1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
|
/* SLP - Pattern matcher on SLP trees
Copyright (C) 2020-2022 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "insn-config.h"
#include "recog.h" /* FIXME: for insn_data */
#include "fold-const.h"
#include "stor-layout.h"
#include "gimple-iterator.h"
#include "cfgloop.h"
#include "tree-vectorizer.h"
#include "langhooks.h"
#include "gimple-walk.h"
#include "dbgcnt.h"
#include "tree-vector-builder.h"
#include "vec-perm-indices.h"
#include "gimple-fold.h"
#include "internal-fn.h"
/* SLP Pattern matching mechanism.
This extension to the SLP vectorizer allows one to transform the generated SLP
tree based on any pattern. The difference between this and the normal vect
pattern matcher is that unlike the former, this matcher allows you to match
with instructions that do not belong to the same SSA dominator graph.
The only requirement that this pattern matcher has is that you are only
only allowed to either match an entire group or none.
The pattern matcher currently only allows you to perform replacements to
internal functions.
Once the patterns are matched it is one way, these cannot be undone. It is
currently not supported to match patterns recursively.
To add a new pattern, implement the vect_pattern class and add the type to
slp_patterns.
*/
/*******************************************************************************
* vect_pattern class
******************************************************************************/
/* Default implementation of recognize that performs matching, validation and
replacement of nodes but that can be overriden if required. */
static bool
vect_pattern_validate_optab (internal_fn ifn, slp_tree node)
{
tree vectype = SLP_TREE_VECTYPE (node);
if (ifn == IFN_LAST || !vectype)
return false;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Found %s pattern in SLP tree\n",
internal_fn_name (ifn));
if (direct_internal_fn_supported_p (ifn, vectype, OPTIMIZE_FOR_SPEED))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Target supports %s vectorization with mode %T\n",
internal_fn_name (ifn), vectype);
}
else
{
if (dump_enabled_p ())
{
if (!vectype)
dump_printf_loc (MSG_NOTE, vect_location,
"Target does not support vector type for %G\n",
STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (node)));
else
dump_printf_loc (MSG_NOTE, vect_location,
"Target does not support %s for vector type "
"%T\n", internal_fn_name (ifn), vectype);
}
return false;
}
return true;
}
/*******************************************************************************
* General helper types
******************************************************************************/
/* The COMPLEX_OPERATION enum denotes the possible pair of operations that can
be matched when looking for expressions that we are interested matching for
complex numbers addition and mla. */
typedef enum _complex_operation : unsigned {
PLUS_PLUS,
MINUS_PLUS,
PLUS_MINUS,
MULT_MULT,
CMPLX_NONE
} complex_operation_t;
/*******************************************************************************
* General helper functions
******************************************************************************/
/* Helper function of linear_loads_p that checks to see if the load permutation
is sequential and in monotonically increasing order of loads with no gaps.
*/
static inline complex_perm_kinds_t
is_linear_load_p (load_permutation_t loads)
{
if (loads.length() == 0)
return PERM_UNKNOWN;
unsigned load, i;
complex_perm_kinds_t candidates[4]
= { PERM_ODDODD
, PERM_EVENEVEN
, PERM_EVENODD
, PERM_ODDEVEN
};
int valid_patterns = 4;
FOR_EACH_VEC_ELT (loads, i, load)
{
unsigned adj_load = load % 2;
if (candidates[0] != PERM_UNKNOWN && adj_load != 1)
{
candidates[0] = PERM_UNKNOWN;
valid_patterns--;
}
if (candidates[1] != PERM_UNKNOWN && adj_load != 0)
{
candidates[1] = PERM_UNKNOWN;
valid_patterns--;
}
if (candidates[2] != PERM_UNKNOWN && load != i)
{
candidates[2] = PERM_UNKNOWN;
valid_patterns--;
}
if (candidates[3] != PERM_UNKNOWN
&& load != (i % 2 == 0 ? i + 1 : i - 1))
{
candidates[3] = PERM_UNKNOWN;
valid_patterns--;
}
if (valid_patterns == 0)
return PERM_UNKNOWN;
}
for (i = 0; i < sizeof(candidates); i++)
if (candidates[i] != PERM_UNKNOWN)
return candidates[i];
return PERM_UNKNOWN;
}
/* Combine complex_perm_kinds A and B into a new permute kind that describes the
resulting operation. */
static inline complex_perm_kinds_t
vect_merge_perms (complex_perm_kinds_t a, complex_perm_kinds_t b)
{
if (a == b)
return a;
if (a == PERM_TOP)
return b;
if (b == PERM_TOP)
return a;
return PERM_UNKNOWN;
}
/* Check to see if all loads rooted in ROOT are linear. Linearity is
defined as having no gaps between values loaded. */
static complex_perm_kinds_t
linear_loads_p (slp_tree_to_load_perm_map_t *perm_cache, slp_tree root)
{
if (!root)
return PERM_UNKNOWN;
unsigned i;
complex_perm_kinds_t *tmp;
if ((tmp = perm_cache->get (root)) != NULL)
return *tmp;
complex_perm_kinds_t retval = PERM_UNKNOWN;
perm_cache->put (root, retval);
/* If it's a load node, then just read the load permute. */
if (SLP_TREE_LOAD_PERMUTATION (root).exists ())
{
retval = is_linear_load_p (SLP_TREE_LOAD_PERMUTATION (root));
perm_cache->put (root, retval);
return retval;
}
else if (SLP_TREE_DEF_TYPE (root) != vect_internal_def)
{
retval = PERM_TOP;
perm_cache->put (root, retval);
return retval;
}
complex_perm_kinds_t kind = PERM_TOP;
slp_tree child;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (root), i, child)
{
complex_perm_kinds_t res = linear_loads_p (perm_cache, child);
kind = vect_merge_perms (kind, res);
/* Unknown and Top are not valid on blends as they produce no permute. */
retval = kind;
if (kind == PERM_UNKNOWN || kind == PERM_TOP)
return retval;
}
retval = kind;
perm_cache->put (root, retval);
return retval;
}
/* This function attempts to make a node rooted in NODE is linear. If the node
if already linear than the node itself is returned in RESULT.
If the node is not linear then a new VEC_PERM_EXPR node is created with a
lane permute that when applied will make the node linear. If such a
permute cannot be created then FALSE is returned from the function.
Here linearity is defined as having a sequential, monotically increasing
load position inside the load permute generated by the loads reachable from
NODE. */
static slp_tree
vect_build_swap_evenodd_node (slp_tree node)
{
/* Attempt to linearise the permute. */
vec<std::pair<unsigned, unsigned> > zipped;
zipped.create (SLP_TREE_LANES (node));
for (unsigned x = 0; x < SLP_TREE_LANES (node); x+=2)
{
zipped.quick_push (std::make_pair (0, x+1));
zipped.quick_push (std::make_pair (0, x));
}
/* Create the new permute node and store it instead. */
slp_tree vnode = vect_create_new_slp_node (1, VEC_PERM_EXPR);
SLP_TREE_LANE_PERMUTATION (vnode) = zipped;
SLP_TREE_VECTYPE (vnode) = SLP_TREE_VECTYPE (node);
SLP_TREE_CHILDREN (vnode).quick_push (node);
SLP_TREE_REF_COUNT (vnode) = 1;
SLP_TREE_LANES (vnode) = SLP_TREE_LANES (node);
SLP_TREE_REPRESENTATIVE (vnode) = SLP_TREE_REPRESENTATIVE (node);
SLP_TREE_REF_COUNT (node)++;
return vnode;
}
/* Checks to see of the expression represented by NODE is a gimple assign with
code CODE. */
static inline bool
vect_match_expression_p (slp_tree node, tree_code code)
{
if (!node
|| !SLP_TREE_REPRESENTATIVE (node))
return false;
gimple* expr = STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (node));
if (!is_gimple_assign (expr)
|| gimple_assign_rhs_code (expr) != code)
return false;
return true;
}
/* Check if the given lane permute in PERMUTES matches an alternating sequence
of {even odd even odd ...}. This to account for unrolled loops. Further
mode there resulting permute must be linear. */
static inline bool
vect_check_evenodd_blend (lane_permutation_t &permutes,
unsigned even, unsigned odd)
{
if (permutes.length () == 0
|| permutes.length () % 2 != 0)
return false;
unsigned val[2] = {even, odd};
unsigned seed = 0;
for (unsigned i = 0; i < permutes.length (); i++)
if (permutes[i].first != val[i % 2]
|| permutes[i].second != seed++)
return false;
return true;
}
/* This function will match the two gimple expressions representing NODE1 and
NODE2 in parallel and returns the pair operation that represents the two
expressions in the two statements.
If match is successful then the corresponding complex_operation is
returned and the arguments to the two matched operations are returned in OPS.
If TWO_OPERANDS it is expected that the LANES of the parent VEC_PERM select
from the two nodes alternatingly.
If unsuccessful then CMPLX_NONE is returned and OPS is untouched.
e.g. the following gimple statements
stmt 0 _39 = _37 + _12;
stmt 1 _6 = _38 - _36;
will return PLUS_MINUS along with OPS containing {_37, _12, _38, _36}.
*/
static complex_operation_t
vect_detect_pair_op (slp_tree node1, slp_tree node2, lane_permutation_t &lanes,
bool two_operands = true, vec<slp_tree> *ops = NULL)
{
complex_operation_t result = CMPLX_NONE;
if (vect_match_expression_p (node1, MINUS_EXPR)
&& vect_match_expression_p (node2, PLUS_EXPR)
&& (!two_operands || vect_check_evenodd_blend (lanes, 0, 1)))
result = MINUS_PLUS;
else if (vect_match_expression_p (node1, PLUS_EXPR)
&& vect_match_expression_p (node2, MINUS_EXPR)
&& (!two_operands || vect_check_evenodd_blend (lanes, 0, 1)))
result = PLUS_MINUS;
else if (vect_match_expression_p (node1, PLUS_EXPR)
&& vect_match_expression_p (node2, PLUS_EXPR))
result = PLUS_PLUS;
else if (vect_match_expression_p (node1, MULT_EXPR)
&& vect_match_expression_p (node2, MULT_EXPR))
result = MULT_MULT;
if (result != CMPLX_NONE && ops != NULL)
{
if (two_operands)
{
auto l0node = SLP_TREE_CHILDREN (node1);
auto l1node = SLP_TREE_CHILDREN (node2);
/* Check if the tree is connected as we expect it. */
if (!((l0node[0] == l1node[0] && l0node[1] == l1node[1])
|| (l0node[0] == l1node[1] && l0node[1] == l1node[0])))
return CMPLX_NONE;
}
ops->safe_push (node1);
ops->safe_push (node2);
}
return result;
}
/* Overload of vect_detect_pair_op that matches against the representative
statements in the children of NODE. It is expected that NODE has exactly
two children and when TWO_OPERANDS then NODE must be a VEC_PERM. */
static complex_operation_t
vect_detect_pair_op (slp_tree node, bool two_operands = true,
vec<slp_tree> *ops = NULL)
{
if (!two_operands && SLP_TREE_CODE (node) == VEC_PERM_EXPR)
return CMPLX_NONE;
if (SLP_TREE_CHILDREN (node).length () != 2)
return CMPLX_NONE;
vec<slp_tree> children = SLP_TREE_CHILDREN (node);
lane_permutation_t &lanes = SLP_TREE_LANE_PERMUTATION (node);
return vect_detect_pair_op (children[0], children[1], lanes, two_operands,
ops);
}
/*******************************************************************************
* complex_pattern class
******************************************************************************/
/* SLP Complex Numbers pattern matching.
As an example, the following simple loop:
double a[restrict N]; double b[restrict N]; double c[restrict N];
for (int i=0; i < N; i+=2)
{
c[i] = a[i] - b[i+1];
c[i+1] = a[i+1] + b[i];
}
which represents a complex addition on with a rotation of 90* around the
argand plane. i.e. if `a` and `b` were complex numbers then this would be the
same as `a + (b * I)`.
Here the expressions for `c[i]` and `c[i+1]` are independent but have to be
both recognized in order for the pattern to work. As an SLP tree this is
represented as
+--------------------------------+
| stmt 0 *_9 = _10; |
| stmt 1 *_15 = _16; |
+--------------------------------+
|
|
v
+--------------------------------+
| stmt 0 _10 = _4 - _8; |
| stmt 1 _16 = _12 + _14; |
| lane permutation { 0[0] 1[1] } |
+--------------------------------+
| |
| |
| |
+-----+ | | +-----+
| | | | | |
+-----| { } |<-----+ +----->| { } --------+
| | | +------------------| | |
| +-----+ | +-----+ |
| | | |
| | | |
| +------|------------------+ |
| | | |
v v v v
+--------------------------+ +--------------------------------+
| stmt 0 _8 = *_7; | | stmt 0 _4 = *_3; |
| stmt 1 _14 = *_13; | | stmt 1 _12 = *_11; |
| load permutation { 1 0 } | | load permutation { 0 1 } |
+--------------------------+ +--------------------------------+
The pattern matcher allows you to replace both statements 0 and 1 or none at
all. Because this operation is a two operands operation the actual nodes
being replaced are those in the { } nodes. The actual scalar statements
themselves are not replaced or used during the matching but instead the
SLP_TREE_REPRESENTATIVE statements are inspected. You are also allowed to
replace and match on any number of nodes.
Because the pattern matcher matches on the representative statement for the
SLP node the case of two_operators it allows you to match the children of the
node. This is done using the method `recognize ()`.
*/
/* The complex_pattern class contains common code for pattern matchers that work
on complex numbers. These provide functionality to allow de-construction and
validation of sequences depicting/transforming REAL and IMAG pairs. */
class complex_pattern : public vect_pattern
{
protected:
auto_vec<slp_tree> m_workset;
complex_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
: vect_pattern (node, m_ops, ifn)
{
this->m_workset.safe_push (*node);
}
public:
void build (vec_info *) override;
static internal_fn
matches (complex_operation_t op, slp_tree_to_load_perm_map_t *, slp_tree *,
vec<slp_tree> *);
};
/* Create a replacement pattern statement for each node in m_node and inserts
the new statement into m_node as the new representative statement. The old
statement is marked as being in a pattern defined by the new statement. The
statement is created as call to internal function IFN with m_num_args
arguments.
Futhermore the new pattern is also added to the vectorization information
structure VINFO and the old statement STMT_INFO is marked as unused while
the new statement is marked as used and the number of SLP uses of the new
statement is incremented.
The newly created SLP nodes are marked as SLP only and will be dissolved
if SLP is aborted.
The newly created gimple call is returned and the BB remains unchanged.
This default method is designed to only match against simple operands where
all the input and output types are the same.
*/
void
complex_pattern::build (vec_info *vinfo)
{
stmt_vec_info stmt_info;
auto_vec<tree> args;
args.create (this->m_num_args);
args.quick_grow_cleared (this->m_num_args);
slp_tree node;
unsigned ix;
stmt_vec_info call_stmt_info;
gcall *call_stmt = NULL;
/* Now modify the nodes themselves. */
FOR_EACH_VEC_ELT (this->m_workset, ix, node)
{
/* Calculate the location of the statement in NODE to replace. */
stmt_info = SLP_TREE_REPRESENTATIVE (node);
stmt_vec_info reduc_def
= STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info));
gimple* old_stmt = STMT_VINFO_STMT (stmt_info);
tree lhs_old_stmt = gimple_get_lhs (old_stmt);
tree type = TREE_TYPE (lhs_old_stmt);
/* Create the argument set for use by gimple_build_call_internal_vec. */
for (unsigned i = 0; i < this->m_num_args; i++)
args[i] = lhs_old_stmt;
/* Create the new pattern statements. */
call_stmt = gimple_build_call_internal_vec (this->m_ifn, args);
tree var = make_temp_ssa_name (type, call_stmt, "slp_patt");
gimple_call_set_lhs (call_stmt, var);
gimple_set_location (call_stmt, gimple_location (old_stmt));
gimple_call_set_nothrow (call_stmt, true);
/* Adjust the book-keeping for the new and old statements for use during
SLP. This is required to get the right VF and statement during SLP
analysis. These changes are created after relevancy has been set for
the nodes as such we need to manually update them. Any changes will be
undone if SLP is cancelled. */
call_stmt_info
= vinfo->add_pattern_stmt (call_stmt, stmt_info);
/* Make sure to mark the representative statement pure_slp and
relevant and transfer reduction info. */
STMT_VINFO_RELEVANT (call_stmt_info) = vect_used_in_scope;
STMT_SLP_TYPE (call_stmt_info) = pure_slp;
STMT_VINFO_REDUC_DEF (call_stmt_info) = reduc_def;
gimple_set_bb (call_stmt, gimple_bb (stmt_info->stmt));
STMT_VINFO_VECTYPE (call_stmt_info) = SLP_TREE_VECTYPE (node);
STMT_VINFO_SLP_VECT_ONLY_PATTERN (call_stmt_info) = true;
/* Since we are replacing all the statements in the group with the same
thing it doesn't really matter. So just set it every time a new stmt
is created. */
SLP_TREE_REPRESENTATIVE (node) = call_stmt_info;
SLP_TREE_LANE_PERMUTATION (node).release ();
SLP_TREE_CODE (node) = CALL_EXPR;
}
}
/*******************************************************************************
* complex_add_pattern class
******************************************************************************/
class complex_add_pattern : public complex_pattern
{
protected:
complex_add_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
: complex_pattern (node, m_ops, ifn)
{
this->m_num_args = 2;
}
public:
void build (vec_info *) final override;
static internal_fn
matches (complex_operation_t op, slp_tree_to_load_perm_map_t *,
slp_compat_nodes_map_t *, slp_tree *, vec<slp_tree> *);
static vect_pattern*
recognize (slp_tree_to_load_perm_map_t *, slp_compat_nodes_map_t *,
slp_tree *);
static vect_pattern*
mkInstance (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
{
return new complex_add_pattern (node, m_ops, ifn);
}
};
/* Perform a replacement of the detected complex add pattern with the new
instruction sequences. */
void
complex_add_pattern::build (vec_info *vinfo)
{
SLP_TREE_CHILDREN (*this->m_node).reserve_exact (2);
slp_tree node = this->m_ops[0];
vec<slp_tree> children = SLP_TREE_CHILDREN (node);
/* First re-arrange the children. */
SLP_TREE_CHILDREN (*this->m_node)[0] = children[0];
SLP_TREE_CHILDREN (*this->m_node)[1] =
vect_build_swap_evenodd_node (children[1]);
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (*this->m_node)[0])++;
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (*this->m_node)[1])++;
vect_free_slp_tree (this->m_ops[0]);
vect_free_slp_tree (this->m_ops[1]);
complex_pattern::build (vinfo);
}
/* Pattern matcher for trying to match complex addition pattern in SLP tree.
If no match is found then IFN is set to IFN_LAST.
This function matches the patterns shaped as:
c[i] = a[i] - b[i+1];
c[i+1] = a[i+1] + b[i];
If a match occurred then TRUE is returned, else FALSE. The initial match is
expected to be in OP1 and the initial match operands in args0. */
internal_fn
complex_add_pattern::matches (complex_operation_t op,
slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t * /* compat_cache */,
slp_tree *node, vec<slp_tree> *ops)
{
internal_fn ifn = IFN_LAST;
/* Find the two components. Rotation in the complex plane will modify
the operations:
* Rotation 0: + +
* Rotation 90: - +
* Rotation 180: - -
* Rotation 270: + -
Rotation 0 and 180 can be handled by normal SIMD code, so we don't need
to care about them here. */
if (op == MINUS_PLUS)
ifn = IFN_COMPLEX_ADD_ROT90;
else if (op == PLUS_MINUS)
ifn = IFN_COMPLEX_ADD_ROT270;
else
return ifn;
/* verify that there is a permute, otherwise this isn't a pattern we
we support. */
gcc_assert (ops->length () == 2);
vec<slp_tree> children = SLP_TREE_CHILDREN ((*ops)[0]);
/* First node must be unpermuted. */
if (linear_loads_p (perm_cache, children[0]) != PERM_EVENODD)
return IFN_LAST;
/* Second node must be permuted. */
if (linear_loads_p (perm_cache, children[1]) != PERM_ODDEVEN)
return IFN_LAST;
if (!vect_pattern_validate_optab (ifn, *node))
return IFN_LAST;
return ifn;
}
/* Attempt to recognize a complex add pattern. */
vect_pattern*
complex_add_pattern::recognize (slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
slp_tree *node)
{
auto_vec<slp_tree> ops;
complex_operation_t op
= vect_detect_pair_op (*node, true, &ops);
internal_fn ifn
= complex_add_pattern::matches (op, perm_cache, compat_cache, node, &ops);
if (ifn == IFN_LAST)
return NULL;
return new complex_add_pattern (node, &ops, ifn);
}
/*******************************************************************************
* complex_mul_pattern
******************************************************************************/
/* Helper function to check if PERM is KIND or PERM_TOP. */
static inline bool
is_eq_or_top (slp_tree_to_load_perm_map_t *perm_cache,
slp_tree op1, complex_perm_kinds_t kind1,
slp_tree op2, complex_perm_kinds_t kind2)
{
complex_perm_kinds_t perm1 = linear_loads_p (perm_cache, op1);
if (perm1 != kind1 && perm1 != PERM_TOP)
return false;
complex_perm_kinds_t perm2 = linear_loads_p (perm_cache, op2);
if (perm2 != kind2 && perm2 != PERM_TOP)
return false;
return true;
}
enum _conj_status { CONJ_NONE, CONJ_FST, CONJ_SND };
static inline bool
compatible_complex_nodes_p (slp_compat_nodes_map_t *compat_cache,
slp_tree a, int *pa, slp_tree b, int *pb)
{
bool *tmp;
std::pair<slp_tree, slp_tree> key = std::make_pair(a, b);
if ((tmp = compat_cache->get (key)) != NULL)
return *tmp;
compat_cache->put (key, false);
if (SLP_TREE_CHILDREN (a).length () != SLP_TREE_CHILDREN (b).length ())
return false;
if (SLP_TREE_DEF_TYPE (a) != SLP_TREE_DEF_TYPE (b))
return false;
/* Only internal nodes can be loads, as such we can't check further if they
are externals. */
if (SLP_TREE_DEF_TYPE (a) != vect_internal_def)
{
for (unsigned i = 0; i < SLP_TREE_SCALAR_OPS (a).length (); i++)
{
tree op1 = SLP_TREE_SCALAR_OPS (a)[pa[i % 2]];
tree op2 = SLP_TREE_SCALAR_OPS (b)[pb[i % 2]];
if (!operand_equal_p (op1, op2, 0))
return false;
}
compat_cache->put (key, true);
return true;
}
auto a_stmt = STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (a));
auto b_stmt = STMT_VINFO_STMT (SLP_TREE_REPRESENTATIVE (b));
if (gimple_code (a_stmt) != gimple_code (b_stmt))
return false;
/* code, children, type, externals, loads, constants */
if (gimple_num_args (a_stmt) != gimple_num_args (b_stmt))
return false;
/* At this point, a and b are known to be the same gimple operations. */
if (is_gimple_call (a_stmt))
{
if (!compatible_calls_p (dyn_cast <gcall *> (a_stmt),
dyn_cast <gcall *> (b_stmt)))
return false;
}
else if (!is_gimple_assign (a_stmt))
return false;
else
{
tree_code acode = gimple_assign_rhs_code (a_stmt);
tree_code bcode = gimple_assign_rhs_code (b_stmt);
if ((acode == REALPART_EXPR || acode == IMAGPART_EXPR)
&& (bcode == REALPART_EXPR || bcode == IMAGPART_EXPR))
return true;
if (acode != bcode)
return false;
}
if (!SLP_TREE_LOAD_PERMUTATION (a).exists ()
|| !SLP_TREE_LOAD_PERMUTATION (b).exists ())
{
for (unsigned i = 0; i < gimple_num_args (a_stmt); i++)
{
tree t1 = gimple_arg (a_stmt, i);
tree t2 = gimple_arg (b_stmt, i);
if (TREE_CODE (t1) != TREE_CODE (t2))
return false;
/* If SSA name then we will need to inspect the children
so we can punt here. */
if (TREE_CODE (t1) == SSA_NAME)
continue;
if (!operand_equal_p (t1, t2, 0))
return false;
}
}
else
{
auto dr1 = STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (a));
auto dr2 = STMT_VINFO_DATA_REF (SLP_TREE_REPRESENTATIVE (b));
/* Don't check the last dimension as that's checked by the lineary
checks. This check is also much stricter than what we need
because it doesn't consider loading from adjacent elements
in the same struct as loading from the same base object.
But for now, I'll play it safe. */
if (!same_data_refs (dr1, dr2, 1))
return false;
}
for (unsigned i = 0; i < SLP_TREE_CHILDREN (a).length (); i++)
{
if (!compatible_complex_nodes_p (compat_cache,
SLP_TREE_CHILDREN (a)[i], pa,
SLP_TREE_CHILDREN (b)[i], pb))
return false;
}
compat_cache->put (key, true);
return true;
}
static inline bool
vect_validate_multiplication (slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
vec<slp_tree> &left_op,
vec<slp_tree> &right_op,
bool subtract,
enum _conj_status *_status)
{
auto_vec<slp_tree> ops;
enum _conj_status stats = CONJ_NONE;
/* The complex operations can occur in two layouts and two permute sequences
so declare them and re-use them. */
int styles[][4] = { { 0, 2, 1, 3} /* {L1, R1} + {L2, R2}. */
, { 0, 3, 1, 2} /* {L1, R2} + {L2, R1}. */
};
/* Now for the corresponding permutes that go with these values. */
complex_perm_kinds_t perms[][4]
= { { PERM_EVENEVEN, PERM_ODDODD, PERM_EVENODD, PERM_ODDEVEN }
, { PERM_EVENODD, PERM_ODDEVEN, PERM_EVENEVEN, PERM_ODDODD }
};
/* These permutes are used during comparisons of externals on which
we require strict equality. */
int cq[][4][2]
= { { { 0, 0 }, { 1, 1 }, { 0, 1 }, { 1, 0 } }
, { { 0, 1 }, { 1, 0 }, { 0, 0 }, { 1, 1 } }
};
/* Default to style and perm 0, most operations use this one. */
int style = 0;
int perm = subtract ? 1 : 0;
/* Check if we have a negate operation, if so absorb the node and continue
looking. */
bool neg0 = vect_match_expression_p (right_op[0], NEGATE_EXPR);
bool neg1 = vect_match_expression_p (right_op[1], NEGATE_EXPR);
/* Determine which style we're looking at. We only have different ones
whenever a conjugate is involved. */
if (neg0 && neg1)
;
else if (neg0)
{
right_op[0] = SLP_TREE_CHILDREN (right_op[0])[0];
stats = CONJ_FST;
if (subtract)
perm = 0;
}
else if (neg1)
{
right_op[1] = SLP_TREE_CHILDREN (right_op[1])[0];
stats = CONJ_SND;
perm = 1;
}
*_status = stats;
/* Flatten the inputs after we've remapped them. */
ops.create (4);
ops.safe_splice (left_op);
ops.safe_splice (right_op);
/* Extract out the elements to check. */
slp_tree op0 = ops[styles[style][0]];
slp_tree op1 = ops[styles[style][1]];
slp_tree op2 = ops[styles[style][2]];
slp_tree op3 = ops[styles[style][3]];
/* Do cheapest test first. If failed no need to analyze further. */
if (linear_loads_p (perm_cache, op0) != perms[perm][0]
|| linear_loads_p (perm_cache, op1) != perms[perm][1]
|| !is_eq_or_top (perm_cache, op2, perms[perm][2], op3, perms[perm][3]))
return false;
return compatible_complex_nodes_p (compat_cache, op0, cq[perm][0], op1,
cq[perm][1])
&& compatible_complex_nodes_p (compat_cache, op2, cq[perm][2], op3,
cq[perm][3]);
}
/* This function combines two nodes containing only even and only odd lanes
together into a single node which contains the nodes in even/odd order
by using a lane permute.
The lanes in EVEN and ODD are duplicated 2 times inside the vectors.
So for a lanes = 4 EVEN contains {EVEN1, EVEN1, EVEN2, EVEN2}.
The tree REPRESENTATION is taken from the supplied REP along with the
vectype which must be the same between all three nodes.
*/
static slp_tree
vect_build_combine_node (slp_tree even, slp_tree odd, slp_tree rep)
{
vec<std::pair<unsigned, unsigned> > perm;
perm.create (SLP_TREE_LANES (rep));
for (unsigned x = 0; x < SLP_TREE_LANES (rep); x+=2)
{
perm.quick_push (std::make_pair (0, x));
perm.quick_push (std::make_pair (1, x+1));
}
slp_tree vnode = vect_create_new_slp_node (2, SLP_TREE_CODE (even));
SLP_TREE_CODE (vnode) = VEC_PERM_EXPR;
SLP_TREE_LANE_PERMUTATION (vnode) = perm;
SLP_TREE_CHILDREN (vnode).create (2);
SLP_TREE_CHILDREN (vnode).quick_push (even);
SLP_TREE_CHILDREN (vnode).quick_push (odd);
SLP_TREE_REF_COUNT (even)++;
SLP_TREE_REF_COUNT (odd)++;
SLP_TREE_REF_COUNT (vnode) = 1;
SLP_TREE_LANES (vnode) = SLP_TREE_LANES (rep);
gcc_assert (perm.length () == SLP_TREE_LANES (vnode));
/* Representation is set to that of the current node as the vectorizer
can't deal with VEC_PERMs with no representation, as would be the
case with invariants. */
SLP_TREE_REPRESENTATIVE (vnode) = SLP_TREE_REPRESENTATIVE (rep);
SLP_TREE_VECTYPE (vnode) = SLP_TREE_VECTYPE (rep);
return vnode;
}
class complex_mul_pattern : public complex_pattern
{
protected:
complex_mul_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
: complex_pattern (node, m_ops, ifn)
{
this->m_num_args = 2;
}
public:
void build (vec_info *) final override;
static internal_fn
matches (complex_operation_t op, slp_tree_to_load_perm_map_t *,
slp_compat_nodes_map_t *, slp_tree *, vec<slp_tree> *);
static vect_pattern*
recognize (slp_tree_to_load_perm_map_t *, slp_compat_nodes_map_t *,
slp_tree *);
static vect_pattern*
mkInstance (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
{
return new complex_mul_pattern (node, m_ops, ifn);
}
};
/* Pattern matcher for trying to match complex multiply and complex multiply
and accumulate pattern in SLP tree. If the operation matches then IFN
is set to the operation it matched and the arguments to the two
replacement statements are put in m_ops.
If no match is found then IFN is set to IFN_LAST and m_ops is unchanged.
This function matches the patterns shaped as:
double ax = (b[i+1] * a[i]);
double bx = (a[i+1] * b[i]);
c[i] = c[i] - ax;
c[i+1] = c[i+1] + bx;
If a match occurred then TRUE is returned, else FALSE. The initial match is
expected to be in OP1 and the initial match operands in args0. */
internal_fn
complex_mul_pattern::matches (complex_operation_t op,
slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
slp_tree *node, vec<slp_tree> *ops)
{
internal_fn ifn = IFN_LAST;
if (op != MINUS_PLUS)
return IFN_LAST;
auto childs = *ops;
auto l0node = SLP_TREE_CHILDREN (childs[0]);
bool mul0 = vect_match_expression_p (l0node[0], MULT_EXPR);
bool mul1 = vect_match_expression_p (l0node[1], MULT_EXPR);
if (!mul0 && !mul1)
return IFN_LAST;
/* Now operand2+4 may lead to another expression. */
auto_vec<slp_tree> left_op, right_op;
slp_tree add0 = NULL;
/* Check if we may be a multiply add. */
if (!mul0
&& vect_match_expression_p (l0node[0], PLUS_EXPR))
{
auto vals = SLP_TREE_CHILDREN (l0node[0]);
/* Check if it's a multiply, otherwise no idea what this is. */
if (!(mul0 = vect_match_expression_p (vals[1], MULT_EXPR)))
return IFN_LAST;
/* Check if the ADD is linear, otherwise it's not valid complex FMA. */
if (linear_loads_p (perm_cache, vals[0]) != PERM_EVENODD)
return IFN_LAST;
left_op.safe_splice (SLP_TREE_CHILDREN (vals[1]));
add0 = vals[0];
}
else
left_op.safe_splice (SLP_TREE_CHILDREN (l0node[0]));
right_op.safe_splice (SLP_TREE_CHILDREN (l0node[1]));
if (left_op.length () != 2
|| right_op.length () != 2
|| !mul0
|| !mul1
|| linear_loads_p (perm_cache, left_op[1]) == PERM_ODDEVEN)
return IFN_LAST;
enum _conj_status status;
if (!vect_validate_multiplication (perm_cache, compat_cache, left_op,
right_op, false, &status))
return IFN_LAST;
if (status == CONJ_NONE)
{
if (add0)
ifn = IFN_COMPLEX_FMA;
else
ifn = IFN_COMPLEX_MUL;
}
else
{
if(add0)
ifn = IFN_COMPLEX_FMA_CONJ;
else
ifn = IFN_COMPLEX_MUL_CONJ;
}
if (!vect_pattern_validate_optab (ifn, *node))
return IFN_LAST;
ops->truncate (0);
ops->create (add0 ? 4 : 3);
if (add0)
ops->quick_push (add0);
complex_perm_kinds_t kind = linear_loads_p (perm_cache, left_op[0]);
if (kind == PERM_EVENODD || kind == PERM_TOP)
{
ops->quick_push (left_op[1]);
ops->quick_push (right_op[1]);
ops->quick_push (left_op[0]);
}
else if (kind == PERM_EVENEVEN && status != CONJ_SND)
{
ops->quick_push (left_op[0]);
ops->quick_push (right_op[0]);
ops->quick_push (left_op[1]);
}
else
{
ops->quick_push (left_op[0]);
ops->quick_push (right_op[1]);
ops->quick_push (left_op[1]);
}
return ifn;
}
/* Attempt to recognize a complex mul pattern. */
vect_pattern*
complex_mul_pattern::recognize (slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
slp_tree *node)
{
auto_vec<slp_tree> ops;
complex_operation_t op
= vect_detect_pair_op (*node, true, &ops);
internal_fn ifn
= complex_mul_pattern::matches (op, perm_cache, compat_cache, node, &ops);
if (ifn == IFN_LAST)
return NULL;
return new complex_mul_pattern (node, &ops, ifn);
}
/* Perform a replacement of the detected complex mul pattern with the new
instruction sequences. */
void
complex_mul_pattern::build (vec_info *vinfo)
{
slp_tree node;
unsigned i;
switch (this->m_ifn)
{
case IFN_COMPLEX_MUL:
case IFN_COMPLEX_MUL_CONJ:
{
slp_tree newnode
= vect_build_combine_node (this->m_ops[0], this->m_ops[1],
*this->m_node);
SLP_TREE_REF_COUNT (this->m_ops[2])++;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (*this->m_node), i, node)
vect_free_slp_tree (node);
/* First re-arrange the children. */
SLP_TREE_CHILDREN (*this->m_node).reserve_exact (2);
SLP_TREE_CHILDREN (*this->m_node)[0] = this->m_ops[2];
SLP_TREE_CHILDREN (*this->m_node)[1] = newnode;
break;
}
case IFN_COMPLEX_FMA:
case IFN_COMPLEX_FMA_CONJ:
{
SLP_TREE_REF_COUNT (this->m_ops[0])++;
slp_tree newnode
= vect_build_combine_node (this->m_ops[1], this->m_ops[2],
*this->m_node);
SLP_TREE_REF_COUNT (this->m_ops[3])++;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (*this->m_node), i, node)
vect_free_slp_tree (node);
/* First re-arrange the children. */
SLP_TREE_CHILDREN (*this->m_node).safe_grow (3);
SLP_TREE_CHILDREN (*this->m_node)[0] = this->m_ops[3];
SLP_TREE_CHILDREN (*this->m_node)[1] = newnode;
SLP_TREE_CHILDREN (*this->m_node)[2] = this->m_ops[0];
/* Tell the builder to expect an extra argument. */
this->m_num_args++;
break;
}
default:
gcc_unreachable ();
}
/* And then rewrite the node itself. */
complex_pattern::build (vinfo);
}
/*******************************************************************************
* complex_fms_pattern class
******************************************************************************/
class complex_fms_pattern : public complex_pattern
{
protected:
complex_fms_pattern (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
: complex_pattern (node, m_ops, ifn)
{
this->m_num_args = 3;
}
public:
void build (vec_info *) final override;
static internal_fn
matches (complex_operation_t op, slp_tree_to_load_perm_map_t *,
slp_compat_nodes_map_t *, slp_tree *, vec<slp_tree> *);
static vect_pattern*
recognize (slp_tree_to_load_perm_map_t *, slp_compat_nodes_map_t *,
slp_tree *);
static vect_pattern*
mkInstance (slp_tree *node, vec<slp_tree> *m_ops, internal_fn ifn)
{
return new complex_fms_pattern (node, m_ops, ifn);
}
};
/* Pattern matcher for trying to match complex multiply and subtract pattern
in SLP tree. If the operation matches then IFN is set to the operation
it matched and the arguments to the two replacement statements are put in
m_ops.
If no match is found then IFN is set to IFN_LAST and m_ops is unchanged.
This function matches the patterns shaped as:
double ax = (b[i+1] * a[i]) + (b[i] * a[i]);
double bx = (a[i+1] * b[i]) - (a[i+1] * b[i+1]);
c[i] = c[i] - ax;
c[i+1] = c[i+1] + bx;
If a match occurred then TRUE is returned, else FALSE. The initial match is
expected to be in OP1 and the initial match operands in args0. */
internal_fn
complex_fms_pattern::matches (complex_operation_t op,
slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
slp_tree * ref_node, vec<slp_tree> *ops)
{
internal_fn ifn = IFN_LAST;
/* We need to ignore the two_operands nodes that may also match,
for that we can check if they have any scalar statements and also
check that it's not a permute node as we're looking for a normal
MINUS_EXPR operation. */
if (op != CMPLX_NONE)
return IFN_LAST;
slp_tree root = *ref_node;
if (!vect_match_expression_p (root, MINUS_EXPR))
return IFN_LAST;
/* TODO: Support invariants here, with the new layout CADD now
can match before we get a chance to try CFMS. */
auto nodes = SLP_TREE_CHILDREN (root);
if (!vect_match_expression_p (nodes[1], MULT_EXPR)
|| vect_detect_pair_op (nodes[0]) != PLUS_MINUS)
return IFN_LAST;
auto childs = SLP_TREE_CHILDREN (nodes[0]);
auto l0node = SLP_TREE_CHILDREN (childs[0]);
/* Now operand2+4 may lead to another expression. */
auto_vec<slp_tree> left_op, right_op;
left_op.safe_splice (SLP_TREE_CHILDREN (l0node[1]));
right_op.safe_splice (SLP_TREE_CHILDREN (nodes[1]));
/* If these nodes don't have any children then they're
not ones we're interested in. */
if (left_op.length () != 2
|| right_op.length () != 2
|| !vect_match_expression_p (l0node[1], MULT_EXPR))
return IFN_LAST;
enum _conj_status status;
if (!vect_validate_multiplication (perm_cache, compat_cache, right_op,
left_op, true, &status))
return IFN_LAST;
if (status == CONJ_NONE)
ifn = IFN_COMPLEX_FMS;
else
ifn = IFN_COMPLEX_FMS_CONJ;
if (!vect_pattern_validate_optab (ifn, *ref_node))
return IFN_LAST;
ops->truncate (0);
ops->create (4);
complex_perm_kinds_t kind = linear_loads_p (perm_cache, right_op[0]);
if (kind == PERM_EVENODD)
{
ops->quick_push (l0node[0]);
ops->quick_push (right_op[0]);
ops->quick_push (right_op[1]);
ops->quick_push (left_op[1]);
}
else
{
ops->quick_push (l0node[0]);
ops->quick_push (right_op[1]);
ops->quick_push (right_op[0]);
ops->quick_push (left_op[0]);
}
return ifn;
}
/* Attempt to recognize a complex mul pattern. */
vect_pattern*
complex_fms_pattern::recognize (slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *compat_cache,
slp_tree *node)
{
auto_vec<slp_tree> ops;
complex_operation_t op
= vect_detect_pair_op (*node, true, &ops);
internal_fn ifn
= complex_fms_pattern::matches (op, perm_cache, compat_cache, node, &ops);
if (ifn == IFN_LAST)
return NULL;
return new complex_fms_pattern (node, &ops, ifn);
}
/* Perform a replacement of the detected complex mul pattern with the new
instruction sequences. */
void
complex_fms_pattern::build (vec_info *vinfo)
{
slp_tree node;
unsigned i;
slp_tree newnode =
vect_build_combine_node (this->m_ops[2], this->m_ops[3], *this->m_node);
SLP_TREE_REF_COUNT (this->m_ops[0])++;
SLP_TREE_REF_COUNT (this->m_ops[1])++;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (*this->m_node), i, node)
vect_free_slp_tree (node);
SLP_TREE_CHILDREN (*this->m_node).release ();
SLP_TREE_CHILDREN (*this->m_node).create (3);
/* First re-arrange the children. */
SLP_TREE_CHILDREN (*this->m_node).quick_push (this->m_ops[1]);
SLP_TREE_CHILDREN (*this->m_node).quick_push (newnode);
SLP_TREE_CHILDREN (*this->m_node).quick_push (this->m_ops[0]);
/* And then rewrite the node itself. */
complex_pattern::build (vinfo);
}
/*******************************************************************************
* complex_operations_pattern class
******************************************************************************/
/* This function combines all the existing pattern matchers above into one class
that shares the functionality between them. The initial match is shared
between all complex operations. */
class complex_operations_pattern : public complex_pattern
{
protected:
complex_operations_pattern (slp_tree *node, vec<slp_tree> *m_ops,
internal_fn ifn)
: complex_pattern (node, m_ops, ifn)
{
this->m_num_args = 0;
}
public:
void build (vec_info *) final override;
static internal_fn
matches (complex_operation_t op, slp_tree_to_load_perm_map_t *,
slp_compat_nodes_map_t *, slp_tree *, vec<slp_tree> *);
static vect_pattern*
recognize (slp_tree_to_load_perm_map_t *, slp_compat_nodes_map_t *,
slp_tree *);
};
/* Dummy matches implementation for proxy object. */
internal_fn
complex_operations_pattern::
matches (complex_operation_t /* op */,
slp_tree_to_load_perm_map_t * /* perm_cache */,
slp_compat_nodes_map_t * /* compat_cache */,
slp_tree * /* ref_node */, vec<slp_tree> * /* ops */)
{
return IFN_LAST;
}
/* Attempt to recognize a complex mul pattern. */
vect_pattern*
complex_operations_pattern::recognize (slp_tree_to_load_perm_map_t *perm_cache,
slp_compat_nodes_map_t *ccache,
slp_tree *node)
{
auto_vec<slp_tree> ops;
complex_operation_t op
= vect_detect_pair_op (*node, true, &ops);
internal_fn ifn = IFN_LAST;
ifn = complex_fms_pattern::matches (op, perm_cache, ccache, node, &ops);
if (ifn != IFN_LAST)
return complex_fms_pattern::mkInstance (node, &ops, ifn);
ifn = complex_mul_pattern::matches (op, perm_cache, ccache, node, &ops);
if (ifn != IFN_LAST)
return complex_mul_pattern::mkInstance (node, &ops, ifn);
ifn = complex_add_pattern::matches (op, perm_cache, ccache, node, &ops);
if (ifn != IFN_LAST)
return complex_add_pattern::mkInstance (node, &ops, ifn);
return NULL;
}
/* Dummy implementation of build. */
void
complex_operations_pattern::build (vec_info * /* vinfo */)
{
gcc_unreachable ();
}
/* The addsub_pattern. */
class addsub_pattern : public vect_pattern
{
public:
addsub_pattern (slp_tree *node, internal_fn ifn)
: vect_pattern (node, NULL, ifn) {};
void build (vec_info *) final override;
static vect_pattern*
recognize (slp_tree_to_load_perm_map_t *, slp_compat_nodes_map_t *,
slp_tree *);
};
vect_pattern *
addsub_pattern::recognize (slp_tree_to_load_perm_map_t *,
slp_compat_nodes_map_t *, slp_tree *node_)
{
slp_tree node = *node_;
if (SLP_TREE_CODE (node) != VEC_PERM_EXPR
|| SLP_TREE_CHILDREN (node).length () != 2
|| SLP_TREE_LANE_PERMUTATION (node).length () % 2)
return NULL;
/* Match a blend of a plus and a minus op with the same number of plus and
minus lanes on the same operands. */
unsigned l0 = SLP_TREE_LANE_PERMUTATION (node)[0].first;
unsigned l1 = SLP_TREE_LANE_PERMUTATION (node)[1].first;
if (l0 == l1)
return NULL;
bool l0add_p = vect_match_expression_p (SLP_TREE_CHILDREN (node)[l0],
PLUS_EXPR);
if (!l0add_p
&& !vect_match_expression_p (SLP_TREE_CHILDREN (node)[l0], MINUS_EXPR))
return NULL;
bool l1add_p = vect_match_expression_p (SLP_TREE_CHILDREN (node)[l1],
PLUS_EXPR);
if (!l1add_p
&& !vect_match_expression_p (SLP_TREE_CHILDREN (node)[l1], MINUS_EXPR))
return NULL;
slp_tree l0node = SLP_TREE_CHILDREN (node)[l0];
slp_tree l1node = SLP_TREE_CHILDREN (node)[l1];
if (!((SLP_TREE_CHILDREN (l0node)[0] == SLP_TREE_CHILDREN (l1node)[0]
&& SLP_TREE_CHILDREN (l0node)[1] == SLP_TREE_CHILDREN (l1node)[1])
|| (SLP_TREE_CHILDREN (l0node)[0] == SLP_TREE_CHILDREN (l1node)[1]
&& SLP_TREE_CHILDREN (l0node)[1] == SLP_TREE_CHILDREN (l1node)[0])))
return NULL;
for (unsigned i = 0; i < SLP_TREE_LANE_PERMUTATION (node).length (); ++i)
{
std::pair<unsigned, unsigned> perm = SLP_TREE_LANE_PERMUTATION (node)[i];
/* It has to be alternating -, +, -,
While we could permute the .ADDSUB inputs and the .ADDSUB output
that's only profitable over the add + sub + blend if at least
one of the permute is optimized which we can't determine here. */
if (perm.first != ((i & 1) ? l1 : l0)
|| perm.second != i)
return NULL;
}
/* Now we have either { -, +, -, + ... } (!l0add_p) or { +, -, +, - ... }
(l0add_p), see whether we have FMA variants. */
if (!l0add_p
&& vect_match_expression_p (SLP_TREE_CHILDREN (l0node)[0], MULT_EXPR))
{
/* (c * d) -+ a */
if (vect_pattern_validate_optab (IFN_VEC_FMADDSUB, node))
return new addsub_pattern (node_, IFN_VEC_FMADDSUB);
}
else if (l0add_p
&& vect_match_expression_p (SLP_TREE_CHILDREN (l1node)[0], MULT_EXPR))
{
/* (c * d) +- a */
if (vect_pattern_validate_optab (IFN_VEC_FMSUBADD, node))
return new addsub_pattern (node_, IFN_VEC_FMSUBADD);
}
if (!l0add_p && vect_pattern_validate_optab (IFN_VEC_ADDSUB, node))
return new addsub_pattern (node_, IFN_VEC_ADDSUB);
return NULL;
}
void
addsub_pattern::build (vec_info *vinfo)
{
slp_tree node = *m_node;
unsigned l0 = SLP_TREE_LANE_PERMUTATION (node)[0].first;
unsigned l1 = SLP_TREE_LANE_PERMUTATION (node)[1].first;
switch (m_ifn)
{
case IFN_VEC_ADDSUB:
{
slp_tree sub = SLP_TREE_CHILDREN (node)[l0];
slp_tree add = SLP_TREE_CHILDREN (node)[l1];
/* Modify the blend node in-place. */
SLP_TREE_CHILDREN (node)[0] = SLP_TREE_CHILDREN (sub)[0];
SLP_TREE_CHILDREN (node)[1] = SLP_TREE_CHILDREN (sub)[1];
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node)[0])++;
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node)[1])++;
/* Build IFN_VEC_ADDSUB from the sub representative operands. */
stmt_vec_info rep = SLP_TREE_REPRESENTATIVE (sub);
gcall *call = gimple_build_call_internal (IFN_VEC_ADDSUB, 2,
gimple_assign_rhs1 (rep->stmt),
gimple_assign_rhs2 (rep->stmt));
gimple_call_set_lhs (call, make_ssa_name
(TREE_TYPE (gimple_assign_lhs (rep->stmt))));
gimple_call_set_nothrow (call, true);
gimple_set_bb (call, gimple_bb (rep->stmt));
stmt_vec_info new_rep = vinfo->add_pattern_stmt (call, rep);
SLP_TREE_REPRESENTATIVE (node) = new_rep;
STMT_VINFO_RELEVANT (new_rep) = vect_used_in_scope;
STMT_SLP_TYPE (new_rep) = pure_slp;
STMT_VINFO_VECTYPE (new_rep) = SLP_TREE_VECTYPE (node);
STMT_VINFO_SLP_VECT_ONLY_PATTERN (new_rep) = true;
STMT_VINFO_REDUC_DEF (new_rep) = STMT_VINFO_REDUC_DEF (vect_orig_stmt (rep));
SLP_TREE_CODE (node) = ERROR_MARK;
SLP_TREE_LANE_PERMUTATION (node).release ();
vect_free_slp_tree (sub);
vect_free_slp_tree (add);
break;
}
case IFN_VEC_FMADDSUB:
case IFN_VEC_FMSUBADD:
{
slp_tree sub, add;
if (m_ifn == IFN_VEC_FMADDSUB)
{
sub = SLP_TREE_CHILDREN (node)[l0];
add = SLP_TREE_CHILDREN (node)[l1];
}
else /* m_ifn == IFN_VEC_FMSUBADD */
{
sub = SLP_TREE_CHILDREN (node)[l1];
add = SLP_TREE_CHILDREN (node)[l0];
}
slp_tree mul = SLP_TREE_CHILDREN (sub)[0];
/* Modify the blend node in-place. */
SLP_TREE_CHILDREN (node).safe_grow (3, true);
SLP_TREE_CHILDREN (node)[0] = SLP_TREE_CHILDREN (mul)[0];
SLP_TREE_CHILDREN (node)[1] = SLP_TREE_CHILDREN (mul)[1];
SLP_TREE_CHILDREN (node)[2] = SLP_TREE_CHILDREN (sub)[1];
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node)[0])++;
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node)[1])++;
SLP_TREE_REF_COUNT (SLP_TREE_CHILDREN (node)[2])++;
/* Build IFN_VEC_FMADDSUB from the mul/sub representative operands. */
stmt_vec_info srep = SLP_TREE_REPRESENTATIVE (sub);
stmt_vec_info mrep = SLP_TREE_REPRESENTATIVE (mul);
gcall *call = gimple_build_call_internal (m_ifn, 3,
gimple_assign_rhs1 (mrep->stmt),
gimple_assign_rhs2 (mrep->stmt),
gimple_assign_rhs2 (srep->stmt));
gimple_call_set_lhs (call, make_ssa_name
(TREE_TYPE (gimple_assign_lhs (srep->stmt))));
gimple_call_set_nothrow (call, true);
gimple_set_bb (call, gimple_bb (srep->stmt));
stmt_vec_info new_rep = vinfo->add_pattern_stmt (call, srep);
SLP_TREE_REPRESENTATIVE (node) = new_rep;
STMT_VINFO_RELEVANT (new_rep) = vect_used_in_scope;
STMT_SLP_TYPE (new_rep) = pure_slp;
STMT_VINFO_VECTYPE (new_rep) = SLP_TREE_VECTYPE (node);
STMT_VINFO_SLP_VECT_ONLY_PATTERN (new_rep) = true;
STMT_VINFO_REDUC_DEF (new_rep) = STMT_VINFO_REDUC_DEF (vect_orig_stmt (srep));
SLP_TREE_CODE (node) = ERROR_MARK;
SLP_TREE_LANE_PERMUTATION (node).release ();
vect_free_slp_tree (sub);
vect_free_slp_tree (add);
break;
}
default:;
}
}
/*******************************************************************************
* Pattern matching definitions
******************************************************************************/
#define SLP_PATTERN(x) &x::recognize
vect_pattern_decl_t slp_patterns[]
{
/* For least amount of back-tracking and more efficient matching
order patterns from the largest to the smallest. Especially if they
overlap in what they can detect. */
SLP_PATTERN (complex_operations_pattern),
SLP_PATTERN (addsub_pattern)
};
#undef SLP_PATTERN
/* Set the number of SLP pattern matchers available. */
size_t num__slp_patterns = ARRAY_SIZE (slp_patterns);
|