1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
|
/* Loop Vectorization
Copyright (C) 2003, 2004 Free Software Foundation, Inc.
Contributed by Dorit Naishlos <dorit@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
/* Loop Vectorization Pass.
This pass tries to vectorize loops. This first implementation focuses on
simple inner-most loops, with no conditional control flow, and a set of
simple operations which vector form can be expressed using existing
tree codes (PLUS, MULT etc).
For example, the vectorizer transforms the following simple loop:
short a[N]; short b[N]; short c[N]; int i;
for (i=0; i<N; i++){
a[i] = b[i] + c[i];
}
as if it was manually vectorized by rewriting the source code into:
typedef int __attribute__((mode(V8HI))) v8hi;
short a[N]; short b[N]; short c[N]; int i;
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
v8hi va, vb, vc;
for (i=0; i<N/8; i++){
vb = pb[i];
vc = pc[i];
va = vb + vc;
pa[i] = va;
}
The main entry to this pass is vectorize_loops(), in which
the vectorizer applies a set of analyses on a given set of loops,
followed by the actual vectorization transformation for the loops that
had successfully passed the analysis phase.
Throughout this pass we make a distinction between two types of
data: scalars (which are represented by SSA_NAMES), and memory references
("data-refs"). These two types of data require different handling both
during analysis and transformation. The types of data-refs that the
vectorizer currently supports are ARRAY_REFS which base is an array DECL
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
accesses are required to have a simple (consecutive) access pattern.
Analysis phase:
===============
The driver for the analysis phase is vect_analyze_loop_nest().
It applies a set of analyses, some of which rely on the scalar evolution
analyzer (scev) developed by Sebastian Pop.
During the analysis phase the vectorizer records some information
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
loop, as well as general information about the loop as a whole, which is
recorded in a "loop_vec_info" struct attached to each loop.
Transformation phase:
=====================
The loop transformation phase scans all the stmts in the loop, and
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
the loop that needs to be vectorized. It insert the vector code sequence
just before the scalar stmt S, and records a pointer to the vector code
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
attached to S). This pointer will be used for the vectorization of following
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
otherwise, we rely on dead code elimination for removing it.
For example, say stmt S1 was vectorized into stmt VS1:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
S2: a = b;
To vectorize stmt S2, the vectorizer first finds the stmt that defines
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
vector stmt VS1 pointed by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
resulting sequence would be:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
VS2: va = vb;
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
Operands that are not SSA_NAMEs, are data-refs that appear in
load/store operations (like 'x[i]' in S1), and are handled differently.
Target modeling:
=================
Currently the only target specific information that is used is the
size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
support different sizes of vectors, for now will need to specify one value
for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
Since we only vectorize operations which vector form can be
expressed using existing tree codes, to verify that an operation is
supported, the vectorizer checks the relevant optab at the relevant
machine_mode (e.g, add_optab->handlers[(int) V8HImode].insn_code). If
the value found is CODE_FOR_nothing, then there's no target support, and
we can't vectorize the stmt.
For additional information on this project see:
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "cfglayout.h"
#include "expr.h"
#include "optabs.h"
#include "toplev.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "tree-pass.h"
#include "langhooks.h"
/*************************************************************************
Simple Loop Peeling Utilities
*************************************************************************/
/* Entry point for peeling of simple loops.
Peel the first/last iterations of a loop.
It can be used outside of the vectorizer for loops that are simple enough
(see function documentation). In the vectorizer it is used to peel the
last few iterations when the loop bound is unknown or does not evenly
divide by the vectorization factor, and to peel the first few iterations
to force the alignment of data references in the loop. */
struct loop *slpeel_tree_peel_loop_to_edge
(struct loop *, struct loops *, edge, tree, tree, bool);
static struct loop *slpeel_tree_duplicate_loop_to_edge_cfg
(struct loop *, struct loops *, edge);
static void slpeel_update_phis_for_duplicate_loop
(struct loop *, struct loop *, bool after);
static void slpeel_update_phi_nodes_for_guard (edge, struct loop *, bool, bool);
static void slpeel_make_loop_iterate_ntimes (struct loop *, tree);
static edge slpeel_add_loop_guard (basic_block, tree, basic_block, basic_block);
static bool slpeel_can_duplicate_loop_p (struct loop *, edge);
static void allocate_new_names (bitmap);
static void rename_use_op (use_operand_p);
static void rename_def_op (def_operand_p, tree);
static void rename_variables_in_bb (basic_block);
static void free_new_names (bitmap);
static void rename_variables_in_loop (struct loop *);
#ifdef ENABLE_CHECKING
static void slpeel_verify_cfg_after_peeling (struct loop *, struct loop *);
#endif
/*************************************************************************
Vectorization Utilities.
*************************************************************************/
/* Main analysis functions. */
static loop_vec_info vect_analyze_loop (struct loop *);
static loop_vec_info vect_analyze_loop_form (struct loop *);
static bool vect_analyze_data_refs (loop_vec_info);
static bool vect_mark_stmts_to_be_vectorized (loop_vec_info);
static bool vect_analyze_scalar_cycles (loop_vec_info);
static bool vect_analyze_data_ref_accesses (loop_vec_info);
static bool vect_analyze_data_refs_alignment (loop_vec_info);
static bool vect_compute_data_refs_alignment (loop_vec_info);
static bool vect_analyze_operations (loop_vec_info);
/* Main code transformation functions. */
static void vect_transform_loop (loop_vec_info, struct loops *);
static bool vect_transform_stmt (tree, block_stmt_iterator *);
static bool vectorizable_load (tree, block_stmt_iterator *, tree *);
static bool vectorizable_store (tree, block_stmt_iterator *, tree *);
static bool vectorizable_operation (tree, block_stmt_iterator *, tree *);
static bool vectorizable_assignment (tree, block_stmt_iterator *, tree *);
static enum dr_alignment_support vect_supportable_dr_alignment
(struct data_reference *);
static void vect_align_data_ref (tree);
static void vect_enhance_data_refs_alignment (loop_vec_info);
/* Utility functions for the analyses. */
static bool vect_is_simple_use (tree , struct loop *, tree *);
static bool exist_non_indexing_operands_for_use_p (tree, tree);
static bool vect_is_simple_iv_evolution (unsigned, tree, tree *, tree *, bool);
static void vect_mark_relevant (varray_type *, tree);
static bool vect_stmt_relevant_p (tree, loop_vec_info);
static tree vect_get_loop_niters (struct loop *, tree *);
static bool vect_compute_data_ref_alignment (struct data_reference *);
static bool vect_analyze_data_ref_access (struct data_reference *);
static bool vect_can_force_dr_alignment_p (tree, unsigned int);
static struct data_reference * vect_analyze_pointer_ref_access
(tree, tree, bool);
static bool vect_can_advance_ivs_p (struct loop *);
static tree vect_get_base_and_offset (struct data_reference *, tree, tree,
loop_vec_info, tree *, tree *, tree *,
bool*);
static struct data_reference * vect_analyze_pointer_ref_access
(tree, tree, bool);
static tree vect_get_ptr_offset (tree, tree, tree *);
static tree vect_get_memtag_and_dr
(tree, tree, bool, loop_vec_info, tree, struct data_reference **);
static bool vect_analyze_offset_expr (tree, struct loop *, tree, tree *,
tree *, tree *);
/* Utility functions for the code transformation. */
static tree vect_create_destination_var (tree, tree);
static tree vect_create_data_ref_ptr
(tree, block_stmt_iterator *, tree, tree *, bool);
static tree vect_create_index_for_vector_ref
(struct loop *, block_stmt_iterator *);
static tree vect_create_addr_base_for_vector_ref (tree, tree *, tree);
static tree get_vectype_for_scalar_type (tree);
static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
static tree vect_get_vec_def_for_operand (tree, tree);
static tree vect_init_vector (tree, tree);
static void vect_finish_stmt_generation
(tree stmt, tree vec_stmt, block_stmt_iterator *bsi);
/* Utility function dealing with loop peeling (not peeling itself). */
static void vect_generate_tmps_on_preheader
(loop_vec_info, tree *, tree *, tree *);
static tree vect_build_loop_niters (loop_vec_info);
static void vect_update_ivs_after_vectorizer (struct loop *, tree, edge);
static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
static void vect_update_inits_of_dr (struct data_reference *, tree niters);
static void vect_update_inits_of_drs (loop_vec_info, tree);
static void vect_do_peeling_for_alignment (loop_vec_info, struct loops *);
static void vect_do_peeling_for_loop_bound
(loop_vec_info, tree *, struct loops *);
/* Utilities for creation and deletion of vec_info structs. */
loop_vec_info new_loop_vec_info (struct loop *loop);
void destroy_loop_vec_info (loop_vec_info);
stmt_vec_info new_stmt_vec_info (tree stmt, struct loop *loop);
static bool vect_debug_stats (struct loop *loop);
static bool vect_debug_details (struct loop *loop);
/*************************************************************************
Simple Loop Peeling Utilities
Utilities to support loop peeling for vectorization purposes.
*************************************************************************/
/* For each definition in DEFINITIONS this function allocates
new ssa name. */
static void
allocate_new_names (bitmap definitions)
{
unsigned ver;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi)
{
tree def = ssa_name (ver);
tree *new_name_ptr = xmalloc (sizeof (tree));
bool abnormal = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def);
*new_name_ptr = duplicate_ssa_name (def, SSA_NAME_DEF_STMT (def));
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (*new_name_ptr) = abnormal;
SSA_NAME_AUX (def) = new_name_ptr;
}
}
/* Renames the use *OP_P. */
static void
rename_use_op (use_operand_p op_p)
{
tree *new_name_ptr;
if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
return;
new_name_ptr = SSA_NAME_AUX (USE_FROM_PTR (op_p));
/* Something defined outside of the loop. */
if (!new_name_ptr)
return;
/* An ordinary ssa name defined in the loop. */
SET_USE (op_p, *new_name_ptr);
}
/* Renames the def *OP_P in statement STMT. */
static void
rename_def_op (def_operand_p op_p, tree stmt)
{
tree *new_name_ptr;
if (TREE_CODE (DEF_FROM_PTR (op_p)) != SSA_NAME)
return;
new_name_ptr = SSA_NAME_AUX (DEF_FROM_PTR (op_p));
/* Something defined outside of the loop. */
if (!new_name_ptr)
return;
/* An ordinary ssa name defined in the loop. */
SET_DEF (op_p, *new_name_ptr);
SSA_NAME_DEF_STMT (DEF_FROM_PTR (op_p)) = stmt;
}
/* Renames the variables in basic block BB. */
static void
rename_variables_in_bb (basic_block bb)
{
tree phi;
block_stmt_iterator bsi;
tree stmt;
stmt_ann_t ann;
use_optype uses;
vuse_optype vuses;
def_optype defs;
v_may_def_optype v_may_defs;
v_must_def_optype v_must_defs;
unsigned i;
edge e;
edge_iterator ei;
struct loop *loop = bb->loop_father;
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
rename_def_op (PHI_RESULT_PTR (phi), phi);
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
{
stmt = bsi_stmt (bsi);
get_stmt_operands (stmt);
ann = stmt_ann (stmt);
uses = USE_OPS (ann);
for (i = 0; i < NUM_USES (uses); i++)
rename_use_op (USE_OP_PTR (uses, i));
defs = DEF_OPS (ann);
for (i = 0; i < NUM_DEFS (defs); i++)
rename_def_op (DEF_OP_PTR (defs, i), stmt);
vuses = VUSE_OPS (ann);
for (i = 0; i < NUM_VUSES (vuses); i++)
rename_use_op (VUSE_OP_PTR (vuses, i));
v_may_defs = V_MAY_DEF_OPS (ann);
for (i = 0; i < NUM_V_MAY_DEFS (v_may_defs); i++)
{
rename_use_op (V_MAY_DEF_OP_PTR (v_may_defs, i));
rename_def_op (V_MAY_DEF_RESULT_PTR (v_may_defs, i), stmt);
}
v_must_defs = V_MUST_DEF_OPS (ann);
for (i = 0; i < NUM_V_MUST_DEFS (v_must_defs); i++)
{
rename_use_op (V_MUST_DEF_KILL_PTR (v_must_defs, i));
rename_def_op (V_MUST_DEF_RESULT_PTR (v_must_defs, i), stmt);
}
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (!flow_bb_inside_loop_p (loop, e->dest))
continue;
for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e));
}
}
/* Releases the structures holding the new ssa names. */
static void
free_new_names (bitmap definitions)
{
unsigned ver;
bitmap_iterator bi;
EXECUTE_IF_SET_IN_BITMAP (definitions, 0, ver, bi)
{
tree def = ssa_name (ver);
if (SSA_NAME_AUX (def))
{
free (SSA_NAME_AUX (def));
SSA_NAME_AUX (def) = NULL;
}
}
}
/* Renames variables in new generated LOOP. */
static void
rename_variables_in_loop (struct loop *loop)
{
unsigned i;
basic_block *bbs;
bbs = get_loop_body (loop);
for (i = 0; i < loop->num_nodes; i++)
rename_variables_in_bb (bbs[i]);
free (bbs);
}
/* Update the PHI nodes of NEW_LOOP.
NEW_LOOP is a duplicate of ORIG_LOOP.
AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
executes before it. */
static void
slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
struct loop *new_loop, bool after)
{
tree *new_name_ptr, new_ssa_name;
tree phi_new, phi_orig;
tree def;
edge orig_loop_latch = loop_latch_edge (orig_loop);
edge orig_entry_e = loop_preheader_edge (orig_loop);
edge new_loop_exit_e = new_loop->exit_edges[0];
edge new_loop_entry_e = loop_preheader_edge (new_loop);
edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
/*
step 1. For each loop-header-phi:
Add the first phi argument for the phi in NEW_LOOP
(the one associated with the entry of NEW_LOOP)
step 2. For each loop-header-phi:
Add the second phi argument for the phi in NEW_LOOP
(the one associated with the latch of NEW_LOOP)
step 3. Update the phis in the successor block of NEW_LOOP.
case 1: NEW_LOOP was placed before ORIG_LOOP:
The successor block of NEW_LOOP is the header of ORIG_LOOP.
Updating the phis in the successor block can therefore be done
along with the scanning of the loop header phis, because the
header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
phi nodes, organized in the same order.
case 2: NEW_LOOP was placed after ORIG_LOOP:
The successor block of NEW_LOOP is the original exit block of
ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
We postpone updating these phis to a later stage (when
loop guards are added).
*/
/* Scan the phis in the headers of the old and new loops
(they are organized in exactly the same order). */
for (phi_new = phi_nodes (new_loop->header),
phi_orig = phi_nodes (orig_loop->header);
phi_new && phi_orig;
phi_new = PHI_CHAIN (phi_new), phi_orig = PHI_CHAIN (phi_orig))
{
/* step 1. */
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
add_phi_arg (phi_new, def, new_loop_entry_e);
/* step 2. */
def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
if (TREE_CODE (def) != SSA_NAME)
continue;
new_name_ptr = SSA_NAME_AUX (def);
if (!new_name_ptr)
/* Something defined outside of the loop. */
continue;
/* An ordinary ssa name defined in the loop. */
new_ssa_name = *new_name_ptr;
add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
/* step 3 (case 1). */
if (!after)
{
gcc_assert (new_loop_exit_e == orig_entry_e);
SET_PHI_ARG_DEF (phi_orig,
phi_arg_from_edge (phi_orig, new_loop_exit_e),
new_ssa_name);
}
}
}
/* Update PHI nodes for a guard of the LOOP.
Input:
- LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
controls whether LOOP is to be executed. GUARD_EDGE is the edge that
originates from the guard-bb, skips LOOP and reaches the (unique) exit
bb of LOOP. This loop-exit-bb is an empty bb with one successor.
We denote this bb NEW_MERGE_BB because it had a single predecessor (the
LOOP header) before the guard code was added, and now it became a merge
point of two paths - the path that ends with the LOOP exit-edge, and
the path that ends with GUARD_EDGE.
This function creates and updates the relevant phi nodes to account for
the new incoming edge (GUARD_EDGE) into NEW_MERGE_BB:
1. Create phi nodes at NEW_MERGE_BB.
2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
was added:
===> The CFG before the guard-code was added:
LOOP_header_bb:
if (exit_loop) goto update_bb : LOOP_header_bb
update_bb:
==> The CFG after the guard-code was added:
guard_bb:
if (LOOP_guard_condition) goto new_merge_bb : LOOP_header_bb
LOOP_header_bb:
if (exit_loop_condition) goto new_merge_bb : LOOP_header_bb
new_merge_bb:
goto update_bb
update_bb:
- ENTRY_PHIS: If ENTRY_PHIS is TRUE, this indicates that the phis in
UPDATE_BB are loop entry phis, like the phis in the LOOP header,
organized in the same order.
If ENTRY_PHIs is FALSE, this indicates that the phis in UPDATE_BB are
loop exit phis.
- IS_NEW_LOOP: TRUE if LOOP is a new loop (a duplicated copy of another
"original" loop). FALSE if LOOP is an original loop (not a newly
created copy). The SSA_NAME_AUX fields of the defs in the original
loop are the corresponding new ssa-names used in the new duplicated
loop copy. IS_NEW_LOOP indicates which of the two args of the phi
nodes in UPDATE_BB takes the original ssa-name, and which takes the
new name: If IS_NEW_LOOP is TRUE, the phi-arg that is associated with
the LOOP-exit-edge takes the new-name, and the phi-arg that is
associated with GUARD_EDGE takes the original name. If IS_NEW_LOOP is
FALSE, it's the other way around.
*/
static void
slpeel_update_phi_nodes_for_guard (edge guard_edge,
struct loop *loop,
bool entry_phis,
bool is_new_loop)
{
tree orig_phi, new_phi, update_phi;
tree guard_arg, loop_arg;
basic_block new_merge_bb = guard_edge->dest;
edge e = EDGE_SUCC (new_merge_bb, 0);
basic_block update_bb = e->dest;
basic_block orig_bb = (entry_phis ? loop->header : update_bb);
for (orig_phi = phi_nodes (orig_bb), update_phi = phi_nodes (update_bb);
orig_phi && update_phi;
orig_phi = PHI_CHAIN (orig_phi), update_phi = PHI_CHAIN (update_phi))
{
/* 1. Generate new phi node in NEW_MERGE_BB: */
new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
new_merge_bb);
/* 2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
of LOOP. Set the two phi args in NEW_PHI for these edges: */
if (entry_phis)
{
loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi,
EDGE_SUCC (loop->latch, 0));
guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop->entry_edges[0]);
}
else /* exit phis */
{
tree orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
tree *new_name_ptr = SSA_NAME_AUX (orig_def);
tree new_name;
if (new_name_ptr)
new_name = *new_name_ptr;
else
/* Something defined outside of the loop */
new_name = orig_def;
if (is_new_loop)
{
guard_arg = orig_def;
loop_arg = new_name;
}
else
{
guard_arg = new_name;
loop_arg = orig_def;
}
}
add_phi_arg (new_phi, loop_arg, loop->exit_edges[0]);
add_phi_arg (new_phi, guard_arg, guard_edge);
/* 3. Update phi in successor block. */
gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
|| PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
SET_PHI_ARG_DEF (update_phi, phi_arg_from_edge (update_phi, e),
PHI_RESULT (new_phi));
}
set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
}
/* Make the LOOP iterate NITERS times. This is done by adding a new IV
that starts at zero, increases by one and its limit is NITERS.
Assumption: the exit-condition of LOOP is the last stmt in the loop. */
static void
slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
{
tree indx_before_incr, indx_after_incr, cond_stmt, cond;
tree orig_cond;
edge exit_edge = loop->exit_edges[0];
block_stmt_iterator loop_exit_bsi = bsi_last (exit_edge->src);
tree begin_label = tree_block_label (loop->latch);
tree exit_label = tree_block_label (loop->single_exit->dest);
tree init = build_int_cst (TREE_TYPE (niters), 0);
tree step = build_int_cst (TREE_TYPE (niters), 1);
tree then_label;
tree else_label;
orig_cond = get_loop_exit_condition (loop);
gcc_assert (orig_cond);
create_iv (init, step, NULL_TREE, loop,
&loop_exit_bsi, false, &indx_before_incr, &indx_after_incr);
/* CREATE_IV uses BSI_INSERT with TSI_NEW_STMT, so we want to get
back to the exit condition statement. */
bsi_next (&loop_exit_bsi);
gcc_assert (bsi_stmt (loop_exit_bsi) == orig_cond);
if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop. */
{
cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters);
then_label = build1 (GOTO_EXPR, void_type_node, exit_label);
else_label = build1 (GOTO_EXPR, void_type_node, begin_label);
}
else /* 'then' edge loops back. */
{
cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters);
then_label = build1 (GOTO_EXPR, void_type_node, begin_label);
else_label = build1 (GOTO_EXPR, void_type_node, exit_label);
}
cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond), cond,
then_label, else_label);
bsi_insert_before (&loop_exit_bsi, cond_stmt, BSI_SAME_STMT);
/* Remove old loop exit test: */
bsi_remove (&loop_exit_bsi);
if (vect_debug_stats (loop) || vect_debug_details (loop))
print_generic_expr (dump_file, cond_stmt, TDF_SLIM);
loop->nb_iterations = niters;
}
/* Given LOOP this function generates a new copy of it and puts it
on E which is either the entry or exit of LOOP. */
static struct loop *
slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, struct loops *loops,
edge e)
{
struct loop *new_loop;
basic_block *new_bbs, *bbs;
bool at_exit;
bool was_imm_dom;
basic_block exit_dest;
tree phi, phi_arg;
at_exit = (e == loop->exit_edges[0]);
if (!at_exit && e != loop_preheader_edge (loop))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Edge is not an entry nor an exit edge.\n");
return NULL;
}
bbs = get_loop_body (loop);
/* Check whether duplication is possible. */
if (!can_copy_bbs_p (bbs, loop->num_nodes))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "Cannot copy basic blocks.\n");
free (bbs);
return NULL;
}
/* Generate new loop structure. */
new_loop = duplicate_loop (loops, loop, loop->outer);
if (!new_loop)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "duplicate_loop returns NULL.\n");
free (bbs);
return NULL;
}
exit_dest = loop->exit_edges[0]->dest;
was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
exit_dest) == loop->header ?
true : false);
new_bbs = xmalloc (sizeof (basic_block) * loop->num_nodes);
copy_bbs (bbs, loop->num_nodes, new_bbs, NULL, 0, NULL, NULL);
/* Duplicating phi args at exit bbs as coming
also from exit of duplicated loop. */
for (phi = phi_nodes (exit_dest); phi; phi = PHI_CHAIN (phi))
{
phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, loop->exit_edges[0]);
if (phi_arg)
{
edge new_loop_exit_edge;
if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
else
new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
add_phi_arg (phi, phi_arg, new_loop_exit_edge);
}
}
if (at_exit) /* Add the loop copy at exit. */
{
redirect_edge_and_branch_force (e, new_loop->header);
set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
if (was_imm_dom)
set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
}
else /* Add the copy at entry. */
{
edge new_exit_e;
edge entry_e = loop_preheader_edge (loop);
basic_block preheader = entry_e->src;
if (!flow_bb_inside_loop_p (new_loop,
EDGE_SUCC (new_loop->header, 0)->dest))
new_exit_e = EDGE_SUCC (new_loop->header, 0);
else
new_exit_e = EDGE_SUCC (new_loop->header, 1);
redirect_edge_and_branch_force (new_exit_e, loop->header);
set_immediate_dominator (CDI_DOMINATORS, loop->header,
new_exit_e->src);
/* We have to add phi args to the loop->header here as coming
from new_exit_e edge. */
for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
{
phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
if (phi_arg)
add_phi_arg (phi, phi_arg, new_exit_e);
}
redirect_edge_and_branch_force (entry_e, new_loop->header);
set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
}
flow_loop_scan (new_loop, LOOP_ALL);
flow_loop_scan (loop, LOOP_ALL);
free (new_bbs);
free (bbs);
return new_loop;
}
/* Given the condition statement COND, put it as the last statement
of GUARD_BB; EXIT_BB is the basic block to skip the loop;
Assumes that this is the single exit of the guarded loop.
Returns the skip edge. */
static edge
slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
basic_block dom_bb)
{
block_stmt_iterator bsi;
edge new_e, enter_e;
tree cond_stmt, then_label, else_label;
enter_e = EDGE_SUCC (guard_bb, 0);
enter_e->flags &= ~EDGE_FALLTHRU;
enter_e->flags |= EDGE_FALSE_VALUE;
bsi = bsi_last (guard_bb);
then_label = build1 (GOTO_EXPR, void_type_node,
tree_block_label (exit_bb));
else_label = build1 (GOTO_EXPR, void_type_node,
tree_block_label (enter_e->dest));
cond_stmt = build3 (COND_EXPR, void_type_node, cond,
then_label, else_label);
bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
/* Add new edge to connect entry block to the second loop. */
new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
return new_e;
}
/* This function verifies that the following restrictions apply to LOOP:
(1) it is innermost
(2) it consists of exactly 2 basic blocks - header, and an empty latch.
(3) it is single entry, single exit
(4) its exit condition is the last stmt in the header
(5) E is the entry/exit edge of LOOP.
*/
static bool
slpeel_can_duplicate_loop_p (struct loop *loop, edge e)
{
edge exit_e = loop->exit_edges [0];
edge entry_e = loop_preheader_edge (loop);
tree orig_cond = get_loop_exit_condition (loop);
block_stmt_iterator loop_exit_bsi = bsi_last (exit_e->src);
if (any_marked_for_rewrite_p ())
return false;
if (loop->inner
/* All loops have an outer scope; the only case loop->outer is NULL is for
the function itself. */
|| !loop->outer
|| loop->num_nodes != 2
|| !empty_block_p (loop->latch)
|| loop->num_exits != 1
|| loop->num_entries != 1
/* Verify that new loop exit condition can be trivially modified. */
|| (!orig_cond || orig_cond != bsi_stmt (loop_exit_bsi))
|| (e != exit_e && e != entry_e))
return false;
return true;
}
#ifdef ENABLE_CHECKING
static void
slpeel_verify_cfg_after_peeling (struct loop *first_loop,
struct loop *second_loop)
{
basic_block loop1_exit_bb = first_loop->exit_edges[0]->dest;
basic_block loop2_entry_bb = second_loop->pre_header;
basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
/* A guard that controls whether the second_loop is to be executed or skipped
is placed in first_loop->exit. first_loopt->exit therefore has two
successors - one is the preheader of second_loop, and the other is a bb
after second_loop.
*/
gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
/* 1. Verify that one of the successors of first_loopt->exit is the preheader
of second_loop. */
/* The preheader of new_loop is expected to have two predessors:
first_loop->exit and the block that precedes first_loop. */
gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
&& ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
&& EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
|| (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
&& EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
/* Verify that the other successor of first_loopt->exit is after the
second_loop. */
/* TODO */
}
#endif
/* Function slpeel_tree_peel_loop_to_edge.
Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
that is placed on the entry (exit) edge E of LOOP. After this transformation
we have two loops one after the other - first-loop iterates FIRST_NITERS
times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
Input:
- LOOP: the loop to be peeled.
- E: the exit or entry edge of LOOP.
If it is the entry edge, we peel the first iterations of LOOP. In this
case first-loop is LOOP, and second-loop is the newly created loop.
If it is the exit edge, we peel the last iterations of LOOP. In this
case, first-loop is the newly created loop, and second-loop is LOOP.
- NITERS: the number of iterations that LOOP iterates.
- FIRST_NITERS: the number of iterations that the first-loop should iterate.
- UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
for updating the loop bound of the first-loop to FIRST_NITERS. If it
is false, the caller of this function may want to take care of this
(this can be useful if we don't want new stmts added to first-loop).
Output:
The function returns a pointer to the new loop-copy, or NULL if it failed
to perform the transformation.
The function generates two if-then-else guards: one before the first loop,
and the other before the second loop:
The first guard is:
if (FIRST_NITERS == 0) then skip the first loop,
and go directly to the second loop.
The second guard is:
if (FIRST_NITERS == NITERS) then skip the second loop.
FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
FORNOW the resulting code will not be in loop-closed-ssa form.
*/
struct loop*
slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loops *loops,
edge e, tree first_niters,
tree niters, bool update_first_loop_count)
{
struct loop *new_loop = NULL, *first_loop, *second_loop;
edge skip_e;
tree pre_condition;
bitmap definitions;
basic_block bb_before_second_loop, bb_after_second_loop;
basic_block bb_before_first_loop;
basic_block bb_between_loops;
edge exit_e = loop->exit_edges [0];
if (!slpeel_can_duplicate_loop_p (loop, e))
return NULL;
/* We have to initialize cfg_hooks. Then, when calling
cfg_hooks->split_edge, the function tree_split_edge
is actually called and, when calling cfg_hooks->duplicate_block,
the function tree_duplicate_bb is called. */
tree_register_cfg_hooks ();
/* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
Resulting CFG would be:
first_loop:
do {
} while ...
second_loop:
do {
} while ...
orig_exit_bb:
*/
if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, loops, e)))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
return NULL;
}
if (e == exit_e)
{
/* NEW_LOOP was placed after LOOP. */
first_loop = loop;
second_loop = new_loop;
}
else
{
/* NEW_LOOP was placed before LOOP. */
first_loop = new_loop;
second_loop = loop;
}
definitions = marked_ssa_names ();
allocate_new_names (definitions);
slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
rename_variables_in_loop (new_loop);
/* 2. Add the guard that controls whether the first loop is executed.
Resulting CFG would be:
bb_before_first_loop:
if (FIRST_NITERS == 0) GOTO bb_before_second_loop
GOTO first-loop
first_loop:
do {
} while ...
bb_before_second_loop:
second_loop:
do {
} while ...
orig_exit_bb:
*/
bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
add_bb_to_loop (bb_before_first_loop, first_loop->outer);
bb_before_second_loop = split_edge (first_loop->exit_edges[0]);
add_bb_to_loop (bb_before_second_loop, first_loop->outer);
flow_loop_scan (first_loop, LOOP_ALL);
flow_loop_scan (second_loop, LOOP_ALL);
pre_condition =
build2 (LE_EXPR, boolean_type_node, first_niters, integer_zero_node);
skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
bb_before_second_loop, bb_before_first_loop);
slpeel_update_phi_nodes_for_guard (skip_e, first_loop, true /* entry-phis */,
first_loop == new_loop);
/* 3. Add the guard that controls whether the second loop is executed.
Resulting CFG would be:
bb_before_first_loop:
if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
GOTO first-loop
first_loop:
do {
} while ...
bb_between_loops:
if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
GOTO bb_before_second_loop
bb_before_second_loop:
second_loop:
do {
} while ...
bb_after_second_loop:
orig_exit_bb:
*/
bb_between_loops = split_edge (first_loop->exit_edges[0]);
add_bb_to_loop (bb_between_loops, first_loop->outer);
bb_after_second_loop = split_edge (second_loop->exit_edges[0]);
add_bb_to_loop (bb_after_second_loop, second_loop->outer);
flow_loop_scan (first_loop, LOOP_ALL);
flow_loop_scan (second_loop, LOOP_ALL);
pre_condition = build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
bb_after_second_loop, bb_before_first_loop);
slpeel_update_phi_nodes_for_guard (skip_e, second_loop, false /* exit-phis */,
second_loop == new_loop);
/* Flow loop scan does not update loop->single_exit field. */
first_loop->single_exit = first_loop->exit_edges[0];
second_loop->single_exit = second_loop->exit_edges[0];
/* 4. Make first-loop iterate FIRST_NITERS times, if requested.
*/
if (update_first_loop_count)
slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
free_new_names (definitions);
BITMAP_XFREE (definitions);
unmark_all_for_rewrite ();
return new_loop;
}
/* Here the proper Vectorizer starts. */
/*************************************************************************
Vectorization Utilities.
*************************************************************************/
/* Function new_stmt_vec_info.
Create and initialize a new stmt_vec_info struct for STMT. */
stmt_vec_info
new_stmt_vec_info (tree stmt, struct loop *loop)
{
stmt_vec_info res;
res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
STMT_VINFO_TYPE (res) = undef_vec_info_type;
STMT_VINFO_STMT (res) = stmt;
STMT_VINFO_LOOP (res) = loop;
STMT_VINFO_RELEVANT_P (res) = 0;
STMT_VINFO_VECTYPE (res) = NULL;
STMT_VINFO_VEC_STMT (res) = NULL;
STMT_VINFO_DATA_REF (res) = NULL;
STMT_VINFO_MEMTAG (res) = NULL;
STMT_VINFO_VECT_DR_BASE (res) = NULL;
STMT_VINFO_VECT_INIT_OFFSET (res) = NULL_TREE;
STMT_VINFO_VECT_STEP (res) = NULL_TREE;
STMT_VINFO_VECT_BASE_ALIGNED_P (res) = false;
STMT_VINFO_VECT_MISALIGNMENT (res) = NULL_TREE;
return res;
}
/* Function new_loop_vec_info.
Create and initialize a new loop_vec_info struct for LOOP, as well as
stmt_vec_info structs for all the stmts in LOOP. */
loop_vec_info
new_loop_vec_info (struct loop *loop)
{
loop_vec_info res;
basic_block *bbs;
block_stmt_iterator si;
unsigned int i;
res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
bbs = get_loop_body (loop);
/* Create stmt_info for all stmts in the loop. */
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
stmt_ann_t ann;
get_stmt_operands (stmt);
ann = stmt_ann (stmt);
set_stmt_info (ann, new_stmt_vec_info (stmt, loop));
}
}
LOOP_VINFO_LOOP (res) = loop;
LOOP_VINFO_BBS (res) = bbs;
LOOP_VINFO_EXIT_COND (res) = NULL;
LOOP_VINFO_NITERS (res) = NULL;
LOOP_VINFO_VECTORIZABLE_P (res) = 0;
LOOP_DO_PEELING_FOR_ALIGNMENT (res) = false;
LOOP_VINFO_VECT_FACTOR (res) = 0;
VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_WRITES (res), 20,
"loop_write_datarefs");
VARRAY_GENERIC_PTR_INIT (LOOP_VINFO_DATAREF_READS (res), 20,
"loop_read_datarefs");
LOOP_VINFO_UNALIGNED_DR (res) = NULL;
return res;
}
/* Function destroy_loop_vec_info.
Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
stmts in the loop. */
void
destroy_loop_vec_info (loop_vec_info loop_vinfo)
{
struct loop *loop;
basic_block *bbs;
int nbbs;
block_stmt_iterator si;
int j;
if (!loop_vinfo)
return;
loop = LOOP_VINFO_LOOP (loop_vinfo);
bbs = LOOP_VINFO_BBS (loop_vinfo);
nbbs = loop->num_nodes;
for (j = 0; j < nbbs; j++)
{
basic_block bb = bbs[j];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
stmt_ann_t ann = stmt_ann (stmt);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
free (stmt_info);
set_stmt_info (ann, NULL);
}
}
free (LOOP_VINFO_BBS (loop_vinfo));
varray_clear (LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
varray_clear (LOOP_VINFO_DATAREF_READS (loop_vinfo));
free (loop_vinfo);
}
/* Function debug_loop_stats.
For vectorization statistics dumps. */
static bool
vect_debug_stats (struct loop *loop)
{
basic_block bb;
block_stmt_iterator si;
tree node = NULL_TREE;
if (!dump_file || !(dump_flags & TDF_STATS))
return false;
if (!loop)
{
fprintf (dump_file, "\n");
return true;
}
if (!loop->header)
return false;
bb = loop->header;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
node = bsi_stmt (si);
if (node && EXPR_P (node) && EXPR_LOCUS (node))
break;
}
if (node && EXPR_P (node) && EXPR_LOCUS (node)
&& EXPR_FILENAME (node) && EXPR_LINENO (node))
{
fprintf (dump_file, "\nloop at %s:%d: ",
EXPR_FILENAME (node), EXPR_LINENO (node));
return true;
}
return false;
}
/* Function debug_loop_details.
For vectorization debug dumps. */
static bool
vect_debug_details (struct loop *loop)
{
basic_block bb;
block_stmt_iterator si;
tree node = NULL_TREE;
if (!dump_file || !(dump_flags & TDF_DETAILS))
return false;
if (!loop)
{
fprintf (dump_file, "\n");
return true;
}
if (!loop->header)
return false;
bb = loop->header;
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
node = bsi_stmt (si);
if (node && EXPR_P (node) && EXPR_LOCUS (node))
break;
}
if (node && EXPR_P (node) && EXPR_LOCUS (node)
&& EXPR_FILENAME (node) && EXPR_LINENO (node))
{
fprintf (dump_file, "\nloop at %s:%d: ",
EXPR_FILENAME (node), EXPR_LINENO (node));
return true;
}
return false;
}
/* Function vect_get_ptr_offset
Compute the OFFSET modulo vector-type alignment of pointer REF in bits. */
static tree
vect_get_ptr_offset (tree ref ATTRIBUTE_UNUSED,
tree vectype ATTRIBUTE_UNUSED,
tree *offset ATTRIBUTE_UNUSED)
{
/* TODO: Use alignment information. */
return NULL_TREE;
}
/* Function vect_analyze_offset_expr
Given an offset expression EXPR received from get_inner_reference, analyze
it and create an expression for INITIAL_OFFSET by substituting the variables
of EXPR with initial_condition of the corresponding access_fn in the loop.
E.g.,
for i
for (j = 3; j < N; j++)
a[j].b[i][j] = 0;
For a[j].b[i][j], EXPR will be 'i * C_i + j * C_j + C'. 'i' cannot be
subsituted, since its access_fn in the inner loop is i. 'j' will be
substituted with 3. An INITIAL_OFFSET will be 'i * C_i + C`', where
C` = 3 * C_j + C.
Compute MISALIGN (the misalignment of the data reference initial access from
its base) if possible. Misalignment can be calculated only if all the
variables can be substitued with constants, or if a variable is multiplied
by a multiple of VECTYPE_ALIGNMENT. In the above example, since 'i' cannot
be substituted, MISALIGN will be NULL_TREE in case that C_i is not a multiple
of VECTYPE_ALIGNMENT, and C` otherwise. (We perform MISALIGN modulo
VECTYPE_ALIGNMENT computation in the caller of this function).
STEP is an evolution of the data reference in this loop in bytes.
In the above example, STEP is C_j.
Return FALSE, if the analysis fails, e.g., there is no access_fn for a
variable. In this case, all the outputs (INITIAL_OFFSET, MISALIGN and STEP)
are NULL_TREEs. Otherwise, return TRUE.
*/
static bool
vect_analyze_offset_expr (tree expr,
struct loop *loop,
tree vectype_alignment,
tree *initial_offset,
tree *misalign,
tree *step)
{
tree oprnd0;
tree oprnd1;
tree left_offset = size_zero_node;
tree right_offset = size_zero_node;
tree left_misalign = size_zero_node;
tree right_misalign = size_zero_node;
tree left_step = size_zero_node;
tree right_step = size_zero_node;
enum tree_code code;
tree init, evolution, def_stmt;
STRIP_NOPS (expr);
*step = NULL_TREE;
*misalign = NULL_TREE;
*initial_offset = NULL_TREE;
/* Stop conditions:
1. Constant. */
if (TREE_CONSTANT (expr))
{
*initial_offset = fold_convert (sizetype, expr);
*misalign = fold_convert (sizetype, expr);
*step = size_zero_node;
return true;
}
/* 2. Variable. Try to substitute with initial_condition of the corresponding
access_fn in the current loop. */
if (SSA_VAR_P (expr))
{
tree access_fn = analyze_scalar_evolution (loop, expr);
if (access_fn == chrec_dont_know)
/* No access_fn. */
return false;
init = initial_condition_in_loop_num (access_fn, loop->num);
if (init == expr)
{
def_stmt = SSA_NAME_DEF_STMT (init);
if (def_stmt
&& !IS_EMPTY_STMT (def_stmt)
&& flow_bb_inside_loop_p (loop, bb_for_stmt (def_stmt)))
/* Not enough information: may be not loop invariant.
E.g., for a[b[i]], we get a[D], where D=b[i]. EXPR is D, its
initial_condition is D, but it depends on i - loop's induction
variable. */
return false;
}
evolution = evolution_part_in_loop_num (access_fn, loop->num);
if (evolution && TREE_CODE (evolution) != INTEGER_CST)
/* Evolution is not constant. */
return false;
if (TREE_CONSTANT (init))
*misalign = fold_convert (sizetype, init);
else
/* Not constant, misalignment cannot be calculated. */
*misalign = NULL_TREE;
*initial_offset = fold_convert (sizetype, init);
*step = evolution ? fold_convert (sizetype, evolution) : size_zero_node;
return true;
}
/* Recursive computation. */
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
if (!vect_analyze_offset_expr (oprnd0, loop, vectype_alignment, &left_offset,
&left_misalign, &left_step)
|| !vect_analyze_offset_expr (oprnd1, loop, vectype_alignment,
&right_offset, &right_misalign, &right_step))
return false;
/* The type of the operation: plus, minus or mult. */
code = TREE_CODE (expr);
switch (code)
{
case MULT_EXPR:
if (!TREE_CONSTANT (right_offset))
/* RIGHT_OFFSET can be not constant. For example, for arrays of variable
sized types.
FORNOW: We don't support such cases. */
return false;
/* Misalignment computation. */
if (SSA_VAR_P (left_offset))
{
/* If the left side contains variable that cannot be substituted with
constant, we check if the right side is a multiple of ALIGNMENT. */
if (integer_zerop (size_binop (TRUNC_MOD_EXPR, right_offset,
vectype_alignment)))
*misalign = size_zero_node;
else
/* If the remainder is not zero or the right side isn't constant, we
can't compute misalignment. */
*misalign = NULL_TREE;
}
else
{
/* The left operand was successfully substituted with constant. */
if (left_misalign)
/* In case of EXPR '(i * C1 + j) * C2', LEFT_MISALIGN is
NULL_TREE. */
*misalign = size_binop (code, left_misalign, right_misalign);
else
*misalign = NULL_TREE;
}
/* Step calculation. */
/* Multiply the step by the right operand. */
*step = size_binop (MULT_EXPR, left_step, right_offset);
break;
case PLUS_EXPR:
case MINUS_EXPR:
/* Combine the recursive calculations for step and misalignment. */
*step = size_binop (code, left_step, right_step);
if (left_misalign && right_misalign)
*misalign = size_binop (code, left_misalign, right_misalign);
else
*misalign = NULL_TREE;
break;
default:
gcc_unreachable ();
}
/* Compute offset. */
*initial_offset = fold_convert (sizetype,
fold (build2 (code, TREE_TYPE (left_offset),
left_offset,
right_offset)));
return true;
}
/* Function vect_get_base_and_offset
Return the BASE of the data reference EXPR.
If VECTYPE is given, also compute the INITIAL_OFFSET from BASE, MISALIGN and
STEP.
E.g., for EXPR a.b[i] + 4B, BASE is a, and OFFSET is the overall offset
'a.b[i] + 4B' from a (can be an expression), MISALIGN is an OFFSET
instantiated with initial_conditions of access_functions of variables,
modulo alignment, and STEP is the evolution of the DR_REF in this loop.
Function get_inner_reference is used for the above in case of ARRAY_REF and
COMPONENT_REF.
Input:
EXPR - the memory reference that is being analyzed
DR - the data_reference struct of the _original_ memory reference
(Note: DR_REF (DR) is not necessarily EXPR)
VECTYPE - the type that defines the alignment (i.e, we compute
alignment relative to TYPE_ALIGN(VECTYPE))
Output:
BASE (returned value) - the base of the data reference EXPR.
E.g, if EXPR is a.b[k].c[i][j] the returned
base is a.
INITIAL_OFFSET - initial offset of EXPR from BASE (an expression)
MISALIGN - offset of EXPR from BASE in bytes (a constant) or NULL_TREE if the
computation is impossible
STEP - evolution of the DR_REF in the loop
BASE_ALIGNED_P - indicates if BASE is aligned
If something unexpected is encountered (an unsupported form of data-ref),
then NULL_TREE is returned. */
static tree
vect_get_base_and_offset (struct data_reference *dr,
tree expr,
tree vectype,
loop_vec_info loop_vinfo,
tree *initial_offset,
tree *misalign,
tree *step,
bool *base_aligned_p)
{
tree this_offset = size_zero_node;
tree this_misalign = size_zero_node;
tree this_step = size_zero_node;
tree base = NULL_TREE;
tree next_ref;
tree oprnd0, oprnd1;
enum tree_code code = TREE_CODE (expr);
HOST_WIDE_INT pbitsize;
HOST_WIDE_INT pbitpos;
tree poffset;
enum machine_mode pmode;
int punsignedp, pvolatilep;
tree bit_pos_in_bytes;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
*base_aligned_p = false;
switch (code)
{
/* These cases end the recursion: */
case VAR_DECL:
case PARM_DECL:
*initial_offset = size_zero_node;
*step = size_zero_node;
*misalign = size_zero_node;
if (DECL_ALIGN (expr) >= TYPE_ALIGN (vectype))
*base_aligned_p = true;
return expr;
case SSA_NAME:
if (TREE_CODE (TREE_TYPE (expr)) != POINTER_TYPE)
return NULL_TREE;
if (TYPE_ALIGN (TREE_TYPE (TREE_TYPE (expr))) < TYPE_ALIGN (vectype))
{
base = vect_get_ptr_offset (expr, vectype, misalign);
if (base)
*base_aligned_p = true;
}
else
{
*base_aligned_p = true;
*misalign = size_zero_node;
}
*initial_offset = size_zero_node;
*step = size_zero_node;
return expr;
case INTEGER_CST:
*initial_offset = fold_convert (sizetype, expr);
*misalign = fold_convert (sizetype, expr);
*step = size_zero_node;
return expr;
/* These cases continue the recursion: */
case ADDR_EXPR:
oprnd0 = TREE_OPERAND (expr, 0);
next_ref = oprnd0;
break;
case INDIRECT_REF:
oprnd0 = TREE_OPERAND (expr, 0);
next_ref = oprnd0;
break;
case PLUS_EXPR:
case MINUS_EXPR:
oprnd0 = TREE_OPERAND (expr, 0);
oprnd1 = TREE_OPERAND (expr, 1);
/* In case we have a PLUS_EXPR of the form
(oprnd0 + oprnd1), we assume that only oprnd0 determines the base.
This is verified in vect_get_memtag_and_dr. */
base = vect_get_base_and_offset (dr, oprnd1, vectype, loop_vinfo,
&this_offset, &this_misalign,
&this_step, base_aligned_p);
/* Offset was already computed in vect_analyze_pointer_ref_access. */
this_offset = size_zero_node;
if (!base)
this_misalign = NULL_TREE;
next_ref = oprnd0;
break;
default:
if (!handled_component_p (expr))
/* Unsupported expression. */
return NULL_TREE;
/* Find the base and the offset from it. */
next_ref = get_inner_reference (expr, &pbitsize, &pbitpos, &poffset,
&pmode, &punsignedp, &pvolatilep);
if (!next_ref)
return NULL_TREE;
if (poffset
&& !vect_analyze_offset_expr (poffset, loop, TYPE_SIZE_UNIT (vectype),
&this_offset, &this_misalign,
&this_step))
{
/* Failed to compute offset or step. */
*step = NULL_TREE;
*initial_offset = NULL_TREE;
*misalign = NULL_TREE;
return NULL_TREE;
}
/* Add bit position to OFFSET and MISALIGN. */
bit_pos_in_bytes = size_int (pbitpos/BITS_PER_UNIT);
/* Check that there is no remainder in bits. */
if (pbitpos%BITS_PER_UNIT)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "bit offset alignment.");
return NULL_TREE;
}
this_offset = fold (size_binop (PLUS_EXPR, bit_pos_in_bytes,
fold_convert (sizetype, this_offset)));
if (this_misalign)
this_misalign = size_binop (PLUS_EXPR, this_misalign, bit_pos_in_bytes);
/* Continue the recursion to refine the base (get_inner_reference returns
&a for &a[i], and not a). */
break;
}
base = vect_get_base_and_offset (dr, next_ref, vectype, loop_vinfo,
initial_offset, misalign, step,
base_aligned_p);
if (base)
{
/* Combine the results. */
if (this_misalign && *misalign)
*misalign = size_binop (PLUS_EXPR, *misalign, this_misalign);
else
*misalign = NULL_TREE;
*step = size_binop (PLUS_EXPR, *step, this_step);
*initial_offset = fold (build2 (PLUS_EXPR, TREE_TYPE (*initial_offset),
*initial_offset, this_offset));
if (vect_debug_details (NULL))
{
print_generic_expr (dump_file, expr, TDF_SLIM);
fprintf (dump_file, "\n --> total offset for ref: ");
print_generic_expr (dump_file, *initial_offset, TDF_SLIM);
fprintf (dump_file, "\n --> total misalign for ref: ");
print_generic_expr (dump_file, *misalign, TDF_SLIM);
fprintf (dump_file, "\n --> total step for ref: ");
print_generic_expr (dump_file, *step, TDF_SLIM);
}
}
return base;
}
/* Function vect_force_dr_alignment_p.
Returns whether the alignment of a DECL can be forced to be aligned
on ALIGNMENT bit boundary. */
static bool
vect_can_force_dr_alignment_p (tree decl, unsigned int alignment)
{
if (TREE_CODE (decl) != VAR_DECL)
return false;
if (DECL_EXTERNAL (decl))
return false;
if (TREE_ASM_WRITTEN (decl))
return false;
if (TREE_STATIC (decl))
return (alignment <= MAX_OFILE_ALIGNMENT);
else
/* This is not 100% correct. The absolute correct stack alignment
is STACK_BOUNDARY. We're supposed to hope, but not assume, that
PREFERRED_STACK_BOUNDARY is honored by all translation units.
However, until someone implements forced stack alignment, SSE
isn't really usable without this. */
return (alignment <= PREFERRED_STACK_BOUNDARY);
}
/* Function vect_get_new_vect_var.
Returns a name for a new variable. The current naming scheme appends the
prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
the name of vectorizer generated variables, and appends that to NAME if
provided. */
static tree
vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
{
const char *prefix;
int prefix_len;
tree new_vect_var;
if (var_kind == vect_simple_var)
prefix = "vect_";
else
prefix = "vect_p";
prefix_len = strlen (prefix);
if (name)
new_vect_var = create_tmp_var (type, concat (prefix, name, NULL));
else
new_vect_var = create_tmp_var (type, prefix);
return new_vect_var;
}
/* Function vect_create_index_for_vector_ref.
Create (and return) an index variable, along with it's update chain in the
loop. This variable will be used to access a memory location in a vector
operation.
Input:
LOOP: The loop being vectorized.
BSI: The block_stmt_iterator where STMT is. Any new stmts created by this
function can be added here, or in the loop pre-header.
Output:
Return an index that will be used to index a vector array. It is expected
that a pointer to the first vector will be used as the base address for the
indexed reference.
FORNOW: we are not trying to be efficient, just creating a new index each
time from scratch. At this time all vector references could use the same
index.
TODO: create only one index to be used by all vector references. Record
the index in the LOOP_VINFO the first time this procedure is called and
return it on subsequent calls. The increment of this index must be placed
just before the conditional expression that ends the single block loop. */
static tree
vect_create_index_for_vector_ref (struct loop *loop, block_stmt_iterator *bsi)
{
tree init, step;
tree indx_before_incr, indx_after_incr;
/* It is assumed that the base pointer used for vectorized access contains
the address of the first vector. Therefore the index used for vectorized
access must be initialized to zero and incremented by 1. */
init = integer_zero_node;
step = integer_one_node;
/* Assuming that bsi_insert is used with BSI_NEW_STMT */
create_iv (init, step, NULL_TREE, loop, bsi, false,
&indx_before_incr, &indx_after_incr);
return indx_before_incr;
}
/* Function vect_create_addr_base_for_vector_ref.
Create an expression that computes the address of the first memory location
that will be accessed for a data reference.
Input:
STMT: The statement containing the data reference.
NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
OFFSET: Optional. If supplied, it is be added to the initial address.
Output:
1. Return an SSA_NAME whose value is the address of the memory location of
the first vector of the data reference.
2. If new_stmt_list is not NULL_TREE after return then the caller must insert
these statement(s) which define the returned SSA_NAME.
FORNOW: We are only handling array accesses with step 1. */
static tree
vect_create_addr_base_for_vector_ref (tree stmt,
tree *new_stmt_list,
tree offset)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
tree data_ref_base = unshare_expr (STMT_VINFO_VECT_DR_BASE (stmt_info));
tree base_name = unshare_expr (DR_BASE_NAME (dr));
tree ref = DR_REF (dr);
tree scalar_type = TREE_TYPE (ref);
tree scalar_ptr_type = build_pointer_type (scalar_type);
tree vec_stmt;
tree new_temp;
tree addr_base, addr_expr;
tree dest, new_stmt;
tree base_offset = unshare_expr (STMT_VINFO_VECT_INIT_OFFSET (stmt_info));
if (TREE_CODE (TREE_TYPE (data_ref_base)) != POINTER_TYPE)
/* After the analysis stage, we expect to get here only with RECORD_TYPE
and ARRAY_TYPE. */
/* Add '&' to ref_base. */
data_ref_base = build_fold_addr_expr (data_ref_base);
else
{
/* Create '(scalar_type*) base' for pointers. */
tree dest, new_stmt, new_temp, vec_stmt, tmp_base;
tree scalar_array_type = build_array_type (scalar_type, 0);
tree scalar_array_ptr_type = build_pointer_type (scalar_array_type);
tree array_ptr = create_tmp_var (scalar_array_ptr_type, "array_ptr");
add_referenced_tmp_var (array_ptr);
dest = create_tmp_var (TREE_TYPE (data_ref_base), "dataref");
add_referenced_tmp_var (dest);
tmp_base = force_gimple_operand (data_ref_base, &new_stmt, false, dest);
append_to_statement_list_force (new_stmt, new_stmt_list);
vec_stmt = fold_convert (scalar_array_ptr_type, tmp_base);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, array_ptr, vec_stmt);
new_temp = make_ssa_name (array_ptr, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
append_to_statement_list_force (vec_stmt, new_stmt_list);
data_ref_base = new_temp;
}
/* Create base_offset */
dest = create_tmp_var (TREE_TYPE (base_offset), "base_off");
add_referenced_tmp_var (dest);
base_offset = force_gimple_operand (base_offset, &new_stmt, false, dest);
append_to_statement_list_force (new_stmt, new_stmt_list);
if (offset)
{
tree tmp = create_tmp_var (TREE_TYPE (base_offset), "offset");
add_referenced_tmp_var (tmp);
offset = fold (build2 (MULT_EXPR, TREE_TYPE (offset), offset,
STMT_VINFO_VECT_STEP (stmt_info)));
base_offset = fold (build2 (PLUS_EXPR, TREE_TYPE (base_offset), base_offset,
offset));
base_offset = force_gimple_operand (base_offset, &new_stmt, false, tmp);
append_to_statement_list_force (new_stmt, new_stmt_list);
}
/* base + base_offset */
addr_base = fold (build2 (PLUS_EXPR, TREE_TYPE (data_ref_base), data_ref_base,
base_offset));
/* addr_expr = addr_base */
addr_expr = vect_get_new_vect_var (scalar_ptr_type, vect_pointer_var,
get_name (base_name));
add_referenced_tmp_var (addr_expr);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, addr_expr, addr_base);
new_temp = make_ssa_name (addr_expr, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
append_to_statement_list_force (vec_stmt, new_stmt_list);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "created ");
print_generic_expr (dump_file, vec_stmt, TDF_SLIM);
fprintf (dump_file, "\n");
}
return new_temp;
}
/* Function get_vectype_for_scalar_type.
Returns the vector type corresponding to SCALAR_TYPE as supported
by the target. */
static tree
get_vectype_for_scalar_type (tree scalar_type)
{
enum machine_mode inner_mode = TYPE_MODE (scalar_type);
int nbytes = GET_MODE_SIZE (inner_mode);
int nunits;
tree vectype;
if (nbytes == 0)
return NULL_TREE;
/* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
is expected. */
nunits = UNITS_PER_SIMD_WORD / nbytes;
vectype = build_vector_type (scalar_type, nunits);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "get vectype with %d units of type ", nunits);
print_generic_expr (dump_file, scalar_type, TDF_SLIM);
}
if (!vectype)
return NULL_TREE;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "vectype: ");
print_generic_expr (dump_file, vectype, TDF_SLIM);
}
if (!VECTOR_MODE_P (TYPE_MODE (vectype)))
{
/* TODO: tree-complex.c sometimes can parallelize operations
on generic vectors. We can vectorize the loop in that case,
but then we should re-run the lowering pass. */
if (vect_debug_details (NULL))
fprintf (dump_file, "mode not supported by target.");
return NULL_TREE;
}
return vectype;
}
/* Function vect_align_data_ref.
Handle mislignment of a memory accesses.
FORNOW: Can't handle misaligned accesses.
Make sure that the dataref is aligned. */
static void
vect_align_data_ref (tree stmt)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
/* FORNOW: can't handle misaligned accesses;
all accesses expected to be aligned. */
gcc_assert (aligned_access_p (dr));
}
/* Function vect_create_data_ref_ptr.
Create a memory reference expression for vector access, to be used in a
vector load/store stmt. The reference is based on a new pointer to vector
type (vp).
Input:
1. STMT: a stmt that references memory. Expected to be of the form
MODIFY_EXPR <name, data-ref> or MODIFY_EXPR <data-ref, name>.
2. BSI: block_stmt_iterator where new stmts can be added.
3. OFFSET (optional): an offset to be added to the initial address accessed
by the data-ref in STMT.
4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
pointing to the initial address.
Output:
1. Declare a new ptr to vector_type, and have it point to the base of the
data reference (initial addressed accessed by the data reference).
For example, for vector of type V8HI, the following code is generated:
v8hi *vp;
vp = (v8hi *)initial_address;
if OFFSET is not supplied:
initial_address = &a[init];
if OFFSET is supplied:
initial_address = &a[init + OFFSET];
Return the initial_address in INITIAL_ADDRESS.
2. Create a data-reference in the loop based on the new vector pointer vp,
and using a new index variable 'idx' as follows:
vp' = vp + update
where if ONLY_INIT is true:
update = zero
and otherwise
update = idx + vector_type_size
Return the pointer vp'.
FORNOW: handle only aligned and consecutive accesses. */
static tree
vect_create_data_ref_ptr (tree stmt, block_stmt_iterator *bsi, tree offset,
tree *initial_address, bool only_init)
{
tree base_name;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
tree vect_ptr_type;
tree vect_ptr;
tree tag;
v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
vuse_optype vuses = STMT_VUSE_OPS (stmt);
int nvuses, nv_may_defs, nv_must_defs;
int i;
tree new_temp;
tree vec_stmt;
tree new_stmt_list = NULL_TREE;
tree idx;
edge pe = loop_preheader_edge (loop);
basic_block new_bb;
tree vect_ptr_init;
tree vectype_size;
tree ptr_update;
tree data_ref_ptr;
tree type, tmp, size;
base_name = unshare_expr (DR_BASE_NAME (dr));
if (vect_debug_details (NULL))
{
tree data_ref_base = base_name;
fprintf (dump_file, "create array_ref of type: ");
print_generic_expr (dump_file, vectype, TDF_SLIM);
if (TREE_CODE (data_ref_base) == VAR_DECL)
fprintf (dump_file, "\nvectorizing a one dimensional array ref: ");
else if (TREE_CODE (data_ref_base) == ARRAY_REF)
fprintf (dump_file, "\nvectorizing a multidimensional array ref: ");
else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
fprintf (dump_file, "\nvectorizing a record based array ref: ");
else if (TREE_CODE (data_ref_base) == SSA_NAME)
fprintf (dump_file, "\nvectorizing a pointer ref: ");
print_generic_expr (dump_file, base_name, TDF_SLIM);
}
/** (1) Create the new vector-pointer variable: **/
vect_ptr_type = build_pointer_type (vectype);
vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
get_name (base_name));
add_referenced_tmp_var (vect_ptr);
/** (2) Handle aliasing information of the new vector-pointer: **/
tag = STMT_VINFO_MEMTAG (stmt_info);
gcc_assert (tag);
get_var_ann (vect_ptr)->type_mem_tag = tag;
/* Mark for renaming all aliased variables
(i.e, the may-aliases of the type-mem-tag). */
nvuses = NUM_VUSES (vuses);
nv_may_defs = NUM_V_MAY_DEFS (v_may_defs);
nv_must_defs = NUM_V_MUST_DEFS (v_must_defs);
for (i = 0; i < nvuses; i++)
{
tree use = VUSE_OP (vuses, i);
if (TREE_CODE (use) == SSA_NAME)
bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (use))->uid);
}
for (i = 0; i < nv_may_defs; i++)
{
tree def = V_MAY_DEF_RESULT (v_may_defs, i);
if (TREE_CODE (def) == SSA_NAME)
bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid);
}
for (i = 0; i < nv_must_defs; i++)
{
tree def = V_MUST_DEF_RESULT (v_must_defs, i);
if (TREE_CODE (def) == SSA_NAME)
bitmap_set_bit (vars_to_rename, var_ann (SSA_NAME_VAR (def))->uid);
}
/** (3) Calculate the initial address the vector-pointer, and set
the vector-pointer to point to it before the loop: **/
/* Create: (&(base[init_val+offset]) in the loop preheader. */
new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
offset);
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt_list);
gcc_assert (!new_bb);
*initial_address = new_temp;
/* Create: p = (vectype *) initial_base */
vec_stmt = fold_convert (vect_ptr_type, new_temp);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
new_temp = make_ssa_name (vect_ptr, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
new_bb = bsi_insert_on_edge_immediate (pe, vec_stmt);
gcc_assert (!new_bb);
vect_ptr_init = TREE_OPERAND (vec_stmt, 0);
/** (4) Handle the updating of the vector-pointer inside the loop: **/
if (only_init) /* No update in loop is required. */
return vect_ptr_init;
idx = vect_create_index_for_vector_ref (loop, bsi);
/* Create: update = idx * vectype_size */
tmp = create_tmp_var (integer_type_node, "update");
add_referenced_tmp_var (tmp);
size = TYPE_SIZE (vect_ptr_type);
type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
ptr_update = create_tmp_var (type, "update");
add_referenced_tmp_var (ptr_update);
vectype_size = TYPE_SIZE_UNIT (vectype);
vec_stmt = build2 (MULT_EXPR, integer_type_node, idx, vectype_size);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, tmp, vec_stmt);
new_temp = make_ssa_name (tmp, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
vec_stmt = fold_convert (type, new_temp);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, ptr_update, vec_stmt);
new_temp = make_ssa_name (ptr_update, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
/* Create: data_ref_ptr = vect_ptr_init + update */
vec_stmt = build2 (PLUS_EXPR, vect_ptr_type, vect_ptr_init, new_temp);
vec_stmt = build2 (MODIFY_EXPR, void_type_node, vect_ptr, vec_stmt);
new_temp = make_ssa_name (vect_ptr, vec_stmt);
TREE_OPERAND (vec_stmt, 0) = new_temp;
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
data_ref_ptr = TREE_OPERAND (vec_stmt, 0);
return data_ref_ptr;
}
/* Function vect_create_destination_var.
Create a new temporary of type VECTYPE. */
static tree
vect_create_destination_var (tree scalar_dest, tree vectype)
{
tree vec_dest;
const char *new_name;
gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
new_name = get_name (scalar_dest);
if (!new_name)
new_name = "var_";
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, new_name);
add_referenced_tmp_var (vec_dest);
return vec_dest;
}
/* Function vect_init_vector.
Insert a new stmt (INIT_STMT) that initializes a new vector variable with
the vector elements of VECTOR_VAR. Return the DEF of INIT_STMT. It will be
used in the vectorization of STMT. */
static tree
vect_init_vector (tree stmt, tree vector_var)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo);
tree new_var;
tree init_stmt;
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
tree vec_oprnd;
edge pe;
tree new_temp;
basic_block new_bb;
new_var = vect_get_new_vect_var (vectype, vect_simple_var, "cst_");
add_referenced_tmp_var (new_var);
init_stmt = build2 (MODIFY_EXPR, vectype, new_var, vector_var);
new_temp = make_ssa_name (new_var, init_stmt);
TREE_OPERAND (init_stmt, 0) = new_temp;
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, init_stmt);
gcc_assert (!new_bb);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "created new init_stmt: ");
print_generic_expr (dump_file, init_stmt, TDF_SLIM);
}
vec_oprnd = TREE_OPERAND (init_stmt, 0);
return vec_oprnd;
}
/* Function vect_get_vec_def_for_operand.
OP is an operand in STMT. This function returns a (vector) def that will be
used in the vectorized stmt for STMT.
In the case that OP is an SSA_NAME which is defined in the loop, then
STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
In case OP is an invariant or constant, a new stmt that creates a vector def
needs to be introduced. */
static tree
vect_get_vec_def_for_operand (tree op, tree stmt)
{
tree vec_oprnd;
tree vec_stmt;
tree def_stmt;
stmt_vec_info def_stmt_info = NULL;
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
int nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
struct loop *loop = STMT_VINFO_LOOP (stmt_vinfo);
basic_block bb;
tree vec_inv;
tree t = NULL_TREE;
tree def;
int i;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "vect_get_vec_def_for_operand: ");
print_generic_expr (dump_file, op, TDF_SLIM);
}
/** ===> Case 1: operand is a constant. **/
if (TREE_CODE (op) == INTEGER_CST || TREE_CODE (op) == REAL_CST)
{
/* Create 'vect_cst_ = {cst,cst,...,cst}' */
tree vec_cst;
/* Build a tree with vector elements. */
if (vect_debug_details (NULL))
fprintf (dump_file, "Create vector_cst. nunits = %d", nunits);
for (i = nunits - 1; i >= 0; --i)
{
t = tree_cons (NULL_TREE, op, t);
}
vec_cst = build_vector (vectype, t);
return vect_init_vector (stmt, vec_cst);
}
gcc_assert (TREE_CODE (op) == SSA_NAME);
/** ===> Case 2: operand is an SSA_NAME - find the stmt that defines it. **/
def_stmt = SSA_NAME_DEF_STMT (op);
def_stmt_info = vinfo_for_stmt (def_stmt);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "vect_get_vec_def_for_operand: def_stmt: ");
print_generic_expr (dump_file, def_stmt, TDF_SLIM);
}
/** ==> Case 2.1: operand is defined inside the loop. **/
if (def_stmt_info)
{
/* Get the def from the vectorized stmt. */
vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
gcc_assert (vec_stmt);
vec_oprnd = TREE_OPERAND (vec_stmt, 0);
return vec_oprnd;
}
/** ==> Case 2.2: operand is defined by the loop-header phi-node -
it is a reduction/induction. **/
bb = bb_for_stmt (def_stmt);
if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "reduction/induction - unsupported.");
internal_error ("no support for reduction/induction"); /* FORNOW */
}
/** ==> Case 2.3: operand is defined outside the loop -
it is a loop invariant. */
switch (TREE_CODE (def_stmt))
{
case PHI_NODE:
def = PHI_RESULT (def_stmt);
break;
case MODIFY_EXPR:
def = TREE_OPERAND (def_stmt, 0);
break;
case NOP_EXPR:
def = TREE_OPERAND (def_stmt, 0);
gcc_assert (IS_EMPTY_STMT (def_stmt));
def = op;
break;
default:
if (vect_debug_details (NULL))
{
fprintf (dump_file, "unsupported defining stmt: ");
print_generic_expr (dump_file, def_stmt, TDF_SLIM);
}
internal_error ("unsupported defining stmt");
}
/* Build a tree with vector elements. Create 'vec_inv = {inv,inv,..,inv}' */
if (vect_debug_details (NULL))
fprintf (dump_file, "Create vector_inv.");
for (i = nunits - 1; i >= 0; --i)
{
t = tree_cons (NULL_TREE, def, t);
}
vec_inv = build_constructor (vectype, t);
return vect_init_vector (stmt, vec_inv);
}
/* Function vect_finish_stmt_generation.
Insert a new stmt. */
static void
vect_finish_stmt_generation (tree stmt, tree vec_stmt, block_stmt_iterator *bsi)
{
bsi_insert_before (bsi, vec_stmt, BSI_SAME_STMT);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "add new stmt: ");
print_generic_expr (dump_file, vec_stmt, TDF_SLIM);
}
/* Make sure bsi points to the stmt that is being vectorized. */
/* Assumption: any stmts created for the vectorization of stmt S were
inserted before S. BSI is expected to point to S or some new stmt before S.
*/
while (stmt != bsi_stmt (*bsi) && !bsi_end_p (*bsi))
bsi_next (bsi);
gcc_assert (stmt == bsi_stmt (*bsi));
}
/* Function vectorizable_assignment.
Check if STMT performs an assignment (copy) that can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
static bool
vectorizable_assignment (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree vec_dest;
tree scalar_dest;
tree op;
tree vec_oprnd;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
tree new_temp;
/* Is vectorizable assignment? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
scalar_dest = TREE_OPERAND (stmt, 0);
if (TREE_CODE (scalar_dest) != SSA_NAME)
return false;
op = TREE_OPERAND (stmt, 1);
if (!vect_is_simple_use (op, loop, NULL))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "use not simple.");
return false;
}
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
return true;
}
/** Trasform. **/
if (vect_debug_details (NULL))
fprintf (dump_file, "transform assignment.");
/* Handle def. */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
/* Handle use. */
op = TREE_OPERAND (stmt, 1);
vec_oprnd = vect_get_vec_def_for_operand (op, stmt);
/* Arguments are ready. create the new vector stmt. */
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, vec_oprnd);
new_temp = make_ssa_name (vec_dest, *vec_stmt);
TREE_OPERAND (*vec_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
return true;
}
/* Function vectorizable_operation.
Check if STMT performs a binary or unary operation that can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
static bool
vectorizable_operation (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree vec_dest;
tree scalar_dest;
tree operation;
tree op0, op1 = NULL;
tree vec_oprnd0, vec_oprnd1=NULL;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
int i;
enum tree_code code;
enum machine_mode vec_mode;
tree new_temp;
int op_type;
tree op;
optab optab;
/* Is STMT a vectorizable binary/unary operation? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
if (TREE_CODE (TREE_OPERAND (stmt, 0)) != SSA_NAME)
return false;
operation = TREE_OPERAND (stmt, 1);
code = TREE_CODE (operation);
optab = optab_for_tree_code (code, vectype);
/* Support only unary or binary operations. */
op_type = TREE_CODE_LENGTH (code);
if (op_type != unary_op && op_type != binary_op)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "num. args = %d (not unary/binary op).", op_type);
return false;
}
for (i = 0; i < op_type; i++)
{
op = TREE_OPERAND (operation, i);
if (!vect_is_simple_use (op, loop, NULL))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "use not simple.");
return false;
}
}
/* Supportable by target? */
if (!optab)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "no optab.");
return false;
}
vec_mode = TYPE_MODE (vectype);
if (optab->handlers[(int) vec_mode].insn_code == CODE_FOR_nothing)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "op not supported by target.");
return false;
}
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
return true;
}
/** Transform. **/
if (vect_debug_details (NULL))
fprintf (dump_file, "transform binary/unary operation.");
/* Handle def. */
scalar_dest = TREE_OPERAND (stmt, 0);
vec_dest = vect_create_destination_var (scalar_dest, vectype);
/* Handle uses. */
op0 = TREE_OPERAND (operation, 0);
vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt);
if (op_type == binary_op)
{
op1 = TREE_OPERAND (operation, 1);
vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt);
}
/* Arguments are ready. create the new vector stmt. */
if (op_type == binary_op)
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
build2 (code, vectype, vec_oprnd0, vec_oprnd1));
else
*vec_stmt = build2 (MODIFY_EXPR, vectype, vec_dest,
build1 (code, vectype, vec_oprnd0));
new_temp = make_ssa_name (vec_dest, *vec_stmt);
TREE_OPERAND (*vec_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
return true;
}
/* Function vectorizable_store.
Check if STMT defines a non scalar data-ref (array/pointer/structure) that
can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
static bool
vectorizable_store (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree scalar_dest;
tree data_ref;
tree op;
tree vec_oprnd1;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
enum machine_mode vec_mode;
tree dummy;
enum dr_alignment_support alignment_support_cheme;
/* Is vectorizable store? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
scalar_dest = TREE_OPERAND (stmt, 0);
if (TREE_CODE (scalar_dest) != ARRAY_REF
&& TREE_CODE (scalar_dest) != INDIRECT_REF)
return false;
op = TREE_OPERAND (stmt, 1);
if (!vect_is_simple_use (op, loop, NULL))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "use not simple.");
return false;
}
vec_mode = TYPE_MODE (vectype);
/* FORNOW. In some cases can vectorize even if data-type not supported
(e.g. - array initialization with 0). */
if (mov_optab->handlers[(int)vec_mode].insn_code == CODE_FOR_nothing)
return false;
if (!STMT_VINFO_DATA_REF (stmt_info))
return false;
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
return true;
}
/** Trasform. **/
if (vect_debug_details (NULL))
fprintf (dump_file, "transform store");
alignment_support_cheme = vect_supportable_dr_alignment (dr);
gcc_assert (alignment_support_cheme);
gcc_assert (alignment_support_cheme = dr_aligned); /* FORNOW */
/* Handle use - get the vectorized def from the defining stmt. */
vec_oprnd1 = vect_get_vec_def_for_operand (op, stmt);
/* Handle def. */
/* FORNOW: make sure the data reference is aligned. */
vect_align_data_ref (stmt);
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
data_ref = build_fold_indirect_ref (data_ref);
/* Arguments are ready. create the new vector stmt. */
*vec_stmt = build2 (MODIFY_EXPR, vectype, data_ref, vec_oprnd1);
vect_finish_stmt_generation (stmt, *vec_stmt, bsi);
return true;
}
/* vectorizable_load.
Check if STMT reads a non scalar data-ref (array/pointer/structure) that
can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at BSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
static bool
vectorizable_load (tree stmt, block_stmt_iterator *bsi, tree *vec_stmt)
{
tree scalar_dest;
tree vec_dest = NULL;
tree data_ref = NULL;
tree op;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
tree new_temp;
int mode;
tree init_addr;
tree new_stmt;
tree dummy;
basic_block new_bb;
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
edge pe = loop_preheader_edge (loop);
enum dr_alignment_support alignment_support_cheme;
/* Is vectorizable load? */
if (TREE_CODE (stmt) != MODIFY_EXPR)
return false;
scalar_dest = TREE_OPERAND (stmt, 0);
if (TREE_CODE (scalar_dest) != SSA_NAME)
return false;
op = TREE_OPERAND (stmt, 1);
if (TREE_CODE (op) != ARRAY_REF && TREE_CODE (op) != INDIRECT_REF)
return false;
if (!STMT_VINFO_DATA_REF (stmt_info))
return false;
mode = (int) TYPE_MODE (vectype);
/* FORNOW. In some cases can vectorize even if data-type not supported
(e.g. - data copies). */
if (mov_optab->handlers[mode].insn_code == CODE_FOR_nothing)
{
if (vect_debug_details (loop))
fprintf (dump_file, "Aligned load, but unsupported type.");
return false;
}
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
return true;
}
/** Trasform. **/
if (vect_debug_details (NULL))
fprintf (dump_file, "transform load.");
alignment_support_cheme = vect_supportable_dr_alignment (dr);
gcc_assert (alignment_support_cheme);
if (alignment_support_cheme == dr_aligned
|| alignment_support_cheme == dr_unaligned_supported)
{
/* Create:
p = initial_addr;
indx = 0;
loop {
vec_dest = *(p);
indx = indx + 1;
}
*/
vec_dest = vect_create_destination_var (scalar_dest, vectype);
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE, &dummy, false);
if (aligned_access_p (dr))
data_ref = build_fold_indirect_ref (data_ref);
else
{
int mis = DR_MISALIGNMENT (dr);
tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, data_ref, tmis);
}
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, new_stmt, bsi);
}
else if (alignment_support_cheme == dr_unaligned_software_pipeline)
{
/* Create:
p1 = initial_addr;
msq_init = *(floor(p1))
p2 = initial_addr + VS - 1;
magic = have_builtin ? builtin_result : initial_address;
indx = 0;
loop {
p2' = p2 + indx * vectype_size
lsq = *(floor(p2'))
vec_dest = realign_load (msq, lsq, magic)
indx = indx + 1;
msq = lsq;
}
*/
tree offset;
tree magic;
tree phi_stmt;
tree msq_init;
tree msq, lsq;
tree dataref_ptr;
tree params;
/* <1> Create msq_init = *(floor(p1)) in the loop preheader */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
data_ref = vect_create_data_ref_ptr (stmt, bsi, NULL_TREE,
&init_addr, true);
data_ref = build1 (ALIGN_INDIRECT_REF, vectype, data_ref);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
gcc_assert (!new_bb);
msq_init = TREE_OPERAND (new_stmt, 0);
/* <2> Create lsq = *(floor(p2')) in the loop */
offset = build_int_cst (integer_type_node,
GET_MODE_NUNITS (TYPE_MODE (vectype)));
offset = int_const_binop (MINUS_EXPR, offset, integer_one_node, 1);
vec_dest = vect_create_destination_var (scalar_dest, vectype);
dataref_ptr = vect_create_data_ref_ptr (stmt, bsi, offset, &dummy, false);
data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, data_ref);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, new_stmt, bsi);
lsq = TREE_OPERAND (new_stmt, 0);
/* <3> */
if (targetm.vectorize.builtin_mask_for_load)
{
/* Create permutation mask, if required, in loop preheader. */
tree builtin_decl;
params = build_tree_list (NULL_TREE, init_addr);
vec_dest = vect_create_destination_var (scalar_dest, vectype);
builtin_decl = targetm.vectorize.builtin_mask_for_load ();
new_stmt = build_function_call_expr (builtin_decl, params);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
new_bb = bsi_insert_on_edge_immediate (pe, new_stmt);
gcc_assert (!new_bb);
magic = TREE_OPERAND (new_stmt, 0);
/* Since we have just created a CALL_EXPR, we may need to
rename call-clobbered variables. */
mark_call_clobbered_vars_to_rename ();
}
else
{
/* Use current address instead of init_addr for reduced reg pressure.
*/
magic = dataref_ptr;
}
/* <4> Create msq = phi <msq_init, lsq> in loop */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
msq = make_ssa_name (vec_dest, NULL_TREE);
phi_stmt = create_phi_node (msq, loop->header); /* CHECKME */
SSA_NAME_DEF_STMT (msq) = phi_stmt;
add_phi_arg (phi_stmt, msq_init, loop_preheader_edge (loop));
add_phi_arg (phi_stmt, lsq, loop_latch_edge (loop));
/* <5> Create <vec_dest = realign_load (msq, lsq, magic)> in loop */
vec_dest = vect_create_destination_var (scalar_dest, vectype);
new_stmt = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq, magic);
new_stmt = build2 (MODIFY_EXPR, vectype, vec_dest, new_stmt);
new_temp = make_ssa_name (vec_dest, new_stmt);
TREE_OPERAND (new_stmt, 0) = new_temp;
vect_finish_stmt_generation (stmt, new_stmt, bsi);
}
else
gcc_unreachable ();
*vec_stmt = new_stmt;
return true;
}
/* Function vect_supportable_dr_alignment
Return whether the data reference DR is supported with respect to its
alignment. */
static enum dr_alignment_support
vect_supportable_dr_alignment (struct data_reference *dr)
{
tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
enum machine_mode mode = (int) TYPE_MODE (vectype);
if (aligned_access_p (dr))
return dr_aligned;
/* Possibly unaligned access. */
if (DR_IS_READ (dr))
{
if (vec_realign_load_optab->handlers[mode].insn_code != CODE_FOR_nothing
&& (!targetm.vectorize.builtin_mask_for_load
|| targetm.vectorize.builtin_mask_for_load ()))
return dr_unaligned_software_pipeline;
if (movmisalign_optab->handlers[mode].insn_code != CODE_FOR_nothing)
/* Can't software pipeline the loads, but can at least do them. */
return dr_unaligned_supported;
}
/* Unsupported. */
return dr_unaligned_unsupported;
}
/* Function vect_transform_stmt.
Create a vectorized stmt to replace STMT, and insert it at BSI. */
static bool
vect_transform_stmt (tree stmt, block_stmt_iterator *bsi)
{
bool is_store = false;
tree vec_stmt = NULL_TREE;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
bool done;
switch (STMT_VINFO_TYPE (stmt_info))
{
case op_vec_info_type:
done = vectorizable_operation (stmt, bsi, &vec_stmt);
gcc_assert (done);
break;
case assignment_vec_info_type:
done = vectorizable_assignment (stmt, bsi, &vec_stmt);
gcc_assert (done);
break;
case load_vec_info_type:
done = vectorizable_load (stmt, bsi, &vec_stmt);
gcc_assert (done);
break;
case store_vec_info_type:
done = vectorizable_store (stmt, bsi, &vec_stmt);
gcc_assert (done);
is_store = true;
break;
default:
if (vect_debug_details (NULL))
fprintf (dump_file, "stmt not supported.");
gcc_unreachable ();
}
STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
return is_store;
}
/* This function builds ni_name = number of iterations loop executes
on the loop preheader. */
static tree
vect_build_loop_niters (loop_vec_info loop_vinfo)
{
tree ni_name, stmt, var;
edge pe;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
var = create_tmp_var (TREE_TYPE (ni), "niters");
add_referenced_tmp_var (var);
ni_name = force_gimple_operand (ni, &stmt, false, var);
pe = loop_preheader_edge (loop);
if (stmt)
{
basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
}
return ni_name;
}
/* This function generates the following statements:
ni_name = number of iterations loop executes
ratio = ni_name / vf
ratio_mult_vf_name = ratio * vf
and places them at the loop preheader edge. */
static void
vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
tree *ni_name_ptr,
tree *ratio_mult_vf_name_ptr,
tree *ratio_name_ptr)
{
edge pe;
basic_block new_bb;
tree stmt, ni_name;
tree var;
tree ratio_name;
tree ratio_mult_vf_name;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree ni = LOOP_VINFO_NITERS (loop_vinfo);
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
tree log_vf = build_int_cst (unsigned_type_node, exact_log2 (vf));
pe = loop_preheader_edge (loop);
/* Generate temporary variable that contains
number of iterations loop executes. */
ni_name = vect_build_loop_niters (loop_vinfo);
/* Create: ratio = ni >> log2(vf) */
var = create_tmp_var (TREE_TYPE (ni), "bnd");
add_referenced_tmp_var (var);
ratio_name = make_ssa_name (var, NULL_TREE);
stmt = build2 (MODIFY_EXPR, void_type_node, ratio_name,
build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf));
SSA_NAME_DEF_STMT (ratio_name) = stmt;
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
/* Create: ratio_mult_vf = ratio << log2 (vf). */
var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
add_referenced_tmp_var (var);
ratio_mult_vf_name = make_ssa_name (var, NULL_TREE);
stmt = build2 (MODIFY_EXPR, void_type_node, ratio_mult_vf_name,
build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name), ratio_name, log_vf));
SSA_NAME_DEF_STMT (ratio_mult_vf_name) = stmt;
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
*ni_name_ptr = ni_name;
*ratio_mult_vf_name_ptr = ratio_mult_vf_name;
*ratio_name_ptr = ratio_name;
return;
}
/* Function vect_update_ivs_after_vectorizer.
"Advance" the induction variables of LOOP to the value they should take
after the execution of LOOP. This is currently necessary because the
vectorizer does not handle induction variables that are used after the
loop. Such a situation occurs when the last iterations of LOOP are
peeled, because:
1. We introduced new uses after LOOP for IVs that were not originally used
after LOOP: the IVs of LOOP are now used by an epilog loop.
2. LOOP is going to be vectorized; this means that it will iterate N/VF
times, whereas the loop IVs should be bumped N times.
Input:
- LOOP - a loop that is going to be vectorized. The last few iterations
of LOOP were peeled.
- NITERS - the number of iterations that LOOP executes (before it is
vectorized). i.e, the number of times the ivs should be bumped.
- UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
coming out from LOOP on which there are uses of the LOOP ivs
(this is the path from LOOP->exit to epilog_loop->preheader).
The new definitions of the ivs are placed in LOOP->exit.
The phi args associated with the edge UPDATE_E in the bb
UPDATE_E->dest are updated accordingly.
Assumption 1: Like the rest of the vectorizer, this function assumes
a single loop exit that has a single predecessor.
Assumption 2: The phi nodes in the LOOP header and in update_bb are
organized in the same order.
Assumption 3: The access function of the ivs is simple enough (see
vect_can_advance_ivs_p). This assumption will be relaxed in the future.
Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
coming out of LOOP on which the ivs of LOOP are used (this is the path
that leads to the epilog loop; other paths skip the epilog loop). This
path starts with the edge UPDATE_E, and its destination (denoted update_bb)
needs to have its phis updated.
*/
static void
vect_update_ivs_after_vectorizer (struct loop *loop, tree niters, edge update_e)
{
basic_block exit_bb = loop->exit_edges[0]->dest;
tree phi, phi1;
basic_block update_bb = update_e->dest;
/* gcc_assert (vect_can_advance_ivs_p (loop)); */
/* Make sure there exists a single-predecessor exit bb: */
gcc_assert (EDGE_COUNT (exit_bb->preds) == 1);
for (phi = phi_nodes (loop->header), phi1 = phi_nodes (update_bb);
phi && phi1;
phi = PHI_CHAIN (phi), phi1 = PHI_CHAIN (phi1))
{
tree access_fn = NULL;
tree evolution_part;
tree init_expr;
tree step_expr;
tree var, stmt, ni, ni_name;
block_stmt_iterator last_bsi;
/* Skip virtual phi's. */
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "virtual phi. skip.");
continue;
}
access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
gcc_assert (access_fn);
evolution_part =
unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
gcc_assert (evolution_part != NULL_TREE);
/* FORNOW: We do not support IVs whose evolution function is a polynomial
of degree >= 2 or exponential. */
gcc_assert (!tree_is_chrec (evolution_part));
step_expr = evolution_part;
init_expr = unshare_expr (initial_condition (access_fn));
ni = build2 (PLUS_EXPR, TREE_TYPE (init_expr),
build2 (MULT_EXPR, TREE_TYPE (niters),
niters, step_expr), init_expr);
var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
add_referenced_tmp_var (var);
ni_name = force_gimple_operand (ni, &stmt, false, var);
/* Insert stmt into exit_bb. */
last_bsi = bsi_last (exit_bb);
if (stmt)
bsi_insert_before (&last_bsi, stmt, BSI_SAME_STMT);
/* Fix phi expressions in the successor bb. */
gcc_assert (PHI_ARG_DEF_FROM_EDGE (phi1, update_e) ==
PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0)));
SET_PHI_ARG_DEF (phi1, phi_arg_from_edge (phi1, update_e), ni_name);
}
}
/* Function vect_do_peeling_for_loop_bound
Peel the last iterations of the loop represented by LOOP_VINFO.
The peeled iterations form a new epilog loop. Given that the loop now
iterates NITERS times, the new epilog loop iterates
NITERS % VECTORIZATION_FACTOR times.
The original loop will later be made to iterate
NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO). */
static void
vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
struct loops *loops)
{
tree ni_name, ratio_mult_vf_name;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
struct loop *new_loop;
edge update_e;
#ifdef ENABLE_CHECKING
int loop_num;
#endif
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_transtorm_for_unknown_loop_bound>>\n");
/* Generate the following variables on the preheader of original loop:
ni_name = number of iteration the original loop executes
ratio = ni_name / vf
ratio_mult_vf_name = ratio * vf */
vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
&ratio_mult_vf_name, ratio);
/* Update loop info. */
loop->pre_header = loop_preheader_edge (loop)->src;
loop->pre_header_edges[0] = loop_preheader_edge (loop);
#ifdef ENABLE_CHECKING
loop_num = loop->num;
#endif
new_loop = slpeel_tree_peel_loop_to_edge (loop, loops, loop->exit_edges[0],
ratio_mult_vf_name, ni_name, false);
#ifdef ENABLE_CHECKING
gcc_assert (new_loop);
gcc_assert (loop_num == loop->num);
slpeel_verify_cfg_after_peeling (loop, new_loop);
#endif
/* A guard that controls whether the new_loop is to be executed or skipped
is placed in LOOP->exit. LOOP->exit therefore has two successors - one
is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
is on the path where the LOOP IVs are used and need to be updated. */
if (EDGE_PRED (new_loop->pre_header, 0)->src == loop->exit_edges[0]->dest)
update_e = EDGE_PRED (new_loop->pre_header, 0);
else
update_e = EDGE_PRED (new_loop->pre_header, 1);
/* Update IVs of original loop as if they were advanced
by ratio_mult_vf_name steps. */
vect_update_ivs_after_vectorizer (loop, ratio_mult_vf_name, update_e);
/* After peeling we have to reset scalar evolution analyzer. */
scev_reset ();
return;
}
/* Function vect_gen_niters_for_prolog_loop
Set the number of iterations for the loop represented by LOOP_VINFO
to the minimum between LOOP_NITERS (the original iteration count of the loop)
and the misalignment of DR - the first data reference recorded in
LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
this loop, the data reference DR will refer to an aligned location.
The following computation is generated:
compute address misalignment in bytes:
addr_mis = addr & (vectype_size - 1)
prolog_niters = min ( LOOP_NITERS , (VF - addr_mis/elem_size)&(VF-1) )
(elem_size = element type size; an element is the scalar element
whose type is the inner type of the vectype) */
static tree
vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
{
struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree var, stmt;
tree iters, iters_name;
edge pe;
basic_block new_bb;
tree dr_stmt = DR_STMT (dr);
stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
tree elem_misalign;
tree byte_misalign;
tree new_stmts = NULL_TREE;
tree start_addr =
vect_create_addr_base_for_vector_ref (dr_stmt, &new_stmts, NULL_TREE);
tree ptr_type = TREE_TYPE (start_addr);
tree size = TYPE_SIZE (ptr_type);
tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
tree vf_minus_1 = build_int_cst (unsigned_type_node, vf - 1);
tree niters_type = TREE_TYPE (loop_niters);
tree elem_size_log =
build_int_cst (unsigned_type_node, exact_log2 (vectype_align/vf));
tree vf_tree = build_int_cst (unsigned_type_node, vf);
pe = loop_preheader_edge (loop);
new_bb = bsi_insert_on_edge_immediate (pe, new_stmts);
gcc_assert (!new_bb);
/* Create: byte_misalign = addr & (vectype_size - 1) */
byte_misalign = build2 (BIT_AND_EXPR, type, start_addr, vectype_size_minus_1);
/* Create: elem_misalign = byte_misalign / element_size */
elem_misalign =
build2 (RSHIFT_EXPR, unsigned_type_node, byte_misalign, elem_size_log);
/* Create: (niters_type) (VF - elem_misalign)&(VF - 1) */
iters = build2 (MINUS_EXPR, unsigned_type_node, vf_tree, elem_misalign);
iters = build2 (BIT_AND_EXPR, unsigned_type_node, iters, vf_minus_1);
iters = fold_convert (niters_type, iters);
/* Create: prolog_loop_niters = min (iters, loop_niters) */
/* If the loop bound is known at compile time we already verified that it is
greater than vf; since the misalignment ('iters') is at most vf, there's
no need to generate the MIN_EXPR in this case. */
if (!TREE_CONSTANT (loop_niters))
iters = build2 (MIN_EXPR, niters_type, iters, loop_niters);
var = create_tmp_var (niters_type, "prolog_loop_niters");
add_referenced_tmp_var (var);
iters_name = force_gimple_operand (iters, &stmt, false, var);
/* Insert stmt on loop preheader edge. */
pe = loop_preheader_edge (loop);
if (stmt)
{
basic_block new_bb = bsi_insert_on_edge_immediate (pe, stmt);
gcc_assert (!new_bb);
}
return iters_name;
}
/* Function vect_update_inits_of_dr
NITERS iterations were peeled from LOOP. DR represents a data reference
in LOOP. This function updates the information recorded in DR to
account for the fact that the first NITERS iterations had already been
executed. Specifically, it updates the OFFSET field of stmt_info. */
static void
vect_update_inits_of_dr (struct data_reference *dr, tree niters)
{
stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
tree offset = STMT_VINFO_VECT_INIT_OFFSET (stmt_info);
niters = fold (build2 (MULT_EXPR, TREE_TYPE (niters), niters,
STMT_VINFO_VECT_STEP (stmt_info)));
offset = fold (build2 (PLUS_EXPR, TREE_TYPE (offset), offset, niters));
STMT_VINFO_VECT_INIT_OFFSET (stmt_info) = offset;
}
/* Function vect_update_inits_of_drs
NITERS iterations were peeled from the loop represented by LOOP_VINFO.
This function updates the information recorded for the data references in
the loop to account for the fact that the first NITERS iterations had
already been executed. Specifically, it updates the initial_condition of the
access_function of all the data_references in the loop. */
static void
vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
{
unsigned int i;
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "\n<<vect_update_inits_of_dr>>\n");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
vect_update_inits_of_dr (dr, niters);
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
vect_update_inits_of_dr (dr, niters);
}
}
/* Function vect_do_peeling_for_alignment
Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
'niters' is set to the misalignment of one of the data references in the
loop, thereby forcing it to refer to an aligned location at the beginning
of the execution of this loop. The data reference for which we are
peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
static void
vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, struct loops *loops)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree niters_of_prolog_loop, ni_name;
tree n_iters;
struct loop *new_loop;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_do_peeling_for_alignment>>\n");
ni_name = vect_build_loop_niters (loop_vinfo);
niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name);
/* Peel the prolog loop and iterate it niters_of_prolog_loop. */
new_loop =
slpeel_tree_peel_loop_to_edge (loop, loops, loop_preheader_edge (loop),
niters_of_prolog_loop, ni_name, true);
#ifdef ENABLE_CHECKING
gcc_assert (new_loop);
slpeel_verify_cfg_after_peeling (new_loop, loop);
#endif
/* Update number of times loop executes. */
n_iters = LOOP_VINFO_NITERS (loop_vinfo);
LOOP_VINFO_NITERS (loop_vinfo) =
build2 (MINUS_EXPR, TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
/* Update the init conditions of the access functions of all data refs. */
vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop);
/* After peeling we have to reset scalar evolution analyzer. */
scev_reset ();
return;
}
/* Function vect_transform_loop.
The analysis phase has determined that the loop is vectorizable.
Vectorize the loop - created vectorized stmts to replace the scalar
stmts in the loop, and update the loop exit condition. */
static void
vect_transform_loop (loop_vec_info loop_vinfo,
struct loops *loops ATTRIBUTE_UNUSED)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
block_stmt_iterator si;
int i;
tree ratio = NULL;
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vec_transform_loop>>\n");
/* Peel the loop if there are data refs with unknown alignment.
Only one data ref with unknown store is allowed. */
if (LOOP_DO_PEELING_FOR_ALIGNMENT (loop_vinfo))
vect_do_peeling_for_alignment (loop_vinfo, loops);
/* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
compile time constant), or it is a constant that doesn't divide by the
vectorization factor, then an epilog loop needs to be created.
We therefore duplicate the loop: the original loop will be vectorized,
and will compute the first (n/VF) iterations. The second copy of the loop
will remain scalar and will compute the remaining (n%VF) iterations.
(VF is the vectorization factor). */
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
vect_do_peeling_for_loop_bound (loop_vinfo, &ratio, loops);
else
ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
/* 1) Make sure the loop header has exactly two entries
2) Make sure we have a preheader basic block. */
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
loop_split_edge_with (loop_preheader_edge (loop), NULL);
/* FORNOW: the vectorizer supports only loops which body consist
of one basic block (header + empty latch). When the vectorizer will
support more involved loop forms, the order by which the BBs are
traversed need to be reconsidered. */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si);)
{
tree stmt = bsi_stmt (si);
stmt_vec_info stmt_info;
bool is_store;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "------>vectorizing statement: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
stmt_info = vinfo_for_stmt (stmt);
gcc_assert (stmt_info);
if (!STMT_VINFO_RELEVANT_P (stmt_info))
{
bsi_next (&si);
continue;
}
#ifdef ENABLE_CHECKING
/* FORNOW: Verify that all stmts operate on the same number of
units and no inner unrolling is necessary. */
gcc_assert
(GET_MODE_NUNITS (TYPE_MODE (STMT_VINFO_VECTYPE (stmt_info)))
== vectorization_factor);
#endif
/* -------- vectorize statement ------------ */
if (vect_debug_details (NULL))
fprintf (dump_file, "transform statement.");
is_store = vect_transform_stmt (stmt, &si);
if (is_store)
{
/* free the attached stmt_vec_info and remove the stmt. */
stmt_ann_t ann = stmt_ann (stmt);
free (stmt_info);
set_stmt_info (ann, NULL);
bsi_remove (&si);
continue;
}
bsi_next (&si);
} /* stmts in BB */
} /* BBs in loop */
slpeel_make_loop_iterate_ntimes (loop, ratio);
if (vect_debug_details (loop))
fprintf (dump_file,"Success! loop vectorized.");
if (vect_debug_stats (loop))
fprintf (dump_file, "LOOP VECTORIZED.");
}
/* Function vect_is_simple_use.
Input:
LOOP - the loop that is being vectorized.
OPERAND - operand of a stmt in LOOP.
DEF - the defining stmt in case OPERAND is an SSA_NAME.
Returns whether a stmt with OPERAND can be vectorized.
Supportable operands are constants, loop invariants, and operands that are
defined by the current iteration of the loop. Unsupportable operands are
those that are defined by a previous iteration of the loop (as is the case
in reduction/induction computations). */
static bool
vect_is_simple_use (tree operand, struct loop *loop, tree *def)
{
tree def_stmt;
basic_block bb;
if (def)
*def = NULL_TREE;
if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
return true;
if (TREE_CODE (operand) != SSA_NAME)
return false;
def_stmt = SSA_NAME_DEF_STMT (operand);
if (def_stmt == NULL_TREE )
{
if (vect_debug_details (NULL))
fprintf (dump_file, "no def_stmt.");
return false;
}
/* empty stmt is expected only in case of a function argument.
(Otherwise - we expect a phi_node or a modify_expr). */
if (IS_EMPTY_STMT (def_stmt))
{
tree arg = TREE_OPERAND (def_stmt, 0);
if (TREE_CODE (arg) == INTEGER_CST || TREE_CODE (arg) == REAL_CST)
return true;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Unexpected empty stmt: ");
print_generic_expr (dump_file, def_stmt, TDF_SLIM);
}
return false;
}
/* phi_node inside the loop indicates an induction/reduction pattern.
This is not supported yet. */
bb = bb_for_stmt (def_stmt);
if (TREE_CODE (def_stmt) == PHI_NODE && flow_bb_inside_loop_p (loop, bb))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "reduction/induction - unsupported.");
return false; /* FORNOW: not supported yet. */
}
/* Expecting a modify_expr or a phi_node. */
if (TREE_CODE (def_stmt) == MODIFY_EXPR
|| TREE_CODE (def_stmt) == PHI_NODE)
{
if (def)
*def = def_stmt;
return true;
}
return false;
}
/* Function vect_analyze_operations.
Scan the loop stmts and make sure they are all vectorizable. */
static bool
vect_analyze_operations (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
block_stmt_iterator si;
unsigned int vectorization_factor = 0;
int i;
bool ok;
tree scalar_type;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_operations>>\n");
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
tree stmt = bsi_stmt (si);
unsigned int nunits;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree vectype;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "==> examining statement: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
gcc_assert (stmt_info);
/* skip stmts which do not need to be vectorized.
this is expected to include:
- the COND_EXPR which is the loop exit condition
- any LABEL_EXPRs in the loop
- computations that are used only for array indexing or loop
control */
if (!STMT_VINFO_RELEVANT_P (stmt_info))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "irrelevant.");
continue;
}
if (VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (stmt))))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file, "not vectorized: vector stmt in loop:");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return false;
}
if (STMT_VINFO_DATA_REF (stmt_info))
scalar_type = TREE_TYPE (DR_REF (STMT_VINFO_DATA_REF (stmt_info)));
else if (TREE_CODE (stmt) == MODIFY_EXPR)
scalar_type = TREE_TYPE (TREE_OPERAND (stmt, 0));
else
scalar_type = TREE_TYPE (stmt);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "get vectype for scalar type: ");
print_generic_expr (dump_file, scalar_type, TDF_SLIM);
}
vectype = get_vectype_for_scalar_type (scalar_type);
if (!vectype)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file, "not vectorized: unsupported data-type ");
print_generic_expr (dump_file, scalar_type, TDF_SLIM);
}
return false;
}
if (vect_debug_details (NULL))
{
fprintf (dump_file, "vectype: ");
print_generic_expr (dump_file, vectype, TDF_SLIM);
}
STMT_VINFO_VECTYPE (stmt_info) = vectype;
ok = (vectorizable_operation (stmt, NULL, NULL)
|| vectorizable_assignment (stmt, NULL, NULL)
|| vectorizable_load (stmt, NULL, NULL)
|| vectorizable_store (stmt, NULL, NULL));
if (!ok)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file, "not vectorized: stmt not supported: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return false;
}
nunits = GET_MODE_NUNITS (TYPE_MODE (vectype));
if (vect_debug_details (NULL))
fprintf (dump_file, "nunits = %d", nunits);
if (vectorization_factor)
{
/* FORNOW: don't allow mixed units.
This restriction will be relaxed in the future. */
if (nunits != vectorization_factor)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: mixed data-types");
return false;
}
}
else
vectorization_factor = nunits;
#ifdef ENABLE_CHECKING
gcc_assert (GET_MODE_SIZE (TYPE_MODE (scalar_type))
* vectorization_factor == UNITS_PER_SIMD_WORD);
#endif
}
}
/* TODO: Analyze cost. Decide if worth while to vectorize. */
if (vectorization_factor <= 1)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unsupported data-type");
return false;
}
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && vect_debug_details (NULL))
fprintf (dump_file,
"vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: iteration count too small.");
return false;
}
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "epilog loop required.");
if (!vect_can_advance_ivs_p (loop))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: can't create epilog loop 1.");
return false;
}
if (!slpeel_can_duplicate_loop_p (loop, loop->exit_edges[0]))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: can't create epilog loop 2.");
return false;
}
}
return true;
}
/* Function exist_non_indexing_operands_for_use_p
USE is one of the uses attached to STMT. Check if USE is
used in STMT for anything other than indexing an array. */
static bool
exist_non_indexing_operands_for_use_p (tree use, tree stmt)
{
tree operand;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
/* USE corresponds to some operand in STMT. If there is no data
reference in STMT, then any operand that corresponds to USE
is not indexing an array. */
if (!STMT_VINFO_DATA_REF (stmt_info))
return true;
/* STMT has a data_ref. FORNOW this means that its of one of
the following forms:
-1- ARRAY_REF = var
-2- var = ARRAY_REF
(This should have been verified in analyze_data_refs).
'var' in the second case corresponds to a def, not a use,
so USE cannot correspond to any operands that are not used
for array indexing.
Therefore, all we need to check is if STMT falls into the
first case, and whether var corresponds to USE. */
if (TREE_CODE (TREE_OPERAND (stmt, 0)) == SSA_NAME)
return false;
operand = TREE_OPERAND (stmt, 1);
if (TREE_CODE (operand) != SSA_NAME)
return false;
if (operand == use)
return true;
return false;
}
/* Function vect_is_simple_iv_evolution.
FORNOW: A simple evolution of an induction variables in the loop is
considered a polynomial evolution with constant step. */
static bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
tree * step, bool strict)
{
tree init_expr;
tree step_expr;
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
/* When there is no evolution in this loop, the evolution function
is not "simple". */
if (evolution_part == NULL_TREE)
return false;
/* When the evolution is a polynomial of degree >= 2
the evolution function is not "simple". */
if (tree_is_chrec (evolution_part))
return false;
step_expr = evolution_part;
init_expr = unshare_expr (initial_condition (access_fn));
if (vect_debug_details (NULL))
{
fprintf (dump_file, "step: ");
print_generic_expr (dump_file, step_expr, TDF_SLIM);
fprintf (dump_file, ", init: ");
print_generic_expr (dump_file, init_expr, TDF_SLIM);
}
*init = init_expr;
*step = step_expr;
if (TREE_CODE (step_expr) != INTEGER_CST)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "step unknown.");
return false;
}
if (strict)
if (!integer_onep (step_expr))
{
if (vect_debug_details (NULL))
print_generic_expr (dump_file, step_expr, TDF_SLIM);
return false;
}
return true;
}
/* Function vect_analyze_scalar_cycles.
Examine the cross iteration def-use cycles of scalar variables, by
analyzing the loop (scalar) PHIs; verify that the cross iteration def-use
cycles that they represent do not impede vectorization.
FORNOW: Reduction as in the following loop, is not supported yet:
loop1:
for (i=0; i<N; i++)
sum += a[i];
The cross-iteration cycle corresponding to variable 'sum' will be
considered too complicated and will impede vectorization.
FORNOW: Induction as in the following loop, is not supported yet:
loop2:
for (i=0; i<N; i++)
a[i] = i;
However, the following loop *is* vectorizable:
loop3:
for (i=0; i<N; i++)
a[i] = b[i];
In both loops there exists a def-use cycle for the variable i:
loop: i_2 = PHI (i_0, i_1)
a[i_2] = ...;
i_1 = i_2 + 1;
GOTO loop;
The evolution of the above cycle is considered simple enough,
however, we also check that the cycle does not need to be
vectorized, i.e - we check that the variable that this cycle
defines is only used for array indexing or in stmts that do not
need to be vectorized. This is not the case in loop2, but it
*is* the case in loop3. */
static bool
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
{
tree phi;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block bb = loop->header;
tree dummy;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_scalar_cycles>>\n");
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
tree access_fn = NULL;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Analyze phi: ");
print_generic_expr (dump_file, phi, TDF_SLIM);
}
/* Skip virtual phi's. The data dependences that are associated with
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "virtual phi. skip.");
continue;
}
/* Analyze the evolution function. */
/* FORNOW: The only scalar cross-iteration cycles that we allow are
those of loop induction variables; This property is verified here.
Furthermore, if that induction variable is used in an operation
that needs to be vectorized (i.e, is not solely used to index
arrays and check the exit condition) - we do not support its
vectorization yet. This property is verified in vect_is_simple_use,
during vect_analyze_operations. */
access_fn = /* instantiate_parameters
(loop,*/
analyze_scalar_evolution (loop, PHI_RESULT (phi));
if (!access_fn)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unsupported scalar cycle.");
return false;
}
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Access function of PHI: ");
print_generic_expr (dump_file, access_fn, TDF_SLIM);
}
if (!vect_is_simple_iv_evolution (loop->num, access_fn, &dummy,
&dummy, false))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unsupported scalar cycle.");
return false;
}
}
return true;
}
/* Function vect_analyze_data_ref_dependence.
Return TRUE if there (might) exist a dependence between a memory-reference
DRA and a memory-reference DRB. */
static bool
vect_analyze_data_ref_dependence (struct data_reference *dra,
struct data_reference *drb,
struct loop *loop)
{
bool differ_p;
struct data_dependence_relation *ddr;
if (!array_base_name_differ_p (dra, drb, &differ_p))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file,
"not vectorized: can't determine dependence between: ");
print_generic_expr (dump_file, DR_REF (dra), TDF_SLIM);
fprintf (dump_file, " and ");
print_generic_expr (dump_file, DR_REF (drb), TDF_SLIM);
}
return true;
}
if (differ_p)
return false;
ddr = initialize_data_dependence_relation (dra, drb);
compute_affine_dependence (ddr);
if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
return false;
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file,
"not vectorized: possible dependence between data-refs ");
print_generic_expr (dump_file, DR_REF (dra), TDF_SLIM);
fprintf (dump_file, " and ");
print_generic_expr (dump_file, DR_REF (drb), TDF_SLIM);
}
return true;
}
/* Function vect_analyze_data_ref_dependences.
Examine all the data references in the loop, and make sure there do not
exist any data dependences between them.
TODO: dependences which distance is greater than the vectorization factor
can be ignored. */
static bool
vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo)
{
unsigned int i, j;
varray_type loop_write_refs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_refs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Examine store-store (output) dependences. */
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_dependences>>\n");
if (vect_debug_details (NULL))
fprintf (dump_file, "compare all store-store pairs.");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_refs); i++)
{
for (j = i + 1; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
{
struct data_reference *dra =
VARRAY_GENERIC_PTR (loop_write_refs, i);
struct data_reference *drb =
VARRAY_GENERIC_PTR (loop_write_refs, j);
if (vect_analyze_data_ref_dependence (dra, drb, loop))
return false;
}
}
/* Examine load-store (true/anti) dependences. */
if (vect_debug_details (NULL))
fprintf (dump_file, "compare all load-store pairs.");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_refs); i++)
{
for (j = 0; j < VARRAY_ACTIVE_SIZE (loop_write_refs); j++)
{
struct data_reference *dra = VARRAY_GENERIC_PTR (loop_read_refs, i);
struct data_reference *drb =
VARRAY_GENERIC_PTR (loop_write_refs, j);
if (vect_analyze_data_ref_dependence (dra, drb, loop))
return false;
}
}
return true;
}
/* Function vect_compute_data_ref_alignment
Compute the misalignment of the data reference DR.
Output:
1. If during the misalignment computation it is found that the data reference
cannot be vectorized then false is returned.
2. DR_MISALIGNMENT (DR) is defined.
FOR NOW: No analysis is actually performed. Misalignment is calculated
only for trivial cases. TODO. */
static bool
vect_compute_data_ref_alignment (struct data_reference *dr)
{
tree stmt = DR_STMT (dr);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree ref = DR_REF (dr);
tree vectype;
tree base, alignment;
bool base_aligned_p;
tree misalign;
if (vect_debug_details (NULL))
fprintf (dump_file, "vect_compute_data_ref_alignment:");
/* Initialize misalignment to unknown. */
DR_MISALIGNMENT (dr) = -1;
misalign = STMT_VINFO_VECT_MISALIGNMENT (stmt_info);
base_aligned_p = STMT_VINFO_VECT_BASE_ALIGNED_P (stmt_info);
base = STMT_VINFO_VECT_DR_BASE (stmt_info);
vectype = STMT_VINFO_VECTYPE (stmt_info);
if (!misalign)
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Unknown alignment for access: ");
print_generic_expr (dump_file, base, TDF_SLIM);
}
return true;
}
if (!base_aligned_p)
{
if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype)))
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "can't force alignment of ref: ");
print_generic_expr (dump_file, ref, TDF_SLIM);
}
return true;
}
/* Force the alignment of the decl.
NOTE: This is the only change to the code we make during
the analysis phase, before deciding to vectorize the loop. */
if (vect_debug_details (NULL))
fprintf (dump_file, "force alignment");
DECL_ALIGN (base) = TYPE_ALIGN (vectype);
DECL_USER_ALIGN (base) = 1;
}
/* At this point we assume that the base is aligned. */
gcc_assert (base_aligned_p
|| (TREE_CODE (base) == VAR_DECL
&& DECL_ALIGN (base) >= TYPE_ALIGN (vectype)));
/* Alignment required, in bytes: */
alignment = size_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
/* Modulo alignment. */
misalign = size_binop (TRUNC_MOD_EXPR, misalign, alignment);
if (tree_int_cst_sgn (misalign) < 0)
{
/* Negative misalignment value. */
if (vect_debug_details (NULL))
fprintf (dump_file, "unexpected misalign value");
return false;
}
DR_MISALIGNMENT (dr) = tree_low_cst (misalign, 1);
if (vect_debug_details (NULL))
fprintf (dump_file, "misalign = %d", DR_MISALIGNMENT (dr));
return true;
}
/* Function vect_compute_data_refs_alignment
Compute the misalignment of data references in the loop.
This pass may take place at function granularity instead of at loop
granularity.
FOR NOW: No analysis is actually performed. Misalignment is calculated
only for trivial cases. TODO. */
static bool
vect_compute_data_refs_alignment (loop_vec_info loop_vinfo)
{
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
unsigned int i;
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
if (!vect_compute_data_ref_alignment (dr))
return false;
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
if (!vect_compute_data_ref_alignment (dr))
return false;
}
return true;
}
/* Function vect_enhance_data_refs_alignment
This pass will use loop versioning and loop peeling in order to enhance
the alignment of data references in the loop.
FOR NOW: we assume that whatever versioning/peeling takes place, only the
original loop is to be vectorized; Any other loops that are created by
the transformations performed in this pass - are not supposed to be
vectorized. This restriction will be relaxed. */
static void
vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
{
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
unsigned int i;
/*
This pass will require a cost model to guide it whether to apply peeling
or versioning or a combination of the two. For example, the scheme that
intel uses when given a loop with several memory accesses, is as follows:
choose one memory access ('p') which alignment you want to force by doing
peeling. Then, either (1) generate a loop in which 'p' is aligned and all
other accesses are not necessarily aligned, or (2) use loop versioning to
generate one loop in which all accesses are aligned, and another loop in
which only 'p' is necessarily aligned.
("Automatic Intra-Register Vectorization for the Intel Architecture",
Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
Devising a cost model is the most critical aspect of this work. It will
guide us on which access to peel for, whether to use loop versioning, how
many versions to create, etc. The cost model will probably consist of
generic considerations as well as target specific considerations (on
powerpc for example, misaligned stores are more painful than misaligned
loads).
Here is the general steps involved in alignment enhancements:
-- original loop, before alignment analysis:
for (i=0; i<N; i++){
x = q[i]; # DR_MISALIGNMENT(q) = unknown
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- After vect_compute_data_refs_alignment:
for (i=0; i<N; i++){
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- Possibility 1: we do loop versioning:
if (p is aligned) {
for (i=0; i<N; i++){ # loop 1A
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = 0
}
}
else {
for (i=0; i<N; i++){ # loop 1B
x = q[i]; # DR_MISALIGNMENT(q) = 3
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
}
}
-- Possibility 2: we do loop peeling:
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
x = q[i];
p[i] = y;
}
for (i = 3; i < N; i++){ # loop 2A
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = unknown
}
-- Possibility 3: combination of loop peeling and versioning:
for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
x = q[i];
p[i] = y;
}
if (p is aligned) {
for (i = 3; i<N; i++){ # loop 3A
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = 0
}
}
else {
for (i = 3; i<N; i++){ # loop 3B
x = q[i]; # DR_MISALIGNMENT(q) = 0
p[i] = y; # DR_MISALIGNMENT(p) = unaligned
}
}
These loops are later passed to loop_transform to be vectorized. The
vectorizer will use the alignment information to guide the transformation
(whether to generate regular loads/stores, or with special handling for
misalignment).
*/
/* (1) Peeling to force alignment. */
/* (1.1) Decide whether to perform peeling, and how many iterations to peel:
Considerations:
+ How many accesses will become aligned due to the peeling
- How many accesses will become unaligned due to the peeling,
and the cost of misaligned accesses.
- The cost of peeling (the extra runtime checks, the increase
in code size).
The scheme we use FORNOW: peel to force the alignment of the first
misaligned store in the loop.
Rationale: misaligned stores are not yet supported.
TODO: Use a better cost model. */
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
if (!aligned_access_p (dr))
{
LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr;
LOOP_DO_PEELING_FOR_ALIGNMENT (loop_vinfo) = true;
break;
}
}
if (!LOOP_VINFO_UNALIGNED_DR (loop_vinfo))
{
if (vect_debug_details (loop))
fprintf (dump_file, "Peeling for alignment will not be applied.");
return;
}
else
if (vect_debug_details (loop))
fprintf (dump_file, "Peeling for alignment will be applied.");
/* (1.2) Update the alignment info according to the peeling factor.
If the misalignment of the DR we peel for is M, then the
peeling factor is VF - M, and the misalignment of each access DR_i
in the loop is DR_MISALIGNMENT (DR_i) + VF - M.
If the misalignment of the DR we peel for is unknown, then the
misalignment of each access DR_i in the loop is also unknown.
FORNOW: set the misalignment of the accesses to unknown even
if the peeling factor is known at compile time.
TODO: - if the peeling factor is known at compile time, use that
when updating the misalignment info of the loop DRs.
- consider accesses that are known to have the same
alignment, even if that alignment is unknown. */
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
if (dr == LOOP_VINFO_UNALIGNED_DR (loop_vinfo))
DR_MISALIGNMENT (dr) = 0;
else
DR_MISALIGNMENT (dr) = -1;
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
if (dr == LOOP_VINFO_UNALIGNED_DR (loop_vinfo))
DR_MISALIGNMENT (dr) = 0;
else
DR_MISALIGNMENT (dr) = -1;
}
}
/* Function vect_analyze_data_refs_alignment
Analyze the alignment of the data-references in the loop.
FOR NOW: Until support for misliagned accesses is in place, only if all
accesses are aligned can the loop be vectorized. This restriction will be
relaxed. */
static bool
vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo)
{
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
enum dr_alignment_support supportable_dr_alignment;
unsigned int i;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_data_refs_alignment>>\n");
/* This pass may take place at function granularity instead of at loop
granularity. */
if (!vect_compute_data_refs_alignment (loop_vinfo))
{
if (vect_debug_details (loop) || vect_debug_stats (loop))
fprintf (dump_file,
"not vectorized: can't calculate alignment for data ref.");
return false;
}
/* This pass will decide on using loop versioning and/or loop peeling in
order to enhance the alignment of data references in the loop. */
vect_enhance_data_refs_alignment (loop_vinfo);
/* Finally, check that all the data references in the loop can be
handled with respect to their alignment. */
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
supportable_dr_alignment = vect_supportable_dr_alignment (dr);
if (!supportable_dr_alignment)
{
if (vect_debug_details (loop) || vect_debug_stats (loop))
fprintf (dump_file, "not vectorized: unsupported unaligned load.");
return false;
}
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
supportable_dr_alignment = vect_supportable_dr_alignment (dr);
if (!supportable_dr_alignment)
{
if (vect_debug_details (loop) || vect_debug_stats (loop))
fprintf (dump_file, "not vectorized: unsupported unaligned store.");
return false;
}
}
return true;
}
/* Function vect_analyze_data_ref_access.
Analyze the access pattern of the data-reference DR. For now, a data access
has to consecutive to be considered vectorizable. */
static bool
vect_analyze_data_ref_access (struct data_reference *dr)
{
tree stmt = DR_STMT (dr);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree step = STMT_VINFO_VECT_STEP (stmt_info);
tree scalar_type = TREE_TYPE (DR_REF (dr));
if (!step || tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type)))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "not consecutive access");
return false;
}
return true;
}
/* Function vect_analyze_data_ref_accesses.
Analyze the access pattern of all the data references in the loop.
FORNOW: the only access pattern that is considered vectorizable is a
simple step 1 (consecutive) access.
FORNOW: handle only arrays and pointer accesses. */
static bool
vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo)
{
unsigned int i;
varray_type loop_write_datarefs = LOOP_VINFO_DATAREF_WRITES (loop_vinfo);
varray_type loop_read_datarefs = LOOP_VINFO_DATAREF_READS (loop_vinfo);
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_data_ref_accesses>>\n");
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_write_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_write_datarefs, i);
bool ok = vect_analyze_data_ref_access (dr);
if (!ok)
{
if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
|| vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo)))
fprintf (dump_file, "not vectorized: complicated access pattern.");
return false;
}
}
for (i = 0; i < VARRAY_ACTIVE_SIZE (loop_read_datarefs); i++)
{
struct data_reference *dr = VARRAY_GENERIC_PTR (loop_read_datarefs, i);
bool ok = vect_analyze_data_ref_access (dr);
if (!ok)
{
if (vect_debug_stats (LOOP_VINFO_LOOP (loop_vinfo))
|| vect_debug_details (LOOP_VINFO_LOOP (loop_vinfo)))
fprintf (dump_file, "not vectorized: complicated access pattern.");
return false;
}
}
return true;
}
/* Function vect_analyze_pointer_ref_access.
Input:
STMT - a stmt that contains a data-ref
MEMREF - a data-ref in STMT, which is an INDIRECT_REF.
If the data-ref access is vectorizable, return a data_reference structure
that represents it (DR). Otherwise - return NULL. */
static struct data_reference *
vect_analyze_pointer_ref_access (tree memref, tree stmt, bool is_read)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
struct loop *loop = STMT_VINFO_LOOP (stmt_info);
tree access_fn = analyze_scalar_evolution (loop, TREE_OPERAND (memref, 0));
tree init, step;
tree reftype, innertype;
tree indx_access_fn;
int loopnum = loop->num;
struct data_reference *dr;
if (!access_fn)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: complicated pointer access.");
return NULL;
}
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Access function of ptr: ");
print_generic_expr (dump_file, access_fn, TDF_SLIM);
}
if (!vect_is_simple_iv_evolution (loopnum, access_fn, &init, &step, false))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: pointer access is not simple.");
return NULL;
}
STRIP_NOPS (init);
if (!TREE_CONSTANT (step))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file,
"not vectorized: non constant step for pointer access.");
return NULL;
}
reftype = TREE_TYPE (TREE_OPERAND (memref, 0));
if (TREE_CODE (reftype) != POINTER_TYPE)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unexpected pointer access form.");
return NULL;
}
reftype = TREE_TYPE (init);
if (TREE_CODE (reftype) != POINTER_TYPE)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unexpected pointer access form.");
return NULL;
}
innertype = TREE_TYPE (reftype);
if (tree_int_cst_compare (TYPE_SIZE_UNIT (innertype), step))
{
/* FORNOW: support only consecutive access */
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: non consecutive access.");
return NULL;
}
STMT_VINFO_VECT_STEP (stmt_info) = fold_convert (sizetype, step);
if (TREE_CODE (init) == PLUS_EXPR
|| TREE_CODE (init) == MINUS_EXPR)
STMT_VINFO_VECT_INIT_OFFSET (stmt_info) =
fold (size_binop (TREE_CODE (init), size_zero_node,
fold_convert (sizetype, TREE_OPERAND (init, 1))));
else
STMT_VINFO_VECT_INIT_OFFSET (stmt_info) = size_zero_node;
indx_access_fn =
build_polynomial_chrec (loopnum, integer_zero_node, integer_one_node);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Access function of ptr indx: ");
print_generic_expr (dump_file, indx_access_fn, TDF_SLIM);
}
dr = init_data_ref (stmt, memref, init, indx_access_fn, is_read);
return dr;
}
/* Function vect_get_memtag_and_dr.
The function returns the relevant variable for memory tag (for aliasing
purposes). Also data reference structure DR is created.
This function handles three kinds of MEMREF:
It is called from vect_analyze_data_refs with a MEMREF that is either an
ARRAY_REF or an INDIRECT_REF (this is category 1 - "recursion begins").
It builds a DR for them using vect_get_base_and_offset, and calls itself
recursively to retrieve the relevant memtag for the MEMREF, "peeling" the
MEMREF along the way. During the recursive calls, the function may be called
with a MEMREF for which the recursion has to continue - PLUS_EXPR,
MINUS_EXPR, INDIRECT_REF (category 2 - "recursion continues"),
and/or with a MEMREF for which a memtag can be trivially obtained - VAR_DECL
and SSA_NAME (this is category 3 - "recursion stop condition").
When the MEMREF falls into category 1 there is still no data reference struct
(DR) available. It is created by this function, and then, along the recursion,
MEMREF will fall into category 2 or 3, in which case a DR will have already
been created, but the analysis continues to retrieve the MEMTAG.
Input:
MEMREF - data reference in STMT
IS_READ - TRUE if STMT reads from MEMREF, FALSE if writes to MEMREF
Output:
DR - data_reference struct for MEMREF
return value - the relevant variable for memory tag (for aliasing purposes).
*/
static tree
vect_get_memtag_and_dr (tree memref, tree stmt, bool is_read,
loop_vec_info loop_vinfo,
tree vectype, struct data_reference **dr)
{
tree symbl, oprnd0, oprnd1;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree offset, misalign, step;
tree ref_to_be_analyzed, tag, dr_base;
struct data_reference *new_dr;
bool base_aligned_p;
if (*dr)
{
/* Category 3: recursion stop condition. */
/* (1) A DR already exists. We only need to get the relevant memtag for
MEMREF, the rest of the data was already initialized. */
switch (TREE_CODE (memref))
{
/* (1.1) Stop condition: find the relevant memtag and return. */
case SSA_NAME:
symbl = SSA_NAME_VAR (memref);
tag = get_var_ann (symbl)->type_mem_tag;
if (!tag)
{
tree ptr = TREE_OPERAND (DR_REF ((*dr)), 0);
if (TREE_CODE (ptr) == SSA_NAME)
tag = get_var_ann (SSA_NAME_VAR (ptr))->type_mem_tag;
}
if (!tag)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "not vectorized: no memtag for ref.");
return NULL_TREE;
}
return tag;
case VAR_DECL:
case PARM_DECL:
return memref;
/* Category 2: recursion continues. */
/* (1.2) A recursive call to find the relevant memtag is required. */
case INDIRECT_REF:
symbl = TREE_OPERAND (memref, 0);
break; /* For recursive call. */
case COMPONENT_REF:
/* Could have recorded more accurate information -
i.e, the actual FIELD_DECL that is being referenced -
but later passes expect VAR_DECL as the nmt. */
/* Fall through. */
case ADDR_EXPR:
symbl = STMT_VINFO_VECT_DR_BASE (stmt_info);
break; /* For recursive call. */
case PLUS_EXPR:
case MINUS_EXPR:
/* Although DR exists, we have to call the function recursively to
build MEMTAG for such expression. This is handled below. */
oprnd0 = TREE_OPERAND (memref, 0);
oprnd1 = TREE_OPERAND (memref, 1);
STRIP_NOPS (oprnd1);
/* Supported plus/minus expressions are of the form
{address_base + offset}, such that address_base is of type
POINTER/ARRAY, and offset is either an INTEGER_CST of type POINTER,
or it's not of type POINTER/ARRAY.
TODO: swap operands if {offset + address_base}. */
if ((TREE_CODE (TREE_TYPE (oprnd1)) == POINTER_TYPE
&& TREE_CODE (oprnd1) != INTEGER_CST)
|| TREE_CODE (TREE_TYPE (oprnd1)) == ARRAY_TYPE)
return NULL_TREE;
symbl = oprnd0;
break; /* For recursive call. */
default:
return NULL_TREE;
}
}
else
{
/* Category 1: recursion begins. */
/* (2) A DR does not exist yet and must be built, followed by a
recursive call to get the relevant memtag for MEMREF. */
switch (TREE_CODE (memref))
{
case INDIRECT_REF:
new_dr = vect_analyze_pointer_ref_access (memref, stmt, is_read);
if (!new_dr)
return NULL_TREE;
*dr = new_dr;
symbl = DR_BASE_NAME (new_dr);
ref_to_be_analyzed = DR_BASE_NAME (new_dr);
break;
case ARRAY_REF:
new_dr = analyze_array (stmt, memref, is_read);
*dr = new_dr;
symbl = DR_BASE_NAME (new_dr);
ref_to_be_analyzed = memref;
break;
default:
/* TODO: Support data-refs of form a[i].p for unions and single
field structures. */
return NULL_TREE;
}
offset = size_zero_node;
misalign = size_zero_node;
step = size_zero_node;
/* Analyze data-ref, find its base, initial offset from the base, step,
and alignment. */
dr_base = vect_get_base_and_offset (new_dr, ref_to_be_analyzed,
vectype, loop_vinfo, &offset,
&misalign, &step, &base_aligned_p);
if (!dr_base)
return NULL_TREE;
/* Initialize information according to above analysis. */
/* Since offset and step of a pointer can be also set in
vect_analyze_pointer_ref_access, we combine the values here. */
if (STMT_VINFO_VECT_INIT_OFFSET (stmt_info))
STMT_VINFO_VECT_INIT_OFFSET (stmt_info) =
fold (build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
STMT_VINFO_VECT_INIT_OFFSET (stmt_info)));
else
STMT_VINFO_VECT_INIT_OFFSET (stmt_info) = offset;
if (step && STMT_VINFO_VECT_STEP (stmt_info))
STMT_VINFO_VECT_STEP (stmt_info) =
size_binop (PLUS_EXPR, step, STMT_VINFO_VECT_STEP (stmt_info));
else
STMT_VINFO_VECT_STEP (stmt_info) = step;
STMT_VINFO_VECT_BASE_ALIGNED_P (stmt_info) = base_aligned_p;
STMT_VINFO_VECT_MISALIGNMENT (stmt_info) = misalign;
STMT_VINFO_VECT_DR_BASE (stmt_info) = dr_base;
}
if (!symbl)
return NULL_TREE;
/* Recursive call to retrieve the relevant memtag. */
tag = vect_get_memtag_and_dr (symbl, stmt, is_read, loop_vinfo, vectype, dr);
return tag;
}
/* Function vect_analyze_data_refs.
Find all the data references in the loop.
The general structure of the analysis of data refs in the vectorizer is as
follows:
1- vect_analyze_data_refs(loop):
Find and analyze all data-refs in the loop:
foreach ref
ref_stmt.memtag = vect_get_memtag_and_dr (ref)
1.1- vect_get_memtag_and_dr(ref):
Analyze ref, and build a DR (data_referece struct) for it;
call vect_get_base_and_offset to compute base, initial_offset,
step and alignment. Set ref_stmt.base, ref_stmt.initial_offset,
ref_stmt.alignment, and ref_stmt.step accordingly.
1.1.1- vect_get_base_and_offset():
Calculate base, initial_offset, step and alignment.
For ARRAY_REFs and COMPONENT_REFs use call get_inner_reference.
2- vect_analyze_dependences(): apply dependece testing using ref_stmt.DR
3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
FORNOW: Handle aligned INDIRECT_REFs and ARRAY_REFs
which base is really an array (not a pointer) and which alignment
can be forced. This restriction will be relaxed. */
static bool
vect_analyze_data_refs (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
block_stmt_iterator si;
int j;
struct data_reference *dr;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_analyze_data_refs>>\n");
for (j = 0; j < nbbs; j++)
{
basic_block bb = bbs[j];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
bool is_read = false;
tree stmt = bsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
v_may_def_optype v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
v_must_def_optype v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
vuse_optype vuses = STMT_VUSE_OPS (stmt);
varray_type *datarefs = NULL;
int nvuses, nv_may_defs, nv_must_defs;
tree memref = NULL;
tree symbl;
tree scalar_type, vectype;
/* Assumption: there exists a data-ref in stmt, if and only if
it has vuses/vdefs. */
if (!vuses && !v_may_defs && !v_must_defs)
continue;
nvuses = NUM_VUSES (vuses);
nv_may_defs = NUM_V_MAY_DEFS (v_may_defs);
nv_must_defs = NUM_V_MUST_DEFS (v_must_defs);
if (nvuses && (nv_may_defs || nv_must_defs))
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "unexpected vdefs and vuses in stmt: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return false;
}
if (TREE_CODE (stmt) != MODIFY_EXPR)
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "unexpected vops in stmt: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return false;
}
if (vuses)
{
memref = TREE_OPERAND (stmt, 1);
datarefs = &(LOOP_VINFO_DATAREF_READS (loop_vinfo));
is_read = true;
}
else /* vdefs */
{
memref = TREE_OPERAND (stmt, 0);
datarefs = &(LOOP_VINFO_DATAREF_WRITES (loop_vinfo));
is_read = false;
}
scalar_type = TREE_TYPE (memref);
vectype = get_vectype_for_scalar_type (scalar_type);
if (!vectype)
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "no vectype for stmt: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
fprintf (dump_file, " scalar_type: ");
print_generic_expr (dump_file, scalar_type, TDF_DETAILS);
}
/* It is not possible to vectorize this data reference. */
return false;
}
/* Analyze MEMREF. If it is of a supported form, build data_reference
struct for it (DR) and find memtag for aliasing purposes. */
dr = NULL;
symbl = vect_get_memtag_and_dr (memref, stmt, is_read, loop_vinfo,
vectype, &dr);
if (!symbl)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file, "not vectorized: unhandled data ref: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return false;
}
STMT_VINFO_MEMTAG (stmt_info) = symbl;
STMT_VINFO_VECTYPE (stmt_info) = vectype;
VARRAY_PUSH_GENERIC_PTR (*datarefs, dr);
STMT_VINFO_DATA_REF (stmt_info) = dr;
}
}
return true;
}
/* Utility functions used by vect_mark_stmts_to_be_vectorized. */
/* Function vect_mark_relevant.
Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
static void
vect_mark_relevant (varray_type *worklist, tree stmt)
{
stmt_vec_info stmt_info;
if (vect_debug_details (NULL))
fprintf (dump_file, "mark relevant.");
if (TREE_CODE (stmt) == PHI_NODE)
{
VARRAY_PUSH_TREE (*worklist, stmt);
return;
}
stmt_info = vinfo_for_stmt (stmt);
if (!stmt_info)
{
if (vect_debug_details (NULL))
{
fprintf (dump_file, "mark relevant: no stmt info!!.");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
return;
}
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "already marked relevant.");
return;
}
STMT_VINFO_RELEVANT_P (stmt_info) = 1;
VARRAY_PUSH_TREE (*worklist, stmt);
}
/* Function vect_stmt_relevant_p.
Return true if STMT in loop that is represented by LOOP_VINFO is
"relevant for vectorization".
A stmt is considered "relevant for vectorization" if:
- it has uses outside the loop.
- it has vdefs (it alters memory).
- control stmts in the loop (except for the exit condition).
CHECKME: what other side effects would the vectorizer allow? */
static bool
vect_stmt_relevant_p (tree stmt, loop_vec_info loop_vinfo)
{
v_may_def_optype v_may_defs;
v_must_def_optype v_must_defs;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int i;
dataflow_t df;
int num_uses;
/* cond stmt other than loop exit cond. */
if (is_ctrl_stmt (stmt) && (stmt != LOOP_VINFO_EXIT_COND (loop_vinfo)))
return true;
/* changing memory. */
v_may_defs = STMT_V_MAY_DEF_OPS (stmt);
v_must_defs = STMT_V_MUST_DEF_OPS (stmt);
if (v_may_defs || v_must_defs)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "vec_stmt_relevant_p: stmt has vdefs.");
return true;
}
/* uses outside the loop. */
df = get_immediate_uses (stmt);
num_uses = num_immediate_uses (df);
for (i = 0; i < num_uses; i++)
{
tree use = immediate_use (df, i);
basic_block bb = bb_for_stmt (use);
if (!flow_bb_inside_loop_p (loop, bb))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "vec_stmt_relevant_p: used out of loop.");
return true;
}
}
return false;
}
/* Function vect_mark_stmts_to_be_vectorized.
Not all stmts in the loop need to be vectorized. For example:
for i...
for j...
1. T0 = i + j
2. T1 = a[T0]
3. j = j + 1
Stmt 1 and 3 do not need to be vectorized, because loop control and
addressing of vectorized data-refs are handled differently.
This pass detects such stmts. */
static bool
vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
{
varray_type worklist;
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
unsigned int nbbs = loop->num_nodes;
block_stmt_iterator si;
tree stmt;
stmt_ann_t ann;
unsigned int i;
int j;
use_optype use_ops;
stmt_vec_info stmt_info;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<vect_mark_stmts_to_be_vectorized>>\n");
VARRAY_TREE_INIT (worklist, 64, "work list");
/* 1. Init worklist. */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
{
stmt = bsi_stmt (si);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "init: stmt relevant? ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
stmt_info = vinfo_for_stmt (stmt);
STMT_VINFO_RELEVANT_P (stmt_info) = 0;
if (vect_stmt_relevant_p (stmt, loop_vinfo))
vect_mark_relevant (&worklist, stmt);
}
}
/* 2. Process_worklist */
while (VARRAY_ACTIVE_SIZE (worklist) > 0)
{
stmt = VARRAY_TOP_TREE (worklist);
VARRAY_POP (worklist);
if (vect_debug_details (NULL))
{
fprintf (dump_file, "worklist: examine stmt: ");
print_generic_expr (dump_file, stmt, TDF_SLIM);
}
/* Examine the USES in this statement. Mark all the statements which
feed this statement's uses as "relevant", unless the USE is used as
an array index. */
if (TREE_CODE (stmt) == PHI_NODE)
{
/* follow the def-use chain inside the loop. */
for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
{
tree arg = PHI_ARG_DEF (stmt, j);
tree def_stmt = NULL_TREE;
basic_block bb;
if (!vect_is_simple_use (arg, loop, &def_stmt))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "worklist: unsupported use.");
varray_clear (worklist);
return false;
}
if (!def_stmt)
continue;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "worklist: def_stmt: ");
print_generic_expr (dump_file, def_stmt, TDF_SLIM);
}
bb = bb_for_stmt (def_stmt);
if (flow_bb_inside_loop_p (loop, bb))
vect_mark_relevant (&worklist, def_stmt);
}
}
ann = stmt_ann (stmt);
use_ops = USE_OPS (ann);
for (i = 0; i < NUM_USES (use_ops); i++)
{
tree use = USE_OP (use_ops, i);
/* We are only interested in uses that need to be vectorized. Uses
that are used for address computation are not considered relevant.
*/
if (exist_non_indexing_operands_for_use_p (use, stmt))
{
tree def_stmt = NULL_TREE;
basic_block bb;
if (!vect_is_simple_use (use, loop, &def_stmt))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "worklist: unsupported use.");
varray_clear (worklist);
return false;
}
if (!def_stmt)
continue;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "worklist: examine use %d: ", i);
print_generic_expr (dump_file, use, TDF_SLIM);
}
bb = bb_for_stmt (def_stmt);
if (flow_bb_inside_loop_p (loop, bb))
vect_mark_relevant (&worklist, def_stmt);
}
}
} /* while worklist */
varray_clear (worklist);
return true;
}
/* Function vect_can_advance_ivs_p
In case the number of iterations that LOOP iterates in unknown at compile
time, an epilog loop will be generated, and the loop induction variables
(IVs) will be "advanced" to the value they are supposed to take just before
the epilog loop. Here we check that the access function of the loop IVs
and the expression that represents the loop bound are simple enough.
These restrictions will be relaxed in the future. */
static bool
vect_can_advance_ivs_p (struct loop *loop)
{
basic_block bb = loop->header;
tree phi;
/* Analyze phi functions of the loop header. */
for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
{
tree access_fn = NULL;
tree evolution_part;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Analyze phi: ");
print_generic_expr (dump_file, phi, TDF_SLIM);
}
/* Skip virtual phi's. The data dependences that are associated with
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "virtual phi. skip.");
continue;
}
/* Analyze the evolution function. */
access_fn = instantiate_parameters
(loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
if (!access_fn)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "No Access function.");
return false;
}
if (vect_debug_details (NULL))
{
fprintf (dump_file, "Access function of PHI: ");
print_generic_expr (dump_file, access_fn, TDF_SLIM);
}
evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
if (evolution_part == NULL_TREE)
return false;
/* FORNOW: We do not transform initial conditions of IVs
which evolution functions are a polynomial of degree >= 2. */
if (tree_is_chrec (evolution_part))
return false;
}
return true;
}
/* Function vect_get_loop_niters.
Determine how many iterations the loop is executed.
If an expression that represents the number of iterations
can be constructed, place it in NUMBER_OF_ITERATIONS.
Return the loop exit condition. */
static tree
vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
{
tree niters;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<get_loop_niters>>\n");
niters = number_of_iterations_in_loop (loop);
if (niters != NULL_TREE
&& niters != chrec_dont_know)
{
*number_of_iterations = niters;
if (vect_debug_details (NULL))
{
fprintf (dump_file, "==> get_loop_niters:" );
print_generic_expr (dump_file, *number_of_iterations, TDF_SLIM);
}
}
return get_loop_exit_condition (loop);
}
/* Function vect_analyze_loop_form.
Verify the following restrictions (some may be relaxed in the future):
- it's an inner-most loop
- number of BBs = 2 (which are the loop header and the latch)
- the loop has a pre-header
- the loop has a single entry and exit
- the loop exit condition is simple enough, and the number of iterations
can be analyzed (a countable loop). */
static loop_vec_info
vect_analyze_loop_form (struct loop *loop)
{
loop_vec_info loop_vinfo;
tree loop_cond;
tree number_of_iterations = NULL;
bool rescan = false;
if (vect_debug_details (loop))
fprintf (dump_file, "\n<<vect_analyze_loop_form>>\n");
if (loop->inner
|| !loop->single_exit
|| loop->num_nodes != 2
|| EDGE_COUNT (loop->header->preds) != 2
|| loop->num_entries != 1)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
{
fprintf (dump_file, "not vectorized: bad loop form. ");
if (loop->inner)
fprintf (dump_file, "nested loop.");
else if (!loop->single_exit)
fprintf (dump_file, "multiple exits.");
else if (loop->num_nodes != 2)
fprintf (dump_file, "too many BBs in loop.");
else if (EDGE_COUNT (loop->header->preds) != 2)
fprintf (dump_file, "too many incoming edges.");
else if (loop->num_entries != 1)
fprintf (dump_file, "too many entries.");
}
return NULL;
}
/* We assume that the loop exit condition is at the end of the loop. i.e,
that the loop is represented as a do-while (with a proper if-guard
before the loop if needed), where the loop header contains all the
executable statements, and the latch is empty. */
if (!empty_block_p (loop->latch))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unexpectd loop form.");
return NULL;
}
/* Make sure we have a preheader basic block. */
if (!loop->pre_header)
{
rescan = true;
loop_split_edge_with (loop_preheader_edge (loop), NULL);
}
/* Make sure there exists a single-predecessor exit bb: */
if (EDGE_COUNT (loop->exit_edges[0]->dest->preds) != 1)
{
rescan = true;
loop_split_edge_with (loop->exit_edges[0], NULL);
}
if (rescan)
{
flow_loop_scan (loop, LOOP_ALL);
/* Flow loop scan does not update loop->single_exit field. */
loop->single_exit = loop->exit_edges[0];
}
if (empty_block_p (loop->header))
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: empty loop.");
return NULL;
}
loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
if (!loop_cond)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: complicated exit condition.");
return NULL;
}
if (!number_of_iterations)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file,
"not vectorized: number of iterations cannot be computed.");
return NULL;
}
if (chrec_contains_undetermined (number_of_iterations))
{
if (vect_debug_details (NULL))
fprintf (dump_file, "Infinite number of iterations.");
return false;
}
loop_vinfo = new_loop_vec_info (loop);
LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
if (vect_debug_details (loop))
{
fprintf (dump_file, "loop bound unknown.\n");
fprintf (dump_file, "Symbolic number of iterations is ");
print_generic_expr (dump_file, number_of_iterations, TDF_DETAILS);
}
}
else
if (LOOP_VINFO_INT_NITERS (loop_vinfo) == 0)
{
if (vect_debug_stats (loop) || vect_debug_details (loop))
fprintf (dump_file, "not vectorized: number of iterations = 0.");
return NULL;
}
LOOP_VINFO_EXIT_COND (loop_vinfo) = loop_cond;
return loop_vinfo;
}
/* Function vect_analyze_loop.
Apply a set of analyses on LOOP, and create a loop_vec_info struct
for it. The different analyses will record information in the
loop_vec_info struct. */
static loop_vec_info
vect_analyze_loop (struct loop *loop)
{
bool ok;
loop_vec_info loop_vinfo;
if (vect_debug_details (NULL))
fprintf (dump_file, "\n<<<<<<< analyze_loop_nest >>>>>>>\n");
/* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
loop_vinfo = vect_analyze_loop_form (loop);
if (!loop_vinfo)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad loop form.");
return NULL;
}
/* Find all data references in the loop (which correspond to vdefs/vuses)
and analyze their evolution in the loop.
FORNOW: Handle only simple, array references, which
alignment can be forced, and aligned pointer-references. */
ok = vect_analyze_data_refs (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad data references.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "unexpected pattern.");
if (vect_debug_details (loop))
fprintf (dump_file, "not vectorized: unexpected pattern.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Check that all cross-iteration scalar data-flow cycles are OK.
Cross-iteration cycles caused by virtual phis are analyzed separately. */
ok = vect_analyze_scalar_cycles (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad scalar cycle.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Analyze data dependences between the data-refs in the loop.
FORNOW: fail at the first data dependence that we encounter. */
ok = vect_analyze_data_ref_dependences (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad data dependence.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Analyze the access patterns of the data-refs in the loop (consecutive,
complex, etc.). FORNOW: Only handle consecutive access pattern. */
ok = vect_analyze_data_ref_accesses (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad data access.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Analyze the alignment of the data-refs in the loop.
FORNOW: Only aligned accesses are handled. */
ok = vect_analyze_data_refs_alignment (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad data alignment.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
/* Scan all the operations in the loop and make sure they are
vectorizable. */
ok = vect_analyze_operations (loop_vinfo);
if (!ok)
{
if (vect_debug_details (loop))
fprintf (dump_file, "bad operation or unsupported loop bound.");
destroy_loop_vec_info (loop_vinfo);
return NULL;
}
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
return loop_vinfo;
}
/* Function need_imm_uses_for.
Return whether we ought to include information for 'var'
when calculating immediate uses. For this pass we only want use
information for non-virtual variables. */
static bool
need_imm_uses_for (tree var)
{
return is_gimple_reg (var);
}
/* Function vectorize_loops.
Entry Point to loop vectorization phase. */
void
vectorize_loops (struct loops *loops)
{
unsigned int i, loops_num;
unsigned int num_vectorized_loops = 0;
/* Does the target support SIMD? */
/* FORNOW: until more sophisticated machine modelling is in place. */
if (!UNITS_PER_SIMD_WORD)
{
if (vect_debug_details (NULL))
fprintf (dump_file, "vectorizer: target vector size is not defined.");
return;
}
#ifdef ENABLE_CHECKING
verify_loop_closed_ssa ();
#endif
compute_immediate_uses (TDFA_USE_OPS, need_imm_uses_for);
/* ----------- Analyze loops. ----------- */
/* If some loop was duplicated, it gets bigger number
than all previously defined loops. This fact allows us to run
only over initial loops skipping newly generated ones. */
loops_num = loops->num;
for (i = 1; i < loops_num; i++)
{
loop_vec_info loop_vinfo;
struct loop *loop = loops->parray[i];
if (!loop)
continue;
loop_vinfo = vect_analyze_loop (loop);
loop->aux = loop_vinfo;
if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
continue;
vect_transform_loop (loop_vinfo, loops);
num_vectorized_loops++;
}
if (vect_debug_stats (NULL) || vect_debug_details (NULL))
fprintf (dump_file, "\nvectorized %u loops in function.\n",
num_vectorized_loops);
/* ----------- Finalize. ----------- */
free_df ();
for (i = 1; i < loops_num; i++)
{
struct loop *loop = loops->parray[i];
loop_vec_info loop_vinfo;
if (!loop)
continue;
loop_vinfo = loop->aux;
destroy_loop_vec_info (loop_vinfo);
loop->aux = NULL;
}
rewrite_into_ssa (false);
rewrite_into_loop_closed_ssa (); /* FORNOW */
bitmap_clear (vars_to_rename);
}
|