized. 
     FOR NOW: Until support for misaligned accesses is in place, only if all
     accesses are aligned can the loop be vectorized. This restriction will be 
     relaxed.  */

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
      if (!aligned_access_p (dr))
	{
	  if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
	      || vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo)))
	    fprintf (dump_file, "not vectorized: unaligned store.");
	  return false;
	}
    }

  /* The vectorizer now supports misaligned loads, so we don't fail anymore
     in the presence of a misaligned read dataref.  For some targets however
     it may be preferable not to vectorize in such a case as misaligned
     accesses are very costly.  This should be considered in the future.  */
/*
  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
      if (!aligned_access_p (dr))
	{
	  if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
	      || vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo)))
	    fprintf (dump_file, "not vectorized: unaligned load.");
	  return false;
	}
    }
*/

  return true;
}


/* Function vect_analyze_data_ref_access.

   Analyze the access pattern of the data-reference DR. For now, a data access
   has to consecutive and aligned to be considered vectorizable.  */

static bool
vect_analyze_data_ref_access (struct data_reference *dr)
{
  varray_type access_fns = DR_ACCESS_FNS (dr);
  tree access_fn;
  tree init, step;
  unsigned int dimensions, i;

  /* Check that in case of multidimensional array ref A[i1][i2]..[iN],
     i1, i2, ..., iN-1 are loop invariant (to make sure that the memory
     access is contiguous).  */
  dimensions = VARRAY_ACTIVE_SIZE (access_fns);

  for (i = 1; i < dimensions; i++) /* Not including the last dimension.  */
    {
      access_fn = DR_ACCESS_FN (dr, i);

      if (evolution_part_in_loop_num (access_fn, 
				      loop_containing_stmt (DR_STMT (dr))->num))
	{
	  /* Evolution part is not NULL in this loop (it is neither constant nor 
	     invariant). */
	  if (vect_debug_details (NULL))
	    {
	      fprintf (dump_file, 
		       "not vectorized: complicated multidimensional array access.");
	      print_generic_expr (dump_file, access_fn, TDF_SLIM);
	    }
	  return false;
	}
    }
  
  access_fn = DR_ACCESS_FN (dr, 0); /*  The last dimension access function.  */
  if (!evolution_function_is_constant_p (access_fn)
      && !vect_is_simple_iv_evolution (loop_containing_stmt (DR_STMT (dr))->num,
				       access_fn, &init, &step, true))
    {
      if (vect_debug_details (NULL))
	{
	  fprintf (dump_file, "not vectorized: too complicated access function.");
	  print_generic_expr (dump_file, access_fn, TDF_SLIM);
	}
      return false;
    }
  
  return true;
}


/* Function vect_analyze_data_ref_accesses.

   Analyze the access pattern of all the data references in the loop.

   FORNOW: the only access pattern that is considered vectorizable is a
	   simple step 1 (consecutive) access.

   FORNOW: handle only arrays and pointer accesses.  */

static bool
vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo)
{
  unsigned int i;
  varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
  varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);

  if (vect_debug_details (NULL))
    fprintf (dump_file, "\n<<vect_analyze_data_ref_accesses>>\n");

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
      bool ok = vect_analyze_data_ref_access (dr);
      if (!ok)
	{
	  if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
	      || vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo)))
	    fprintf (dump_file, "not vectorized: complicated access pattern.");
	  return false;
	}
    }

  for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
    {
      struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
      bool ok = vect_analyze_data_ref_access (dr);
      if (!ok)
	{
	  if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
	      || vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo))) 
	    fprintf (dump_file, "not vectorized: complicated access pattern.");
	  return false;
	}
    }

  return true;
}


/* Function vect_analyze_pointer_ref_access.

   Input:
   STMT - a stmt that contains a data-ref
   MEMREF - a data-ref in STMT, which is an INDIRECT_REF.

   If the data-ref access is vectorizable, return a data_reference structure
   that represents it (DR). Otherwise - return NULL.   */

static struct data_reference *
vect_analyze_pointer_ref_access (tree memref, tree stmt, bool is_read)
{
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  struct loop *loop = STMT_VINFO_LOOP (stmt_info);
  tree access_fn = analyze_scalar_evolution (loop, TREE_OPERAND (memref, 0));
  tree init, step;	
  int step_val;
  tree reftype, innertype;
  enum machine_mode innermode;
  tree indx_access_fn; 
  int loopnum = loop->num;
  struct data_reference *dr;

  if (!access_fn)
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))
        fprintf (dump_file, "not vectorized: complicated pointer access.");	
      return NULL;
    }

  if (vect_debug_details (NULL))
    {
      fprintf (dump_file, "Access function of ptr: ");
      print_generic_expr (dump_file, access_fn, TDF_SLIM);
    }

  if (!vect_is_simple_iv_evolution (loopnum, access_fn, &init, &step, false))
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop)) 
	fprintf (dump_file, "not vectorized: pointer access is not simple.");	
      return NULL;
    }
		
  STRIP_NOPS (init);

  if (!host_integerp (step,0))
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop)) 
	fprintf (dump_file, 
		"not vectorized: non constant step for pointer access.");	
      return NULL;
    }

  step_val = TREE_INT_CST_LOW (step);

  reftype = TREE_TYPE (TREE_OPERAND (memref, 0));
  if (TREE_CODE (reftype) != POINTER_TYPE) 
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))
	fprintf (dump_file, "not vectorized: unexpected pointer access form.");	
      return NULL;
    }

  reftype = TREE_TYPE (init);
  if (TREE_CODE (reftype) != POINTER_TYPE) 
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop)) 
	fprintf (dump_file, "not vectorized: unexpected pointer access form.");
      return NULL;
    }

  innertype = TREE_TYPE (reftype);
  innermode = TYPE_MODE (innertype);
  if (GET_MODE_SIZE (innermode) != step_val) 
    {
      /* FORNOW: support only consecutive access */
      if (vect_debug_stats (loop) || vect_debug_details (loop)) 
	fprintf (dump_file, "not vectorized: non consecutive access.");	
      return NULL;
    }

  indx_access_fn = 
	build_polynomial_chrec (loopnum, integer_zero_node, integer_one_node);
  if (vect_debug_details (NULL)) 
    {
      fprintf (dump_file, "Access function of ptr indx: ");
      print_generic_expr (dump_file, indx_access_fn, TDF_SLIM);
    }
  dr = init_data_ref (stmt, memref, init, indx_access_fn, is_read);
  return dr;
}


/* Function vect_get_symbl_and_dr.  

   The function returns SYMBL - the relevant variable for
   memory tag (for aliasing purposes). 
   Also data reference structure DR is created.  

   Input:
   MEMREF - data reference in STMT
   IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
   
   Output:
   DR - data_reference struct for MEMREF
   return value - the relevant variable for memory tag (for aliasing purposes).

*/ 

static tree
vect_get_symbl_and_dr (tree memref, tree stmt, bool is_read, 
		       loop_vec_info loop_vinfo, struct data_reference **dr)
{
  tree symbl, oprnd0, oprnd1;
  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
  tree offset;
  tree array_base, base;
  struct data_reference *new_dr;
  bool base_aligned_p;

  *dr = NULL;
  switch (TREE_CODE (memref))
    {
    case INDIRECT_REF:
      new_dr = vect_analyze_pointer_ref_access (memref, stmt, is_read);
      if (! new_dr)
	return NULL_TREE; 
      *dr = new_dr;
      symbl = DR_BASE_NAME (new_dr);
      STMT_VINFO_VECT_DR_BASE (stmt_info) = symbl;

      switch (TREE_CODE (symbl))
	{
	case PLUS_EXPR:
	case MINUS_EXPR:
	  oprnd0 = TREE_OPERAND (symbl, 0);
	  oprnd1 = TREE_OPERAND (symbl, 1);

	  STRIP_NOPS(oprnd1);
	  /* Only {address_base + offset} expressions are supported,  
	     where address_base can be POINTER_TYPE or ARRAY_TYPE and 
	     offset can be anything but POINTER_TYPE or ARRAY_TYPE.  
	     TODO: swap operands if {offset + address_base}.  */
	  if ((TREE_CODE (TREE_TYPE (oprnd1)) == POINTER_TYPE 
	       && TREE_CODE (oprnd1) != INTEGER_CST)
	      || TREE_CODE (TREE_TYPE (oprnd1)) == ARRAY_TYPE)
	    return NULL_TREE;

	  if (TREE_CODE (TREE_TYPE (oprnd0)) == POINTER_TYPE)
	    symbl = oprnd0;
	  else
	    symbl = vect_get_symbl_and_dr (oprnd0, stmt, is_read, 
					   loop_vinfo, &new_dr); 

	case SSA_NAME:
	case ADDR_EXPR:
	  /* symbl remains unchanged.  */
	  break;

	default:
	  if (vect_debug_details (NULL))
	    {
	      fprintf (dump_file, "unhandled data ref: ");
	      print_generic_expr (dump_file, memref, TDF_SLIM);
	      fprintf (dump_file, " (symbl ");
	      print_generic_expr (dump_file, symbl, TDF_SLIM);
	      fprintf (dump_file, ") in stmt  ");
	      print_generic_expr (dump_file, stmt, TDF_SLIM);
	    }
	  return NULL_TREE;	
	}
      break;

    case ARRAY_REF:
      offset = size_zero_node;

      /* Store the array base in the stmt info. 
	 For one dimensional array ref a[i], the base is a,
	 for multidimensional a[i1][i2]..[iN], the base is 
	 a[i1][i2]..[iN-1]. */
      array_base = TREE_OPERAND (memref, 0);
      STMT_VINFO_VECT_DR_BASE (stmt_info) = array_base;	     

      new_dr = analyze_array (stmt, memref, is_read);
      *dr = new_dr;

      /* Find the relevant symbol for aliasing purposes.  */	
      base = DR_BASE_NAME (new_dr);
      switch (TREE_CODE (base))	
	{
	case VAR_DECL:
	  symbl = base;
	  break;

	case INDIRECT_REF:
	  symbl = TREE_OPERAND (base, 0); 
	  break;

	case COMPONENT_REF:
	  /* Could have recorded more accurate information - 
	     i.e, the actual FIELD_DECL that is being referenced -
	     but later passes expect VAR_DECL as the nmt.  */	
	  symbl = vect_get_base_and_bit_offset (new_dr, base, NULL_TREE, 
					loop_vinfo, &offset, &base_aligned_p);
	  if (symbl)
	    break;
	  /* fall through */	
	default:
	  if (vect_debug_details (NULL))
	    {
	      fprintf (dump_file, "unhandled struct/class field access ");
	      print_generic_expr (dump_file, stmt, TDF_SLIM);
	    }
	  return NULL_TREE;
	}
      break;

    default:
      if (vect_debug_details (NULL))
	{
	  fprintf (dump_file, "unhandled data ref: ");
	  print_generic_expr (dump_file, memref, TDF_SLIM);
	  fprintf (dump_file, " in stmt  ");
	  print_generic_expr (dump_file, stmt, TDF_SLIM);
	}
      return NULL_TREE;
    }
  return symbl;
}


/* Function vect_analyze_data_refs.

   Find all the data references in the loop.

   FORNOW: Handle aligned INDIRECT_REFs and ARRAY_REFs 
	   which base is really an array (not a pointer) and which alignment 
	   can be forced. This restriction will be relaxed.   */

static bool
vect_analyze_data_refs (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes;
  block_stmt_iterator si;
  int j;
  struct data_reference *dr;
  tree tag;
  tree address_base;

  if (vect_debug_details (NULL))
    fprintf (dump_file, "\n<<vect_analyze_data_refs>>\n");

  for (j = 0; j < nbbs; j++)
    {
      basic_block bb = bbs[j];
      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  bool is_read = false;
	  tree stmt = bsi_stmt (si);
	  stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
	  v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
	  v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
	  vuse_optype vuses = STMT_VUSE_OPS (stmt);
	  varray_type *datarefs = NULL;
	  int nvuses, nv_may_defs, nv_must_defs;
	  tree memref = NULL;
	  tree symbl;

	  /* Assumption: there exists a data-ref in stmt, if and only if 
             it has vuses/vdefs.  */

	  if (!vuses && !v_may_defs && !v_must_defs)
	    continue;

	  nvuses = NUM_VUSES (vuses);
	  nv_may_defs = NUM_V_MAY_DEFS (v_may_defs);
	  nv_must_defs = NUM_V_MUST_DEFS (v_must_defs);

	  if (nvuses && (nv_may_defs || nv_must_defs))
	    {
	      if (vect_debug_details (NULL))
		{
		  fprintf (dump_file, "unexpected vdefs and vuses in stmt: ");
		  print_generic_expr (dump_file, stmt, TDF_SLIM);
		}
	      return false;
	    }

	  if (TREE_CODE (stmt) != MODIFY_EXPR)
	    {
	      if (vect_debug_details (NULL))
		{
		  fprintf (dump_file, "unexpected vops in stmt: ");
		  print_generic_expr (dump_file, stmt, TDF_SLIM);
		}
	      return false;
	    }

	  if (vuses)
	    {
	      memref = TREE_OPERAND (stmt, 1);
	      datarefs = &(LOOP_VINFO_DATAREF_READS (loop_vinfo));
	      is_read = true;
	    } 
	  else /* vdefs */
	    {
	      memref = TREE_OPERAND (stmt, 0);
	      datarefs = &(LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
	      is_read = false;
	    }

	  /* Analyze MEMREF. If it is of a supported form, build data_reference
	     struct for it (DR) and find the relevant symbol for aliasing 
	     purposes.  */
	  symbl = vect_get_symbl_and_dr (memref, stmt, is_read, loop_vinfo, &dr);
	  if (!symbl)
	    {
	      if (vect_debug_stats (loop) || vect_debug_details (loop))
		{
		  fprintf (dump_file, "not vectorized: unhandled data ref: "); 
		  print_generic_expr (dump_file, stmt, TDF_SLIM);
		}
	      return false;
	    }

	  /* Find and record the memtag assigned to this data-ref.  */
	   switch (TREE_CODE (symbl))
	    {
	    case VAR_DECL:
	      STMT_VINFO_MEMTAG (stmt_info) = symbl;
	      break;
	      
	    case SSA_NAME:
	      symbl = SSA_NAME_VAR (symbl);
	      tag = get_var_ann (symbl)->type_mem_tag;
	      if (!tag)
		{
		  tree ptr = TREE_OPERAND (memref, 0);
		  if (TREE_CODE (ptr) == SSA_NAME)
		    tag = get_var_ann (SSA_NAME_VAR (ptr))->type_mem_tag;
		}
	      if (!tag)
		{
		  if (vect_debug_stats (loop) || vect_debug_details (loop))
		    fprintf (dump_file, "not vectorized: no memtag for ref.");
		  return false;
		}
	      STMT_VINFO_MEMTAG (stmt_info) = tag;
	      break;

	    case ADDR_EXPR:
	      address_base = TREE_OPERAND (symbl, 0);

	      switch (TREE_CODE (address_base))
		{
		case ARRAY_REF:
		  dr = analyze_array (stmt, TREE_OPERAND (symbl, 0), DR_IS_READ(dr));
		  STMT_VINFO_MEMTAG (stmt_info) = DR_BASE_NAME (dr);
		  break;
		  
		case VAR_DECL: 
		  STMT_VINFO_MEMTAG (stmt_info) = address_base;
		  break;

		default:
		  if (vect_debug_stats (loop) || vect_debug_details (loop))
		    {
		      fprintf (dump_file, "not vectorized: unhandled address expression: ");
		      print_generic_expr (dump_file, stmt, TDF_SLIM);
		    }
		  return false;
		}
	      break;
	      
	    default:
	      if (vect_debug_stats (loop) || vect_debug_details (loop))
		{
		  fprintf (dump_file, "not vectorized: unsupported data-ref: ");
		  print_generic_expr (dump_file, memref, TDF_SLIM);
		}
	      return false;
	    }

	  VARRAY_PUSH_GENERIC_PTR (*datarefs, dr);
	  STMT_VINFO_DATA_REF (stmt_info) = dr;
	}
    }

  return true;
}


/* Utility functions used by vect_mark_stmts_to_be_vectorized.  */

/* Function vect_mark_relevant.

   Mark STMT as "relevant for vectorization" and add it to WORKLIST.  */

static void
vect_mark_relevant (varray_type worklist, tree stmt)
{
  stmt_vec_info stmt_info;

  if (vect_debug_details (NULL))
    fprintf (dump_file, "mark relevant.");

  if (TREE_CODE (stmt) == PHI_NODE)
    {
      VARRAY_PUSH_TREE (worklist, stmt);
      return;
    }

  stmt_info = vinfo_for_stmt (stmt);

  if (!stmt_info)
    {
      if (vect_debug_details (NULL))
	{
	  fprintf (dump_file, "mark relevant: no stmt info!!.");
	  print_generic_expr (dump_file, stmt, TDF_SLIM);
	}
      return;
    }

  if (STMT_VINFO_RELEVANT_P (stmt_info))
    {
      if (vect_debug_details (NULL))
        fprintf (dump_file, "already marked relevant.");
      return;
    }

  STMT_VINFO_RELEVANT_P (stmt_info) = 1;
  VARRAY_PUSH_TREE (worklist, stmt);
}


/* Function vect_stmt_relevant_p.

   Return true if STMT in loop that is represented by LOOP_VINFO is
   "relevant for vectorization".

   A stmt is considered "relevant for vectorization" if:
   - it has uses outside the loop.
   - it has vdefs (it alters memory).
   - control stmts in the loop (except for the exit condition).

   CHECKME: what other side effects would the vectorizer allow?  */

static bool
vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo)
{
  v_may_def_optype v_may_defs;
  v_must_def_optype v_must_defs;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  int i;
  dataflow_t df;
  int num_uses;

  /* cond stmt other than loop exit cond.  */
  if (is_ctrl_stmt (stmt) && (stmt != LOOP_VINFO_EXIT_COND (loop_vinfo)))
    return true;

  /* changing memory.  */
  v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
  v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
  if (v_may_defs || v_must_defs)
    {
      if (vect_debug_details (NULL))
        fprintf (dump_file, "vec_stmt_relevant_p: stmt has vdefs.");
      return true;
    }

  /* uses outside the loop.  */
  df = get_immediate_uses (stmt);
  num_uses = num_immediate_uses (df);
  for (i = 0; i < num_uses; i++)
    {
      tree use = immediate_use (df, i);
      basic_block bb = bb_for_stmt (use);
      if (!flow_bb_inside_loop_p (loop, bb))
	{
	  if (vect_debug_details (NULL))
	    fprintf (dump_file, "vec_stmt_relevant_p: used out of loop.");
	  return true;
	}
    }

  return false;
}


/* Function vect_mark_stmts_to_be_vectorized.

   Not all stmts in the loop need to be vectorized. For example:

     for i...
       for j...
   1.    T0 = i + j
   2.	 T1 = a[T0]

   3.    j = j + 1

   Stmt 1 and 3 do not need to be vectorized, because loop control and
   addressing of vectorized data-refs are handled differently.

   This pass detects such stmts.  */

static bool
vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
{
  varray_type worklist;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  unsigned int nbbs = loop->num_nodes;
  block_stmt_iterator si;
  tree stmt;
  stmt_ann_t ann;
  unsigned int i;
  int j;
  use_optype use_ops;
  stmt_vec_info stmt_info;

  if (vect_debug_details (NULL))
    fprintf (dump_file, "\n<<vect_mark_stmts_to_be_vectorized>>\n");

  VARRAY_TREE_INIT (worklist, 64, "work list");

  /* 1. Init worklist.  */

  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];
      for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
	{
	  stmt = bsi_stmt (si);

	  if (vect_debug_details (NULL))
	    {
	      fprintf (dump_file, "init: stmt relevant? ");
	      print_generic_expr (dump_file, stmt, TDF_SLIM);
	    } 

	  stmt_info = vinfo_for_stmt (stmt);
	  STMT_VINFO_RELEVANT_P (stmt_info) = 0;

	  if (vect_stmt_relevant_p (stmt, loop_vinfo))
	    vect_mark_relevant (worklist, stmt);
	}
    }


  /* 2. Process_worklist */

  while (VARRAY_ACTIVE_SIZE (worklist) > 0)
    {
      stmt = VARRAY_TOP_TREE (worklist);
      VARRAY_POP (worklist);

      if (vect_debug_details (NULL))
	{
          fprintf (dump_file, "worklist: examine stmt: ");
          print_generic_expr (dump_file, stmt, TDF_SLIM);
	}

      /* Examine the USES in this statement. Mark all the statements which
         feed this statement's uses as "relevant", unless the USE is used as
         an array index.  */

      if (TREE_CODE (stmt) == PHI_NODE)
	{
	  /* follow the def-use chain inside the loop.  */
	  for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
	    {
	      tree arg = PHI_ARG_DEF (stmt, j);
	      tree def_stmt = NULL_TREE;
	      basic_block bb;
	      if (!vect_is_simple_use (arg, loop, &def_stmt))
		{
		  if (vect_debug_details (NULL))	
		    fprintf (dump_file, "worklist: unsupported use.");
		  varray_clear (worklist);
		  return false;
		}
	      if (!def_stmt)
		continue;

	      if (vect_debug_details (NULL))
	        {
	          fprintf (dump_file, "worklist: def_stmt: ");
		  print_generic_expr (dump_file, def_stmt, TDF_SLIM);
		}

	      bb = bb_for_stmt (def_stmt);
	      if (flow_bb_inside_loop_p (loop, bb))
	        vect_mark_relevant (worklist, def_stmt);
	    }
	} 

      ann = stmt_ann (stmt);
      use_ops = USE_OPS (ann);

      for (i = 0; i < NUM_USES (use_ops); i++)
	{
	  tree use = USE_OP (use_ops, i);

	  /* We are only interested in uses that need to be vectorized. Uses 
	     that are used for address computation are not considered relevant.
	   */
	  if (exist_non_indexing_operands_for_use_p (use, stmt))
	    {
              tree def_stmt = NULL_TREE;
              basic_block bb;
              if (!vect_is_simple_use (use, loop, &def_stmt))
                {
                  if (vect_debug_details (NULL))        
                    fprintf (dump_file, "worklist: unsupported use.");
                  varray_clear (worklist);
                  return false;
                }

	      if (!def_stmt)
		continue;

              if (vect_debug_details (NULL))
                {
                  fprintf (dump_file, "worklist: examine use %d: ", i);
                  print_generic_expr (dump_file, use, TDF_SLIM);
                }

	      bb = bb_for_stmt (def_stmt);
	      if (flow_bb_inside_loop_p (loop, bb))
		vect_mark_relevant (worklist, def_stmt);
	    }
	}
    }				/* while worklist */

  varray_clear (worklist);
  return true;
}


/* Function vect_get_loop_niters.

   Determine how many iterations the loop is executed.  */

static tree
vect_get_loop_niters (struct loop *loop, HOST_WIDE_INT *number_of_iterations)
{
  tree niters;

  if (vect_debug_details (NULL))
    fprintf (dump_file, "\n<<get_loop_niters>>\n");

  niters = number_of_iterations_in_loop (loop);

  if (niters != NULL_TREE
      && niters != chrec_dont_know
      && host_integerp (niters,0))
    {
      *number_of_iterations = TREE_INT_CST_LOW (niters);

      if (vect_debug_details (NULL))
        fprintf (dump_file, "==> get_loop_niters:" HOST_WIDE_INT_PRINT_DEC,
				 *number_of_iterations);
    }

  return get_loop_exit_condition (loop);
}


/* Function vect_analyze_loop_form.

   Verify the following restrictions (some may be relaxed in the future):
   - it's an inner-most loop
   - number of BBs = 2 (which are the loop header and the latch)
   - the loop has a pre-header
   - the loop has a single entry and exit
   - the loop exit condition is simple enough, and the number of iterations
     can be analyzed (a countable loop).  */

static loop_vec_info
vect_analyze_loop_form (struct loop *loop)
{
  loop_vec_info loop_vinfo;
  tree loop_cond;
  HOST_WIDE_INT number_of_iterations = -1;

  if (vect_debug_details (loop))
    fprintf (dump_file, "\n<<vect_analyze_loop_form>>\n");

  if (loop->inner
      || !loop->single_exit
      || loop->num_nodes != 2)
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))	
	{
	  fprintf (dump_file, "not vectorized: bad loop form. ");
	  if (loop->inner)
	    fprintf (dump_file, "nested loop.");
	  else if (!loop->single_exit)
	    fprintf (dump_file, "multiple exits.");
	  else if (loop->num_nodes != 2)
	    fprintf (dump_file, "too many BBs in loop.");
	}

      return NULL;
    }

  /* We assume that the loop exit condition is at the end of the loop. i.e,
     that the loop is represented as a do-while (with a proper if-guard
     before the loop if needed), where the loop header contains all the
     executable statements, and the latch is empty.  */
  if (!empty_block_p (loop->latch))
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))
        fprintf (dump_file, "not vectorized: unexpectd loop form.");
      return NULL;
    }

  if (empty_block_p (loop->header))
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))
        fprintf (dump_file, "not vectorized: empty loop.");
      return NULL;
    }

  loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
  if (!loop_cond)
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))
	fprintf (dump_file, "not vectorized: complicated exit condition.");
      return NULL;
    }

  if (number_of_iterations < 0)
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))
        fprintf (dump_file, "not vectorized: unknown loop bound.");
      return NULL;
    }

  if (number_of_iterations == 0) /* CHECKME: can this happen? */
    {
      if (vect_debug_stats (loop) || vect_debug_details (loop))
	fprintf (dump_file, "not vectorized: number of iterations = 0.");
      return NULL;
    }

  loop_vinfo = new_loop_vec_info (loop);
  LOOP_VINFO_EXIT_COND (loop_vinfo) = loop_cond;
  LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;

  return loop_vinfo;
}


/* Function vect_analyze_loop.

   Apply a set of analyses on LOOP, and create a loop_vec_info struct
   for it. The different analyses will record information in the
   loop_vec_info struct.  */

static loop_vec_info
vect_analyze_loop (struct loop *loop)
{
  bool ok;
  loop_vec_info loop_vinfo;

  if (vect_debug_details (NULL))
    fprintf (dump_file, "\n<<<<<<< analyze_loop_nest >>>>>>>\n");

  /* Check the CFG characteristics of the loop (nesting, entry/exit, etc.  */

  loop_vinfo = vect_analyze_loop_form (loop);
  if (!loop_vinfo)
    {
      if (vect_debug_details (loop))
	fprintf (dump_file, "bad loop form.");
      return NULL;
    }

  /* Find all data references in the loop (which correspond to vdefs/vuses)
     and analyze their evolution in the loop.

     FORNOW: Handle only simple, array references, which
     alignment can be forced, and aligned pointer-references.  */

  ok = vect_analyze_data_refs (loop_vinfo);
  if (!ok)
    {
      if (vect_debug_details (loop))
	fprintf (dump_file, "bad data references.");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }

  /* Data-flow analysis to detect stmts that do not need to be vectorized.  */

  ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
  if (!ok)
    {
      if (vect_debug_details (loop))
	fprintf (dump_file, "unexpected pattern.");
      if (vect_debug_details (loop))
	fprintf (dump_file, "not vectorized: unexpected pattern.");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }

  /* Check that all cross-iteration scalar data-flow cycles are OK.
     Cross-iteration cycles caused by virtual phis are analyzed separately.  */

  ok = vect_analyze_scalar_cycles (loop_vinfo);
  if (!ok)
    {
      if (vect_debug_details (loop))
	fprintf (dump_file, "bad scalar cycle.");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }

  /* Analyze data dependences between the data-refs in the loop. 
     FORNOW: fail at the first data dependence that we encounter.  */

  ok = vect_analyze_data_ref_dependences (loop_vinfo);
  if (!ok)
    {
      if (vect_debug_details (loop))
	fprintf (dump_file, "bad data dependence.");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }

  /* Analyze the access patterns of the data-refs in the loop (consecutive,
     complex, etc.). FORNOW: Only handle consecutive access pattern.  */

  ok = vect_analyze_data_ref_accesses (loop_vinfo);
  if (!ok)
    {
      if (vect_debug_details (loop))
	fprintf (dump_file, "bad data access.");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }

  /* Analyze the alignment of the data-refs in the loop.
     FORNOW: Only aligned accesses are handled.  */

  ok = vect_analyze_data_refs_alignment (loop_vinfo);
  if (!ok)
    {
      if (vect_debug_details (loop))
	fprintf (dump_file, "bad data alignment.");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }

  /* Scan all the operations in the loop and make sure they are
     vectorizable.  */

  ok = vect_analyze_operations (loop_vinfo);
  if (!ok)
    {
      if (vect_debug_details (loop))
	fprintf (dump_file, "bad operation or unsupported loop bound.");
      destroy_loop_vec_info (loop_vinfo);
      return NULL;
    }

  LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;

  return loop_vinfo;
}


/* Function need_imm_uses_for.

   Return whether we ought to include information for 'var'
   when calculating immediate uses.  For this pass we only want use
   information for non-virtual variables.  */

static bool
need_imm_uses_for (tree var)
{
  return is_gimple_reg (var);
}


/* Function vectorize_loops.
   
   Entry Point to loop vectorization phase.  */

void
vectorize_loops (struct loops *loops)
{
  unsigned int i, loops_num;
  unsigned int num_vectorized_loops = 0;

  /* Does the target support SIMD?  */
  /* FORNOW: until more sophisticated machine modelling is in place.  */
  if (!UNITS_PER_SIMD_WORD)
    {
      if (vect_debug_details (NULL))
	fprintf (dump_file, "vectorizer: target vector size is not defined.");
      return;
    }

  compute_immediate_uses (TDFA_USE_OPS, need_imm_uses_for);

  /*  ----------- Analyze loops. -----------  */

  /* If some loop was duplicated, it gets bigger number 
     than all previously defined loops. This fact allows us to run 
     only over initial loops skipping newly generated ones.  */
  loops_num = loops->num;
  for (i = 1; i < loops_num; i++)
    {
      loop_vec_info loop_vinfo;
      struct loop *loop = loops->parray[i];

      if (!loop)
        continue;

      loop_vinfo = vect_analyze_loop (loop);
      loop->aux = loop_vinfo;

      if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
	continue;

      vect_transform_loop (loop_vinfo, loops); 
      num_vectorized_loops++;
    }

  if (vect_debug_stats (NULL) || vect_debug_details (NULL))
    fprintf (dump_file, "\nvectorized %u loops in function.\n",
	     num_vectorized_loops);

  /*  ----------- Finalize. -----------  */

  free_df ();
  for (i = 1; i < loops_num; i++)
    {
      struct loop *loop = loops->parray[i];
      loop_vec_info loop_vinfo;

      if (!loop)
	continue;
      loop_vinfo = loop->aux;
      destroy_loop_vec_info (loop_vinfo);
      loop->aux = NULL;
    }

  rewrite_into_ssa (false);
  if (bitmap_first_set_bit (vars_to_rename) >= 0)
    {
      /* The rewrite of ssa names may cause violation of loop closed ssa
         form invariants.  TODO -- avoid these rewrites completely.
         Information in virtual phi nodes is sufficient for it.  */
      rewrite_into_loop_closed_ssa (); 
    }
  bitmap_clear (vars_to_rename);
}