1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
|
/* Loop Vectorization
Copyright (C) 2003-2023 Free Software Foundation, Inc.
Contributed by Dorit Naishlos <dorit@il.ibm.com> and
Ira Rosen <irar@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#define INCLUDE_ALGORITHM
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "memmodel.h"
#include "optabs.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "cfganal.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "cfgloop.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "gimple-fold.h"
#include "cgraph.h"
#include "tree-cfg.h"
#include "tree-if-conv.h"
#include "internal-fn.h"
#include "tree-vector-builder.h"
#include "vec-perm-indices.h"
#include "tree-eh.h"
#include "case-cfn-macros.h"
#include "langhooks.h"
/* Loop Vectorization Pass.
This pass tries to vectorize loops.
For example, the vectorizer transforms the following simple loop:
short a[N]; short b[N]; short c[N]; int i;
for (i=0; i<N; i++){
a[i] = b[i] + c[i];
}
as if it was manually vectorized by rewriting the source code into:
typedef int __attribute__((mode(V8HI))) v8hi;
short a[N]; short b[N]; short c[N]; int i;
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
v8hi va, vb, vc;
for (i=0; i<N/8; i++){
vb = pb[i];
vc = pc[i];
va = vb + vc;
pa[i] = va;
}
The main entry to this pass is vectorize_loops(), in which
the vectorizer applies a set of analyses on a given set of loops,
followed by the actual vectorization transformation for the loops that
had successfully passed the analysis phase.
Throughout this pass we make a distinction between two types of
data: scalars (which are represented by SSA_NAMES), and memory references
("data-refs"). These two types of data require different handling both
during analysis and transformation. The types of data-refs that the
vectorizer currently supports are ARRAY_REFS which base is an array DECL
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
accesses are required to have a simple (consecutive) access pattern.
Analysis phase:
===============
The driver for the analysis phase is vect_analyze_loop().
It applies a set of analyses, some of which rely on the scalar evolution
analyzer (scev) developed by Sebastian Pop.
During the analysis phase the vectorizer records some information
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
loop, as well as general information about the loop as a whole, which is
recorded in a "loop_vec_info" struct attached to each loop.
Transformation phase:
=====================
The loop transformation phase scans all the stmts in the loop, and
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
the loop that needs to be vectorized. It inserts the vector code sequence
just before the scalar stmt S, and records a pointer to the vector code
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
attached to S). This pointer will be used for the vectorization of following
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
otherwise, we rely on dead code elimination for removing it.
For example, say stmt S1 was vectorized into stmt VS1:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
S2: a = b;
To vectorize stmt S2, the vectorizer first finds the stmt that defines
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
resulting sequence would be:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
VS2: va = vb;
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
Operands that are not SSA_NAMEs, are data-refs that appear in
load/store operations (like 'x[i]' in S1), and are handled differently.
Target modeling:
=================
Currently the only target specific information that is used is the
size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
Targets that can support different sizes of vectors, for now will need
to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
flexibility will be added in the future.
Since we only vectorize operations which vector form can be
expressed using existing tree codes, to verify that an operation is
supported, the vectorizer checks the relevant optab at the relevant
machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
the value found is CODE_FOR_nothing, then there's no target support, and
we can't vectorize the stmt.
For additional information on this project see:
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/
static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *,
unsigned *);
static stmt_vec_info vect_is_simple_reduction (loop_vec_info, stmt_vec_info,
bool *, bool *, bool);
/* Subroutine of vect_determine_vf_for_stmt that handles only one
statement. VECTYPE_MAYBE_SET_P is true if STMT_VINFO_VECTYPE
may already be set for general statements (not just data refs). */
static opt_result
vect_determine_vf_for_stmt_1 (vec_info *vinfo, stmt_vec_info stmt_info,
bool vectype_maybe_set_p,
poly_uint64 *vf)
{
gimple *stmt = stmt_info->stmt;
if ((!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
|| gimple_clobber_p (stmt))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
return opt_result::success ();
}
tree stmt_vectype, nunits_vectype;
opt_result res = vect_get_vector_types_for_stmt (vinfo, stmt_info,
&stmt_vectype,
&nunits_vectype);
if (!res)
return res;
if (stmt_vectype)
{
if (STMT_VINFO_VECTYPE (stmt_info))
/* The only case when a vectype had been already set is for stmts
that contain a data ref, or for "pattern-stmts" (stmts generated
by the vectorizer to represent/replace a certain idiom). */
gcc_assert ((STMT_VINFO_DATA_REF (stmt_info)
|| vectype_maybe_set_p)
&& STMT_VINFO_VECTYPE (stmt_info) == stmt_vectype);
else
STMT_VINFO_VECTYPE (stmt_info) = stmt_vectype;
}
if (nunits_vectype)
vect_update_max_nunits (vf, nunits_vectype);
return opt_result::success ();
}
/* Subroutine of vect_determine_vectorization_factor. Set the vector
types of STMT_INFO and all attached pattern statements and update
the vectorization factor VF accordingly. Return true on success
or false if something prevented vectorization. */
static opt_result
vect_determine_vf_for_stmt (vec_info *vinfo,
stmt_vec_info stmt_info, poly_uint64 *vf)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: %G",
stmt_info->stmt);
opt_result res = vect_determine_vf_for_stmt_1 (vinfo, stmt_info, false, vf);
if (!res)
return res;
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
&& STMT_VINFO_RELATED_STMT (stmt_info))
{
gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
/* If a pattern statement has def stmts, analyze them too. */
for (gimple_stmt_iterator si = gsi_start (pattern_def_seq);
!gsi_end_p (si); gsi_next (&si))
{
stmt_vec_info def_stmt_info = vinfo->lookup_stmt (gsi_stmt (si));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"==> examining pattern def stmt: %G",
def_stmt_info->stmt);
res = vect_determine_vf_for_stmt_1 (vinfo, def_stmt_info, true, vf);
if (!res)
return res;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"==> examining pattern statement: %G",
stmt_info->stmt);
res = vect_determine_vf_for_stmt_1 (vinfo, stmt_info, true, vf);
if (!res)
return res;
}
return opt_result::success ();
}
/* Function vect_determine_vectorization_factor
Determine the vectorization factor (VF). VF is the number of data elements
that are operated upon in parallel in a single iteration of the vectorized
loop. For example, when vectorizing a loop that operates on 4byte elements,
on a target with vector size (VS) 16byte, the VF is set to 4, since 4
elements can fit in a single vector register.
We currently support vectorization of loops in which all types operated upon
are of the same size. Therefore this function currently sets VF according to
the size of the types operated upon, and fails if there are multiple sizes
in the loop.
VF is also the factor by which the loop iterations are strip-mined, e.g.:
original loop:
for (i=0; i<N; i++){
a[i] = b[i] + c[i];
}
vectorized loop:
for (i=0; i<N; i+=VF){
a[i:VF] = b[i:VF] + c[i:VF];
}
*/
static opt_result
vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
unsigned nbbs = loop->num_nodes;
poly_uint64 vectorization_factor = 1;
tree scalar_type = NULL_TREE;
gphi *phi;
tree vectype;
stmt_vec_info stmt_info;
unsigned i;
DUMP_VECT_SCOPE ("vect_determine_vectorization_factor");
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
phi = si.phi ();
stmt_info = loop_vinfo->lookup_stmt (phi);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: %G",
(gimple *) phi);
gcc_assert (stmt_info);
if (STMT_VINFO_RELEVANT_P (stmt_info)
|| STMT_VINFO_LIVE_P (stmt_info))
{
gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
scalar_type = TREE_TYPE (PHI_RESULT (phi));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"get vectype for scalar type: %T\n",
scalar_type);
vectype = get_vectype_for_scalar_type (loop_vinfo, scalar_type);
if (!vectype)
return opt_result::failure_at (phi,
"not vectorized: unsupported "
"data-type %T\n",
scalar_type);
STMT_VINFO_VECTYPE (stmt_info) = vectype;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "vectype: %T\n",
vectype);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "nunits = ");
dump_dec (MSG_NOTE, TYPE_VECTOR_SUBPARTS (vectype));
dump_printf (MSG_NOTE, "\n");
}
vect_update_max_nunits (&vectorization_factor, vectype);
}
}
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
gsi_next (&si))
{
if (is_gimple_debug (gsi_stmt (si)))
continue;
stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
opt_result res
= vect_determine_vf_for_stmt (loop_vinfo,
stmt_info, &vectorization_factor);
if (!res)
return res;
}
}
/* TODO: Analyze cost. Decide if worth while to vectorize. */
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = ");
dump_dec (MSG_NOTE, vectorization_factor);
dump_printf (MSG_NOTE, "\n");
}
if (known_le (vectorization_factor, 1U))
return opt_result::failure_at (vect_location,
"not vectorized: unsupported data-type\n");
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
return opt_result::success ();
}
/* Function vect_is_simple_iv_evolution.
FORNOW: A simple evolution of an induction variables in the loop is
considered a polynomial evolution. */
static bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
tree * step)
{
tree init_expr;
tree step_expr;
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
basic_block bb;
/* When there is no evolution in this loop, the evolution function
is not "simple". */
if (evolution_part == NULL_TREE)
return false;
/* When the evolution is a polynomial of degree >= 2
the evolution function is not "simple". */
if (tree_is_chrec (evolution_part))
return false;
step_expr = evolution_part;
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "step: %T, init: %T\n",
step_expr, init_expr);
*init = init_expr;
*step = step_expr;
if (TREE_CODE (step_expr) != INTEGER_CST
&& (TREE_CODE (step_expr) != SSA_NAME
|| ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
&& flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
|| (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
&& (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
|| !flag_associative_math)))
&& (TREE_CODE (step_expr) != REAL_CST
|| !flag_associative_math))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"step unknown.\n");
return false;
}
return true;
}
/* Function vect_is_nonlinear_iv_evolution
Only support nonlinear induction for integer type
1. neg
2. mul by constant
3. lshift/rshift by constant.
For neg induction, return a fake step as integer -1. */
static bool
vect_is_nonlinear_iv_evolution (class loop* loop, stmt_vec_info stmt_info,
gphi* loop_phi_node, tree *init, tree *step)
{
tree init_expr, ev_expr, result, op1, op2;
gimple* def;
if (gimple_phi_num_args (loop_phi_node) != 2)
return false;
init_expr = PHI_ARG_DEF_FROM_EDGE (loop_phi_node, loop_preheader_edge (loop));
ev_expr = PHI_ARG_DEF_FROM_EDGE (loop_phi_node, loop_latch_edge (loop));
/* Support nonlinear induction only for integer type. */
if (!INTEGRAL_TYPE_P (TREE_TYPE (init_expr)))
return false;
*init = init_expr;
result = PHI_RESULT (loop_phi_node);
if (TREE_CODE (ev_expr) != SSA_NAME
|| ((def = SSA_NAME_DEF_STMT (ev_expr)), false)
|| !is_gimple_assign (def))
return false;
enum tree_code t_code = gimple_assign_rhs_code (def);
switch (t_code)
{
case NEGATE_EXPR:
if (gimple_assign_rhs1 (def) != result)
return false;
*step = build_int_cst (TREE_TYPE (init_expr), -1);
STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (stmt_info) = vect_step_op_neg;
break;
case RSHIFT_EXPR:
case LSHIFT_EXPR:
case MULT_EXPR:
op1 = gimple_assign_rhs1 (def);
op2 = gimple_assign_rhs2 (def);
if (TREE_CODE (op2) != INTEGER_CST
|| op1 != result)
return false;
*step = op2;
if (t_code == LSHIFT_EXPR)
STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (stmt_info) = vect_step_op_shl;
else if (t_code == RSHIFT_EXPR)
STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (stmt_info) = vect_step_op_shr;
/* NEGATE_EXPR and MULT_EXPR are both vect_step_op_mul. */
else
STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (stmt_info) = vect_step_op_mul;
break;
default:
return false;
}
STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_info) = *init;
STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info) = *step;
return true;
}
/* Return true if PHI, described by STMT_INFO, is the inner PHI in
what we are assuming is a double reduction. For example, given
a structure like this:
outer1:
x_1 = PHI <x_4(outer2), ...>;
...
inner:
x_2 = PHI <x_1(outer1), ...>;
...
x_3 = ...;
...
outer2:
x_4 = PHI <x_3(inner)>;
...
outer loop analysis would treat x_1 as a double reduction phi and
this function would then return true for x_2. */
static bool
vect_inner_phi_in_double_reduction_p (loop_vec_info loop_vinfo, gphi *phi)
{
use_operand_p use_p;
ssa_op_iter op_iter;
FOR_EACH_PHI_ARG (use_p, phi, op_iter, SSA_OP_USE)
if (stmt_vec_info def_info = loop_vinfo->lookup_def (USE_FROM_PTR (use_p)))
if (STMT_VINFO_DEF_TYPE (def_info) == vect_double_reduction_def)
return true;
return false;
}
/* Returns true if Phi is a first-order recurrence. A first-order
recurrence is a non-reduction recurrence relation in which the value of
the recurrence in the current loop iteration equals a value defined in
the previous iteration. */
static bool
vect_phi_first_order_recurrence_p (loop_vec_info loop_vinfo, class loop *loop,
gphi *phi)
{
/* A nested cycle isn't vectorizable as first order recurrence. */
if (LOOP_VINFO_LOOP (loop_vinfo) != loop)
return false;
/* Ensure the loop latch definition is from within the loop. */
edge latch = loop_latch_edge (loop);
tree ldef = PHI_ARG_DEF_FROM_EDGE (phi, latch);
if (TREE_CODE (ldef) != SSA_NAME
|| SSA_NAME_IS_DEFAULT_DEF (ldef)
|| is_a <gphi *> (SSA_NAME_DEF_STMT (ldef))
|| !flow_bb_inside_loop_p (loop, gimple_bb (SSA_NAME_DEF_STMT (ldef))))
return false;
tree def = gimple_phi_result (phi);
/* Ensure every use_stmt of the phi node is dominated by the latch
definition. */
imm_use_iterator imm_iter;
use_operand_p use_p;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
if (!is_gimple_debug (USE_STMT (use_p))
&& (SSA_NAME_DEF_STMT (ldef) == USE_STMT (use_p)
|| !vect_stmt_dominates_stmt_p (SSA_NAME_DEF_STMT (ldef),
USE_STMT (use_p))))
return false;
/* First-order recurrence autovectorization needs shuffle vector. */
tree scalar_type = TREE_TYPE (def);
tree vectype = get_vectype_for_scalar_type (loop_vinfo, scalar_type);
if (!vectype)
return false;
return true;
}
/* Function vect_analyze_scalar_cycles_1.
Examine the cross iteration def-use cycles of scalar variables
in LOOP. LOOP_VINFO represents the loop that is now being
considered for vectorization (can be LOOP, or an outer-loop
enclosing LOOP). SLP indicates there will be some subsequent
slp analyses or not. */
static void
vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, class loop *loop,
bool slp)
{
basic_block bb = loop->header;
tree init, step;
auto_vec<stmt_vec_info, 64> worklist;
gphi_iterator gsi;
bool double_reduc, reduc_chain;
DUMP_VECT_SCOPE ("vect_analyze_scalar_cycles");
/* First - identify all inductions. Reduction detection assumes that all the
inductions have been identified, therefore, this order must not be
changed. */
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree access_fn = NULL;
tree def = PHI_RESULT (phi);
stmt_vec_info stmt_vinfo = loop_vinfo->lookup_stmt (phi);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
(gimple *) phi);
/* Skip virtual phi's. The data dependences that are associated with
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
if (virtual_operand_p (def))
continue;
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
/* Analyze the evolution function. */
access_fn = analyze_scalar_evolution (loop, def);
if (access_fn)
{
STRIP_NOPS (access_fn);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Access function of PHI: %T\n", access_fn);
STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
= initial_condition_in_loop_num (access_fn, loop->num);
STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
= evolution_part_in_loop_num (access_fn, loop->num);
}
if ((!access_fn
|| vect_inner_phi_in_double_reduction_p (loop_vinfo, phi)
|| !vect_is_simple_iv_evolution (loop->num, access_fn,
&init, &step)
|| (LOOP_VINFO_LOOP (loop_vinfo) != loop
&& TREE_CODE (step) != INTEGER_CST))
/* Only handle nonlinear iv for same loop. */
&& (LOOP_VINFO_LOOP (loop_vinfo) != loop
|| !vect_is_nonlinear_iv_evolution (loop, stmt_vinfo,
phi, &init, &step)))
{
worklist.safe_push (stmt_vinfo);
continue;
}
gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
!= NULL_TREE);
gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
}
/* Second - identify all reductions and nested cycles. */
while (worklist.length () > 0)
{
stmt_vec_info stmt_vinfo = worklist.pop ();
gphi *phi = as_a <gphi *> (stmt_vinfo->stmt);
tree def = PHI_RESULT (phi);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G",
(gimple *) phi);
gcc_assert (!virtual_operand_p (def)
&& STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
stmt_vec_info reduc_stmt_info
= vect_is_simple_reduction (loop_vinfo, stmt_vinfo, &double_reduc,
&reduc_chain, slp);
if (reduc_stmt_info)
{
STMT_VINFO_REDUC_DEF (stmt_vinfo) = reduc_stmt_info;
STMT_VINFO_REDUC_DEF (reduc_stmt_info) = stmt_vinfo;
if (double_reduc)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Detected double reduction.\n");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
STMT_VINFO_DEF_TYPE (reduc_stmt_info) = vect_double_reduction_def;
}
else
{
if (loop != LOOP_VINFO_LOOP (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Detected vectorizable nested cycle.\n");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
}
else
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Detected reduction.\n");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
STMT_VINFO_DEF_TYPE (reduc_stmt_info) = vect_reduction_def;
/* Store the reduction cycles for possible vectorization in
loop-aware SLP if it was not detected as reduction
chain. */
if (! reduc_chain)
LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push
(reduc_stmt_info);
}
}
}
else if (vect_phi_first_order_recurrence_p (loop_vinfo, loop, phi))
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_first_order_recurrence;
else
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Unknown def-use cycle pattern.\n");
}
}
/* Function vect_analyze_scalar_cycles.
Examine the cross iteration def-use cycles of scalar variables, by
analyzing the loop-header PHIs of scalar variables. Classify each
cycle as one of the following: invariant, induction, reduction, unknown.
We do that for the loop represented by LOOP_VINFO, and also to its
inner-loop, if exists.
Examples for scalar cycles:
Example1: reduction:
loop1:
for (i=0; i<N; i++)
sum += a[i];
Example2: induction:
loop2:
for (i=0; i<N; i++)
a[i] = i; */
static void
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo, bool slp)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
vect_analyze_scalar_cycles_1 (loop_vinfo, loop, slp);
/* When vectorizing an outer-loop, the inner-loop is executed sequentially.
Reductions in such inner-loop therefore have different properties than
the reductions in the nest that gets vectorized:
1. When vectorized, they are executed in the same order as in the original
scalar loop, so we can't change the order of computation when
vectorizing them.
2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
current checks are too strict. */
if (loop->inner)
vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner, slp);
}
/* Transfer group and reduction information from STMT_INFO to its
pattern stmt. */
static void
vect_fixup_reduc_chain (stmt_vec_info stmt_info)
{
stmt_vec_info firstp = STMT_VINFO_RELATED_STMT (stmt_info);
stmt_vec_info stmtp;
gcc_assert (!REDUC_GROUP_FIRST_ELEMENT (firstp)
&& REDUC_GROUP_FIRST_ELEMENT (stmt_info));
REDUC_GROUP_SIZE (firstp) = REDUC_GROUP_SIZE (stmt_info);
do
{
stmtp = STMT_VINFO_RELATED_STMT (stmt_info);
gcc_checking_assert (STMT_VINFO_DEF_TYPE (stmtp)
== STMT_VINFO_DEF_TYPE (stmt_info));
REDUC_GROUP_FIRST_ELEMENT (stmtp) = firstp;
stmt_info = REDUC_GROUP_NEXT_ELEMENT (stmt_info);
if (stmt_info)
REDUC_GROUP_NEXT_ELEMENT (stmtp)
= STMT_VINFO_RELATED_STMT (stmt_info);
}
while (stmt_info);
}
/* Fixup scalar cycles that now have their stmts detected as patterns. */
static void
vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
{
stmt_vec_info first;
unsigned i;
FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
{
stmt_vec_info next = REDUC_GROUP_NEXT_ELEMENT (first);
while (next)
{
if ((STMT_VINFO_IN_PATTERN_P (next)
!= STMT_VINFO_IN_PATTERN_P (first))
|| STMT_VINFO_REDUC_IDX (vect_stmt_to_vectorize (next)) == -1)
break;
next = REDUC_GROUP_NEXT_ELEMENT (next);
}
/* If all reduction chain members are well-formed patterns adjust
the group to group the pattern stmts instead. */
if (! next
&& STMT_VINFO_REDUC_IDX (vect_stmt_to_vectorize (first)) != -1)
{
if (STMT_VINFO_IN_PATTERN_P (first))
{
vect_fixup_reduc_chain (first);
LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
= STMT_VINFO_RELATED_STMT (first);
}
}
/* If not all stmt in the chain are patterns or if we failed
to update STMT_VINFO_REDUC_IDX dissolve the chain and handle
it as regular reduction instead. */
else
{
stmt_vec_info vinfo = first;
stmt_vec_info last = NULL;
while (vinfo)
{
next = REDUC_GROUP_NEXT_ELEMENT (vinfo);
REDUC_GROUP_FIRST_ELEMENT (vinfo) = NULL;
REDUC_GROUP_NEXT_ELEMENT (vinfo) = NULL;
last = vinfo;
vinfo = next;
}
STMT_VINFO_DEF_TYPE (vect_stmt_to_vectorize (first))
= vect_internal_def;
loop_vinfo->reductions.safe_push (vect_stmt_to_vectorize (last));
LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).unordered_remove (i);
--i;
}
}
}
/* Function vect_get_loop_niters.
Determine how many iterations the loop is executed and place it
in NUMBER_OF_ITERATIONS. Place the number of latch iterations
in NUMBER_OF_ITERATIONSM1. Place the condition under which the
niter information holds in ASSUMPTIONS.
Return the loop exit condition. */
static gcond *
vect_get_loop_niters (class loop *loop, tree *assumptions,
tree *number_of_iterations, tree *number_of_iterationsm1)
{
edge exit = single_exit (loop);
class tree_niter_desc niter_desc;
tree niter_assumptions, niter, may_be_zero;
gcond *cond = get_loop_exit_condition (loop);
*assumptions = boolean_true_node;
*number_of_iterationsm1 = chrec_dont_know;
*number_of_iterations = chrec_dont_know;
DUMP_VECT_SCOPE ("get_loop_niters");
if (!exit)
return cond;
may_be_zero = NULL_TREE;
if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
|| chrec_contains_undetermined (niter_desc.niter))
return cond;
niter_assumptions = niter_desc.assumptions;
may_be_zero = niter_desc.may_be_zero;
niter = niter_desc.niter;
if (may_be_zero && integer_zerop (may_be_zero))
may_be_zero = NULL_TREE;
if (may_be_zero)
{
if (COMPARISON_CLASS_P (may_be_zero))
{
/* Try to combine may_be_zero with assumptions, this can simplify
computation of niter expression. */
if (niter_assumptions && !integer_nonzerop (niter_assumptions))
niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
niter_assumptions,
fold_build1 (TRUTH_NOT_EXPR,
boolean_type_node,
may_be_zero));
else
niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
build_int_cst (TREE_TYPE (niter), 0),
rewrite_to_non_trapping_overflow (niter));
may_be_zero = NULL_TREE;
}
else if (integer_nonzerop (may_be_zero))
{
*number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
*number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
return cond;
}
else
return cond;
}
*assumptions = niter_assumptions;
*number_of_iterationsm1 = niter;
/* We want the number of loop header executions which is the number
of latch executions plus one.
??? For UINT_MAX latch executions this number overflows to zero
for loops like do { n++; } while (n != 0); */
if (niter && !chrec_contains_undetermined (niter))
niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
build_int_cst (TREE_TYPE (niter), 1));
*number_of_iterations = niter;
return cond;
}
/* Function bb_in_loop_p
Used as predicate for dfs order traversal of the loop bbs. */
static bool
bb_in_loop_p (const_basic_block bb, const void *data)
{
const class loop *const loop = (const class loop *)data;
if (flow_bb_inside_loop_p (loop, bb))
return true;
return false;
}
/* Create and initialize a new loop_vec_info struct for LOOP_IN, as well as
stmt_vec_info structs for all the stmts in LOOP_IN. */
_loop_vec_info::_loop_vec_info (class loop *loop_in, vec_info_shared *shared)
: vec_info (vec_info::loop, shared),
loop (loop_in),
bbs (XCNEWVEC (basic_block, loop->num_nodes)),
num_itersm1 (NULL_TREE),
num_iters (NULL_TREE),
num_iters_unchanged (NULL_TREE),
num_iters_assumptions (NULL_TREE),
vector_costs (nullptr),
scalar_costs (nullptr),
th (0),
versioning_threshold (0),
vectorization_factor (0),
main_loop_edge (nullptr),
skip_main_loop_edge (nullptr),
skip_this_loop_edge (nullptr),
reusable_accumulators (),
suggested_unroll_factor (1),
max_vectorization_factor (0),
mask_skip_niters (NULL_TREE),
rgroup_compare_type (NULL_TREE),
simd_if_cond (NULL_TREE),
partial_vector_style (vect_partial_vectors_none),
unaligned_dr (NULL),
peeling_for_alignment (0),
ptr_mask (0),
ivexpr_map (NULL),
scan_map (NULL),
slp_unrolling_factor (1),
inner_loop_cost_factor (param_vect_inner_loop_cost_factor),
vectorizable (false),
can_use_partial_vectors_p (param_vect_partial_vector_usage != 0),
using_partial_vectors_p (false),
using_decrementing_iv_p (false),
using_select_vl_p (false),
epil_using_partial_vectors_p (false),
partial_load_store_bias (0),
peeling_for_gaps (false),
peeling_for_niter (false),
no_data_dependencies (false),
has_mask_store (false),
scalar_loop_scaling (profile_probability::uninitialized ()),
scalar_loop (NULL),
orig_loop_info (NULL)
{
/* CHECKME: We want to visit all BBs before their successors (except for
latch blocks, for which this assertion wouldn't hold). In the simple
case of the loop forms we allow, a dfs order of the BBs would the same
as reversed postorder traversal, so we are safe. */
unsigned int nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
bbs, loop->num_nodes, loop);
gcc_assert (nbbs == loop->num_nodes);
for (unsigned int i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
gimple_stmt_iterator si;
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple *phi = gsi_stmt (si);
gimple_set_uid (phi, 0);
add_stmt (phi);
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
gimple_set_uid (stmt, 0);
if (is_gimple_debug (stmt))
continue;
add_stmt (stmt);
/* If .GOMP_SIMD_LANE call for the current loop has 3 arguments, the
third argument is the #pragma omp simd if (x) condition, when 0,
loop shouldn't be vectorized, when non-zero constant, it should
be vectorized normally, otherwise versioned with vectorized loop
done if the condition is non-zero at runtime. */
if (loop_in->simduid
&& is_gimple_call (stmt)
&& gimple_call_internal_p (stmt)
&& gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
&& gimple_call_num_args (stmt) >= 3
&& TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
&& (loop_in->simduid
== SSA_NAME_VAR (gimple_call_arg (stmt, 0))))
{
tree arg = gimple_call_arg (stmt, 2);
if (integer_zerop (arg) || TREE_CODE (arg) == SSA_NAME)
simd_if_cond = arg;
else
gcc_assert (integer_nonzerop (arg));
}
}
}
epilogue_vinfos.create (6);
}
/* Free all levels of rgroup CONTROLS. */
void
release_vec_loop_controls (vec<rgroup_controls> *controls)
{
rgroup_controls *rgc;
unsigned int i;
FOR_EACH_VEC_ELT (*controls, i, rgc)
rgc->controls.release ();
controls->release ();
}
/* Free all memory used by the _loop_vec_info, as well as all the
stmt_vec_info structs of all the stmts in the loop. */
_loop_vec_info::~_loop_vec_info ()
{
free (bbs);
release_vec_loop_controls (&masks.rgc_vec);
release_vec_loop_controls (&lens);
delete ivexpr_map;
delete scan_map;
epilogue_vinfos.release ();
delete scalar_costs;
delete vector_costs;
/* When we release an epiloge vinfo that we do not intend to use
avoid clearing AUX of the main loop which should continue to
point to the main loop vinfo since otherwise we'll leak that. */
if (loop->aux == this)
loop->aux = NULL;
}
/* Return an invariant or register for EXPR and emit necessary
computations in the LOOP_VINFO loop preheader. */
tree
cse_and_gimplify_to_preheader (loop_vec_info loop_vinfo, tree expr)
{
if (is_gimple_reg (expr)
|| is_gimple_min_invariant (expr))
return expr;
if (! loop_vinfo->ivexpr_map)
loop_vinfo->ivexpr_map = new hash_map<tree_operand_hash, tree>;
tree &cached = loop_vinfo->ivexpr_map->get_or_insert (expr);
if (! cached)
{
gimple_seq stmts = NULL;
cached = force_gimple_operand (unshare_expr (expr),
&stmts, true, NULL_TREE);
if (stmts)
{
edge e = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
gsi_insert_seq_on_edge_immediate (e, stmts);
}
}
return cached;
}
/* Return true if we can use CMP_TYPE as the comparison type to produce
all masks required to mask LOOP_VINFO. */
static bool
can_produce_all_loop_masks_p (loop_vec_info loop_vinfo, tree cmp_type)
{
rgroup_controls *rgm;
unsigned int i;
FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo).rgc_vec, i, rgm)
if (rgm->type != NULL_TREE
&& !direct_internal_fn_supported_p (IFN_WHILE_ULT,
cmp_type, rgm->type,
OPTIMIZE_FOR_SPEED))
return false;
return true;
}
/* Calculate the maximum number of scalars per iteration for every
rgroup in LOOP_VINFO. */
static unsigned int
vect_get_max_nscalars_per_iter (loop_vec_info loop_vinfo)
{
unsigned int res = 1;
unsigned int i;
rgroup_controls *rgm;
FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo).rgc_vec, i, rgm)
res = MAX (res, rgm->max_nscalars_per_iter);
return res;
}
/* Calculate the minimum precision necessary to represent:
MAX_NITERS * FACTOR
as an unsigned integer, where MAX_NITERS is the maximum number of
loop header iterations for the original scalar form of LOOP_VINFO. */
static unsigned
vect_min_prec_for_max_niters (loop_vec_info loop_vinfo, unsigned int factor)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Get the maximum number of iterations that is representable
in the counter type. */
tree ni_type = TREE_TYPE (LOOP_VINFO_NITERSM1 (loop_vinfo));
widest_int max_ni = wi::to_widest (TYPE_MAX_VALUE (ni_type)) + 1;
/* Get a more refined estimate for the number of iterations. */
widest_int max_back_edges;
if (max_loop_iterations (loop, &max_back_edges))
max_ni = wi::smin (max_ni, max_back_edges + 1);
/* Work out how many bits we need to represent the limit. */
return wi::min_precision (max_ni * factor, UNSIGNED);
}
/* True if the loop needs peeling or partial vectors when vectorized. */
static bool
vect_need_peeling_or_partial_vectors_p (loop_vec_info loop_vinfo)
{
unsigned HOST_WIDE_INT const_vf;
HOST_WIDE_INT max_niter
= likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
if (!th && LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo))
th = LOOP_VINFO_COST_MODEL_THRESHOLD (LOOP_VINFO_ORIG_LOOP_INFO
(loop_vinfo));
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
{
/* Work out the (constant) number of iterations that need to be
peeled for reasons other than niters. */
unsigned int peel_niter = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
peel_niter += 1;
if (!multiple_p (LOOP_VINFO_INT_NITERS (loop_vinfo) - peel_niter,
LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
return true;
}
else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
/* ??? When peeling for gaps but not alignment, we could
try to check whether the (variable) niters is known to be
VF * N + 1. That's something of a niche case though. */
|| LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|| !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&const_vf)
|| ((tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
< (unsigned) exact_log2 (const_vf))
/* In case of versioning, check if the maximum number of
iterations is greater than th. If they are identical,
the epilogue is unnecessary. */
&& (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
|| ((unsigned HOST_WIDE_INT) max_niter
> (th / const_vf) * const_vf))))
return true;
return false;
}
/* Each statement in LOOP_VINFO can be masked where necessary. Check
whether we can actually generate the masks required. Return true if so,
storing the type of the scalar IV in LOOP_VINFO_RGROUP_COMPARE_TYPE. */
static bool
vect_verify_full_masking (loop_vec_info loop_vinfo)
{
unsigned int min_ni_width;
/* Use a normal loop if there are no statements that need masking.
This only happens in rare degenerate cases: it means that the loop
has no loads, no stores, and no live-out values. */
if (LOOP_VINFO_MASKS (loop_vinfo).is_empty ())
return false;
/* Produce the rgroup controls. */
for (auto mask : LOOP_VINFO_MASKS (loop_vinfo).mask_set)
{
vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
tree vectype = mask.first;
unsigned nvectors = mask.second;
if (masks->rgc_vec.length () < nvectors)
masks->rgc_vec.safe_grow_cleared (nvectors, true);
rgroup_controls *rgm = &(*masks).rgc_vec[nvectors - 1];
/* The number of scalars per iteration and the number of vectors are
both compile-time constants. */
unsigned int nscalars_per_iter
= exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
if (rgm->max_nscalars_per_iter < nscalars_per_iter)
{
rgm->max_nscalars_per_iter = nscalars_per_iter;
rgm->type = truth_type_for (vectype);
rgm->factor = 1;
}
}
unsigned int max_nscalars_per_iter
= vect_get_max_nscalars_per_iter (loop_vinfo);
/* Work out how many bits we need to represent the limit. */
min_ni_width
= vect_min_prec_for_max_niters (loop_vinfo, max_nscalars_per_iter);
/* Find a scalar mode for which WHILE_ULT is supported. */
opt_scalar_int_mode cmp_mode_iter;
tree cmp_type = NULL_TREE;
tree iv_type = NULL_TREE;
widest_int iv_limit = vect_iv_limit_for_partial_vectors (loop_vinfo);
unsigned int iv_precision = UINT_MAX;
if (iv_limit != -1)
iv_precision = wi::min_precision (iv_limit * max_nscalars_per_iter,
UNSIGNED);
FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
{
unsigned int cmp_bits = GET_MODE_BITSIZE (cmp_mode_iter.require ());
if (cmp_bits >= min_ni_width
&& targetm.scalar_mode_supported_p (cmp_mode_iter.require ()))
{
tree this_type = build_nonstandard_integer_type (cmp_bits, true);
if (this_type
&& can_produce_all_loop_masks_p (loop_vinfo, this_type))
{
/* Although we could stop as soon as we find a valid mode,
there are at least two reasons why that's not always the
best choice:
- An IV that's Pmode or wider is more likely to be reusable
in address calculations than an IV that's narrower than
Pmode.
- Doing the comparison in IV_PRECISION or wider allows
a natural 0-based IV, whereas using a narrower comparison
type requires mitigations against wrap-around.
Conversely, if the IV limit is variable, doing the comparison
in a wider type than the original type can introduce
unnecessary extensions, so picking the widest valid mode
is not always a good choice either.
Here we prefer the first IV type that's Pmode or wider,
and the first comparison type that's IV_PRECISION or wider.
(The comparison type must be no wider than the IV type,
to avoid extensions in the vector loop.)
??? We might want to try continuing beyond Pmode for ILP32
targets if CMP_BITS < IV_PRECISION. */
iv_type = this_type;
if (!cmp_type || iv_precision > TYPE_PRECISION (cmp_type))
cmp_type = this_type;
if (cmp_bits >= GET_MODE_BITSIZE (Pmode))
break;
}
}
}
if (!cmp_type)
{
LOOP_VINFO_MASKS (loop_vinfo).rgc_vec.release ();
return false;
}
LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo) = cmp_type;
LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo) = iv_type;
LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo) = vect_partial_vectors_while_ult;
return true;
}
/* Each statement in LOOP_VINFO can be masked where necessary. Check
whether we can actually generate AVX512 style masks. Return true if so,
storing the type of the scalar IV in LOOP_VINFO_RGROUP_IV_TYPE. */
static bool
vect_verify_full_masking_avx512 (loop_vec_info loop_vinfo)
{
/* Produce differently organized rgc_vec and differently check
we can produce masks. */
/* Use a normal loop if there are no statements that need masking.
This only happens in rare degenerate cases: it means that the loop
has no loads, no stores, and no live-out values. */
if (LOOP_VINFO_MASKS (loop_vinfo).is_empty ())
return false;
/* For the decrementing IV we need to represent all values in
[0, niter + niter_skip] where niter_skip is the elements we
skip in the first iteration for prologue peeling. */
tree iv_type = NULL_TREE;
widest_int iv_limit = vect_iv_limit_for_partial_vectors (loop_vinfo);
unsigned int iv_precision = UINT_MAX;
if (iv_limit != -1)
iv_precision = wi::min_precision (iv_limit, UNSIGNED);
/* First compute the type for the IV we use to track the remaining
scalar iterations. */
opt_scalar_int_mode cmp_mode_iter;
FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
{
unsigned int cmp_bits = GET_MODE_BITSIZE (cmp_mode_iter.require ());
if (cmp_bits >= iv_precision
&& targetm.scalar_mode_supported_p (cmp_mode_iter.require ()))
{
iv_type = build_nonstandard_integer_type (cmp_bits, true);
if (iv_type)
break;
}
}
if (!iv_type)
return false;
/* Produce the rgroup controls. */
for (auto const &mask : LOOP_VINFO_MASKS (loop_vinfo).mask_set)
{
vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
tree vectype = mask.first;
unsigned nvectors = mask.second;
/* The number of scalars per iteration and the number of vectors are
both compile-time constants. */
unsigned int nscalars_per_iter
= exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
/* We index the rgroup_controls vector with nscalars_per_iter
which we keep constant and instead have a varying nvectors,
remembering the vector mask with the fewest nV. */
if (masks->rgc_vec.length () < nscalars_per_iter)
masks->rgc_vec.safe_grow_cleared (nscalars_per_iter, true);
rgroup_controls *rgm = &(*masks).rgc_vec[nscalars_per_iter - 1];
if (!rgm->type || rgm->factor > nvectors)
{
rgm->type = truth_type_for (vectype);
rgm->compare_type = NULL_TREE;
rgm->max_nscalars_per_iter = nscalars_per_iter;
rgm->factor = nvectors;
rgm->bias_adjusted_ctrl = NULL_TREE;
}
}
/* There is no fixed compare type we are going to use but we have to
be able to get at one for each mask group. */
unsigned int min_ni_width
= wi::min_precision (vect_max_vf (loop_vinfo), UNSIGNED);
bool ok = true;
for (auto &rgc : LOOP_VINFO_MASKS (loop_vinfo).rgc_vec)
{
tree mask_type = rgc.type;
if (!mask_type)
continue;
if (TYPE_PRECISION (TREE_TYPE (mask_type)) != 1)
{
ok = false;
break;
}
/* If iv_type is usable as compare type use that - we can elide the
saturation in that case. */
if (TYPE_PRECISION (iv_type) >= min_ni_width)
{
tree cmp_vectype
= build_vector_type (iv_type, TYPE_VECTOR_SUBPARTS (mask_type));
if (expand_vec_cmp_expr_p (cmp_vectype, mask_type, LT_EXPR))
rgc.compare_type = cmp_vectype;
}
if (!rgc.compare_type)
FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
{
unsigned int cmp_bits = GET_MODE_BITSIZE (cmp_mode_iter.require ());
if (cmp_bits >= min_ni_width
&& targetm.scalar_mode_supported_p (cmp_mode_iter.require ()))
{
tree cmp_type = build_nonstandard_integer_type (cmp_bits, true);
if (!cmp_type)
continue;
/* Check whether we can produce the mask with cmp_type. */
tree cmp_vectype
= build_vector_type (cmp_type, TYPE_VECTOR_SUBPARTS (mask_type));
if (expand_vec_cmp_expr_p (cmp_vectype, mask_type, LT_EXPR))
{
rgc.compare_type = cmp_vectype;
break;
}
}
}
if (!rgc.compare_type)
{
ok = false;
break;
}
}
if (!ok)
{
release_vec_loop_controls (&LOOP_VINFO_MASKS (loop_vinfo).rgc_vec);
return false;
}
LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo) = error_mark_node;
LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo) = iv_type;
LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo) = vect_partial_vectors_avx512;
return true;
}
/* Check whether we can use vector access with length based on precison
comparison. So far, to keep it simple, we only allow the case that the
precision of the target supported length is larger than the precision
required by loop niters. */
static bool
vect_verify_loop_lens (loop_vec_info loop_vinfo)
{
if (LOOP_VINFO_LENS (loop_vinfo).is_empty ())
return false;
machine_mode len_load_mode, len_store_mode;
if (!get_len_load_store_mode (loop_vinfo->vector_mode, true)
.exists (&len_load_mode))
return false;
if (!get_len_load_store_mode (loop_vinfo->vector_mode, false)
.exists (&len_store_mode))
return false;
signed char partial_load_bias = internal_len_load_store_bias
(IFN_LEN_LOAD, len_load_mode);
signed char partial_store_bias = internal_len_load_store_bias
(IFN_LEN_STORE, len_store_mode);
gcc_assert (partial_load_bias == partial_store_bias);
if (partial_load_bias == VECT_PARTIAL_BIAS_UNSUPPORTED)
return false;
/* If the backend requires a bias of -1 for LEN_LOAD, we must not emit
len_loads with a length of zero. In order to avoid that we prohibit
more than one loop length here. */
if (partial_load_bias == -1
&& LOOP_VINFO_LENS (loop_vinfo).length () > 1)
return false;
LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo) = partial_load_bias;
unsigned int max_nitems_per_iter = 1;
unsigned int i;
rgroup_controls *rgl;
/* Find the maximum number of items per iteration for every rgroup. */
FOR_EACH_VEC_ELT (LOOP_VINFO_LENS (loop_vinfo), i, rgl)
{
unsigned nitems_per_iter = rgl->max_nscalars_per_iter * rgl->factor;
max_nitems_per_iter = MAX (max_nitems_per_iter, nitems_per_iter);
}
/* Work out how many bits we need to represent the length limit. */
unsigned int min_ni_prec
= vect_min_prec_for_max_niters (loop_vinfo, max_nitems_per_iter);
/* Now use the maximum of below precisions for one suitable IV type:
- the IV's natural precision
- the precision needed to hold: the maximum number of scalar
iterations multiplied by the scale factor (min_ni_prec above)
- the Pmode precision
If min_ni_prec is less than the precision of the current niters,
we perfer to still use the niters type. Prefer to use Pmode and
wider IV to avoid narrow conversions. */
unsigned int ni_prec
= TYPE_PRECISION (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)));
min_ni_prec = MAX (min_ni_prec, ni_prec);
min_ni_prec = MAX (min_ni_prec, GET_MODE_BITSIZE (Pmode));
tree iv_type = NULL_TREE;
opt_scalar_int_mode tmode_iter;
FOR_EACH_MODE_IN_CLASS (tmode_iter, MODE_INT)
{
scalar_mode tmode = tmode_iter.require ();
unsigned int tbits = GET_MODE_BITSIZE (tmode);
/* ??? Do we really want to construct one IV whose precision exceeds
BITS_PER_WORD? */
if (tbits > BITS_PER_WORD)
break;
/* Find the first available standard integral type. */
if (tbits >= min_ni_prec && targetm.scalar_mode_supported_p (tmode))
{
iv_type = build_nonstandard_integer_type (tbits, true);
break;
}
}
if (!iv_type)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't vectorize with length-based partial vectors"
" because there is no suitable iv type.\n");
return false;
}
LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo) = iv_type;
LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo) = iv_type;
LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo) = vect_partial_vectors_len;
return true;
}
/* Calculate the cost of one scalar iteration of the loop. */
static void
vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes, factor;
int innerloop_iters, i;
DUMP_VECT_SCOPE ("vect_compute_single_scalar_iteration_cost");
/* Gather costs for statements in the scalar loop. */
/* FORNOW. */
innerloop_iters = 1;
if (loop->inner)
innerloop_iters = LOOP_VINFO_INNER_LOOP_COST_FACTOR (loop_vinfo);
for (i = 0; i < nbbs; i++)
{
gimple_stmt_iterator si;
basic_block bb = bbs[i];
if (bb->loop_father == loop->inner)
factor = innerloop_iters;
else
factor = 1;
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt);
if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
continue;
/* Skip stmts that are not vectorized inside the loop. */
stmt_vec_info vstmt_info = vect_stmt_to_vectorize (stmt_info);
if (!STMT_VINFO_RELEVANT_P (vstmt_info)
&& (!STMT_VINFO_LIVE_P (vstmt_info)
|| !VECTORIZABLE_CYCLE_DEF
(STMT_VINFO_DEF_TYPE (vstmt_info))))
continue;
vect_cost_for_stmt kind;
if (STMT_VINFO_DATA_REF (stmt_info))
{
if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
kind = scalar_load;
else
kind = scalar_store;
}
else if (vect_nop_conversion_p (stmt_info))
continue;
else
kind = scalar_stmt;
/* We are using vect_prologue here to avoid scaling twice
by the inner loop factor. */
record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
factor, kind, stmt_info, 0, vect_prologue);
}
}
/* Now accumulate cost. */
loop_vinfo->scalar_costs = init_cost (loop_vinfo, true);
add_stmt_costs (loop_vinfo->scalar_costs,
&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo));
loop_vinfo->scalar_costs->finish_cost (nullptr);
}
/* Function vect_analyze_loop_form.
Verify that certain CFG restrictions hold, including:
- the loop has a pre-header
- the loop has a single entry and exit
- the loop exit condition is simple enough
- the number of iterations can be analyzed, i.e, a countable loop. The
niter could be analyzed under some assumptions. */
opt_result
vect_analyze_loop_form (class loop *loop, vect_loop_form_info *info)
{
DUMP_VECT_SCOPE ("vect_analyze_loop_form");
/* Different restrictions apply when we are considering an inner-most loop,
vs. an outer (nested) loop.
(FORNOW. May want to relax some of these restrictions in the future). */
info->inner_loop_cond = NULL;
if (!loop->inner)
{
/* Inner-most loop. We currently require that the number of BBs is
exactly 2 (the header and latch). Vectorizable inner-most loops
look like this:
(pre-header)
|
header <--------+
| | |
| +--> latch --+
|
(exit-bb) */
if (loop->num_nodes != 2)
return opt_result::failure_at (vect_location,
"not vectorized:"
" control flow in loop.\n");
if (empty_block_p (loop->header))
return opt_result::failure_at (vect_location,
"not vectorized: empty loop.\n");
}
else
{
class loop *innerloop = loop->inner;
edge entryedge;
/* Nested loop. We currently require that the loop is doubly-nested,
contains a single inner loop, and the number of BBs is exactly 5.
Vectorizable outer-loops look like this:
(pre-header)
|
header <---+
| |
inner-loop |
| |
tail ------+
|
(exit-bb)
The inner-loop has the properties expected of inner-most loops
as described above. */
if ((loop->inner)->inner || (loop->inner)->next)
return opt_result::failure_at (vect_location,
"not vectorized:"
" multiple nested loops.\n");
if (loop->num_nodes != 5)
return opt_result::failure_at (vect_location,
"not vectorized:"
" control flow in loop.\n");
entryedge = loop_preheader_edge (innerloop);
if (entryedge->src != loop->header
|| !single_exit (innerloop)
|| single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
return opt_result::failure_at (vect_location,
"not vectorized:"
" unsupported outerloop form.\n");
/* Analyze the inner-loop. */
vect_loop_form_info inner;
opt_result res = vect_analyze_loop_form (loop->inner, &inner);
if (!res)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: Bad inner loop.\n");
return res;
}
/* Don't support analyzing niter under assumptions for inner
loop. */
if (!integer_onep (inner.assumptions))
return opt_result::failure_at (vect_location,
"not vectorized: Bad inner loop.\n");
if (!expr_invariant_in_loop_p (loop, inner.number_of_iterations))
return opt_result::failure_at (vect_location,
"not vectorized: inner-loop count not"
" invariant.\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Considering outer-loop vectorization.\n");
info->inner_loop_cond = inner.loop_cond;
}
if (!single_exit (loop))
return opt_result::failure_at (vect_location,
"not vectorized: multiple exits.\n");
if (EDGE_COUNT (loop->header->preds) != 2)
return opt_result::failure_at (vect_location,
"not vectorized:"
" too many incoming edges.\n");
/* We assume that the loop exit condition is at the end of the loop. i.e,
that the loop is represented as a do-while (with a proper if-guard
before the loop if needed), where the loop header contains all the
executable statements, and the latch is empty. */
if (!empty_block_p (loop->latch)
|| !gimple_seq_empty_p (phi_nodes (loop->latch)))
return opt_result::failure_at (vect_location,
"not vectorized: latch block not empty.\n");
/* Make sure the exit is not abnormal. */
edge e = single_exit (loop);
if (e->flags & EDGE_ABNORMAL)
return opt_result::failure_at (vect_location,
"not vectorized:"
" abnormal loop exit edge.\n");
info->loop_cond
= vect_get_loop_niters (loop, &info->assumptions,
&info->number_of_iterations,
&info->number_of_iterationsm1);
if (!info->loop_cond)
return opt_result::failure_at
(vect_location,
"not vectorized: complicated exit condition.\n");
if (integer_zerop (info->assumptions)
|| !info->number_of_iterations
|| chrec_contains_undetermined (info->number_of_iterations))
return opt_result::failure_at
(info->loop_cond,
"not vectorized: number of iterations cannot be computed.\n");
if (integer_zerop (info->number_of_iterations))
return opt_result::failure_at
(info->loop_cond,
"not vectorized: number of iterations = 0.\n");
if (!(tree_fits_shwi_p (info->number_of_iterations)
&& tree_to_shwi (info->number_of_iterations) > 0))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"Symbolic number of iterations is ");
dump_generic_expr (MSG_NOTE, TDF_DETAILS, info->number_of_iterations);
dump_printf (MSG_NOTE, "\n");
}
}
return opt_result::success ();
}
/* Create a loop_vec_info for LOOP with SHARED and the
vect_analyze_loop_form result. */
loop_vec_info
vect_create_loop_vinfo (class loop *loop, vec_info_shared *shared,
const vect_loop_form_info *info,
loop_vec_info main_loop_info)
{
loop_vec_info loop_vinfo = new _loop_vec_info (loop, shared);
LOOP_VINFO_NITERSM1 (loop_vinfo) = info->number_of_iterationsm1;
LOOP_VINFO_NITERS (loop_vinfo) = info->number_of_iterations;
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = info->number_of_iterations;
LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = main_loop_info;
/* Also record the assumptions for versioning. */
if (!integer_onep (info->assumptions) && !main_loop_info)
LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = info->assumptions;
stmt_vec_info loop_cond_info = loop_vinfo->lookup_stmt (info->loop_cond);
STMT_VINFO_TYPE (loop_cond_info) = loop_exit_ctrl_vec_info_type;
if (info->inner_loop_cond)
{
stmt_vec_info inner_loop_cond_info
= loop_vinfo->lookup_stmt (info->inner_loop_cond);
STMT_VINFO_TYPE (inner_loop_cond_info) = loop_exit_ctrl_vec_info_type;
/* If we have an estimate on the number of iterations of the inner
loop use that to limit the scale for costing, otherwise use
--param vect-inner-loop-cost-factor literally. */
widest_int nit;
if (estimated_stmt_executions (loop->inner, &nit))
LOOP_VINFO_INNER_LOOP_COST_FACTOR (loop_vinfo)
= wi::smin (nit, param_vect_inner_loop_cost_factor).to_uhwi ();
}
return loop_vinfo;
}
/* Scan the loop stmts and dependent on whether there are any (non-)SLP
statements update the vectorization factor. */
static void
vect_update_vf_for_slp (loop_vec_info loop_vinfo)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
poly_uint64 vectorization_factor;
int i;
DUMP_VECT_SCOPE ("vect_update_vf_for_slp");
vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
gcc_assert (known_ne (vectorization_factor, 0U));
/* If all the stmts in the loop can be SLPed, we perform only SLP, and
vectorization factor of the loop is the unrolling factor required by
the SLP instances. If that unrolling factor is 1, we say, that we
perform pure SLP on loop - cross iteration parallelism is not
exploited. */
bool only_slp_in_loop = true;
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (si.phi ());
if (!stmt_info)
continue;
if ((STMT_VINFO_RELEVANT_P (stmt_info)
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
&& !PURE_SLP_STMT (stmt_info))
/* STMT needs both SLP and loop-based vectorization. */
only_slp_in_loop = false;
}
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
gsi_next (&si))
{
if (is_gimple_debug (gsi_stmt (si)))
continue;
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
stmt_info = vect_stmt_to_vectorize (stmt_info);
if ((STMT_VINFO_RELEVANT_P (stmt_info)
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
&& !PURE_SLP_STMT (stmt_info))
/* STMT needs both SLP and loop-based vectorization. */
only_slp_in_loop = false;
}
}
if (only_slp_in_loop)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Loop contains only SLP stmts\n");
vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
}
else
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Loop contains SLP and non-SLP stmts\n");
/* Both the vectorization factor and unroll factor have the form
GET_MODE_SIZE (loop_vinfo->vector_mode) * X for some rational X,
so they must have a common multiple. */
vectorization_factor
= force_common_multiple (vectorization_factor,
LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
}
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"Updating vectorization factor to ");
dump_dec (MSG_NOTE, vectorization_factor);
dump_printf (MSG_NOTE, ".\n");
}
}
/* Return true if STMT_INFO describes a double reduction phi and if
the other phi in the reduction is also relevant for vectorization.
This rejects cases such as:
outer1:
x_1 = PHI <x_3(outer2), ...>;
...
inner:
x_2 = ...;
...
outer2:
x_3 = PHI <x_2(inner)>;
if nothing in x_2 or elsewhere makes x_1 relevant. */
static bool
vect_active_double_reduction_p (stmt_vec_info stmt_info)
{
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
return false;
return STMT_VINFO_RELEVANT_P (STMT_VINFO_REDUC_DEF (stmt_info));
}
/* Function vect_analyze_loop_operations.
Scan the loop stmts and make sure they are all vectorizable. */
static opt_result
vect_analyze_loop_operations (loop_vec_info loop_vinfo)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
int i;
stmt_vec_info stmt_info;
bool need_to_vectorize = false;
bool ok;
DUMP_VECT_SCOPE ("vect_analyze_loop_operations");
auto_vec<stmt_info_for_cost> cost_vec;
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
gphi *phi = si.phi ();
ok = true;
stmt_info = loop_vinfo->lookup_stmt (phi);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "examining phi: %G",
(gimple *) phi);
if (virtual_operand_p (gimple_phi_result (phi)))
continue;
/* Inner-loop loop-closed exit phi in outer-loop vectorization
(i.e., a phi in the tail of the outer-loop). */
if (! is_loop_header_bb_p (bb))
{
/* FORNOW: we currently don't support the case that these phis
are not used in the outerloop (unless it is double reduction,
i.e., this phi is vect_reduction_def), cause this case
requires to actually do something here. */
if (STMT_VINFO_LIVE_P (stmt_info)
&& !vect_active_double_reduction_p (stmt_info))
return opt_result::failure_at (phi,
"Unsupported loop-closed phi"
" in outer-loop.\n");
/* If PHI is used in the outer loop, we check that its operand
is defined in the inner loop. */
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
tree phi_op;
if (gimple_phi_num_args (phi) != 1)
return opt_result::failure_at (phi, "unsupported phi");
phi_op = PHI_ARG_DEF (phi, 0);
stmt_vec_info op_def_info = loop_vinfo->lookup_def (phi_op);
if (!op_def_info)
return opt_result::failure_at (phi, "unsupported phi\n");
if (STMT_VINFO_RELEVANT (op_def_info) != vect_used_in_outer
&& (STMT_VINFO_RELEVANT (op_def_info)
!= vect_used_in_outer_by_reduction))
return opt_result::failure_at (phi, "unsupported phi\n");
if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def
|| (STMT_VINFO_DEF_TYPE (stmt_info)
== vect_double_reduction_def))
&& !vectorizable_lc_phi (loop_vinfo,
stmt_info, NULL, NULL))
return opt_result::failure_at (phi, "unsupported phi\n");
}
continue;
}
gcc_assert (stmt_info);
if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
|| STMT_VINFO_LIVE_P (stmt_info))
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_first_order_recurrence)
/* A scalar-dependence cycle that we don't support. */
return opt_result::failure_at (phi,
"not vectorized:"
" scalar dependence cycle.\n");
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
need_to_vectorize = true;
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
&& ! PURE_SLP_STMT (stmt_info))
ok = vectorizable_induction (loop_vinfo,
stmt_info, NULL, NULL,
&cost_vec);
else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|| (STMT_VINFO_DEF_TYPE (stmt_info)
== vect_double_reduction_def)
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
&& ! PURE_SLP_STMT (stmt_info))
ok = vectorizable_reduction (loop_vinfo,
stmt_info, NULL, NULL, &cost_vec);
else if ((STMT_VINFO_DEF_TYPE (stmt_info)
== vect_first_order_recurrence)
&& ! PURE_SLP_STMT (stmt_info))
ok = vectorizable_recurr (loop_vinfo, stmt_info, NULL, NULL,
&cost_vec);
}
/* SLP PHIs are tested by vect_slp_analyze_node_operations. */
if (ok
&& STMT_VINFO_LIVE_P (stmt_info)
&& !PURE_SLP_STMT (stmt_info))
ok = vectorizable_live_operation (loop_vinfo, stmt_info, NULL, NULL,
-1, false, &cost_vec);
if (!ok)
return opt_result::failure_at (phi,
"not vectorized: relevant phi not "
"supported: %G",
static_cast <gimple *> (phi));
}
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
if (!gimple_clobber_p (stmt)
&& !is_gimple_debug (stmt))
{
opt_result res
= vect_analyze_stmt (loop_vinfo,
loop_vinfo->lookup_stmt (stmt),
&need_to_vectorize,
NULL, NULL, &cost_vec);
if (!res)
return res;
}
}
} /* bbs */
add_stmt_costs (loop_vinfo->vector_costs, &cost_vec);
/* All operations in the loop are either irrelevant (deal with loop
control, or dead), or only used outside the loop and can be moved
out of the loop (e.g. invariants, inductions). The loop can be
optimized away by scalar optimizations. We're better off not
touching this loop. */
if (!need_to_vectorize)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"All the computation can be taken out of the loop.\n");
return opt_result::failure_at
(vect_location,
"not vectorized: redundant loop. no profit to vectorize.\n");
}
return opt_result::success ();
}
/* Return true if we know that the iteration count is smaller than the
vectorization factor. Return false if it isn't, or if we can't be sure
either way. */
static bool
vect_known_niters_smaller_than_vf (loop_vec_info loop_vinfo)
{
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
HOST_WIDE_INT max_niter;
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
max_niter = LOOP_VINFO_INT_NITERS (loop_vinfo);
else
max_niter = max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
if (max_niter != -1 && (unsigned HOST_WIDE_INT) max_niter < assumed_vf)
return true;
return false;
}
/* Analyze the cost of the loop described by LOOP_VINFO. Decide if it
is worthwhile to vectorize. Return 1 if definitely yes, 0 if
definitely no, or -1 if it's worth retrying. */
static int
vect_analyze_loop_costing (loop_vec_info loop_vinfo,
unsigned *suggested_unroll_factor)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
/* Only loops that can handle partially-populated vectors can have iteration
counts less than the vectorization factor. */
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
&& vect_known_niters_smaller_than_vf (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: iteration count smaller than "
"vectorization factor.\n");
return 0;
}
/* If we know the number of iterations we can do better, for the
epilogue we can also decide whether the main loop leaves us
with enough iterations, prefering a smaller vector epilog then
also possibly used for the case we skip the vector loop. */
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
widest_int scalar_niters
= wi::to_widest (LOOP_VINFO_NITERSM1 (loop_vinfo)) + 1;
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
{
loop_vec_info orig_loop_vinfo
= LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
unsigned lowest_vf
= constant_lower_bound (LOOP_VINFO_VECT_FACTOR (orig_loop_vinfo));
int prolog_peeling = 0;
if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (orig_loop_vinfo);
if (prolog_peeling >= 0
&& known_eq (LOOP_VINFO_VECT_FACTOR (orig_loop_vinfo),
lowest_vf))
{
unsigned gap
= LOOP_VINFO_PEELING_FOR_GAPS (orig_loop_vinfo) ? 1 : 0;
scalar_niters = ((scalar_niters - gap - prolog_peeling)
% lowest_vf + gap);
}
}
/* Reject vectorizing for a single scalar iteration, even if
we could in principle implement that using partial vectors. */
unsigned peeling_gap = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo);
if (scalar_niters <= peeling_gap + 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: loop only has a single "
"scalar iteration.\n");
return 0;
}
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
/* Check that the loop processes at least one full vector. */
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
if (known_lt (scalar_niters, vf))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"loop does not have enough iterations "
"to support vectorization.\n");
return 0;
}
/* If we need to peel an extra epilogue iteration to handle data
accesses with gaps, check that there are enough scalar iterations
available.
The check above is redundant with this one when peeling for gaps,
but the distinction is useful for diagnostics. */
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
&& known_le (scalar_niters, vf))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"loop does not have enough iterations "
"to support peeling for gaps.\n");
return 0;
}
}
}
/* If using the "very cheap" model. reject cases in which we'd keep
a copy of the scalar code (even if we might be able to vectorize it). */
if (loop_cost_model (loop) == VECT_COST_MODEL_VERY_CHEAP
&& (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
|| LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|| LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"some scalar iterations would need to be peeled\n");
return 0;
}
int min_profitable_iters, min_profitable_estimate;
vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
&min_profitable_estimate,
suggested_unroll_factor);
if (min_profitable_iters < 0)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: vectorization not profitable.\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: vector version will never be "
"profitable.\n");
return -1;
}
int min_scalar_loop_bound = (param_min_vect_loop_bound
* assumed_vf);
/* Use the cost model only if it is more conservative than user specified
threshold. */
unsigned int th = (unsigned) MAX (min_scalar_loop_bound,
min_profitable_iters);
LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: vectorization not profitable.\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"not vectorized: iteration count smaller than user "
"specified loop bound parameter or minimum profitable "
"iterations (whichever is more conservative).\n");
return 0;
}
/* The static profitablity threshold min_profitable_estimate includes
the cost of having to check at runtime whether the scalar loop
should be used instead. If it turns out that we don't need or want
such a check, the threshold we should use for the static estimate
is simply the point at which the vector loop becomes more profitable
than the scalar loop. */
if (min_profitable_estimate > min_profitable_iters
&& !LOOP_REQUIRES_VERSIONING (loop_vinfo)
&& !LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
&& !LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
&& !vect_apply_runtime_profitability_check_p (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "no need for a runtime"
" choice between the scalar and vector loops\n");
min_profitable_estimate = min_profitable_iters;
}
/* If the vector loop needs multiple iterations to be beneficial then
things are probably too close to call, and the conservative thing
would be to stick with the scalar code. */
if (loop_cost_model (loop) == VECT_COST_MODEL_VERY_CHEAP
&& min_profitable_estimate > (int) vect_vf_for_cost (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"one iteration of the vector loop would be"
" more expensive than the equivalent number of"
" iterations of the scalar loop\n");
return 0;
}
HOST_WIDE_INT estimated_niter;
/* If we are vectorizing an epilogue then we know the maximum number of
scalar iterations it will cover is at least one lower than the
vectorization factor of the main loop. */
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
estimated_niter
= vect_vf_for_cost (LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo)) - 1;
else
{
estimated_niter = estimated_stmt_executions_int (loop);
if (estimated_niter == -1)
estimated_niter = likely_max_stmt_executions_int (loop);
}
if (estimated_niter != -1
&& ((unsigned HOST_WIDE_INT) estimated_niter
< MAX (th, (unsigned) min_profitable_estimate)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: estimated iteration count too "
"small.\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"not vectorized: estimated iteration count smaller "
"than specified loop bound parameter or minimum "
"profitable iterations (whichever is more "
"conservative).\n");
return -1;
}
return 1;
}
static opt_result
vect_get_datarefs_in_loop (loop_p loop, basic_block *bbs,
vec<data_reference_p> *datarefs,
unsigned int *n_stmts)
{
*n_stmts = 0;
for (unsigned i = 0; i < loop->num_nodes; i++)
for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *stmt = gsi_stmt (gsi);
if (is_gimple_debug (stmt))
continue;
++(*n_stmts);
opt_result res = vect_find_stmt_data_reference (loop, stmt, datarefs,
NULL, 0);
if (!res)
{
if (is_gimple_call (stmt) && loop->safelen)
{
tree fndecl = gimple_call_fndecl (stmt), op;
if (fndecl == NULL_TREE
&& gimple_call_internal_p (stmt, IFN_MASK_CALL))
{
fndecl = gimple_call_arg (stmt, 0);
gcc_checking_assert (TREE_CODE (fndecl) == ADDR_EXPR);
fndecl = TREE_OPERAND (fndecl, 0);
gcc_checking_assert (TREE_CODE (fndecl) == FUNCTION_DECL);
}
if (fndecl != NULL_TREE)
{
cgraph_node *node = cgraph_node::get (fndecl);
if (node != NULL && node->simd_clones != NULL)
{
unsigned int j, n = gimple_call_num_args (stmt);
for (j = 0; j < n; j++)
{
op = gimple_call_arg (stmt, j);
if (DECL_P (op)
|| (REFERENCE_CLASS_P (op)
&& get_base_address (op)))
break;
}
op = gimple_call_lhs (stmt);
/* Ignore #pragma omp declare simd functions
if they don't have data references in the
call stmt itself. */
if (j == n
&& !(op
&& (DECL_P (op)
|| (REFERENCE_CLASS_P (op)
&& get_base_address (op)))))
continue;
}
}
}
return res;
}
/* If dependence analysis will give up due to the limit on the
number of datarefs stop here and fail fatally. */
if (datarefs->length ()
> (unsigned)param_loop_max_datarefs_for_datadeps)
return opt_result::failure_at (stmt, "exceeded param "
"loop-max-datarefs-for-datadeps\n");
}
return opt_result::success ();
}
/* Look for SLP-only access groups and turn each individual access into its own
group. */
static void
vect_dissolve_slp_only_groups (loop_vec_info loop_vinfo)
{
unsigned int i;
struct data_reference *dr;
DUMP_VECT_SCOPE ("vect_dissolve_slp_only_groups");
vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
FOR_EACH_VEC_ELT (datarefs, i, dr)
{
gcc_assert (DR_REF (dr));
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (DR_STMT (dr));
/* Check if the load is a part of an interleaving chain. */
if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
{
stmt_vec_info first_element = DR_GROUP_FIRST_ELEMENT (stmt_info);
dr_vec_info *dr_info = STMT_VINFO_DR_INFO (first_element);
unsigned int group_size = DR_GROUP_SIZE (first_element);
/* Check if SLP-only groups. */
if (!STMT_SLP_TYPE (stmt_info)
&& STMT_VINFO_SLP_VECT_ONLY (first_element))
{
/* Dissolve the group. */
STMT_VINFO_SLP_VECT_ONLY (first_element) = false;
stmt_vec_info vinfo = first_element;
while (vinfo)
{
stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (vinfo);
DR_GROUP_FIRST_ELEMENT (vinfo) = vinfo;
DR_GROUP_NEXT_ELEMENT (vinfo) = NULL;
DR_GROUP_SIZE (vinfo) = 1;
if (STMT_VINFO_STRIDED_P (first_element)
/* We cannot handle stores with gaps. */
|| DR_IS_WRITE (dr_info->dr))
{
STMT_VINFO_STRIDED_P (vinfo) = true;
DR_GROUP_GAP (vinfo) = 0;
}
else
DR_GROUP_GAP (vinfo) = group_size - 1;
/* Duplicate and adjust alignment info, it needs to
be present on each group leader, see dr_misalignment. */
if (vinfo != first_element)
{
dr_vec_info *dr_info2 = STMT_VINFO_DR_INFO (vinfo);
dr_info2->target_alignment = dr_info->target_alignment;
int misalignment = dr_info->misalignment;
if (misalignment != DR_MISALIGNMENT_UNKNOWN)
{
HOST_WIDE_INT diff
= (TREE_INT_CST_LOW (DR_INIT (dr_info2->dr))
- TREE_INT_CST_LOW (DR_INIT (dr_info->dr)));
unsigned HOST_WIDE_INT align_c
= dr_info->target_alignment.to_constant ();
misalignment = (misalignment + diff) % align_c;
}
dr_info2->misalignment = misalignment;
}
vinfo = next;
}
}
}
}
}
/* Determine if operating on full vectors for LOOP_VINFO might leave
some scalar iterations still to do. If so, decide how we should
handle those scalar iterations. The possibilities are:
(1) Make LOOP_VINFO operate on partial vectors instead of full vectors.
In this case:
LOOP_VINFO_USING_PARTIAL_VECTORS_P == true
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == false
LOOP_VINFO_PEELING_FOR_NITER == false
(2) Make LOOP_VINFO operate on full vectors and use an epilogue loop
to handle the remaining scalar iterations. In this case:
LOOP_VINFO_USING_PARTIAL_VECTORS_P == false
LOOP_VINFO_PEELING_FOR_NITER == true
There are two choices:
(2a) Consider vectorizing the epilogue loop at the same VF as the
main loop, but using partial vectors instead of full vectors.
In this case:
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == true
(2b) Consider vectorizing the epilogue loop at lower VFs only.
In this case:
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == false
*/
opt_result
vect_determine_partial_vectors_and_peeling (loop_vec_info loop_vinfo)
{
/* Determine whether there would be any scalar iterations left over. */
bool need_peeling_or_partial_vectors_p
= vect_need_peeling_or_partial_vectors_p (loop_vinfo);
/* Decide whether to vectorize the loop with partial vectors. */
LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo) = false;
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P (loop_vinfo) = false;
if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
&& need_peeling_or_partial_vectors_p)
{
/* For partial-vector-usage=1, try to push the handling of partial
vectors to the epilogue, with the main loop continuing to operate
on full vectors.
If we are unrolling we also do not want to use partial vectors. This
is to avoid the overhead of generating multiple masks and also to
avoid having to execute entire iterations of FALSE masked instructions
when dealing with one or less full iterations.
??? We could then end up failing to use partial vectors if we
decide to peel iterations into a prologue, and if the main loop
then ends up processing fewer than VF iterations. */
if ((param_vect_partial_vector_usage == 1
|| loop_vinfo->suggested_unroll_factor > 1)
&& !LOOP_VINFO_EPILOGUE_P (loop_vinfo)
&& !vect_known_niters_smaller_than_vf (loop_vinfo))
LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P (loop_vinfo) = true;
else
LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo) = true;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"operating on %s vectors%s.\n",
LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
? "partial" : "full",
LOOP_VINFO_EPILOGUE_P (loop_vinfo)
? " for epilogue loop" : "");
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
= (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
&& need_peeling_or_partial_vectors_p);
return opt_result::success ();
}
/* Function vect_analyze_loop_2.
Apply a set of analyses on LOOP specified by LOOP_VINFO, the different
analyses will record information in some members of LOOP_VINFO. FATAL
indicates if some analysis meets fatal error. If one non-NULL pointer
SUGGESTED_UNROLL_FACTOR is provided, it's intent to be filled with one
worked out suggested unroll factor, while one NULL pointer shows it's
going to apply the suggested unroll factor. SLP_DONE_FOR_SUGGESTED_UF
is to hold the slp decision when the suggested unroll factor is worked
out. */
static opt_result
vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal,
unsigned *suggested_unroll_factor,
bool& slp_done_for_suggested_uf)
{
opt_result ok = opt_result::success ();
int res;
unsigned int max_vf = MAX_VECTORIZATION_FACTOR;
poly_uint64 min_vf = 2;
loop_vec_info orig_loop_vinfo = NULL;
/* If we are dealing with an epilogue then orig_loop_vinfo points to the
loop_vec_info of the first vectorized loop. */
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
else
orig_loop_vinfo = loop_vinfo;
gcc_assert (orig_loop_vinfo);
/* The first group of checks is independent of the vector size. */
fatal = true;
if (LOOP_VINFO_SIMD_IF_COND (loop_vinfo)
&& integer_zerop (LOOP_VINFO_SIMD_IF_COND (loop_vinfo)))
return opt_result::failure_at (vect_location,
"not vectorized: simd if(0)\n");
/* Find all data references in the loop (which correspond to vdefs/vuses)
and analyze their evolution in the loop. */
loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Gather the data references and count stmts in the loop. */
if (!LOOP_VINFO_DATAREFS (loop_vinfo).exists ())
{
opt_result res
= vect_get_datarefs_in_loop (loop, LOOP_VINFO_BBS (loop_vinfo),
&LOOP_VINFO_DATAREFS (loop_vinfo),
&LOOP_VINFO_N_STMTS (loop_vinfo));
if (!res)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: loop contains function "
"calls or data references that cannot "
"be analyzed\n");
return res;
}
loop_vinfo->shared->save_datarefs ();
}
else
loop_vinfo->shared->check_datarefs ();
/* Analyze the data references and also adjust the minimal
vectorization factor according to the loads and stores. */
ok = vect_analyze_data_refs (loop_vinfo, &min_vf, &fatal);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data references.\n");
return ok;
}
/* Check if we are applying unroll factor now. */
bool applying_suggested_uf = loop_vinfo->suggested_unroll_factor > 1;
gcc_assert (!applying_suggested_uf || !suggested_unroll_factor);
/* If the slp decision is false when suggested unroll factor is worked
out, and we are applying suggested unroll factor, we can simply skip
all slp related analyses this time. */
bool slp = !applying_suggested_uf || slp_done_for_suggested_uf;
/* Classify all cross-iteration scalar data-flow cycles.
Cross-iteration cycles caused by virtual phis are analyzed separately. */
vect_analyze_scalar_cycles (loop_vinfo, slp);
vect_pattern_recog (loop_vinfo);
vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
/* Analyze the access patterns of the data-refs in the loop (consecutive,
complex, etc.). FORNOW: Only handle consecutive access pattern. */
ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data access.\n");
return ok;
}
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo, &fatal);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unexpected pattern.\n");
return ok;
}
/* While the rest of the analysis below depends on it in some way. */
fatal = false;
/* Analyze data dependences between the data-refs in the loop
and adjust the maximum vectorization factor according to
the dependences.
FORNOW: fail at the first data dependence that we encounter. */
ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data dependence.\n");
return ok;
}
if (max_vf != MAX_VECTORIZATION_FACTOR
&& maybe_lt (max_vf, min_vf))
return opt_result::failure_at (vect_location, "bad data dependence.\n");
LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo) = max_vf;
ok = vect_determine_vectorization_factor (loop_vinfo);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't determine vectorization factor.\n");
return ok;
}
if (max_vf != MAX_VECTORIZATION_FACTOR
&& maybe_lt (max_vf, LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
return opt_result::failure_at (vect_location, "bad data dependence.\n");
/* Compute the scalar iteration cost. */
vect_compute_single_scalar_iteration_cost (loop_vinfo);
poly_uint64 saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
if (slp)
{
/* Check the SLP opportunities in the loop, analyze and build
SLP trees. */
ok = vect_analyze_slp (loop_vinfo, LOOP_VINFO_N_STMTS (loop_vinfo));
if (!ok)
return ok;
/* If there are any SLP instances mark them as pure_slp. */
slp = vect_make_slp_decision (loop_vinfo);
if (slp)
{
/* Find stmts that need to be both vectorized and SLPed. */
vect_detect_hybrid_slp (loop_vinfo);
/* Update the vectorization factor based on the SLP decision. */
vect_update_vf_for_slp (loop_vinfo);
/* Optimize the SLP graph with the vectorization factor fixed. */
vect_optimize_slp (loop_vinfo);
/* Gather the loads reachable from the SLP graph entries. */
vect_gather_slp_loads (loop_vinfo);
}
}
bool saved_can_use_partial_vectors_p
= LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo);
/* We don't expect to have to roll back to anything other than an empty
set of rgroups. */
gcc_assert (LOOP_VINFO_MASKS (loop_vinfo).is_empty ());
/* This is the point where we can re-start analysis with SLP forced off. */
start_over:
/* Apply the suggested unrolling factor, this was determined by the backend
during finish_cost the first time we ran the analyzis for this
vector mode. */
if (applying_suggested_uf)
LOOP_VINFO_VECT_FACTOR (loop_vinfo) *= loop_vinfo->suggested_unroll_factor;
/* Now the vectorization factor is final. */
poly_uint64 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
gcc_assert (known_ne (vectorization_factor, 0U));
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"vectorization_factor = ");
dump_dec (MSG_NOTE, vectorization_factor);
dump_printf (MSG_NOTE, ", niters = %wd\n",
LOOP_VINFO_INT_NITERS (loop_vinfo));
}
loop_vinfo->vector_costs = init_cost (loop_vinfo, false);
/* Analyze the alignment of the data-refs in the loop.
Fail if a data reference is found that cannot be vectorized. */
ok = vect_analyze_data_refs_alignment (loop_vinfo);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data alignment.\n");
return ok;
}
/* Prune the list of ddrs to be tested at run-time by versioning for alias.
It is important to call pruning after vect_analyze_data_ref_accesses,
since we use grouping information gathered by interleaving analysis. */
ok = vect_prune_runtime_alias_test_list (loop_vinfo);
if (!ok)
return ok;
/* Do not invoke vect_enhance_data_refs_alignment for epilogue
vectorization, since we do not want to add extra peeling or
add versioning for alignment. */
if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
/* This pass will decide on using loop versioning and/or loop peeling in
order to enhance the alignment of data references in the loop. */
ok = vect_enhance_data_refs_alignment (loop_vinfo);
if (!ok)
return ok;
if (slp)
{
/* Analyze operations in the SLP instances. Note this may
remove unsupported SLP instances which makes the above
SLP kind detection invalid. */
unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
vect_slp_analyze_operations (loop_vinfo);
if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
{
ok = opt_result::failure_at (vect_location,
"unsupported SLP instances\n");
goto again;
}
/* Check whether any load in ALL SLP instances is possibly permuted. */
slp_tree load_node, slp_root;
unsigned i, x;
slp_instance instance;
bool can_use_lanes = true;
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), x, instance)
{
slp_root = SLP_INSTANCE_TREE (instance);
int group_size = SLP_TREE_LANES (slp_root);
tree vectype = SLP_TREE_VECTYPE (slp_root);
bool loads_permuted = false;
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load_node)
{
if (!SLP_TREE_LOAD_PERMUTATION (load_node).exists ())
continue;
unsigned j;
stmt_vec_info load_info;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (load_node), j, load_info)
if (SLP_TREE_LOAD_PERMUTATION (load_node)[j] != j)
{
loads_permuted = true;
break;
}
}
/* If the loads and stores can be handled with load/store-lane
instructions record it and move on to the next instance. */
if (loads_permuted
&& SLP_INSTANCE_KIND (instance) == slp_inst_kind_store
&& vect_store_lanes_supported (vectype, group_size, false)
!= IFN_LAST)
{
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load_node)
{
stmt_vec_info stmt_vinfo = DR_GROUP_FIRST_ELEMENT
(SLP_TREE_SCALAR_STMTS (load_node)[0]);
/* Use SLP for strided accesses (or if we can't
load-lanes). */
if (STMT_VINFO_STRIDED_P (stmt_vinfo)
|| vect_load_lanes_supported
(STMT_VINFO_VECTYPE (stmt_vinfo),
DR_GROUP_SIZE (stmt_vinfo), false) == IFN_LAST)
break;
}
can_use_lanes
= can_use_lanes && i == SLP_INSTANCE_LOADS (instance).length ();
if (can_use_lanes && dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"SLP instance %p can use load/store-lanes\n",
(void *) instance);
}
else
{
can_use_lanes = false;
break;
}
}
/* If all SLP instances can use load/store-lanes abort SLP and try again
with SLP disabled. */
if (can_use_lanes)
{
ok = opt_result::failure_at (vect_location,
"Built SLP cancelled: can use "
"load/store-lanes\n");
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Built SLP cancelled: all SLP instances support "
"load/store-lanes\n");
goto again;
}
}
/* Dissolve SLP-only groups. */
vect_dissolve_slp_only_groups (loop_vinfo);
/* Scan all the remaining operations in the loop that are not subject
to SLP and make sure they are vectorizable. */
ok = vect_analyze_loop_operations (loop_vinfo);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad operation or unsupported loop bound.\n");
return ok;
}
/* For now, we don't expect to mix both masking and length approaches for one
loop, disable it if both are recorded. */
if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
&& !LOOP_VINFO_MASKS (loop_vinfo).is_empty ()
&& !LOOP_VINFO_LENS (loop_vinfo).is_empty ())
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't vectorize a loop with partial vectors"
" because we don't expect to mix different"
" approaches with partial vectors for the"
" same loop.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
/* If we still have the option of using partial vectors,
check whether we can generate the necessary loop controls. */
if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo))
{
if (!LOOP_VINFO_MASKS (loop_vinfo).is_empty ())
{
if (!vect_verify_full_masking (loop_vinfo)
&& !vect_verify_full_masking_avx512 (loop_vinfo))
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
else /* !LOOP_VINFO_LENS (loop_vinfo).is_empty () */
if (!vect_verify_loop_lens (loop_vinfo))
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
/* If we're vectorizing a loop that uses length "controls" and
can iterate more than once, we apply decrementing IV approach
in loop control. */
if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
&& LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo) == vect_partial_vectors_len
&& LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo) == 0
&& !(LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& known_le (LOOP_VINFO_INT_NITERS (loop_vinfo),
LOOP_VINFO_VECT_FACTOR (loop_vinfo))))
LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo) = true;
/* If a loop uses length controls and has a decrementing loop control IV,
we will normally pass that IV through a MIN_EXPR to calcaluate the
basis for the length controls. E.g. in a loop that processes one
element per scalar iteration, the number of elements would be
MIN_EXPR <N, VF>, where N is the number of scalar iterations left.
This MIN_EXPR approach allows us to use pointer IVs with an invariant
step, since only the final iteration of the vector loop can have
inactive lanes.
However, some targets have a dedicated instruction for calculating the
preferred length, given the total number of elements that still need to
be processed. This is encapsulated in the SELECT_VL internal function.
If the target supports SELECT_VL, we can use it instead of MIN_EXPR
to determine the basis for the length controls. However, unlike the
MIN_EXPR calculation, the SELECT_VL calculation can decide to make
lanes inactive in any iteration of the vector loop, not just the last
iteration. This SELECT_VL approach therefore requires us to use pointer
IVs with variable steps.
Once we've decided how many elements should be processed by one
iteration of the vector loop, we need to populate the rgroup controls.
If a loop has multiple rgroups, we need to make sure that those rgroups
"line up" (that is, they must be consistent about which elements are
active and which aren't). This is done by vect_adjust_loop_lens_control.
In principle, it would be possible to use vect_adjust_loop_lens_control
on either the result of a MIN_EXPR or the result of a SELECT_VL.
However:
(1) In practice, it only makes sense to use SELECT_VL when a vector
operation will be controlled directly by the result. It is not
worth using SELECT_VL if it would only be the input to other
calculations.
(2) If we use SELECT_VL for an rgroup that has N controls, each associated
pointer IV will need N updates by a variable amount (N-1 updates
within the iteration and 1 update to move to the next iteration).
Because of this, we prefer to use the MIN_EXPR approach whenever there
is more than one length control.
In addition, SELECT_VL always operates to a granularity of 1 unit.
If we wanted to use it to control an SLP operation on N consecutive
elements, we would need to make the SELECT_VL inputs measure scalar
iterations (rather than elements) and then multiply the SELECT_VL
result by N. But using SELECT_VL this way is inefficient because
of (1) above.
2. We don't apply SELECT_VL on single-rgroup when both (1) and (2) are
satisfied:
(1). LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) is true.
(2). LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant () is true.
Since SELECT_VL (variable step) will make SCEV analysis failed and then
we will fail to gain benefits of following unroll optimizations. We prefer
using the MIN_EXPR approach in this situation. */
if (LOOP_VINFO_USING_DECREMENTING_IV_P (loop_vinfo))
{
tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
if (direct_internal_fn_supported_p (IFN_SELECT_VL, iv_type,
OPTIMIZE_FOR_SPEED)
&& LOOP_VINFO_LENS (loop_vinfo).length () == 1
&& LOOP_VINFO_LENS (loop_vinfo)[0].factor == 1 && !slp
&& (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant ()))
LOOP_VINFO_USING_SELECT_VL_P (loop_vinfo) = true;
}
/* Decide whether this loop_vinfo should use partial vectors or peeling,
assuming that the loop will be used as a main loop. We will redo
this analysis later if we instead decide to use the loop as an
epilogue loop. */
ok = vect_determine_partial_vectors_and_peeling (loop_vinfo);
if (!ok)
return ok;
/* If we're vectorizing an epilogue loop, the vectorized loop either needs
to be able to handle fewer than VF scalars, or needs to have a lower VF
than the main loop. */
if (LOOP_VINFO_EPILOGUE_P (loop_vinfo)
&& !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
poly_uint64 unscaled_vf
= exact_div (LOOP_VINFO_VECT_FACTOR (orig_loop_vinfo),
orig_loop_vinfo->suggested_unroll_factor);
if (maybe_ge (LOOP_VINFO_VECT_FACTOR (loop_vinfo), unscaled_vf))
return opt_result::failure_at (vect_location,
"Vectorization factor too high for"
" epilogue loop.\n");
}
/* Check the costings of the loop make vectorizing worthwhile. */
res = vect_analyze_loop_costing (loop_vinfo, suggested_unroll_factor);
if (res < 0)
{
ok = opt_result::failure_at (vect_location,
"Loop costings may not be worthwhile.\n");
goto again;
}
if (!res)
return opt_result::failure_at (vect_location,
"Loop costings not worthwhile.\n");
/* If an epilogue loop is required make sure we can create one. */
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
|| LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
if (!vect_can_advance_ivs_p (loop_vinfo)
|| !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
single_exit (LOOP_VINFO_LOOP
(loop_vinfo))))
{
ok = opt_result::failure_at (vect_location,
"not vectorized: can't create required "
"epilog loop\n");
goto again;
}
}
/* During peeling, we need to check if number of loop iterations is
enough for both peeled prolog loop and vector loop. This check
can be merged along with threshold check of loop versioning, so
increase threshold for this case if necessary.
If we are analyzing an epilogue we still want to check what its
versioning threshold would be. If we decide to vectorize the epilogues we
will want to use the lowest versioning threshold of all epilogues and main
loop. This will enable us to enter a vectorized epilogue even when
versioning the loop. We can't simply check whether the epilogue requires
versioning though since we may have skipped some versioning checks when
analyzing the epilogue. For instance, checks for alias versioning will be
skipped when dealing with epilogues as we assume we already checked them
for the main loop. So instead we always check the 'orig_loop_vinfo'. */
if (LOOP_REQUIRES_VERSIONING (orig_loop_vinfo))
{
poly_uint64 niters_th = 0;
unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
{
/* Niters for peeled prolog loop. */
if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
{
dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
niters_th += TYPE_VECTOR_SUBPARTS (vectype) - 1;
}
else
niters_th += LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
}
/* Niters for at least one iteration of vectorized loop. */
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
/* One additional iteration because of peeling for gap. */
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
niters_th += 1;
/* Use the same condition as vect_transform_loop to decide when to use
the cost to determine a versioning threshold. */
if (vect_apply_runtime_profitability_check_p (loop_vinfo)
&& ordered_p (th, niters_th))
niters_th = ordered_max (poly_uint64 (th), niters_th);
LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = niters_th;
}
gcc_assert (known_eq (vectorization_factor,
LOOP_VINFO_VECT_FACTOR (loop_vinfo)));
slp_done_for_suggested_uf = slp;
/* Ok to vectorize! */
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
return opt_result::success ();
again:
/* Ensure that "ok" is false (with an opt_problem if dumping is enabled). */
gcc_assert (!ok);
/* Try again with SLP forced off but if we didn't do any SLP there is
no point in re-trying. */
if (!slp)
return ok;
/* If the slp decision is true when suggested unroll factor is worked
out, and we are applying suggested unroll factor, we don't need to
re-try any more. */
if (applying_suggested_uf && slp_done_for_suggested_uf)
return ok;
/* If there are reduction chains re-trying will fail anyway. */
if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
return ok;
/* Likewise if the grouped loads or stores in the SLP cannot be handled
via interleaving or lane instructions. */
slp_instance instance;
slp_tree node;
unsigned i, j;
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
{
stmt_vec_info vinfo;
vinfo = SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0];
if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
continue;
vinfo = DR_GROUP_FIRST_ELEMENT (vinfo);
unsigned int size = DR_GROUP_SIZE (vinfo);
tree vectype = STMT_VINFO_VECTYPE (vinfo);
if (vect_store_lanes_supported (vectype, size, false) == IFN_LAST
&& ! known_eq (TYPE_VECTOR_SUBPARTS (vectype), 1U)
&& ! vect_grouped_store_supported (vectype, size))
return opt_result::failure_at (vinfo->stmt,
"unsupported grouped store\n");
FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
{
vinfo = SLP_TREE_SCALAR_STMTS (node)[0];
vinfo = DR_GROUP_FIRST_ELEMENT (vinfo);
bool single_element_p = !DR_GROUP_NEXT_ELEMENT (vinfo);
size = DR_GROUP_SIZE (vinfo);
vectype = STMT_VINFO_VECTYPE (vinfo);
if (vect_load_lanes_supported (vectype, size, false) == IFN_LAST
&& ! vect_grouped_load_supported (vectype, single_element_p,
size))
return opt_result::failure_at (vinfo->stmt,
"unsupported grouped load\n");
}
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"re-trying with SLP disabled\n");
/* Roll back state appropriately. No SLP this time. */
slp = false;
/* Restore vectorization factor as it were without SLP. */
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
/* Free the SLP instances. */
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
vect_free_slp_instance (instance);
LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
/* Reset SLP type to loop_vect on all stmts. */
for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
{
basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
for (gimple_stmt_iterator si = gsi_start_phis (bb);
!gsi_end_p (si); gsi_next (&si))
{
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
STMT_SLP_TYPE (stmt_info) = loop_vect;
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
{
/* vectorizable_reduction adjusts reduction stmt def-types,
restore them to that of the PHI. */
STMT_VINFO_DEF_TYPE (STMT_VINFO_REDUC_DEF (stmt_info))
= STMT_VINFO_DEF_TYPE (stmt_info);
STMT_VINFO_DEF_TYPE (vect_stmt_to_vectorize
(STMT_VINFO_REDUC_DEF (stmt_info)))
= STMT_VINFO_DEF_TYPE (stmt_info);
}
}
for (gimple_stmt_iterator si = gsi_start_bb (bb);
!gsi_end_p (si); gsi_next (&si))
{
if (is_gimple_debug (gsi_stmt (si)))
continue;
stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
STMT_SLP_TYPE (stmt_info) = loop_vect;
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
{
stmt_vec_info pattern_stmt_info
= STMT_VINFO_RELATED_STMT (stmt_info);
if (STMT_VINFO_SLP_VECT_ONLY_PATTERN (pattern_stmt_info))
STMT_VINFO_IN_PATTERN_P (stmt_info) = false;
gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
STMT_SLP_TYPE (pattern_stmt_info) = loop_vect;
for (gimple_stmt_iterator pi = gsi_start (pattern_def_seq);
!gsi_end_p (pi); gsi_next (&pi))
STMT_SLP_TYPE (loop_vinfo->lookup_stmt (gsi_stmt (pi)))
= loop_vect;
}
}
}
/* Free optimized alias test DDRS. */
LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).truncate (0);
LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).release ();
/* Reset target cost data. */
delete loop_vinfo->vector_costs;
loop_vinfo->vector_costs = nullptr;
/* Reset accumulated rgroup information. */
LOOP_VINFO_MASKS (loop_vinfo).mask_set.empty ();
release_vec_loop_controls (&LOOP_VINFO_MASKS (loop_vinfo).rgc_vec);
release_vec_loop_controls (&LOOP_VINFO_LENS (loop_vinfo));
/* Reset assorted flags. */
LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = 0;
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
= saved_can_use_partial_vectors_p;
goto start_over;
}
/* Return true if vectorizing a loop using NEW_LOOP_VINFO appears
to be better than vectorizing it using OLD_LOOP_VINFO. Assume that
OLD_LOOP_VINFO is better unless something specifically indicates
otherwise.
Note that this deliberately isn't a partial order. */
static bool
vect_better_loop_vinfo_p (loop_vec_info new_loop_vinfo,
loop_vec_info old_loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (new_loop_vinfo);
gcc_assert (LOOP_VINFO_LOOP (old_loop_vinfo) == loop);
poly_int64 new_vf = LOOP_VINFO_VECT_FACTOR (new_loop_vinfo);
poly_int64 old_vf = LOOP_VINFO_VECT_FACTOR (old_loop_vinfo);
/* Always prefer a VF of loop->simdlen over any other VF. */
if (loop->simdlen)
{
bool new_simdlen_p = known_eq (new_vf, loop->simdlen);
bool old_simdlen_p = known_eq (old_vf, loop->simdlen);
if (new_simdlen_p != old_simdlen_p)
return new_simdlen_p;
}
const auto *old_costs = old_loop_vinfo->vector_costs;
const auto *new_costs = new_loop_vinfo->vector_costs;
if (loop_vec_info main_loop = LOOP_VINFO_ORIG_LOOP_INFO (old_loop_vinfo))
return new_costs->better_epilogue_loop_than_p (old_costs, main_loop);
return new_costs->better_main_loop_than_p (old_costs);
}
/* Decide whether to replace OLD_LOOP_VINFO with NEW_LOOP_VINFO. Return
true if we should. */
static bool
vect_joust_loop_vinfos (loop_vec_info new_loop_vinfo,
loop_vec_info old_loop_vinfo)
{
if (!vect_better_loop_vinfo_p (new_loop_vinfo, old_loop_vinfo))
return false;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Preferring vector mode %s to vector mode %s\n",
GET_MODE_NAME (new_loop_vinfo->vector_mode),
GET_MODE_NAME (old_loop_vinfo->vector_mode));
return true;
}
/* Analyze LOOP with VECTOR_MODES[MODE_I] and as epilogue if MAIN_LOOP_VINFO is
not NULL. Set AUTODETECTED_VECTOR_MODE if VOIDmode and advance
MODE_I to the next mode useful to analyze.
Return the loop_vinfo on success and wrapped null on failure. */
static opt_loop_vec_info
vect_analyze_loop_1 (class loop *loop, vec_info_shared *shared,
const vect_loop_form_info *loop_form_info,
loop_vec_info main_loop_vinfo,
const vector_modes &vector_modes, unsigned &mode_i,
machine_mode &autodetected_vector_mode,
bool &fatal)
{
loop_vec_info loop_vinfo
= vect_create_loop_vinfo (loop, shared, loop_form_info, main_loop_vinfo);
machine_mode vector_mode = vector_modes[mode_i];
loop_vinfo->vector_mode = vector_mode;
unsigned int suggested_unroll_factor = 1;
bool slp_done_for_suggested_uf = false;
/* Run the main analysis. */
opt_result res = vect_analyze_loop_2 (loop_vinfo, fatal,
&suggested_unroll_factor,
slp_done_for_suggested_uf);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Analysis %s with vector mode %s\n",
res ? "succeeded" : " failed",
GET_MODE_NAME (loop_vinfo->vector_mode));
if (res && !main_loop_vinfo && suggested_unroll_factor > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Re-trying analysis for unrolling"
" with unroll factor %d and slp %s.\n",
suggested_unroll_factor,
slp_done_for_suggested_uf ? "on" : "off");
loop_vec_info unroll_vinfo
= vect_create_loop_vinfo (loop, shared, loop_form_info, main_loop_vinfo);
unroll_vinfo->vector_mode = vector_mode;
unroll_vinfo->suggested_unroll_factor = suggested_unroll_factor;
opt_result new_res = vect_analyze_loop_2 (unroll_vinfo, fatal, NULL,
slp_done_for_suggested_uf);
if (new_res)
{
delete loop_vinfo;
loop_vinfo = unroll_vinfo;
}
else
delete unroll_vinfo;
}
/* Remember the autodetected vector mode. */
if (vector_mode == VOIDmode)
autodetected_vector_mode = loop_vinfo->vector_mode;
/* Advance mode_i, first skipping modes that would result in the
same analysis result. */
while (mode_i + 1 < vector_modes.length ()
&& vect_chooses_same_modes_p (loop_vinfo,
vector_modes[mode_i + 1]))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** The result for vector mode %s would"
" be the same\n",
GET_MODE_NAME (vector_modes[mode_i + 1]));
mode_i += 1;
}
if (mode_i + 1 < vector_modes.length ()
&& VECTOR_MODE_P (autodetected_vector_mode)
&& (related_vector_mode (vector_modes[mode_i + 1],
GET_MODE_INNER (autodetected_vector_mode))
== autodetected_vector_mode)
&& (related_vector_mode (autodetected_vector_mode,
GET_MODE_INNER (vector_modes[mode_i + 1]))
== vector_modes[mode_i + 1]))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Skipping vector mode %s, which would"
" repeat the analysis for %s\n",
GET_MODE_NAME (vector_modes[mode_i + 1]),
GET_MODE_NAME (autodetected_vector_mode));
mode_i += 1;
}
mode_i++;
if (!res)
{
delete loop_vinfo;
if (fatal)
gcc_checking_assert (main_loop_vinfo == NULL);
return opt_loop_vec_info::propagate_failure (res);
}
return opt_loop_vec_info::success (loop_vinfo);
}
/* Function vect_analyze_loop.
Apply a set of analyses on LOOP, and create a loop_vec_info struct
for it. The different analyses will record information in the
loop_vec_info struct. */
opt_loop_vec_info
vect_analyze_loop (class loop *loop, vec_info_shared *shared)
{
DUMP_VECT_SCOPE ("analyze_loop_nest");
if (loop_outer (loop)
&& loop_vec_info_for_loop (loop_outer (loop))
&& LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
return opt_loop_vec_info::failure_at (vect_location,
"outer-loop already vectorized.\n");
if (!find_loop_nest (loop, &shared->loop_nest))
return opt_loop_vec_info::failure_at
(vect_location,
"not vectorized: loop nest containing two or more consecutive inner"
" loops cannot be vectorized\n");
/* Analyze the loop form. */
vect_loop_form_info loop_form_info;
opt_result res = vect_analyze_loop_form (loop, &loop_form_info);
if (!res)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad loop form.\n");
return opt_loop_vec_info::propagate_failure (res);
}
if (!integer_onep (loop_form_info.assumptions))
{
/* We consider to vectorize this loop by versioning it under
some assumptions. In order to do this, we need to clear
existing information computed by scev and niter analyzer. */
scev_reset_htab ();
free_numbers_of_iterations_estimates (loop);
/* Also set flag for this loop so that following scev and niter
analysis are done under the assumptions. */
loop_constraint_set (loop, LOOP_C_FINITE);
}
auto_vector_modes vector_modes;
/* Autodetect first vector size we try. */
vector_modes.safe_push (VOIDmode);
unsigned int autovec_flags
= targetm.vectorize.autovectorize_vector_modes (&vector_modes,
loop->simdlen != 0);
bool pick_lowest_cost_p = ((autovec_flags & VECT_COMPARE_COSTS)
&& !unlimited_cost_model (loop));
machine_mode autodetected_vector_mode = VOIDmode;
opt_loop_vec_info first_loop_vinfo = opt_loop_vec_info::success (NULL);
unsigned int mode_i = 0;
unsigned HOST_WIDE_INT simdlen = loop->simdlen;
/* Keep track of the VF for each mode. Initialize all to 0 which indicates
a mode has not been analyzed. */
auto_vec<poly_uint64, 8> cached_vf_per_mode;
for (unsigned i = 0; i < vector_modes.length (); ++i)
cached_vf_per_mode.safe_push (0);
/* First determine the main loop vectorization mode, either the first
one that works, starting with auto-detecting the vector mode and then
following the targets order of preference, or the one with the
lowest cost if pick_lowest_cost_p. */
while (1)
{
bool fatal;
unsigned int last_mode_i = mode_i;
/* Set cached VF to -1 prior to analysis, which indicates a mode has
failed. */
cached_vf_per_mode[last_mode_i] = -1;
opt_loop_vec_info loop_vinfo
= vect_analyze_loop_1 (loop, shared, &loop_form_info,
NULL, vector_modes, mode_i,
autodetected_vector_mode, fatal);
if (fatal)
break;
if (loop_vinfo)
{
/* Analyzis has been successful so update the VF value. The
VF should always be a multiple of unroll_factor and we want to
capture the original VF here. */
cached_vf_per_mode[last_mode_i]
= exact_div (LOOP_VINFO_VECT_FACTOR (loop_vinfo),
loop_vinfo->suggested_unroll_factor);
/* Once we hit the desired simdlen for the first time,
discard any previous attempts. */
if (simdlen
&& known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), simdlen))
{
delete first_loop_vinfo;
first_loop_vinfo = opt_loop_vec_info::success (NULL);
simdlen = 0;
}
else if (pick_lowest_cost_p
&& first_loop_vinfo
&& vect_joust_loop_vinfos (loop_vinfo, first_loop_vinfo))
{
/* Pick loop_vinfo over first_loop_vinfo. */
delete first_loop_vinfo;
first_loop_vinfo = opt_loop_vec_info::success (NULL);
}
if (first_loop_vinfo == NULL)
first_loop_vinfo = loop_vinfo;
else
{
delete loop_vinfo;
loop_vinfo = opt_loop_vec_info::success (NULL);
}
/* Commit to first_loop_vinfo if we have no reason to try
alternatives. */
if (!simdlen && !pick_lowest_cost_p)
break;
}
if (mode_i == vector_modes.length ()
|| autodetected_vector_mode == VOIDmode)
break;
/* Try the next biggest vector size. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Re-trying analysis with vector mode %s\n",
GET_MODE_NAME (vector_modes[mode_i]));
}
if (!first_loop_vinfo)
return opt_loop_vec_info::propagate_failure (res);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Choosing vector mode %s\n",
GET_MODE_NAME (first_loop_vinfo->vector_mode));
/* Only vectorize epilogues if PARAM_VECT_EPILOGUES_NOMASK is
enabled, SIMDUID is not set, it is the innermost loop and we have
either already found the loop's SIMDLEN or there was no SIMDLEN to
begin with.
TODO: Enable epilogue vectorization for loops with SIMDUID set. */
bool vect_epilogues = (!simdlen
&& loop->inner == NULL
&& param_vect_epilogues_nomask
&& LOOP_VINFO_PEELING_FOR_NITER (first_loop_vinfo)
&& !loop->simduid);
if (!vect_epilogues)
return first_loop_vinfo;
/* Now analyze first_loop_vinfo for epilogue vectorization. */
poly_uint64 lowest_th = LOOP_VINFO_VERSIONING_THRESHOLD (first_loop_vinfo);
/* For epilogues start the analysis from the first mode. The motivation
behind starting from the beginning comes from cases where the VECTOR_MODES
array may contain length-agnostic and length-specific modes. Their
ordering is not guaranteed, so we could end up picking a mode for the main
loop that is after the epilogue's optimal mode. */
vector_modes[0] = autodetected_vector_mode;
mode_i = 0;
bool supports_partial_vectors =
partial_vectors_supported_p () && param_vect_partial_vector_usage != 0;
poly_uint64 first_vinfo_vf = LOOP_VINFO_VECT_FACTOR (first_loop_vinfo);
while (1)
{
/* If the target does not support partial vectors we can shorten the
number of modes to analyze for the epilogue as we know we can't pick a
mode that would lead to a VF at least as big as the
FIRST_VINFO_VF. */
if (!supports_partial_vectors
&& maybe_ge (cached_vf_per_mode[mode_i], first_vinfo_vf))
{
mode_i++;
if (mode_i == vector_modes.length ())
break;
continue;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Re-trying epilogue analysis with vector "
"mode %s\n", GET_MODE_NAME (vector_modes[mode_i]));
bool fatal;
opt_loop_vec_info loop_vinfo
= vect_analyze_loop_1 (loop, shared, &loop_form_info,
first_loop_vinfo,
vector_modes, mode_i,
autodetected_vector_mode, fatal);
if (fatal)
break;
if (loop_vinfo)
{
if (pick_lowest_cost_p)
{
/* Keep trying to roll back vectorization attempts while the
loop_vec_infos they produced were worse than this one. */
vec<loop_vec_info> &vinfos = first_loop_vinfo->epilogue_vinfos;
while (!vinfos.is_empty ()
&& vect_joust_loop_vinfos (loop_vinfo, vinfos.last ()))
{
gcc_assert (vect_epilogues);
delete vinfos.pop ();
}
}
/* For now only allow one epilogue loop. */
if (first_loop_vinfo->epilogue_vinfos.is_empty ())
{
first_loop_vinfo->epilogue_vinfos.safe_push (loop_vinfo);
poly_uint64 th = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
gcc_assert (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
|| maybe_ne (lowest_th, 0U));
/* Keep track of the known smallest versioning
threshold. */
if (ordered_p (lowest_th, th))
lowest_th = ordered_min (lowest_th, th);
}
else
{
delete loop_vinfo;
loop_vinfo = opt_loop_vec_info::success (NULL);
}
/* For now only allow one epilogue loop, but allow
pick_lowest_cost_p to replace it, so commit to the
first epilogue if we have no reason to try alternatives. */
if (!pick_lowest_cost_p)
break;
}
if (mode_i == vector_modes.length ())
break;
}
if (!first_loop_vinfo->epilogue_vinfos.is_empty ())
{
LOOP_VINFO_VERSIONING_THRESHOLD (first_loop_vinfo) = lowest_th;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Choosing epilogue vector mode %s\n",
GET_MODE_NAME
(first_loop_vinfo->epilogue_vinfos[0]->vector_mode));
}
return first_loop_vinfo;
}
/* Return true if there is an in-order reduction function for CODE, storing
it in *REDUC_FN if so. */
static bool
fold_left_reduction_fn (code_helper code, internal_fn *reduc_fn)
{
if (code == PLUS_EXPR)
{
*reduc_fn = IFN_FOLD_LEFT_PLUS;
return true;
}
return false;
}
/* Function reduction_fn_for_scalar_code
Input:
CODE - tree_code of a reduction operations.
Output:
REDUC_FN - the corresponding internal function to be used to reduce the
vector of partial results into a single scalar result, or IFN_LAST
if the operation is a supported reduction operation, but does not have
such an internal function.
Return FALSE if CODE currently cannot be vectorized as reduction. */
bool
reduction_fn_for_scalar_code (code_helper code, internal_fn *reduc_fn)
{
if (code.is_tree_code ())
switch (tree_code (code))
{
case MAX_EXPR:
*reduc_fn = IFN_REDUC_MAX;
return true;
case MIN_EXPR:
*reduc_fn = IFN_REDUC_MIN;
return true;
case PLUS_EXPR:
*reduc_fn = IFN_REDUC_PLUS;
return true;
case BIT_AND_EXPR:
*reduc_fn = IFN_REDUC_AND;
return true;
case BIT_IOR_EXPR:
*reduc_fn = IFN_REDUC_IOR;
return true;
case BIT_XOR_EXPR:
*reduc_fn = IFN_REDUC_XOR;
return true;
case MULT_EXPR:
case MINUS_EXPR:
*reduc_fn = IFN_LAST;
return true;
default:
return false;
}
else
switch (combined_fn (code))
{
CASE_CFN_FMAX:
*reduc_fn = IFN_REDUC_FMAX;
return true;
CASE_CFN_FMIN:
*reduc_fn = IFN_REDUC_FMIN;
return true;
default:
return false;
}
}
/* If there is a neutral value X such that a reduction would not be affected
by the introduction of additional X elements, return that X, otherwise
return null. CODE is the code of the reduction and SCALAR_TYPE is type
of the scalar elements. If the reduction has just a single initial value
then INITIAL_VALUE is that value, otherwise it is null. */
tree
neutral_op_for_reduction (tree scalar_type, code_helper code,
tree initial_value)
{
if (code.is_tree_code ())
switch (tree_code (code))
{
case WIDEN_SUM_EXPR:
case DOT_PROD_EXPR:
case SAD_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
return build_zero_cst (scalar_type);
case MULT_EXPR:
return build_one_cst (scalar_type);
case BIT_AND_EXPR:
return build_all_ones_cst (scalar_type);
case MAX_EXPR:
case MIN_EXPR:
return initial_value;
default:
return NULL_TREE;
}
else
switch (combined_fn (code))
{
CASE_CFN_FMIN:
CASE_CFN_FMAX:
return initial_value;
default:
return NULL_TREE;
}
}
/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
STMT is printed with a message MSG. */
static void
report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
{
dump_printf_loc (msg_type, vect_location, "%s%G", msg, stmt);
}
/* Return true if we need an in-order reduction for operation CODE
on type TYPE. NEED_WRAPPING_INTEGRAL_OVERFLOW is true if integer
overflow must wrap. */
bool
needs_fold_left_reduction_p (tree type, code_helper code)
{
/* CHECKME: check for !flag_finite_math_only too? */
if (SCALAR_FLOAT_TYPE_P (type))
{
if (code.is_tree_code ())
switch (tree_code (code))
{
case MIN_EXPR:
case MAX_EXPR:
return false;
default:
return !flag_associative_math;
}
else
switch (combined_fn (code))
{
CASE_CFN_FMIN:
CASE_CFN_FMAX:
return false;
default:
return !flag_associative_math;
}
}
if (INTEGRAL_TYPE_P (type))
return (!code.is_tree_code ()
|| !operation_no_trapping_overflow (type, tree_code (code)));
if (SAT_FIXED_POINT_TYPE_P (type))
return true;
return false;
}
/* Return true if the reduction PHI in LOOP with latch arg LOOP_ARG and
has a handled computation expression. Store the main reduction
operation in *CODE. */
static bool
check_reduction_path (dump_user_location_t loc, loop_p loop, gphi *phi,
tree loop_arg, code_helper *code,
vec<std::pair<ssa_op_iter, use_operand_p> > &path)
{
auto_bitmap visited;
tree lookfor = PHI_RESULT (phi);
ssa_op_iter curri;
use_operand_p curr = op_iter_init_phiuse (&curri, phi, SSA_OP_USE);
while (USE_FROM_PTR (curr) != loop_arg)
curr = op_iter_next_use (&curri);
curri.i = curri.numops;
do
{
path.safe_push (std::make_pair (curri, curr));
tree use = USE_FROM_PTR (curr);
if (use == lookfor)
break;
gimple *def = SSA_NAME_DEF_STMT (use);
if (gimple_nop_p (def)
|| ! flow_bb_inside_loop_p (loop, gimple_bb (def)))
{
pop:
do
{
std::pair<ssa_op_iter, use_operand_p> x = path.pop ();
curri = x.first;
curr = x.second;
do
curr = op_iter_next_use (&curri);
/* Skip already visited or non-SSA operands (from iterating
over PHI args). */
while (curr != NULL_USE_OPERAND_P
&& (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
|| ! bitmap_set_bit (visited,
SSA_NAME_VERSION
(USE_FROM_PTR (curr)))));
}
while (curr == NULL_USE_OPERAND_P && ! path.is_empty ());
if (curr == NULL_USE_OPERAND_P)
break;
}
else
{
if (gimple_code (def) == GIMPLE_PHI)
curr = op_iter_init_phiuse (&curri, as_a <gphi *>(def), SSA_OP_USE);
else
curr = op_iter_init_use (&curri, def, SSA_OP_USE);
while (curr != NULL_USE_OPERAND_P
&& (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
|| ! bitmap_set_bit (visited,
SSA_NAME_VERSION
(USE_FROM_PTR (curr)))))
curr = op_iter_next_use (&curri);
if (curr == NULL_USE_OPERAND_P)
goto pop;
}
}
while (1);
if (dump_file && (dump_flags & TDF_DETAILS))
{
dump_printf_loc (MSG_NOTE, loc, "reduction path: ");
unsigned i;
std::pair<ssa_op_iter, use_operand_p> *x;
FOR_EACH_VEC_ELT (path, i, x)
dump_printf (MSG_NOTE, "%T ", USE_FROM_PTR (x->second));
dump_printf (MSG_NOTE, "\n");
}
/* Check whether the reduction path detected is valid. */
bool fail = path.length () == 0;
bool neg = false;
int sign = -1;
*code = ERROR_MARK;
for (unsigned i = 1; i < path.length (); ++i)
{
gimple *use_stmt = USE_STMT (path[i].second);
gimple_match_op op;
if (!gimple_extract_op (use_stmt, &op))
{
fail = true;
break;
}
unsigned int opi = op.num_ops;
if (gassign *assign = dyn_cast<gassign *> (use_stmt))
{
/* The following make sure we can compute the operand index
easily plus it mostly disallows chaining via COND_EXPR condition
operands. */
for (opi = 0; opi < op.num_ops; ++opi)
if (gimple_assign_rhs1_ptr (assign) + opi == path[i].second->use)
break;
}
else if (gcall *call = dyn_cast<gcall *> (use_stmt))
{
for (opi = 0; opi < op.num_ops; ++opi)
if (gimple_call_arg_ptr (call, opi) == path[i].second->use)
break;
}
if (opi == op.num_ops)
{
fail = true;
break;
}
op.code = canonicalize_code (op.code, op.type);
if (op.code == MINUS_EXPR)
{
op.code = PLUS_EXPR;
/* Track whether we negate the reduction value each iteration. */
if (op.ops[1] == op.ops[opi])
neg = ! neg;
}
if (CONVERT_EXPR_CODE_P (op.code)
&& tree_nop_conversion_p (op.type, TREE_TYPE (op.ops[0])))
;
else if (*code == ERROR_MARK)
{
*code = op.code;
sign = TYPE_SIGN (op.type);
}
else if (op.code != *code)
{
fail = true;
break;
}
else if ((op.code == MIN_EXPR
|| op.code == MAX_EXPR)
&& sign != TYPE_SIGN (op.type))
{
fail = true;
break;
}
/* Check there's only a single stmt the op is used on. For the
not value-changing tail and the last stmt allow out-of-loop uses.
??? We could relax this and handle arbitrary live stmts by
forcing a scalar epilogue for example. */
imm_use_iterator imm_iter;
gimple *op_use_stmt;
unsigned cnt = 0;
FOR_EACH_IMM_USE_STMT (op_use_stmt, imm_iter, op.ops[opi])
if (!is_gimple_debug (op_use_stmt)
&& (*code != ERROR_MARK
|| flow_bb_inside_loop_p (loop, gimple_bb (op_use_stmt))))
{
/* We want to allow x + x but not x < 1 ? x : 2. */
if (is_gimple_assign (op_use_stmt)
&& gimple_assign_rhs_code (op_use_stmt) == COND_EXPR)
{
use_operand_p use_p;
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
cnt++;
}
else
cnt++;
}
if (cnt != 1)
{
fail = true;
break;
}
}
return ! fail && ! neg && *code != ERROR_MARK;
}
bool
check_reduction_path (dump_user_location_t loc, loop_p loop, gphi *phi,
tree loop_arg, enum tree_code code)
{
auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
code_helper code_;
return (check_reduction_path (loc, loop, phi, loop_arg, &code_, path)
&& code_ == code);
}
/* Function vect_is_simple_reduction
(1) Detect a cross-iteration def-use cycle that represents a simple
reduction computation. We look for the following pattern:
loop_header:
a1 = phi < a0, a2 >
a3 = ...
a2 = operation (a3, a1)
or
a3 = ...
loop_header:
a1 = phi < a0, a2 >
a2 = operation (a3, a1)
such that:
1. operation is commutative and associative and it is safe to
change the order of the computation
2. no uses for a2 in the loop (a2 is used out of the loop)
3. no uses of a1 in the loop besides the reduction operation
4. no uses of a1 outside the loop.
Conditions 1,4 are tested here.
Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
(2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
nested cycles.
(3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
reductions:
a1 = phi < a0, a2 >
inner loop (def of a3)
a2 = phi < a3 >
(4) Detect condition expressions, ie:
for (int i = 0; i < N; i++)
if (a[i] < val)
ret_val = a[i];
*/
static stmt_vec_info
vect_is_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info,
bool *double_reduc, bool *reduc_chain_p, bool slp)
{
gphi *phi = as_a <gphi *> (phi_info->stmt);
gimple *phi_use_stmt = NULL;
imm_use_iterator imm_iter;
use_operand_p use_p;
*double_reduc = false;
*reduc_chain_p = false;
STMT_VINFO_REDUC_TYPE (phi_info) = TREE_CODE_REDUCTION;
tree phi_name = PHI_RESULT (phi);
/* ??? If there are no uses of the PHI result the inner loop reduction
won't be detected as possibly double-reduction by vectorizable_reduction
because that tries to walk the PHI arg from the preheader edge which
can be constant. See PR60382. */
if (has_zero_uses (phi_name))
return NULL;
class loop *loop = (gimple_bb (phi))->loop_father;
unsigned nphi_def_loop_uses = 0;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"intermediate value used outside loop.\n");
return NULL;
}
nphi_def_loop_uses++;
phi_use_stmt = use_stmt;
}
tree latch_def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
if (TREE_CODE (latch_def) != SSA_NAME)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction: not ssa_name: %T\n", latch_def);
return NULL;
}
stmt_vec_info def_stmt_info = loop_info->lookup_def (latch_def);
if (!def_stmt_info
|| !flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt)))
return NULL;
bool nested_in_vect_loop
= flow_loop_nested_p (LOOP_VINFO_LOOP (loop_info), loop);
unsigned nlatch_def_loop_uses = 0;
auto_vec<gphi *, 3> lcphis;
bool inner_loop_of_double_reduc = false;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, latch_def)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
nlatch_def_loop_uses++;
else
{
/* We can have more than one loop-closed PHI. */
lcphis.safe_push (as_a <gphi *> (use_stmt));
if (nested_in_vect_loop
&& (STMT_VINFO_DEF_TYPE (loop_info->lookup_stmt (use_stmt))
== vect_double_reduction_def))
inner_loop_of_double_reduc = true;
}
}
/* If we are vectorizing an inner reduction we are executing that
in the original order only in case we are not dealing with a
double reduction. */
if (nested_in_vect_loop && !inner_loop_of_double_reduc)
{
if (dump_enabled_p ())
report_vect_op (MSG_NOTE, def_stmt_info->stmt,
"detected nested cycle: ");
return def_stmt_info;
}
/* When the inner loop of a double reduction ends up with more than
one loop-closed PHI we have failed to classify alternate such
PHIs as double reduction, leading to wrong code. See PR103237. */
if (inner_loop_of_double_reduc && lcphis.length () != 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unhandle double reduction\n");
return NULL;
}
/* If this isn't a nested cycle or if the nested cycle reduction value
is used ouside of the inner loop we cannot handle uses of the reduction
value. */
if (nlatch_def_loop_uses > 1 || nphi_def_loop_uses > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction used in loop.\n");
return NULL;
}
/* If DEF_STMT is a phi node itself, we expect it to have a single argument
defined in the inner loop. */
if (gphi *def_stmt = dyn_cast <gphi *> (def_stmt_info->stmt))
{
tree op1 = PHI_ARG_DEF (def_stmt, 0);
if (gimple_phi_num_args (def_stmt) != 1
|| TREE_CODE (op1) != SSA_NAME)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported phi node definition.\n");
return NULL;
}
/* Verify there is an inner cycle composed of the PHI phi_use_stmt
and the latch definition op1. */
gimple *def1 = SSA_NAME_DEF_STMT (op1);
if (gimple_bb (def1)
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
&& loop->inner
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
&& (is_gimple_assign (def1) || is_gimple_call (def1))
&& is_a <gphi *> (phi_use_stmt)
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt))
&& (op1 == PHI_ARG_DEF_FROM_EDGE (phi_use_stmt,
loop_latch_edge (loop->inner))))
{
if (dump_enabled_p ())
report_vect_op (MSG_NOTE, def_stmt,
"detected double reduction: ");
*double_reduc = true;
return def_stmt_info;
}
return NULL;
}
/* Look for the expression computing latch_def from then loop PHI result. */
auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
code_helper code;
if (check_reduction_path (vect_location, loop, phi, latch_def, &code,
path))
{
STMT_VINFO_REDUC_CODE (phi_info) = code;
if (code == COND_EXPR && !nested_in_vect_loop)
STMT_VINFO_REDUC_TYPE (phi_info) = COND_REDUCTION;
/* Fill in STMT_VINFO_REDUC_IDX and gather stmts for an SLP
reduction chain for which the additional restriction is that
all operations in the chain are the same. */
auto_vec<stmt_vec_info, 8> reduc_chain;
unsigned i;
bool is_slp_reduc = !nested_in_vect_loop && code != COND_EXPR;
for (i = path.length () - 1; i >= 1; --i)
{
gimple *stmt = USE_STMT (path[i].second);
stmt_vec_info stmt_info = loop_info->lookup_stmt (stmt);
gimple_match_op op;
if (!gimple_extract_op (stmt, &op))
gcc_unreachable ();
if (gassign *assign = dyn_cast<gassign *> (stmt))
STMT_VINFO_REDUC_IDX (stmt_info)
= path[i].second->use - gimple_assign_rhs1_ptr (assign);
else
{
gcall *call = as_a<gcall *> (stmt);
STMT_VINFO_REDUC_IDX (stmt_info)
= path[i].second->use - gimple_call_arg_ptr (call, 0);
}
bool leading_conversion = (CONVERT_EXPR_CODE_P (op.code)
&& (i == 1 || i == path.length () - 1));
if ((op.code != code && !leading_conversion)
/* We can only handle the final value in epilogue
generation for reduction chains. */
|| (i != 1 && !has_single_use (gimple_get_lhs (stmt))))
is_slp_reduc = false;
/* For reduction chains we support a trailing/leading
conversions. We do not store those in the actual chain. */
if (leading_conversion)
continue;
reduc_chain.safe_push (stmt_info);
}
if (slp && is_slp_reduc && reduc_chain.length () > 1)
{
for (unsigned i = 0; i < reduc_chain.length () - 1; ++i)
{
REDUC_GROUP_FIRST_ELEMENT (reduc_chain[i]) = reduc_chain[0];
REDUC_GROUP_NEXT_ELEMENT (reduc_chain[i]) = reduc_chain[i+1];
}
REDUC_GROUP_FIRST_ELEMENT (reduc_chain.last ()) = reduc_chain[0];
REDUC_GROUP_NEXT_ELEMENT (reduc_chain.last ()) = NULL;
/* Save the chain for further analysis in SLP detection. */
LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (reduc_chain[0]);
REDUC_GROUP_SIZE (reduc_chain[0]) = reduc_chain.length ();
*reduc_chain_p = true;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"reduction: detected reduction chain\n");
}
else if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"reduction: detected reduction\n");
return def_stmt_info;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"reduction: unknown pattern\n");
return NULL;
}
/* Estimate the number of peeled epilogue iterations for LOOP_VINFO.
PEEL_ITERS_PROLOGUE is the number of peeled prologue iterations,
or -1 if not known. */
static int
vect_get_peel_iters_epilogue (loop_vec_info loop_vinfo, int peel_iters_prologue)
{
int assumed_vf = vect_vf_for_cost (loop_vinfo);
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) || peel_iters_prologue == -1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"cost model: epilogue peel iters set to vf/2 "
"because loop iterations are unknown .\n");
return assumed_vf / 2;
}
else
{
int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
peel_iters_prologue = MIN (niters, peel_iters_prologue);
int peel_iters_epilogue = (niters - peel_iters_prologue) % assumed_vf;
/* If we need to peel for gaps, but no peeling is required, we have to
peel VF iterations. */
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !peel_iters_epilogue)
peel_iters_epilogue = assumed_vf;
return peel_iters_epilogue;
}
}
/* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
int
vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
int *peel_iters_epilogue,
stmt_vector_for_cost *scalar_cost_vec,
stmt_vector_for_cost *prologue_cost_vec,
stmt_vector_for_cost *epilogue_cost_vec)
{
int retval = 0;
*peel_iters_epilogue
= vect_get_peel_iters_epilogue (loop_vinfo, peel_iters_prologue);
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
/* If peeled iterations are known but number of scalar loop
iterations are unknown, count a taken branch per peeled loop. */
if (peel_iters_prologue > 0)
retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
vect_prologue);
if (*peel_iters_epilogue > 0)
retval += record_stmt_cost (epilogue_cost_vec, 1, cond_branch_taken,
vect_epilogue);
}
stmt_info_for_cost *si;
int j;
if (peel_iters_prologue)
FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
retval += record_stmt_cost (prologue_cost_vec,
si->count * peel_iters_prologue,
si->kind, si->stmt_info, si->misalign,
vect_prologue);
if (*peel_iters_epilogue)
FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
retval += record_stmt_cost (epilogue_cost_vec,
si->count * *peel_iters_epilogue,
si->kind, si->stmt_info, si->misalign,
vect_epilogue);
return retval;
}
/* Function vect_estimate_min_profitable_iters
Return the number of iterations required for the vector version of the
loop to be profitable relative to the cost of the scalar version of the
loop.
*RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
of iterations for vectorization. -1 value means loop vectorization
is not profitable. This returned value may be used for dynamic
profitability check.
*RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
for static check against estimated number of iterations. */
static void
vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
int *ret_min_profitable_niters,
int *ret_min_profitable_estimate,
unsigned *suggested_unroll_factor)
{
int min_profitable_iters;
int min_profitable_estimate;
int peel_iters_prologue;
int peel_iters_epilogue;
unsigned vec_inside_cost = 0;
int vec_outside_cost = 0;
unsigned vec_prologue_cost = 0;
unsigned vec_epilogue_cost = 0;
int scalar_single_iter_cost = 0;
int scalar_outside_cost = 0;
int assumed_vf = vect_vf_for_cost (loop_vinfo);
int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
vector_costs *target_cost_data = loop_vinfo->vector_costs;
/* Cost model disabled. */
if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
*ret_min_profitable_niters = 0;
*ret_min_profitable_estimate = 0;
return;
}
/* Requires loop versioning tests to handle misalignment. */
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
{
/* FIXME: Make cost depend on complexity of individual check. */
unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
(void) add_stmt_cost (target_cost_data, len, scalar_stmt, vect_prologue);
if (dump_enabled_p ())
dump_printf (MSG_NOTE,
"cost model: Adding cost of checks for loop "
"versioning to treat misalignment.\n");
}
/* Requires loop versioning with alias checks. */
if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
{
/* FIXME: Make cost depend on complexity of individual check. */
unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
(void) add_stmt_cost (target_cost_data, len, scalar_stmt, vect_prologue);
len = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).length ();
if (len)
/* Count LEN - 1 ANDs and LEN comparisons. */
(void) add_stmt_cost (target_cost_data, len * 2 - 1,
scalar_stmt, vect_prologue);
len = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).length ();
if (len)
{
/* Count LEN - 1 ANDs and LEN comparisons. */
unsigned int nstmts = len * 2 - 1;
/* +1 for each bias that needs adding. */
for (unsigned int i = 0; i < len; ++i)
if (!LOOP_VINFO_LOWER_BOUNDS (loop_vinfo)[i].unsigned_p)
nstmts += 1;
(void) add_stmt_cost (target_cost_data, nstmts,
scalar_stmt, vect_prologue);
}
if (dump_enabled_p ())
dump_printf (MSG_NOTE,
"cost model: Adding cost of checks for loop "
"versioning aliasing.\n");
}
/* Requires loop versioning with niter checks. */
if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
{
/* FIXME: Make cost depend on complexity of individual check. */
(void) add_stmt_cost (target_cost_data, 1, vector_stmt,
NULL, NULL, NULL_TREE, 0, vect_prologue);
if (dump_enabled_p ())
dump_printf (MSG_NOTE,
"cost model: Adding cost of checks for loop "
"versioning niters.\n");
}
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
vect_prologue);
/* Count statements in scalar loop. Using this as scalar cost for a single
iteration for now.
TODO: Add outer loop support.
TODO: Consider assigning different costs to different scalar
statements. */
scalar_single_iter_cost = loop_vinfo->scalar_costs->total_cost ();
/* Add additional cost for the peeled instructions in prologue and epilogue
loop. (For fully-masked loops there will be no peeling.)
FORNOW: If we don't know the value of peel_iters for prologue or epilogue
at compile-time - we assume it's vf/2 (the worst would be vf-1).
TODO: Build an expression that represents peel_iters for prologue and
epilogue to be used in a run-time test. */
bool prologue_need_br_taken_cost = false;
bool prologue_need_br_not_taken_cost = false;
/* Calculate peel_iters_prologue. */
if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
peel_iters_prologue = 0;
else if (npeel < 0)
{
peel_iters_prologue = assumed_vf / 2;
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "cost model: "
"prologue peel iters set to vf/2.\n");
/* If peeled iterations are unknown, count a taken branch and a not taken
branch per peeled loop. Even if scalar loop iterations are known,
vector iterations are not known since peeled prologue iterations are
not known. Hence guards remain the same. */
prologue_need_br_taken_cost = true;
prologue_need_br_not_taken_cost = true;
}
else
{
peel_iters_prologue = npeel;
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && peel_iters_prologue > 0)
/* If peeled iterations are known but number of scalar loop
iterations are unknown, count a taken branch per peeled loop. */
prologue_need_br_taken_cost = true;
}
bool epilogue_need_br_taken_cost = false;
bool epilogue_need_br_not_taken_cost = false;
/* Calculate peel_iters_epilogue. */
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
/* We need to peel exactly one iteration for gaps. */
peel_iters_epilogue = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
else if (npeel < 0)
{
/* If peeling for alignment is unknown, loop bound of main loop
becomes unknown. */
peel_iters_epilogue = assumed_vf / 2;
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "cost model: "
"epilogue peel iters set to vf/2 because "
"peeling for alignment is unknown.\n");
/* See the same reason above in peel_iters_prologue calculation. */
epilogue_need_br_taken_cost = true;
epilogue_need_br_not_taken_cost = true;
}
else
{
peel_iters_epilogue = vect_get_peel_iters_epilogue (loop_vinfo, npeel);
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && peel_iters_epilogue > 0)
/* If peeled iterations are known but number of scalar loop
iterations are unknown, count a taken branch per peeled loop. */
epilogue_need_br_taken_cost = true;
}
stmt_info_for_cost *si;
int j;
/* Add costs associated with peel_iters_prologue. */
if (peel_iters_prologue)
FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
{
(void) add_stmt_cost (target_cost_data,
si->count * peel_iters_prologue, si->kind,
si->stmt_info, si->node, si->vectype,
si->misalign, vect_prologue);
}
/* Add costs associated with peel_iters_epilogue. */
if (peel_iters_epilogue)
FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
{
(void) add_stmt_cost (target_cost_data,
si->count * peel_iters_epilogue, si->kind,
si->stmt_info, si->node, si->vectype,
si->misalign, vect_epilogue);
}
/* Add possible cond_branch_taken/cond_branch_not_taken cost. */
if (prologue_need_br_taken_cost)
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
vect_prologue);
if (prologue_need_br_not_taken_cost)
(void) add_stmt_cost (target_cost_data, 1,
cond_branch_not_taken, vect_prologue);
if (epilogue_need_br_taken_cost)
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
vect_epilogue);
if (epilogue_need_br_not_taken_cost)
(void) add_stmt_cost (target_cost_data, 1,
cond_branch_not_taken, vect_epilogue);
/* Take care of special costs for rgroup controls of partial vectors. */
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
&& (LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo)
== vect_partial_vectors_avx512))
{
/* Calculate how many masks we need to generate. */
unsigned int num_masks = 0;
bool need_saturation = false;
for (auto rgm : LOOP_VINFO_MASKS (loop_vinfo).rgc_vec)
if (rgm.type)
{
unsigned nvectors = rgm.factor;
num_masks += nvectors;
if (TYPE_PRECISION (TREE_TYPE (rgm.compare_type))
< TYPE_PRECISION (LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo)))
need_saturation = true;
}
/* ??? The target isn't able to identify the costs below as
producing masks so it cannot penaltize cases where we'd run
out of mask registers for example. */
/* ??? We are also failing to account for smaller vector masks
we generate by splitting larger masks in vect_get_loop_mask. */
/* In the worst case, we need to generate each mask in the prologue
and in the loop body. We need one splat per group and one
compare per mask.
Sometimes the prologue mask will fold to a constant,
so the actual prologue cost might be smaller. However, it's
simpler and safer to use the worst-case cost; if this ends up
being the tie-breaker between vectorizing or not, then it's
probably better not to vectorize. */
(void) add_stmt_cost (target_cost_data,
num_masks
+ LOOP_VINFO_MASKS (loop_vinfo).rgc_vec.length (),
vector_stmt, NULL, NULL, NULL_TREE, 0,
vect_prologue);
(void) add_stmt_cost (target_cost_data,
num_masks
+ LOOP_VINFO_MASKS (loop_vinfo).rgc_vec.length (),
vector_stmt, NULL, NULL, NULL_TREE, 0, vect_body);
/* When we need saturation we need it both in the prologue and
the epilogue. */
if (need_saturation)
{
(void) add_stmt_cost (target_cost_data, 1, scalar_stmt,
NULL, NULL, NULL_TREE, 0, vect_prologue);
(void) add_stmt_cost (target_cost_data, 1, scalar_stmt,
NULL, NULL, NULL_TREE, 0, vect_body);
}
}
else if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
&& (LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo)
== vect_partial_vectors_while_ult))
{
/* Calculate how many masks we need to generate. */
unsigned int num_masks = 0;
rgroup_controls *rgm;
unsigned int num_vectors_m1;
FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo).rgc_vec,
num_vectors_m1, rgm)
if (rgm->type)
num_masks += num_vectors_m1 + 1;
gcc_assert (num_masks > 0);
/* In the worst case, we need to generate each mask in the prologue
and in the loop body. One of the loop body mask instructions
replaces the comparison in the scalar loop, and since we don't
count the scalar comparison against the scalar body, we shouldn't
count that vector instruction against the vector body either.
Sometimes we can use unpacks instead of generating prologue
masks and sometimes the prologue mask will fold to a constant,
so the actual prologue cost might be smaller. However, it's
simpler and safer to use the worst-case cost; if this ends up
being the tie-breaker between vectorizing or not, then it's
probably better not to vectorize. */
(void) add_stmt_cost (target_cost_data, num_masks,
vector_stmt, NULL, NULL, NULL_TREE, 0,
vect_prologue);
(void) add_stmt_cost (target_cost_data, num_masks - 1,
vector_stmt, NULL, NULL, NULL_TREE, 0,
vect_body);
}
else if (LOOP_VINFO_FULLY_WITH_LENGTH_P (loop_vinfo))
{
/* Referring to the functions vect_set_loop_condition_partial_vectors
and vect_set_loop_controls_directly, we need to generate each
length in the prologue and in the loop body if required. Although
there are some possible optimizations, we consider the worst case
here. */
bool niters_known_p = LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo);
signed char partial_load_store_bias
= LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
bool need_iterate_p
= (!LOOP_VINFO_EPILOGUE_P (loop_vinfo)
&& !vect_known_niters_smaller_than_vf (loop_vinfo));
/* Calculate how many statements to be added. */
unsigned int prologue_stmts = 0;
unsigned int body_stmts = 0;
rgroup_controls *rgc;
unsigned int num_vectors_m1;
FOR_EACH_VEC_ELT (LOOP_VINFO_LENS (loop_vinfo), num_vectors_m1, rgc)
if (rgc->type)
{
/* May need one SHIFT for nitems_total computation. */
unsigned nitems = rgc->max_nscalars_per_iter * rgc->factor;
if (nitems != 1 && !niters_known_p)
prologue_stmts += 1;
/* May need one MAX and one MINUS for wrap around. */
if (vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc))
prologue_stmts += 2;
/* Need one MAX and one MINUS for each batch limit excepting for
the 1st one. */
prologue_stmts += num_vectors_m1 * 2;
unsigned int num_vectors = num_vectors_m1 + 1;
/* Need to set up lengths in prologue, only one MIN required
for each since start index is zero. */
prologue_stmts += num_vectors;
/* If we have a non-zero partial load bias, we need one PLUS
to adjust the load length. */
if (partial_load_store_bias != 0)
body_stmts += 1;
/* Each may need two MINs and one MINUS to update lengths in body
for next iteration. */
if (need_iterate_p)
body_stmts += 3 * num_vectors;
}
(void) add_stmt_cost (target_cost_data, prologue_stmts,
scalar_stmt, vect_prologue);
(void) add_stmt_cost (target_cost_data, body_stmts,
scalar_stmt, vect_body);
}
/* FORNOW: The scalar outside cost is incremented in one of the
following ways:
1. The vectorizer checks for alignment and aliasing and generates
a condition that allows dynamic vectorization. A cost model
check is ANDED with the versioning condition. Hence scalar code
path now has the added cost of the versioning check.
if (cost > th & versioning_check)
jmp to vector code
Hence run-time scalar is incremented by not-taken branch cost.
2. The vectorizer then checks if a prologue is required. If the
cost model check was not done before during versioning, it has to
be done before the prologue check.
if (cost <= th)
prologue = scalar_iters
if (prologue == 0)
jmp to vector code
else
execute prologue
if (prologue == num_iters)
go to exit
Hence the run-time scalar cost is incremented by a taken branch,
plus a not-taken branch, plus a taken branch cost.
3. The vectorizer then checks if an epilogue is required. If the
cost model check was not done before during prologue check, it
has to be done with the epilogue check.
if (prologue == 0)
jmp to vector code
else
execute prologue
if (prologue == num_iters)
go to exit
vector code:
if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
jmp to epilogue
Hence the run-time scalar cost should be incremented by 2 taken
branches.
TODO: The back end may reorder the BBS's differently and reverse
conditions/branch directions. Change the estimates below to
something more reasonable. */
/* If the number of iterations is known and we do not do versioning, we can
decide whether to vectorize at compile time. Hence the scalar version
do not carry cost model guard costs. */
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| LOOP_REQUIRES_VERSIONING (loop_vinfo))
{
/* Cost model check occurs at versioning. */
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
else
{
/* Cost model check occurs at prologue generation. */
if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
+ vect_get_stmt_cost (cond_branch_not_taken);
/* Cost model check occurs at epilogue generation. */
else
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
}
}
/* Complete the target-specific cost calculations. */
finish_cost (loop_vinfo->vector_costs, loop_vinfo->scalar_costs,
&vec_prologue_cost, &vec_inside_cost, &vec_epilogue_cost,
suggested_unroll_factor);
if (suggested_unroll_factor && *suggested_unroll_factor > 1
&& LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo) != MAX_VECTORIZATION_FACTOR
&& !known_le (LOOP_VINFO_VECT_FACTOR (loop_vinfo) *
*suggested_unroll_factor,
LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't unroll as unrolled vectorization factor larger"
" than maximum vectorization factor: "
HOST_WIDE_INT_PRINT_UNSIGNED "\n",
LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo));
*suggested_unroll_factor = 1;
}
vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
vec_inside_cost);
dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
vec_prologue_cost);
dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
vec_epilogue_cost);
dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
scalar_single_iter_cost);
dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
scalar_outside_cost);
dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
vec_outside_cost);
dump_printf (MSG_NOTE, " prologue iterations: %d\n",
peel_iters_prologue);
dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
peel_iters_epilogue);
}
/* Calculate number of iterations required to make the vector version
profitable, relative to the loop bodies only. The following condition
must hold true:
SIC * niters + SOC > VIC * ((niters - NPEEL) / VF) + VOC
where
SIC = scalar iteration cost, VIC = vector iteration cost,
VOC = vector outside cost, VF = vectorization factor,
NPEEL = prologue iterations + epilogue iterations,
SOC = scalar outside cost for run time cost model check. */
int saving_per_viter = (scalar_single_iter_cost * assumed_vf
- vec_inside_cost);
if (saving_per_viter <= 0)
{
if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
warning_at (vect_location.get_location_t (), OPT_Wopenmp_simd,
"vectorization did not happen for a simd loop");
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"cost model: the vector iteration cost = %d "
"divided by the scalar iteration cost = %d "
"is greater or equal to the vectorization factor = %d"
".\n",
vec_inside_cost, scalar_single_iter_cost, assumed_vf);
*ret_min_profitable_niters = -1;
*ret_min_profitable_estimate = -1;
return;
}
/* ??? The "if" arm is written to handle all cases; see below for what
we would do for !LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
/* Rewriting the condition above in terms of the number of
vector iterations (vniters) rather than the number of
scalar iterations (niters) gives:
SIC * (vniters * VF + NPEEL) + SOC > VIC * vniters + VOC
<==> vniters * (SIC * VF - VIC) > VOC - SIC * NPEEL - SOC
For integer N, X and Y when X > 0:
N * X > Y <==> N >= (Y /[floor] X) + 1. */
int outside_overhead = (vec_outside_cost
- scalar_single_iter_cost * peel_iters_prologue
- scalar_single_iter_cost * peel_iters_epilogue
- scalar_outside_cost);
/* We're only interested in cases that require at least one
vector iteration. */
int min_vec_niters = 1;
if (outside_overhead > 0)
min_vec_niters = outside_overhead / saving_per_viter + 1;
if (dump_enabled_p ())
dump_printf (MSG_NOTE, " Minimum number of vector iterations: %d\n",
min_vec_niters);
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
/* Now that we know the minimum number of vector iterations,
find the minimum niters for which the scalar cost is larger:
SIC * niters > VIC * vniters + VOC - SOC
We know that the minimum niters is no more than
vniters * VF + NPEEL, but it might be (and often is) less
than that if a partial vector iteration is cheaper than the
equivalent scalar code. */
int threshold = (vec_inside_cost * min_vec_niters
+ vec_outside_cost
- scalar_outside_cost);
if (threshold <= 0)
min_profitable_iters = 1;
else
min_profitable_iters = threshold / scalar_single_iter_cost + 1;
}
else
/* Convert the number of vector iterations into a number of
scalar iterations. */
min_profitable_iters = (min_vec_niters * assumed_vf
+ peel_iters_prologue
+ peel_iters_epilogue);
}
else
{
min_profitable_iters = ((vec_outside_cost - scalar_outside_cost)
* assumed_vf
- vec_inside_cost * peel_iters_prologue
- vec_inside_cost * peel_iters_epilogue);
if (min_profitable_iters <= 0)
min_profitable_iters = 0;
else
{
min_profitable_iters /= saving_per_viter;
if ((scalar_single_iter_cost * assumed_vf * min_profitable_iters)
<= (((int) vec_inside_cost * min_profitable_iters)
+ (((int) vec_outside_cost - scalar_outside_cost)
* assumed_vf)))
min_profitable_iters++;
}
}
if (dump_enabled_p ())
dump_printf (MSG_NOTE,
" Calculated minimum iters for profitability: %d\n",
min_profitable_iters);
if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
&& min_profitable_iters < (assumed_vf + peel_iters_prologue))
/* We want the vectorized loop to execute at least once. */
min_profitable_iters = assumed_vf + peel_iters_prologue;
else if (min_profitable_iters < peel_iters_prologue)
/* For LOOP_VINFO_USING_PARTIAL_VECTORS_P, we need to ensure the
vectorized loop executes at least once. */
min_profitable_iters = peel_iters_prologue;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
" Runtime profitability threshold = %d\n",
min_profitable_iters);
*ret_min_profitable_niters = min_profitable_iters;
/* Calculate number of iterations required to make the vector version
profitable, relative to the loop bodies only.
Non-vectorized variant is SIC * niters and it must win over vector
variant on the expected loop trip count. The following condition must hold true:
SIC * niters > VIC * ((niters - NPEEL) / VF) + VOC + SOC */
if (vec_outside_cost <= 0)
min_profitable_estimate = 0;
/* ??? This "else if" arm is written to handle all cases; see below for
what we would do for !LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
else if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
/* This is a repeat of the code above, but with + SOC rather
than - SOC. */
int outside_overhead = (vec_outside_cost
- scalar_single_iter_cost * peel_iters_prologue
- scalar_single_iter_cost * peel_iters_epilogue
+ scalar_outside_cost);
int min_vec_niters = 1;
if (outside_overhead > 0)
min_vec_niters = outside_overhead / saving_per_viter + 1;
if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
int threshold = (vec_inside_cost * min_vec_niters
+ vec_outside_cost
+ scalar_outside_cost);
min_profitable_estimate = threshold / scalar_single_iter_cost + 1;
}
else
min_profitable_estimate = (min_vec_niters * assumed_vf
+ peel_iters_prologue
+ peel_iters_epilogue);
}
else
{
min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost)
* assumed_vf
- vec_inside_cost * peel_iters_prologue
- vec_inside_cost * peel_iters_epilogue)
/ ((scalar_single_iter_cost * assumed_vf)
- vec_inside_cost);
}
min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
" Static estimate profitability threshold = %d\n",
min_profitable_estimate);
*ret_min_profitable_estimate = min_profitable_estimate;
}
/* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
vector elements (not bits) for a vector with NELT elements. */
static void
calc_vec_perm_mask_for_shift (unsigned int offset, unsigned int nelt,
vec_perm_builder *sel)
{
/* The encoding is a single stepped pattern. Any wrap-around is handled
by vec_perm_indices. */
sel->new_vector (nelt, 1, 3);
for (unsigned int i = 0; i < 3; i++)
sel->quick_push (i + offset);
}
/* Checks whether the target supports whole-vector shifts for vectors of mode
MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
it supports vec_perm_const with masks for all necessary shift amounts. */
static bool
have_whole_vector_shift (machine_mode mode)
{
if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
return true;
/* Variable-length vectors should be handled via the optab. */
unsigned int nelt;
if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
return false;
vec_perm_builder sel;
vec_perm_indices indices;
for (unsigned int i = nelt / 2; i >= 1; i /= 2)
{
calc_vec_perm_mask_for_shift (i, nelt, &sel);
indices.new_vector (sel, 2, nelt);
if (!can_vec_perm_const_p (mode, mode, indices, false))
return false;
}
return true;
}
/* Return true if (a) STMT_INFO is a DOT_PROD_EXPR reduction whose
multiplication operands have differing signs and (b) we intend
to emulate the operation using a series of signed DOT_PROD_EXPRs.
See vect_emulate_mixed_dot_prod for the actual sequence used. */
static bool
vect_is_emulated_mixed_dot_prod (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info)
{
gassign *assign = dyn_cast<gassign *> (stmt_info->stmt);
if (!assign || gimple_assign_rhs_code (assign) != DOT_PROD_EXPR)
return false;
tree rhs1 = gimple_assign_rhs1 (assign);
tree rhs2 = gimple_assign_rhs2 (assign);
if (TYPE_SIGN (TREE_TYPE (rhs1)) == TYPE_SIGN (TREE_TYPE (rhs2)))
return false;
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
gcc_assert (reduc_info->is_reduc_info);
return !directly_supported_p (DOT_PROD_EXPR,
STMT_VINFO_REDUC_VECTYPE_IN (reduc_info),
optab_vector_mixed_sign);
}
/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
functions. Design better to avoid maintenance issues. */
/* Function vect_model_reduction_cost.
Models cost for a reduction operation, including the vector ops
generated within the strip-mine loop in some cases, the initial
definition before the loop, and the epilogue code that must be generated. */
static void
vect_model_reduction_cost (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info, internal_fn reduc_fn,
vect_reduction_type reduction_type,
int ncopies, stmt_vector_for_cost *cost_vec)
{
int prologue_cost = 0, epilogue_cost = 0, inside_cost = 0;
tree vectype;
machine_mode mode;
class loop *loop = NULL;
if (loop_vinfo)
loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Condition reductions generate two reductions in the loop. */
if (reduction_type == COND_REDUCTION)
ncopies *= 2;
vectype = STMT_VINFO_VECTYPE (stmt_info);
mode = TYPE_MODE (vectype);
stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);
gimple_match_op op;
if (!gimple_extract_op (orig_stmt_info->stmt, &op))
gcc_unreachable ();
bool emulated_mixed_dot_prod
= vect_is_emulated_mixed_dot_prod (loop_vinfo, stmt_info);
if (reduction_type == EXTRACT_LAST_REDUCTION)
/* No extra instructions are needed in the prologue. The loop body
operations are costed in vectorizable_condition. */
inside_cost = 0;
else if (reduction_type == FOLD_LEFT_REDUCTION)
{
/* No extra instructions needed in the prologue. */
prologue_cost = 0;
if (reduc_fn != IFN_LAST)
/* Count one reduction-like operation per vector. */
inside_cost = record_stmt_cost (cost_vec, ncopies, vec_to_scalar,
stmt_info, 0, vect_body);
else
{
/* Use NELEMENTS extracts and NELEMENTS scalar ops. */
unsigned int nelements = ncopies * vect_nunits_for_cost (vectype);
inside_cost = record_stmt_cost (cost_vec, nelements,
vec_to_scalar, stmt_info, 0,
vect_body);
inside_cost += record_stmt_cost (cost_vec, nelements,
scalar_stmt, stmt_info, 0,
vect_body);
}
}
else
{
/* Add in the cost of the initial definitions. */
int prologue_stmts;
if (reduction_type == COND_REDUCTION)
/* For cond reductions we have four vectors: initial index, step,
initial result of the data reduction, initial value of the index
reduction. */
prologue_stmts = 4;
else if (emulated_mixed_dot_prod)
/* We need the initial reduction value and two invariants:
one that contains the minimum signed value and one that
contains half of its negative. */
prologue_stmts = 3;
else
prologue_stmts = 1;
prologue_cost += record_stmt_cost (cost_vec, prologue_stmts,
scalar_to_vec, stmt_info, 0,
vect_prologue);
}
/* Determine cost of epilogue code.
We have a reduction operator that will reduce the vector in one statement.
Also requires scalar extract. */
if (!loop || !nested_in_vect_loop_p (loop, orig_stmt_info))
{
if (reduc_fn != IFN_LAST)
{
if (reduction_type == COND_REDUCTION)
{
/* An EQ stmt and an COND_EXPR stmt. */
epilogue_cost += record_stmt_cost (cost_vec, 2,
vector_stmt, stmt_info, 0,
vect_epilogue);
/* Reduction of the max index and a reduction of the found
values. */
epilogue_cost += record_stmt_cost (cost_vec, 2,
vec_to_scalar, stmt_info, 0,
vect_epilogue);
/* A broadcast of the max value. */
epilogue_cost += record_stmt_cost (cost_vec, 1,
scalar_to_vec, stmt_info, 0,
vect_epilogue);
}
else
{
epilogue_cost += record_stmt_cost (cost_vec, 1, vector_stmt,
stmt_info, 0, vect_epilogue);
epilogue_cost += record_stmt_cost (cost_vec, 1,
vec_to_scalar, stmt_info, 0,
vect_epilogue);
}
}
else if (reduction_type == COND_REDUCTION)
{
unsigned estimated_nunits = vect_nunits_for_cost (vectype);
/* Extraction of scalar elements. */
epilogue_cost += record_stmt_cost (cost_vec,
2 * estimated_nunits,
vec_to_scalar, stmt_info, 0,
vect_epilogue);
/* Scalar max reductions via COND_EXPR / MAX_EXPR. */
epilogue_cost += record_stmt_cost (cost_vec,
2 * estimated_nunits - 3,
scalar_stmt, stmt_info, 0,
vect_epilogue);
}
else if (reduction_type == EXTRACT_LAST_REDUCTION
|| reduction_type == FOLD_LEFT_REDUCTION)
/* No extra instructions need in the epilogue. */
;
else
{
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
tree bitsize = TYPE_SIZE (op.type);
int element_bitsize = tree_to_uhwi (bitsize);
int nelements = vec_size_in_bits / element_bitsize;
if (op.code == COND_EXPR)
op.code = MAX_EXPR;
/* We have a whole vector shift available. */
if (VECTOR_MODE_P (mode)
&& directly_supported_p (op.code, vectype)
&& have_whole_vector_shift (mode))
{
/* Final reduction via vector shifts and the reduction operator.
Also requires scalar extract. */
epilogue_cost += record_stmt_cost (cost_vec,
exact_log2 (nelements) * 2,
vector_stmt, stmt_info, 0,
vect_epilogue);
epilogue_cost += record_stmt_cost (cost_vec, 1,
vec_to_scalar, stmt_info, 0,
vect_epilogue);
}
else
/* Use extracts and reduction op for final reduction. For N
elements, we have N extracts and N-1 reduction ops. */
epilogue_cost += record_stmt_cost (cost_vec,
nelements + nelements - 1,
vector_stmt, stmt_info, 0,
vect_epilogue);
}
}
if (dump_enabled_p ())
dump_printf (MSG_NOTE,
"vect_model_reduction_cost: inside_cost = %d, "
"prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
prologue_cost, epilogue_cost);
}
/* SEQ is a sequence of instructions that initialize the reduction
described by REDUC_INFO. Emit them in the appropriate place. */
static void
vect_emit_reduction_init_stmts (loop_vec_info loop_vinfo,
stmt_vec_info reduc_info, gimple *seq)
{
if (reduc_info->reused_accumulator)
{
/* When reusing an accumulator from the main loop, we only need
initialization instructions if the main loop can be skipped.
In that case, emit the initialization instructions at the end
of the guard block that does the skip. */
edge skip_edge = loop_vinfo->skip_main_loop_edge;
gcc_assert (skip_edge);
gimple_stmt_iterator gsi = gsi_last_bb (skip_edge->src);
gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
}
else
{
/* The normal case: emit the initialization instructions on the
preheader edge. */
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), seq);
}
}
/* Function get_initial_def_for_reduction
Input:
REDUC_INFO - the info_for_reduction
INIT_VAL - the initial value of the reduction variable
NEUTRAL_OP - a value that has no effect on the reduction, as per
neutral_op_for_reduction
Output:
Return a vector variable, initialized according to the operation that
STMT_VINFO performs. This vector will be used as the initial value
of the vector of partial results.
The value we need is a vector in which element 0 has value INIT_VAL
and every other element has value NEUTRAL_OP. */
static tree
get_initial_def_for_reduction (loop_vec_info loop_vinfo,
stmt_vec_info reduc_info,
tree init_val, tree neutral_op)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree scalar_type = TREE_TYPE (init_val);
tree vectype = get_vectype_for_scalar_type (loop_vinfo, scalar_type);
tree init_def;
gimple_seq stmts = NULL;
gcc_assert (vectype);
gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
|| SCALAR_FLOAT_TYPE_P (scalar_type));
gcc_assert (nested_in_vect_loop_p (loop, reduc_info)
|| loop == (gimple_bb (reduc_info->stmt))->loop_father);
if (operand_equal_p (init_val, neutral_op))
{
/* If both elements are equal then the vector described above is
just a splat. */
neutral_op = gimple_convert (&stmts, TREE_TYPE (vectype), neutral_op);
init_def = gimple_build_vector_from_val (&stmts, vectype, neutral_op);
}
else
{
neutral_op = gimple_convert (&stmts, TREE_TYPE (vectype), neutral_op);
init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant ())
{
/* Construct a splat of NEUTRAL_OP and insert INIT_VAL into
element 0. */
init_def = gimple_build_vector_from_val (&stmts, vectype,
neutral_op);
init_def = gimple_build (&stmts, CFN_VEC_SHL_INSERT,
vectype, init_def, init_val);
}
else
{
/* Build {INIT_VAL, NEUTRAL_OP, NEUTRAL_OP, ...}. */
tree_vector_builder elts (vectype, 1, 2);
elts.quick_push (init_val);
elts.quick_push (neutral_op);
init_def = gimple_build_vector (&stmts, &elts);
}
}
if (stmts)
vect_emit_reduction_init_stmts (loop_vinfo, reduc_info, stmts);
return init_def;
}
/* Get at the initial defs for the reduction PHIs for REDUC_INFO,
which performs a reduction involving GROUP_SIZE scalar statements.
NUMBER_OF_VECTORS is the number of vector defs to create. If NEUTRAL_OP
is nonnull, introducing extra elements of that value will not change the
result. */
static void
get_initial_defs_for_reduction (loop_vec_info loop_vinfo,
stmt_vec_info reduc_info,
vec<tree> *vec_oprnds,
unsigned int number_of_vectors,
unsigned int group_size, tree neutral_op)
{
vec<tree> &initial_values = reduc_info->reduc_initial_values;
unsigned HOST_WIDE_INT nunits;
unsigned j, number_of_places_left_in_vector;
tree vector_type = STMT_VINFO_VECTYPE (reduc_info);
unsigned int i;
gcc_assert (group_size == initial_values.length () || neutral_op);
/* NUMBER_OF_COPIES is the number of times we need to use the same values in
created vectors. It is greater than 1 if unrolling is performed.
For example, we have two scalar operands, s1 and s2 (e.g., group of
strided accesses of size two), while NUNITS is four (i.e., four scalars
of this type can be packed in a vector). The output vector will contain
two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
will be 2).
If REDUC_GROUP_SIZE > NUNITS, the scalars will be split into several
vectors containing the operands.
For example, NUNITS is four as before, and the group size is 8
(s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
{s5, s6, s7, s8}. */
if (!TYPE_VECTOR_SUBPARTS (vector_type).is_constant (&nunits))
nunits = group_size;
number_of_places_left_in_vector = nunits;
bool constant_p = true;
tree_vector_builder elts (vector_type, nunits, 1);
elts.quick_grow (nunits);
gimple_seq ctor_seq = NULL;
for (j = 0; j < nunits * number_of_vectors; ++j)
{
tree op;
i = j % group_size;
/* Get the def before the loop. In reduction chain we have only
one initial value. Else we have as many as PHIs in the group. */
if (i >= initial_values.length () || (j > i && neutral_op))
op = neutral_op;
else
op = initial_values[i];
/* Create 'vect_ = {op0,op1,...,opn}'. */
number_of_places_left_in_vector--;
elts[nunits - number_of_places_left_in_vector - 1] = op;
if (!CONSTANT_CLASS_P (op))
constant_p = false;
if (number_of_places_left_in_vector == 0)
{
tree init;
if (constant_p && !neutral_op
? multiple_p (TYPE_VECTOR_SUBPARTS (vector_type), nunits)
: known_eq (TYPE_VECTOR_SUBPARTS (vector_type), nunits))
/* Build the vector directly from ELTS. */
init = gimple_build_vector (&ctor_seq, &elts);
else if (neutral_op)
{
/* Build a vector of the neutral value and shift the
other elements into place. */
init = gimple_build_vector_from_val (&ctor_seq, vector_type,
neutral_op);
int k = nunits;
while (k > 0 && elts[k - 1] == neutral_op)
k -= 1;
while (k > 0)
{
k -= 1;
init = gimple_build (&ctor_seq, CFN_VEC_SHL_INSERT,
vector_type, init, elts[k]);
}
}
else
{
/* First time round, duplicate ELTS to fill the
required number of vectors. */
duplicate_and_interleave (loop_vinfo, &ctor_seq, vector_type,
elts, number_of_vectors, *vec_oprnds);
break;
}
vec_oprnds->quick_push (init);
number_of_places_left_in_vector = nunits;
elts.new_vector (vector_type, nunits, 1);
elts.quick_grow (nunits);
constant_p = true;
}
}
if (ctor_seq != NULL)
vect_emit_reduction_init_stmts (loop_vinfo, reduc_info, ctor_seq);
}
/* For a statement STMT_INFO taking part in a reduction operation return
the stmt_vec_info the meta information is stored on. */
stmt_vec_info
info_for_reduction (vec_info *vinfo, stmt_vec_info stmt_info)
{
stmt_info = vect_orig_stmt (stmt_info);
gcc_assert (STMT_VINFO_REDUC_DEF (stmt_info));
if (!is_a <gphi *> (stmt_info->stmt)
|| !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
gphi *phi = as_a <gphi *> (stmt_info->stmt);
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
{
if (gimple_phi_num_args (phi) == 1)
stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
}
else if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
{
stmt_vec_info info = vinfo->lookup_def (vect_phi_initial_value (phi));
if (info && STMT_VINFO_DEF_TYPE (info) == vect_double_reduction_def)
stmt_info = info;
}
return stmt_info;
}
/* See if LOOP_VINFO is an epilogue loop whose main loop had a reduction that
REDUC_INFO can build on. Adjust REDUC_INFO and return true if so, otherwise
return false. */
static bool
vect_find_reusable_accumulator (loop_vec_info loop_vinfo,
stmt_vec_info reduc_info)
{
loop_vec_info main_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
if (!main_loop_vinfo)
return false;
if (STMT_VINFO_REDUC_TYPE (reduc_info) != TREE_CODE_REDUCTION)
return false;
unsigned int num_phis = reduc_info->reduc_initial_values.length ();
auto_vec<tree, 16> main_loop_results (num_phis);
auto_vec<tree, 16> initial_values (num_phis);
if (edge main_loop_edge = loop_vinfo->main_loop_edge)
{
/* The epilogue loop can be entered either from the main loop or
from an earlier guard block. */
edge skip_edge = loop_vinfo->skip_main_loop_edge;
for (tree incoming_value : reduc_info->reduc_initial_values)
{
/* Look for:
INCOMING_VALUE = phi<MAIN_LOOP_RESULT(main loop),
INITIAL_VALUE(guard block)>. */
gcc_assert (TREE_CODE (incoming_value) == SSA_NAME);
gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (incoming_value));
gcc_assert (gimple_bb (phi) == main_loop_edge->dest);
tree from_main_loop = PHI_ARG_DEF_FROM_EDGE (phi, main_loop_edge);
tree from_skip = PHI_ARG_DEF_FROM_EDGE (phi, skip_edge);
main_loop_results.quick_push (from_main_loop);
initial_values.quick_push (from_skip);
}
}
else
/* The main loop dominates the epilogue loop. */
main_loop_results.splice (reduc_info->reduc_initial_values);
/* See if the main loop has the kind of accumulator we need. */
vect_reusable_accumulator *accumulator
= main_loop_vinfo->reusable_accumulators.get (main_loop_results[0]);
if (!accumulator
|| num_phis != accumulator->reduc_info->reduc_scalar_results.length ()
|| !std::equal (main_loop_results.begin (), main_loop_results.end (),
accumulator->reduc_info->reduc_scalar_results.begin ()))
return false;
/* Handle the case where we can reduce wider vectors to narrower ones. */
tree vectype = STMT_VINFO_VECTYPE (reduc_info);
tree old_vectype = TREE_TYPE (accumulator->reduc_input);
unsigned HOST_WIDE_INT m;
if (!constant_multiple_p (TYPE_VECTOR_SUBPARTS (old_vectype),
TYPE_VECTOR_SUBPARTS (vectype), &m))
return false;
/* Check the intermediate vector types and operations are available. */
tree prev_vectype = old_vectype;
poly_uint64 intermediate_nunits = TYPE_VECTOR_SUBPARTS (old_vectype);
while (known_gt (intermediate_nunits, TYPE_VECTOR_SUBPARTS (vectype)))
{
intermediate_nunits = exact_div (intermediate_nunits, 2);
tree intermediate_vectype = get_related_vectype_for_scalar_type
(TYPE_MODE (vectype), TREE_TYPE (vectype), intermediate_nunits);
if (!intermediate_vectype
|| !directly_supported_p (STMT_VINFO_REDUC_CODE (reduc_info),
intermediate_vectype)
|| !can_vec_extract (TYPE_MODE (prev_vectype),
TYPE_MODE (intermediate_vectype)))
return false;
prev_vectype = intermediate_vectype;
}
/* Non-SLP reductions might apply an adjustment after the reduction
operation, in order to simplify the initialization of the accumulator.
If the epilogue loop carries on from where the main loop left off,
it should apply the same adjustment to the final reduction result.
If the epilogue loop can also be entered directly (rather than via
the main loop), we need to be able to handle that case in the same way,
with the same adjustment. (In principle we could add a PHI node
to select the correct adjustment, but in practice that shouldn't be
necessary.) */
tree main_adjustment
= STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (accumulator->reduc_info);
if (loop_vinfo->main_loop_edge && main_adjustment)
{
gcc_assert (num_phis == 1);
tree initial_value = initial_values[0];
/* Check that we can use INITIAL_VALUE as the adjustment and
initialize the accumulator with a neutral value instead. */
if (!operand_equal_p (initial_value, main_adjustment))
return false;
code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
initial_values[0] = neutral_op_for_reduction (TREE_TYPE (initial_value),
code, initial_value);
}
STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (reduc_info) = main_adjustment;
reduc_info->reduc_initial_values.truncate (0);
reduc_info->reduc_initial_values.splice (initial_values);
reduc_info->reused_accumulator = accumulator;
return true;
}
/* Reduce the vector VEC_DEF down to VECTYPE with reduction operation
CODE emitting stmts before GSI. Returns a vector def of VECTYPE. */
static tree
vect_create_partial_epilog (tree vec_def, tree vectype, code_helper code,
gimple_seq *seq)
{
unsigned nunits = TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec_def)).to_constant ();
unsigned nunits1 = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
tree stype = TREE_TYPE (vectype);
tree new_temp = vec_def;
while (nunits > nunits1)
{
nunits /= 2;
tree vectype1 = get_related_vectype_for_scalar_type (TYPE_MODE (vectype),
stype, nunits);
unsigned int bitsize = tree_to_uhwi (TYPE_SIZE (vectype1));
/* The target has to make sure we support lowpart/highpart
extraction, either via direct vector extract or through
an integer mode punning. */
tree dst1, dst2;
gimple *epilog_stmt;
if (convert_optab_handler (vec_extract_optab,
TYPE_MODE (TREE_TYPE (new_temp)),
TYPE_MODE (vectype1))
!= CODE_FOR_nothing)
{
/* Extract sub-vectors directly once vec_extract becomes
a conversion optab. */
dst1 = make_ssa_name (vectype1);
epilog_stmt
= gimple_build_assign (dst1, BIT_FIELD_REF,
build3 (BIT_FIELD_REF, vectype1,
new_temp, TYPE_SIZE (vectype1),
bitsize_int (0)));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
dst2 = make_ssa_name (vectype1);
epilog_stmt
= gimple_build_assign (dst2, BIT_FIELD_REF,
build3 (BIT_FIELD_REF, vectype1,
new_temp, TYPE_SIZE (vectype1),
bitsize_int (bitsize)));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
}
else
{
/* Extract via punning to appropriately sized integer mode
vector. */
tree eltype = build_nonstandard_integer_type (bitsize, 1);
tree etype = build_vector_type (eltype, 2);
gcc_assert (convert_optab_handler (vec_extract_optab,
TYPE_MODE (etype),
TYPE_MODE (eltype))
!= CODE_FOR_nothing);
tree tem = make_ssa_name (etype);
epilog_stmt = gimple_build_assign (tem, VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR,
etype, new_temp));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
new_temp = tem;
tem = make_ssa_name (eltype);
epilog_stmt
= gimple_build_assign (tem, BIT_FIELD_REF,
build3 (BIT_FIELD_REF, eltype,
new_temp, TYPE_SIZE (eltype),
bitsize_int (0)));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
dst1 = make_ssa_name (vectype1);
epilog_stmt = gimple_build_assign (dst1, VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR,
vectype1, tem));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
tem = make_ssa_name (eltype);
epilog_stmt
= gimple_build_assign (tem, BIT_FIELD_REF,
build3 (BIT_FIELD_REF, eltype,
new_temp, TYPE_SIZE (eltype),
bitsize_int (bitsize)));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
dst2 = make_ssa_name (vectype1);
epilog_stmt = gimple_build_assign (dst2, VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR,
vectype1, tem));
gimple_seq_add_stmt_without_update (seq, epilog_stmt);
}
new_temp = gimple_build (seq, code, vectype1, dst1, dst2);
}
return new_temp;
}
/* Function vect_create_epilog_for_reduction
Create code at the loop-epilog to finalize the result of a reduction
computation.
STMT_INFO is the scalar reduction stmt that is being vectorized.
SLP_NODE is an SLP node containing a group of reduction statements. The
first one in this group is STMT_INFO.
SLP_NODE_INSTANCE is the SLP node instance containing SLP_NODE
REDUC_INDEX says which rhs operand of the STMT_INFO is the reduction phi
(counting from 0)
This function:
1. Completes the reduction def-use cycles.
2. "Reduces" each vector of partial results VECT_DEFS into a single result,
by calling the function specified by REDUC_FN if available, or by
other means (whole-vector shifts or a scalar loop).
The function also creates a new phi node at the loop exit to preserve
loop-closed form, as illustrated below.
The flow at the entry to this function:
loop:
vec_def = phi <vec_init, null> # REDUCTION_PHI
VECT_DEF = vector_stmt # vectorized form of STMT_INFO
s_loop = scalar_stmt # (scalar) STMT_INFO
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
use <s_out0>
use <s_out0>
The above is transformed by this function into:
loop:
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
VECT_DEF = vector_stmt # vectorized form of STMT_INFO
s_loop = scalar_stmt # (scalar) STMT_INFO
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1>
s_out3 = extract_field <v_out2, 0>
s_out4 = adjust_result <s_out3>
use <s_out4>
use <s_out4>
*/
static void
vect_create_epilog_for_reduction (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info,
slp_tree slp_node,
slp_instance slp_node_instance)
{
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
gcc_assert (reduc_info->is_reduc_info);
/* For double reductions we need to get at the inner loop reduction
stmt which has the meta info attached. Our stmt_info is that of the
loop-closed PHI of the inner loop which we remember as
def for the reduction PHI generation. */
bool double_reduc = false;
stmt_vec_info rdef_info = stmt_info;
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
{
gcc_assert (!slp_node);
double_reduc = true;
stmt_info = loop_vinfo->lookup_def (gimple_phi_arg_def
(stmt_info->stmt, 0));
stmt_info = vect_stmt_to_vectorize (stmt_info);
}
gphi *reduc_def_stmt
= as_a <gphi *> (STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info))->stmt);
code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
internal_fn reduc_fn = STMT_VINFO_REDUC_FN (reduc_info);
tree vectype;
machine_mode mode;
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
basic_block exit_bb;
tree scalar_dest;
tree scalar_type;
gimple *new_phi = NULL, *phi;
gimple_stmt_iterator exit_gsi;
tree new_temp = NULL_TREE, new_name, new_scalar_dest;
gimple *epilog_stmt = NULL;
gimple *exit_phi;
tree bitsize;
tree def;
tree orig_name, scalar_result;
imm_use_iterator imm_iter, phi_imm_iter;
use_operand_p use_p, phi_use_p;
gimple *use_stmt;
auto_vec<tree> reduc_inputs;
int j, i;
vec<tree> &scalar_results = reduc_info->reduc_scalar_results;
unsigned int group_size = 1, k;
auto_vec<gimple *> phis;
/* SLP reduction without reduction chain, e.g.,
# a1 = phi <a2, a0>
# b1 = phi <b2, b0>
a2 = operation (a1)
b2 = operation (b1) */
bool slp_reduc = (slp_node && !REDUC_GROUP_FIRST_ELEMENT (stmt_info));
bool direct_slp_reduc;
tree induction_index = NULL_TREE;
if (slp_node)
group_size = SLP_TREE_LANES (slp_node);
if (nested_in_vect_loop_p (loop, stmt_info))
{
outer_loop = loop;
loop = loop->inner;
gcc_assert (!slp_node && double_reduc);
}
vectype = STMT_VINFO_REDUC_VECTYPE (reduc_info);
gcc_assert (vectype);
mode = TYPE_MODE (vectype);
tree induc_val = NULL_TREE;
tree adjustment_def = NULL;
if (slp_node)
;
else
{
/* Optimize: for induction condition reduction, if we can't use zero
for induc_val, use initial_def. */
if (STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
induc_val = STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info);
else if (double_reduc)
;
else
adjustment_def = STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (reduc_info);
}
stmt_vec_info single_live_out_stmt[] = { stmt_info };
array_slice<const stmt_vec_info> live_out_stmts = single_live_out_stmt;
if (slp_reduc)
/* All statements produce live-out values. */
live_out_stmts = SLP_TREE_SCALAR_STMTS (slp_node);
else if (slp_node)
{
/* The last statement in the reduction chain produces the live-out
value. Note SLP optimization can shuffle scalar stmts to
optimize permutations so we have to search for the last stmt. */
for (k = 0; k < group_size; ++k)
if (!REDUC_GROUP_NEXT_ELEMENT (SLP_TREE_SCALAR_STMTS (slp_node)[k]))
{
single_live_out_stmt[0] = SLP_TREE_SCALAR_STMTS (slp_node)[k];
break;
}
}
unsigned vec_num;
int ncopies;
if (slp_node)
{
vec_num = SLP_TREE_VEC_DEFS (slp_node_instance->reduc_phis).length ();
ncopies = 1;
}
else
{
stmt_vec_info reduc_info = loop_vinfo->lookup_stmt (reduc_def_stmt);
vec_num = 1;
ncopies = STMT_VINFO_VEC_STMTS (reduc_info).length ();
}
/* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
which is updated with the current index of the loop for every match of
the original loop's cond_expr (VEC_STMT). This results in a vector
containing the last time the condition passed for that vector lane.
The first match will be a 1 to allow 0 to be used for non-matching
indexes. If there are no matches at all then the vector will be all
zeroes.
PR92772: This algorithm is broken for architectures that support
masked vectors, but do not provide fold_extract_last. */
if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION)
{
auto_vec<std::pair<tree, bool>, 2> ccompares;
stmt_vec_info cond_info = STMT_VINFO_REDUC_DEF (reduc_info);
cond_info = vect_stmt_to_vectorize (cond_info);
while (cond_info != reduc_info)
{
if (gimple_assign_rhs_code (cond_info->stmt) == COND_EXPR)
{
gimple *vec_stmt = STMT_VINFO_VEC_STMTS (cond_info)[0];
gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);
ccompares.safe_push
(std::make_pair (unshare_expr (gimple_assign_rhs1 (vec_stmt)),
STMT_VINFO_REDUC_IDX (cond_info) == 2));
}
cond_info
= loop_vinfo->lookup_def (gimple_op (cond_info->stmt,
1 + STMT_VINFO_REDUC_IDX
(cond_info)));
cond_info = vect_stmt_to_vectorize (cond_info);
}
gcc_assert (ccompares.length () != 0);
tree indx_before_incr, indx_after_incr;
poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype);
int scalar_precision
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (TREE_TYPE (vectype)));
tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
tree cr_index_vector_type = get_related_vectype_for_scalar_type
(TYPE_MODE (vectype), cr_index_scalar_type,
TYPE_VECTOR_SUBPARTS (vectype));
/* First we create a simple vector induction variable which starts
with the values {1,2,3,...} (SERIES_VECT) and increments by the
vector size (STEP). */
/* Create a {1,2,3,...} vector. */
tree series_vect = build_index_vector (cr_index_vector_type, 1, 1);
/* Create a vector of the step value. */
tree step = build_int_cst (cr_index_scalar_type, nunits_out);
tree vec_step = build_vector_from_val (cr_index_vector_type, step);
/* Create an induction variable. */
gimple_stmt_iterator incr_gsi;
bool insert_after;
standard_iv_increment_position (loop, &incr_gsi, &insert_after);
create_iv (series_vect, PLUS_EXPR, vec_step, NULL_TREE, loop, &incr_gsi,
insert_after, &indx_before_incr, &indx_after_incr);
/* Next create a new phi node vector (NEW_PHI_TREE) which starts
filled with zeros (VEC_ZERO). */
/* Create a vector of 0s. */
tree zero = build_zero_cst (cr_index_scalar_type);
tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
/* Create a vector phi node. */
tree new_phi_tree = make_ssa_name (cr_index_vector_type);
new_phi = create_phi_node (new_phi_tree, loop->header);
add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
loop_preheader_edge (loop), UNKNOWN_LOCATION);
/* Now take the condition from the loops original cond_exprs
and produce a new cond_exprs (INDEX_COND_EXPR) which for
every match uses values from the induction variable
(INDEX_BEFORE_INCR) otherwise uses values from the phi node
(NEW_PHI_TREE).
Finally, we update the phi (NEW_PHI_TREE) to take the value of
the new cond_expr (INDEX_COND_EXPR). */
gimple_seq stmts = NULL;
for (int i = ccompares.length () - 1; i != -1; --i)
{
tree ccompare = ccompares[i].first;
if (ccompares[i].second)
new_phi_tree = gimple_build (&stmts, VEC_COND_EXPR,
cr_index_vector_type,
ccompare,
indx_before_incr, new_phi_tree);
else
new_phi_tree = gimple_build (&stmts, VEC_COND_EXPR,
cr_index_vector_type,
ccompare,
new_phi_tree, indx_before_incr);
}
gsi_insert_seq_before (&incr_gsi, stmts, GSI_SAME_STMT);
/* Update the phi with the vec cond. */
induction_index = new_phi_tree;
add_phi_arg (as_a <gphi *> (new_phi), induction_index,
loop_latch_edge (loop), UNKNOWN_LOCATION);
}
/* 2. Create epilog code.
The reduction epilog code operates across the elements of the vector
of partial results computed by the vectorized loop.
The reduction epilog code consists of:
step 1: compute the scalar result in a vector (v_out2)
step 2: extract the scalar result (s_out3) from the vector (v_out2)
step 3: adjust the scalar result (s_out3) if needed.
Step 1 can be accomplished using one the following three schemes:
(scheme 1) using reduc_fn, if available.
(scheme 2) using whole-vector shifts, if available.
(scheme 3) using a scalar loop. In this case steps 1+2 above are
combined.
The overall epilog code looks like this:
s_out0 = phi <s_loop> # original EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1> # step 1
s_out3 = extract_field <v_out2, 0> # step 2
s_out4 = adjust_result <s_out3> # step 3
(step 3 is optional, and steps 1 and 2 may be combined).
Lastly, the uses of s_out0 are replaced by s_out4. */
/* 2.1 Create new loop-exit-phis to preserve loop-closed form:
v_out1 = phi <VECT_DEF>
Store them in NEW_PHIS. */
if (double_reduc)
loop = outer_loop;
exit_bb = single_exit (loop)->dest;
exit_gsi = gsi_after_labels (exit_bb);
reduc_inputs.create (slp_node ? vec_num : ncopies);
for (unsigned i = 0; i < vec_num; i++)
{
gimple_seq stmts = NULL;
if (slp_node)
def = vect_get_slp_vect_def (slp_node, i);
else
def = gimple_get_lhs (STMT_VINFO_VEC_STMTS (rdef_info)[0]);
for (j = 0; j < ncopies; j++)
{
tree new_def = copy_ssa_name (def);
phi = create_phi_node (new_def, exit_bb);
if (j)
def = gimple_get_lhs (STMT_VINFO_VEC_STMTS (rdef_info)[j]);
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
new_def = gimple_convert (&stmts, vectype, new_def);
reduc_inputs.quick_push (new_def);
}
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
}
/* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
(i.e. when reduc_fn is not available) and in the final adjustment
code (if needed). Also get the original scalar reduction variable as
defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
represents a reduction pattern), the tree-code and scalar-def are
taken from the original stmt that the pattern-stmt (STMT) replaces.
Otherwise (it is a regular reduction) - the tree-code and scalar-def
are taken from STMT. */
stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);
if (orig_stmt_info != stmt_info)
{
/* Reduction pattern */
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt_info);
}
scalar_dest = gimple_get_lhs (orig_stmt_info->stmt);
scalar_type = TREE_TYPE (scalar_dest);
scalar_results.truncate (0);
scalar_results.reserve_exact (group_size);
new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
bitsize = TYPE_SIZE (scalar_type);
/* True if we should implement SLP_REDUC using native reduction operations
instead of scalar operations. */
direct_slp_reduc = (reduc_fn != IFN_LAST
&& slp_reduc
&& !TYPE_VECTOR_SUBPARTS (vectype).is_constant ());
/* In case of reduction chain, e.g.,
# a1 = phi <a3, a0>
a2 = operation (a1)
a3 = operation (a2),
we may end up with more than one vector result. Here we reduce them
to one vector.
The same is true for a SLP reduction, e.g.,
# a1 = phi <a2, a0>
# b1 = phi <b2, b0>
a2 = operation (a1)
b2 = operation (a2),
where we can end up with more than one vector as well. We can
easily accumulate vectors when the number of vector elements is
a multiple of the SLP group size.
The same is true if we couldn't use a single defuse cycle. */
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info)
|| direct_slp_reduc
|| (slp_reduc
&& constant_multiple_p (TYPE_VECTOR_SUBPARTS (vectype), group_size))
|| ncopies > 1)
{
gimple_seq stmts = NULL;
tree single_input = reduc_inputs[0];
for (k = 1; k < reduc_inputs.length (); k++)
single_input = gimple_build (&stmts, code, vectype,
single_input, reduc_inputs[k]);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
reduc_inputs.truncate (0);
reduc_inputs.safe_push (single_input);
}
tree orig_reduc_input = reduc_inputs[0];
/* If this loop is an epilogue loop that can be skipped after the
main loop, we can only share a reduction operation between the
main loop and the epilogue if we put it at the target of the
skip edge.
We can still reuse accumulators if this check fails. Doing so has
the minor(?) benefit of making the epilogue loop's scalar result
independent of the main loop's scalar result. */
bool unify_with_main_loop_p = false;
if (reduc_info->reused_accumulator
&& loop_vinfo->skip_this_loop_edge
&& single_succ_p (exit_bb)
&& single_succ (exit_bb) == loop_vinfo->skip_this_loop_edge->dest)
{
unify_with_main_loop_p = true;
basic_block reduc_block = loop_vinfo->skip_this_loop_edge->dest;
reduc_inputs[0] = make_ssa_name (vectype);
gphi *new_phi = create_phi_node (reduc_inputs[0], reduc_block);
add_phi_arg (new_phi, orig_reduc_input, single_succ_edge (exit_bb),
UNKNOWN_LOCATION);
add_phi_arg (new_phi, reduc_info->reused_accumulator->reduc_input,
loop_vinfo->skip_this_loop_edge, UNKNOWN_LOCATION);
exit_gsi = gsi_after_labels (reduc_block);
}
/* Shouldn't be used beyond this point. */
exit_bb = nullptr;
if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION
&& reduc_fn != IFN_LAST)
{
/* For condition reductions, we have a vector (REDUC_INPUTS 0) containing
various data values where the condition matched and another vector
(INDUCTION_INDEX) containing all the indexes of those matches. We
need to extract the last matching index (which will be the index with
highest value) and use this to index into the data vector.
For the case where there were no matches, the data vector will contain
all default values and the index vector will be all zeros. */
/* Get various versions of the type of the vector of indexes. */
tree index_vec_type = TREE_TYPE (induction_index);
gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
tree index_scalar_type = TREE_TYPE (index_vec_type);
tree index_vec_cmp_type = truth_type_for (index_vec_type);
/* Get an unsigned integer version of the type of the data vector. */
int scalar_precision
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
tree vectype_unsigned = get_same_sized_vectype (scalar_type_unsigned,
vectype);
/* First we need to create a vector (ZERO_VEC) of zeros and another
vector (MAX_INDEX_VEC) filled with the last matching index, which we
can create using a MAX reduction and then expanding.
In the case where the loop never made any matches, the max index will
be zero. */
/* Vector of {0, 0, 0,...}. */
tree zero_vec = build_zero_cst (vectype);
/* Find maximum value from the vector of found indexes. */
tree max_index = make_ssa_name (index_scalar_type);
gcall *max_index_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
1, induction_index);
gimple_call_set_lhs (max_index_stmt, max_index);
gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
/* Vector of {max_index, max_index, max_index,...}. */
tree max_index_vec = make_ssa_name (index_vec_type);
tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
max_index);
gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
max_index_vec_rhs);
gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
/* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
with the vector (INDUCTION_INDEX) of found indexes, choosing values
from the data vector (REDUC_INPUTS 0) for matches, 0 (ZERO_VEC)
otherwise. Only one value should match, resulting in a vector
(VEC_COND) with one data value and the rest zeros.
In the case where the loop never made any matches, every index will
match, resulting in a vector with all data values (which will all be
the default value). */
/* Compare the max index vector to the vector of found indexes to find
the position of the max value. */
tree vec_compare = make_ssa_name (index_vec_cmp_type);
gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
induction_index,
max_index_vec);
gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
/* Use the compare to choose either values from the data vector or
zero. */
tree vec_cond = make_ssa_name (vectype);
gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
vec_compare,
reduc_inputs[0],
zero_vec);
gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
/* Finally we need to extract the data value from the vector (VEC_COND)
into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
reduction, but because this doesn't exist, we can use a MAX reduction
instead. The data value might be signed or a float so we need to cast
it first.
In the case where the loop never made any matches, the data values are
all identical, and so will reduce down correctly. */
/* Make the matched data values unsigned. */
tree vec_cond_cast = make_ssa_name (vectype_unsigned);
tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
vec_cond);
gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
VIEW_CONVERT_EXPR,
vec_cond_cast_rhs);
gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
/* Reduce down to a scalar value. */
tree data_reduc = make_ssa_name (scalar_type_unsigned);
gcall *data_reduc_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
1, vec_cond_cast);
gimple_call_set_lhs (data_reduc_stmt, data_reduc);
gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
/* Convert the reduced value back to the result type and set as the
result. */
gimple_seq stmts = NULL;
new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
data_reduc);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
scalar_results.safe_push (new_temp);
}
else if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION
&& reduc_fn == IFN_LAST)
{
/* Condition reduction without supported IFN_REDUC_MAX. Generate
idx = 0;
idx_val = induction_index[0];
val = data_reduc[0];
for (idx = 0, val = init, i = 0; i < nelts; ++i)
if (induction_index[i] > idx_val)
val = data_reduc[i], idx_val = induction_index[i];
return val; */
tree data_eltype = TREE_TYPE (vectype);
tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
/* Enforced by vectorizable_reduction, which ensures we have target
support before allowing a conditional reduction on variable-length
vectors. */
unsigned HOST_WIDE_INT v_size = el_size * nunits.to_constant ();
tree idx_val = NULL_TREE, val = NULL_TREE;
for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
{
tree old_idx_val = idx_val;
tree old_val = val;
idx_val = make_ssa_name (idx_eltype);
epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
build3 (BIT_FIELD_REF, idx_eltype,
induction_index,
bitsize_int (el_size),
bitsize_int (off)));
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
val = make_ssa_name (data_eltype);
epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
build3 (BIT_FIELD_REF,
data_eltype,
reduc_inputs[0],
bitsize_int (el_size),
bitsize_int (off)));
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
if (off != 0)
{
tree new_idx_val = idx_val;
if (off != v_size - el_size)
{
new_idx_val = make_ssa_name (idx_eltype);
epilog_stmt = gimple_build_assign (new_idx_val,
MAX_EXPR, idx_val,
old_idx_val);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
}
tree cond = make_ssa_name (boolean_type_node);
epilog_stmt = gimple_build_assign (cond, GT_EXPR,
idx_val, old_idx_val);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
tree new_val = make_ssa_name (data_eltype);
epilog_stmt = gimple_build_assign (new_val, COND_EXPR,
cond, val, old_val);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
idx_val = new_idx_val;
val = new_val;
}
}
/* Convert the reduced value back to the result type and set as the
result. */
gimple_seq stmts = NULL;
val = gimple_convert (&stmts, scalar_type, val);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
scalar_results.safe_push (val);
}
/* 2.3 Create the reduction code, using one of the three schemes described
above. In SLP we simply need to extract all the elements from the
vector (without reducing them), so we use scalar shifts. */
else if (reduc_fn != IFN_LAST && !slp_reduc)
{
tree tmp;
tree vec_elem_type;
/* Case 1: Create:
v_out2 = reduc_expr <v_out1> */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Reduce using direct vector reduction.\n");
gimple_seq stmts = NULL;
vec_elem_type = TREE_TYPE (vectype);
new_temp = gimple_build (&stmts, as_combined_fn (reduc_fn),
vec_elem_type, reduc_inputs[0]);
new_temp = gimple_convert (&stmts, scalar_type, new_temp);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
if ((STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
&& induc_val)
{
/* Earlier we set the initial value to be a vector if induc_val
values. Check the result and if it is induc_val then replace
with the original initial value, unless induc_val is
the same as initial_def already. */
tree zcompare = make_ssa_name (boolean_type_node);
epilog_stmt = gimple_build_assign (zcompare, EQ_EXPR,
new_temp, induc_val);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
tree initial_def = reduc_info->reduc_initial_values[0];
tmp = make_ssa_name (new_scalar_dest);
epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
initial_def, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
new_temp = tmp;
}
scalar_results.safe_push (new_temp);
}
else if (direct_slp_reduc)
{
/* Here we create one vector for each of the REDUC_GROUP_SIZE results,
with the elements for other SLP statements replaced with the
neutral value. We can then do a normal reduction on each vector. */
/* Enforced by vectorizable_reduction. */
gcc_assert (reduc_inputs.length () == 1);
gcc_assert (pow2p_hwi (group_size));
gimple_seq seq = NULL;
/* Build a vector {0, 1, 2, ...}, with the same number of elements
and the same element size as VECTYPE. */
tree index = build_index_vector (vectype, 0, 1);
tree index_type = TREE_TYPE (index);
tree index_elt_type = TREE_TYPE (index_type);
tree mask_type = truth_type_for (index_type);
/* Create a vector that, for each element, identifies which of
the REDUC_GROUP_SIZE results should use it. */
tree index_mask = build_int_cst (index_elt_type, group_size - 1);
index = gimple_build (&seq, BIT_AND_EXPR, index_type, index,
build_vector_from_val (index_type, index_mask));
/* Get a neutral vector value. This is simply a splat of the neutral
scalar value if we have one, otherwise the initial scalar value
is itself a neutral value. */
tree vector_identity = NULL_TREE;
tree neutral_op = NULL_TREE;
if (slp_node)
{
tree initial_value = NULL_TREE;
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
initial_value = reduc_info->reduc_initial_values[0];
neutral_op = neutral_op_for_reduction (TREE_TYPE (vectype), code,
initial_value);
}
if (neutral_op)
vector_identity = gimple_build_vector_from_val (&seq, vectype,
neutral_op);
for (unsigned int i = 0; i < group_size; ++i)
{
/* If there's no univeral neutral value, we can use the
initial scalar value from the original PHI. This is used
for MIN and MAX reduction, for example. */
if (!neutral_op)
{
tree scalar_value = reduc_info->reduc_initial_values[i];
scalar_value = gimple_convert (&seq, TREE_TYPE (vectype),
scalar_value);
vector_identity = gimple_build_vector_from_val (&seq, vectype,
scalar_value);
}
/* Calculate the equivalent of:
sel[j] = (index[j] == i);
which selects the elements of REDUC_INPUTS[0] that should
be included in the result. */
tree compare_val = build_int_cst (index_elt_type, i);
compare_val = build_vector_from_val (index_type, compare_val);
tree sel = gimple_build (&seq, EQ_EXPR, mask_type,
index, compare_val);
/* Calculate the equivalent of:
vec = seq ? reduc_inputs[0] : vector_identity;
VEC is now suitable for a full vector reduction. */
tree vec = gimple_build (&seq, VEC_COND_EXPR, vectype,
sel, reduc_inputs[0], vector_identity);
/* Do the reduction and convert it to the appropriate type. */
tree scalar = gimple_build (&seq, as_combined_fn (reduc_fn),
TREE_TYPE (vectype), vec);
scalar = gimple_convert (&seq, scalar_type, scalar);
scalar_results.safe_push (scalar);
}
gsi_insert_seq_before (&exit_gsi, seq, GSI_SAME_STMT);
}
else
{
bool reduce_with_shift;
tree vec_temp;
gcc_assert (slp_reduc || reduc_inputs.length () == 1);
/* See if the target wants to do the final (shift) reduction
in a vector mode of smaller size and first reduce upper/lower
halves against each other. */
enum machine_mode mode1 = mode;
tree stype = TREE_TYPE (vectype);
unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
unsigned nunits1 = nunits;
if ((mode1 = targetm.vectorize.split_reduction (mode)) != mode
&& reduc_inputs.length () == 1)
{
nunits1 = GET_MODE_NUNITS (mode1).to_constant ();
/* For SLP reductions we have to make sure lanes match up, but
since we're doing individual element final reduction reducing
vector width here is even more important.
??? We can also separate lanes with permutes, for the common
case of power-of-two group-size odd/even extracts would work. */
if (slp_reduc && nunits != nunits1)
{
nunits1 = least_common_multiple (nunits1, group_size);
gcc_assert (exact_log2 (nunits1) != -1 && nunits1 <= nunits);
}
}
if (!slp_reduc
&& (mode1 = targetm.vectorize.split_reduction (mode)) != mode)
nunits1 = GET_MODE_NUNITS (mode1).to_constant ();
tree vectype1 = get_related_vectype_for_scalar_type (TYPE_MODE (vectype),
stype, nunits1);
reduce_with_shift = have_whole_vector_shift (mode1);
if (!VECTOR_MODE_P (mode1)
|| !directly_supported_p (code, vectype1))
reduce_with_shift = false;
/* First reduce the vector to the desired vector size we should
do shift reduction on by combining upper and lower halves. */
gimple_seq stmts = NULL;
new_temp = vect_create_partial_epilog (reduc_inputs[0], vectype1,
code, &stmts);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
reduc_inputs[0] = new_temp;
if (reduce_with_shift && !slp_reduc)
{
int element_bitsize = tree_to_uhwi (bitsize);
/* Enforced by vectorizable_reduction, which disallows SLP reductions
for variable-length vectors and also requires direct target support
for loop reductions. */
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
int nelements = vec_size_in_bits / element_bitsize;
vec_perm_builder sel;
vec_perm_indices indices;
int elt_offset;
tree zero_vec = build_zero_cst (vectype1);
/* Case 2: Create:
for (offset = nelements/2; offset >= 1; offset/=2)
{
Create: va' = vec_shift <va, offset>
Create: va = vop <va, va'>
} */
tree rhs;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Reduce using vector shifts\n");
gimple_seq stmts = NULL;
new_temp = gimple_convert (&stmts, vectype1, new_temp);
for (elt_offset = nelements / 2;
elt_offset >= 1;
elt_offset /= 2)
{
calc_vec_perm_mask_for_shift (elt_offset, nelements, &sel);
indices.new_vector (sel, 2, nelements);
tree mask = vect_gen_perm_mask_any (vectype1, indices);
new_name = gimple_build (&stmts, VEC_PERM_EXPR, vectype1,
new_temp, zero_vec, mask);
new_temp = gimple_build (&stmts, code,
vectype1, new_name, new_temp);
}
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
/* 2.4 Extract the final scalar result. Create:
s_out3 = extract_field <v_out2, bitpos> */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"extract scalar result\n");
rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
bitsize, bitsize_zero_node);
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
scalar_results.safe_push (new_temp);
}
else
{
/* Case 3: Create:
s = extract_field <v_out2, 0>
for (offset = element_size;
offset < vector_size;
offset += element_size;)
{
Create: s' = extract_field <v_out2, offset>
Create: s = op <s, s'> // For non SLP cases
} */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Reduce using scalar code.\n");
int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
int element_bitsize = tree_to_uhwi (bitsize);
tree compute_type = TREE_TYPE (vectype);
gimple_seq stmts = NULL;
FOR_EACH_VEC_ELT (reduc_inputs, i, vec_temp)
{
int bit_offset;
new_temp = gimple_build (&stmts, BIT_FIELD_REF, compute_type,
vec_temp, bitsize, bitsize_zero_node);
/* In SLP we don't need to apply reduction operation, so we just
collect s' values in SCALAR_RESULTS. */
if (slp_reduc)
scalar_results.safe_push (new_temp);
for (bit_offset = element_bitsize;
bit_offset < vec_size_in_bits;
bit_offset += element_bitsize)
{
tree bitpos = bitsize_int (bit_offset);
new_name = gimple_build (&stmts, BIT_FIELD_REF,
compute_type, vec_temp,
bitsize, bitpos);
if (slp_reduc)
{
/* In SLP we don't need to apply reduction operation, so
we just collect s' values in SCALAR_RESULTS. */
new_temp = new_name;
scalar_results.safe_push (new_name);
}
else
new_temp = gimple_build (&stmts, code, compute_type,
new_name, new_temp);
}
}
/* The only case where we need to reduce scalar results in SLP, is
unrolling. If the size of SCALAR_RESULTS is greater than
REDUC_GROUP_SIZE, we reduce them combining elements modulo
REDUC_GROUP_SIZE. */
if (slp_reduc)
{
tree res, first_res, new_res;
/* Reduce multiple scalar results in case of SLP unrolling. */
for (j = group_size; scalar_results.iterate (j, &res);
j++)
{
first_res = scalar_results[j % group_size];
new_res = gimple_build (&stmts, code, compute_type,
first_res, res);
scalar_results[j % group_size] = new_res;
}
scalar_results.truncate (group_size);
for (k = 0; k < group_size; k++)
scalar_results[k] = gimple_convert (&stmts, scalar_type,
scalar_results[k]);
}
else
{
/* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
new_temp = gimple_convert (&stmts, scalar_type, new_temp);
scalar_results.safe_push (new_temp);
}
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
}
if ((STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
&& induc_val)
{
/* Earlier we set the initial value to be a vector if induc_val
values. Check the result and if it is induc_val then replace
with the original initial value, unless induc_val is
the same as initial_def already. */
tree zcompare = make_ssa_name (boolean_type_node);
epilog_stmt = gimple_build_assign (zcompare, EQ_EXPR, new_temp,
induc_val);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
tree initial_def = reduc_info->reduc_initial_values[0];
tree tmp = make_ssa_name (new_scalar_dest);
epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
initial_def, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
scalar_results[0] = tmp;
}
}
/* 2.5 Adjust the final result by the initial value of the reduction
variable. (When such adjustment is not needed, then
'adjustment_def' is zero). For example, if code is PLUS we create:
new_temp = loop_exit_def + adjustment_def */
if (adjustment_def)
{
gcc_assert (!slp_reduc);
gimple_seq stmts = NULL;
if (double_reduc)
{
gcc_assert (VECTOR_TYPE_P (TREE_TYPE (adjustment_def)));
adjustment_def = gimple_convert (&stmts, vectype, adjustment_def);
new_temp = gimple_build (&stmts, code, vectype,
reduc_inputs[0], adjustment_def);
}
else
{
new_temp = scalar_results[0];
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
adjustment_def = gimple_convert (&stmts, TREE_TYPE (vectype),
adjustment_def);
new_temp = gimple_convert (&stmts, TREE_TYPE (vectype), new_temp);
new_temp = gimple_build (&stmts, code, TREE_TYPE (vectype),
new_temp, adjustment_def);
new_temp = gimple_convert (&stmts, scalar_type, new_temp);
}
epilog_stmt = gimple_seq_last_stmt (stmts);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
scalar_results[0] = new_temp;
}
/* Record this operation if it could be reused by the epilogue loop. */
if (STMT_VINFO_REDUC_TYPE (reduc_info) == TREE_CODE_REDUCTION
&& reduc_inputs.length () == 1)
loop_vinfo->reusable_accumulators.put (scalar_results[0],
{ orig_reduc_input, reduc_info });
if (double_reduc)
loop = outer_loop;
/* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
phis with new adjusted scalar results, i.e., replace use <s_out0>
with use <s_out4>.
Transform:
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1>
s_out3 = extract_field <v_out2, 0>
s_out4 = adjust_result <s_out3>
use <s_out0>
use <s_out0>
into:
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1>
s_out3 = extract_field <v_out2, 0>
s_out4 = adjust_result <s_out3>
use <s_out4>
use <s_out4> */
gcc_assert (live_out_stmts.size () == scalar_results.length ());
for (k = 0; k < live_out_stmts.size (); k++)
{
stmt_vec_info scalar_stmt_info = vect_orig_stmt (live_out_stmts[k]);
scalar_dest = gimple_get_lhs (scalar_stmt_info->stmt);
phis.create (3);
/* Find the loop-closed-use at the loop exit of the original scalar
result. (The reduction result is expected to have two immediate uses,
one at the latch block, and one at the loop exit). For double
reductions we are looking for exit phis of the outer loop. */
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
{
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
{
if (!is_gimple_debug (USE_STMT (use_p)))
phis.safe_push (USE_STMT (use_p));
}
else
{
if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
{
tree phi_res = PHI_RESULT (USE_STMT (use_p));
FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
{
if (!flow_bb_inside_loop_p (loop,
gimple_bb (USE_STMT (phi_use_p)))
&& !is_gimple_debug (USE_STMT (phi_use_p)))
phis.safe_push (USE_STMT (phi_use_p));
}
}
}
}
FOR_EACH_VEC_ELT (phis, i, exit_phi)
{
/* Replace the uses: */
orig_name = PHI_RESULT (exit_phi);
/* Look for a single use at the target of the skip edge. */
if (unify_with_main_loop_p)
{
use_operand_p use_p;
gimple *user;
if (!single_imm_use (orig_name, &use_p, &user))
gcc_unreachable ();
orig_name = gimple_get_lhs (user);
}
scalar_result = scalar_results[k];
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
{
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, scalar_result);
update_stmt (use_stmt);
}
}
phis.release ();
}
}
/* Return a vector of type VECTYPE that is equal to the vector select
operation "MASK ? VEC : IDENTITY". Insert the select statements
before GSI. */
static tree
merge_with_identity (gimple_stmt_iterator *gsi, tree mask, tree vectype,
tree vec, tree identity)
{
tree cond = make_temp_ssa_name (vectype, NULL, "cond");
gimple *new_stmt = gimple_build_assign (cond, VEC_COND_EXPR,
mask, vec, identity);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
return cond;
}
/* Successively apply CODE to each element of VECTOR_RHS, in left-to-right
order, starting with LHS. Insert the extraction statements before GSI and
associate the new scalar SSA names with variable SCALAR_DEST.
Return the SSA name for the result. */
static tree
vect_expand_fold_left (gimple_stmt_iterator *gsi, tree scalar_dest,
tree_code code, tree lhs, tree vector_rhs)
{
tree vectype = TREE_TYPE (vector_rhs);
tree scalar_type = TREE_TYPE (vectype);
tree bitsize = TYPE_SIZE (scalar_type);
unsigned HOST_WIDE_INT vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
unsigned HOST_WIDE_INT element_bitsize = tree_to_uhwi (bitsize);
for (unsigned HOST_WIDE_INT bit_offset = 0;
bit_offset < vec_size_in_bits;
bit_offset += element_bitsize)
{
tree bitpos = bitsize_int (bit_offset);
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vector_rhs,
bitsize, bitpos);
gassign *stmt = gimple_build_assign (scalar_dest, rhs);
rhs = make_ssa_name (scalar_dest, stmt);
gimple_assign_set_lhs (stmt, rhs);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
stmt = gimple_build_assign (scalar_dest, code, lhs, rhs);
tree new_name = make_ssa_name (scalar_dest, stmt);
gimple_assign_set_lhs (stmt, new_name);
gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
lhs = new_name;
}
return lhs;
}
/* Get a masked internal function equivalent to REDUC_FN. VECTYPE_IN is the
type of the vector input. */
static internal_fn
get_masked_reduction_fn (internal_fn reduc_fn, tree vectype_in)
{
internal_fn mask_reduc_fn;
internal_fn mask_len_reduc_fn;
switch (reduc_fn)
{
case IFN_FOLD_LEFT_PLUS:
mask_reduc_fn = IFN_MASK_FOLD_LEFT_PLUS;
mask_len_reduc_fn = IFN_MASK_LEN_FOLD_LEFT_PLUS;
break;
default:
return IFN_LAST;
}
if (direct_internal_fn_supported_p (mask_reduc_fn, vectype_in,
OPTIMIZE_FOR_SPEED))
return mask_reduc_fn;
if (direct_internal_fn_supported_p (mask_len_reduc_fn, vectype_in,
OPTIMIZE_FOR_SPEED))
return mask_len_reduc_fn;
return IFN_LAST;
}
/* Perform an in-order reduction (FOLD_LEFT_REDUCTION). STMT_INFO is the
statement that sets the live-out value. REDUC_DEF_STMT is the phi
statement. CODE is the operation performed by STMT_INFO and OPS are
its scalar operands. REDUC_INDEX is the index of the operand in
OPS that is set by REDUC_DEF_STMT. REDUC_FN is the function that
implements in-order reduction, or IFN_LAST if we should open-code it.
VECTYPE_IN is the type of the vector input. MASKS specifies the masks
that should be used to control the operation in a fully-masked loop. */
static bool
vectorize_fold_left_reduction (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info,
gimple_stmt_iterator *gsi,
gimple **vec_stmt, slp_tree slp_node,
gimple *reduc_def_stmt,
tree_code code, internal_fn reduc_fn,
tree ops[3], tree vectype_in,
int reduc_index, vec_loop_masks *masks,
vec_loop_lens *lens)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
internal_fn mask_reduc_fn = get_masked_reduction_fn (reduc_fn, vectype_in);
int ncopies;
if (slp_node)
ncopies = 1;
else
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
gcc_assert (!nested_in_vect_loop_p (loop, stmt_info));
gcc_assert (ncopies == 1);
gcc_assert (TREE_CODE_LENGTH (code) == binary_op);
if (slp_node)
gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (vectype_out),
TYPE_VECTOR_SUBPARTS (vectype_in)));
tree op0 = ops[1 - reduc_index];
int group_size = 1;
stmt_vec_info scalar_dest_def_info;
auto_vec<tree> vec_oprnds0;
if (slp_node)
{
auto_vec<vec<tree> > vec_defs (2);
vect_get_slp_defs (loop_vinfo, slp_node, &vec_defs);
vec_oprnds0.safe_splice (vec_defs[1 - reduc_index]);
vec_defs[0].release ();
vec_defs[1].release ();
group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
scalar_dest_def_info = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
}
else
{
vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
op0, &vec_oprnds0);
scalar_dest_def_info = stmt_info;
}
tree scalar_dest = gimple_assign_lhs (scalar_dest_def_info->stmt);
tree scalar_type = TREE_TYPE (scalar_dest);
tree reduc_var = gimple_phi_result (reduc_def_stmt);
int vec_num = vec_oprnds0.length ();
gcc_assert (vec_num == 1 || slp_node);
tree vec_elem_type = TREE_TYPE (vectype_out);
gcc_checking_assert (useless_type_conversion_p (scalar_type, vec_elem_type));
tree vector_identity = NULL_TREE;
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
{
vector_identity = build_zero_cst (vectype_out);
if (!HONOR_SIGNED_ZEROS (vectype_out))
;
else
{
gcc_assert (!HONOR_SIGN_DEPENDENT_ROUNDING (vectype_out));
vector_identity = const_unop (NEGATE_EXPR, vectype_out,
vector_identity);
}
}
tree scalar_dest_var = vect_create_destination_var (scalar_dest, NULL);
int i;
tree def0;
FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
{
gimple *new_stmt;
tree mask = NULL_TREE;
tree len = NULL_TREE;
tree bias = NULL_TREE;
if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
mask = vect_get_loop_mask (loop_vinfo, gsi, masks, vec_num, vectype_in, i);
if (LOOP_VINFO_FULLY_WITH_LENGTH_P (loop_vinfo))
{
len = vect_get_loop_len (loop_vinfo, gsi, lens, vec_num, vectype_in,
i, 1);
signed char biasval = LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
bias = build_int_cst (intQI_type_node, biasval);
mask = build_minus_one_cst (truth_type_for (vectype_in));
}
/* Handle MINUS by adding the negative. */
if (reduc_fn != IFN_LAST && code == MINUS_EXPR)
{
tree negated = make_ssa_name (vectype_out);
new_stmt = gimple_build_assign (negated, NEGATE_EXPR, def0);
gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
def0 = negated;
}
if (mask && mask_reduc_fn == IFN_LAST)
def0 = merge_with_identity (gsi, mask, vectype_out, def0,
vector_identity);
/* On the first iteration the input is simply the scalar phi
result, and for subsequent iterations it is the output of
the preceding operation. */
if (reduc_fn != IFN_LAST || (mask && mask_reduc_fn != IFN_LAST))
{
if (mask && len && mask_reduc_fn == IFN_MASK_LEN_FOLD_LEFT_PLUS)
new_stmt = gimple_build_call_internal (mask_reduc_fn, 5, reduc_var,
def0, mask, len, bias);
else if (mask && mask_reduc_fn == IFN_MASK_FOLD_LEFT_PLUS)
new_stmt = gimple_build_call_internal (mask_reduc_fn, 3, reduc_var,
def0, mask);
else
new_stmt = gimple_build_call_internal (reduc_fn, 2, reduc_var,
def0);
/* For chained SLP reductions the output of the previous reduction
operation serves as the input of the next. For the final statement
the output cannot be a temporary - we reuse the original
scalar destination of the last statement. */
if (i != vec_num - 1)
{
gimple_set_lhs (new_stmt, scalar_dest_var);
reduc_var = make_ssa_name (scalar_dest_var, new_stmt);
gimple_set_lhs (new_stmt, reduc_var);
}
}
else
{
reduc_var = vect_expand_fold_left (gsi, scalar_dest_var, code,
reduc_var, def0);
new_stmt = SSA_NAME_DEF_STMT (reduc_var);
/* Remove the statement, so that we can use the same code paths
as for statements that we've just created. */
gimple_stmt_iterator tmp_gsi = gsi_for_stmt (new_stmt);
gsi_remove (&tmp_gsi, true);
}
if (i == vec_num - 1)
{
gimple_set_lhs (new_stmt, scalar_dest);
vect_finish_replace_stmt (loop_vinfo,
scalar_dest_def_info,
new_stmt);
}
else
vect_finish_stmt_generation (loop_vinfo,
scalar_dest_def_info,
new_stmt, gsi);
if (slp_node)
slp_node->push_vec_def (new_stmt);
else
{
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
*vec_stmt = new_stmt;
}
}
return true;
}
/* Function is_nonwrapping_integer_induction.
Check if STMT_VINO (which is part of loop LOOP) both increments and
does not cause overflow. */
static bool
is_nonwrapping_integer_induction (stmt_vec_info stmt_vinfo, class loop *loop)
{
gphi *phi = as_a <gphi *> (stmt_vinfo->stmt);
tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
tree lhs_type = TREE_TYPE (gimple_phi_result (phi));
widest_int ni, max_loop_value, lhs_max;
wi::overflow_type overflow = wi::OVF_NONE;
/* Make sure the loop is integer based. */
if (TREE_CODE (base) != INTEGER_CST
|| TREE_CODE (step) != INTEGER_CST)
return false;
/* Check that the max size of the loop will not wrap. */
if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
return true;
if (! max_stmt_executions (loop, &ni))
return false;
max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
&overflow);
if (overflow)
return false;
max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
TYPE_SIGN (lhs_type), &overflow);
if (overflow)
return false;
return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
<= TYPE_PRECISION (lhs_type));
}
/* Check if masking can be supported by inserting a conditional expression.
CODE is the code for the operation. COND_FN is the conditional internal
function, if it exists. VECTYPE_IN is the type of the vector input. */
static bool
use_mask_by_cond_expr_p (code_helper code, internal_fn cond_fn,
tree vectype_in)
{
if (cond_fn != IFN_LAST
&& direct_internal_fn_supported_p (cond_fn, vectype_in,
OPTIMIZE_FOR_SPEED))
return false;
if (code.is_tree_code ())
switch (tree_code (code))
{
case DOT_PROD_EXPR:
case SAD_EXPR:
return true;
default:
break;
}
return false;
}
/* Insert a conditional expression to enable masked vectorization. CODE is the
code for the operation. VOP is the array of operands. MASK is the loop
mask. GSI is a statement iterator used to place the new conditional
expression. */
static void
build_vect_cond_expr (code_helper code, tree vop[3], tree mask,
gimple_stmt_iterator *gsi)
{
switch (tree_code (code))
{
case DOT_PROD_EXPR:
{
tree vectype = TREE_TYPE (vop[1]);
tree zero = build_zero_cst (vectype);
tree masked_op1 = make_temp_ssa_name (vectype, NULL, "masked_op1");
gassign *select = gimple_build_assign (masked_op1, VEC_COND_EXPR,
mask, vop[1], zero);
gsi_insert_before (gsi, select, GSI_SAME_STMT);
vop[1] = masked_op1;
break;
}
case SAD_EXPR:
{
tree vectype = TREE_TYPE (vop[1]);
tree masked_op1 = make_temp_ssa_name (vectype, NULL, "masked_op1");
gassign *select = gimple_build_assign (masked_op1, VEC_COND_EXPR,
mask, vop[1], vop[0]);
gsi_insert_before (gsi, select, GSI_SAME_STMT);
vop[1] = masked_op1;
break;
}
default:
gcc_unreachable ();
}
}
/* Function vectorizable_reduction.
Check if STMT_INFO performs a reduction operation that can be vectorized.
If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at GSI.
Return true if STMT_INFO is vectorizable in this way.
This function also handles reduction idioms (patterns) that have been
recognized in advance during vect_pattern_recog. In this case, STMT_INFO
may be of this form:
X = pattern_expr (arg0, arg1, ..., X)
and its STMT_VINFO_RELATED_STMT points to the last stmt in the original
sequence that had been detected and replaced by the pattern-stmt
(STMT_INFO).
This function also handles reduction of condition expressions, for example:
for (int i = 0; i < N; i++)
if (a[i] < value)
last = a[i];
This is handled by vectorising the loop and creating an additional vector
containing the loop indexes for which "a[i] < value" was true. In the
function epilogue this is reduced to a single max value and then used to
index into the vector of results.
In some cases of reduction patterns, the type of the reduction variable X is
different than the type of the other arguments of STMT_INFO.
In such cases, the vectype that is used when transforming STMT_INFO into
a vector stmt is different than the vectype that is used to determine the
vectorization factor, because it consists of a different number of elements
than the actual number of elements that are being operated upon in parallel.
For example, consider an accumulation of shorts into an int accumulator.
On some targets it's possible to vectorize this pattern operating on 8
shorts at a time (hence, the vectype for purposes of determining the
vectorization factor should be V8HI); on the other hand, the vectype that
is used to create the vector form is actually V4SI (the type of the result).
Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
indicates what is the actual level of parallelism (V8HI in the example), so
that the right vectorization factor would be derived. This vectype
corresponds to the type of arguments to the reduction stmt, and should *NOT*
be used to create the vectorized stmt. The right vectype for the vectorized
stmt is obtained from the type of the result X:
get_vectype_for_scalar_type (vinfo, TREE_TYPE (X))
This means that, contrary to "regular" reductions (or "regular" stmts in
general), the following equation:
STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (vinfo, TREE_TYPE (X))
does *NOT* necessarily hold for reduction patterns. */
bool
vectorizable_reduction (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info, slp_tree slp_node,
slp_instance slp_node_instance,
stmt_vector_for_cost *cost_vec)
{
tree vectype_in = NULL_TREE;
tree vectype_op[3] = { NULL_TREE, NULL_TREE, NULL_TREE };
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
enum vect_def_type cond_reduc_dt = vect_unknown_def_type;
stmt_vec_info cond_stmt_vinfo = NULL;
int i;
int ncopies;
bool single_defuse_cycle = false;
bool nested_cycle = false;
bool double_reduc = false;
int vec_num;
tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
tree cond_reduc_val = NULL_TREE;
/* Make sure it was already recognized as a reduction computation. */
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
return false;
/* The stmt we store reduction analysis meta on. */
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
reduc_info->is_reduc_info = true;
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
{
if (is_a <gphi *> (stmt_info->stmt))
{
if (slp_node)
{
/* We eventually need to set a vector type on invariant
arguments. */
unsigned j;
slp_tree child;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), j, child)
if (!vect_maybe_update_slp_op_vectype
(child, SLP_TREE_VECTYPE (slp_node)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector types for "
"invariants\n");
return false;
}
}
/* Analysis for double-reduction is done on the outer
loop PHI, nested cycles have no further restrictions. */
STMT_VINFO_TYPE (stmt_info) = cycle_phi_info_type;
}
else
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
return true;
}
stmt_vec_info orig_stmt_of_analysis = stmt_info;
stmt_vec_info phi_info = stmt_info;
if (!is_a <gphi *> (stmt_info->stmt))
{
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
return true;
}
if (slp_node)
{
slp_node_instance->reduc_phis = slp_node;
/* ??? We're leaving slp_node to point to the PHIs, we only
need it to get at the number of vector stmts which wasn't
yet initialized for the instance root. */
}
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
{
use_operand_p use_p;
gimple *use_stmt;
bool res = single_imm_use (gimple_phi_result (stmt_info->stmt),
&use_p, &use_stmt);
gcc_assert (res);
phi_info = loop_vinfo->lookup_stmt (use_stmt);
}
/* PHIs should not participate in patterns. */
gcc_assert (!STMT_VINFO_RELATED_STMT (phi_info));
gphi *reduc_def_phi = as_a <gphi *> (phi_info->stmt);
/* Verify following REDUC_IDX from the latch def leads us back to the PHI
and compute the reduction chain length. Discover the real
reduction operation stmt on the way (stmt_info and slp_for_stmt_info). */
tree reduc_def
= PHI_ARG_DEF_FROM_EDGE (reduc_def_phi,
loop_latch_edge
(gimple_bb (reduc_def_phi)->loop_father));
unsigned reduc_chain_length = 0;
bool only_slp_reduc_chain = true;
stmt_info = NULL;
slp_tree slp_for_stmt_info = slp_node ? slp_node_instance->root : NULL;
while (reduc_def != PHI_RESULT (reduc_def_phi))
{
stmt_vec_info def = loop_vinfo->lookup_def (reduc_def);
stmt_vec_info vdef = vect_stmt_to_vectorize (def);
if (STMT_VINFO_REDUC_IDX (vdef) == -1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction chain broken by patterns.\n");
return false;
}
if (!REDUC_GROUP_FIRST_ELEMENT (vdef))
only_slp_reduc_chain = false;
/* For epilogue generation live members of the chain need
to point back to the PHI via their original stmt for
info_for_reduction to work. For SLP we need to look at
all lanes here - even though we only will vectorize from
the SLP node with live lane zero the other live lanes also
need to be identified as part of a reduction to be able
to skip code generation for them. */
if (slp_for_stmt_info)
{
for (auto s : SLP_TREE_SCALAR_STMTS (slp_for_stmt_info))
if (STMT_VINFO_LIVE_P (s))
STMT_VINFO_REDUC_DEF (vect_orig_stmt (s)) = phi_info;
}
else if (STMT_VINFO_LIVE_P (vdef))
STMT_VINFO_REDUC_DEF (def) = phi_info;
gimple_match_op op;
if (!gimple_extract_op (vdef->stmt, &op))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction chain includes unsupported"
" statement type.\n");
return false;
}
if (CONVERT_EXPR_CODE_P (op.code))
{
if (!tree_nop_conversion_p (op.type, TREE_TYPE (op.ops[0])))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"conversion in the reduction chain.\n");
return false;
}
}
else if (!stmt_info)
/* First non-conversion stmt. */
stmt_info = vdef;
reduc_def = op.ops[STMT_VINFO_REDUC_IDX (vdef)];
reduc_chain_length++;
if (!stmt_info && slp_node)
slp_for_stmt_info = SLP_TREE_CHILDREN (slp_for_stmt_info)[0];
}
/* PHIs should not participate in patterns. */
gcc_assert (!STMT_VINFO_RELATED_STMT (phi_info));
if (nested_in_vect_loop_p (loop, stmt_info))
{
loop = loop->inner;
nested_cycle = true;
}
/* STMT_VINFO_REDUC_DEF doesn't point to the first but the last
element. */
if (slp_node && REDUC_GROUP_FIRST_ELEMENT (stmt_info))
{
gcc_assert (!REDUC_GROUP_NEXT_ELEMENT (stmt_info));
stmt_info = REDUC_GROUP_FIRST_ELEMENT (stmt_info);
}
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
gcc_assert (slp_node
&& REDUC_GROUP_FIRST_ELEMENT (stmt_info) == stmt_info);
/* 1. Is vectorizable reduction? */
/* Not supportable if the reduction variable is used in the loop, unless
it's a reduction chain. */
if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
return false;
/* Reductions that are not used even in an enclosing outer-loop,
are expected to be "live" (used out of the loop). */
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
&& !STMT_VINFO_LIVE_P (stmt_info))
return false;
/* 2. Has this been recognized as a reduction pattern?
Check if STMT represents a pattern that has been recognized
in earlier analysis stages. For stmts that represent a pattern,
the STMT_VINFO_RELATED_STMT field records the last stmt in
the original sequence that constitutes the pattern. */
stmt_vec_info orig_stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
if (orig_stmt_info)
{
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
}
/* 3. Check the operands of the operation. The first operands are defined
inside the loop body. The last operand is the reduction variable,
which is defined by the loop-header-phi. */
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
STMT_VINFO_REDUC_VECTYPE (reduc_info) = vectype_out;
gimple_match_op op;
if (!gimple_extract_op (stmt_info->stmt, &op))
gcc_unreachable ();
bool lane_reduc_code_p = (op.code == DOT_PROD_EXPR
|| op.code == WIDEN_SUM_EXPR
|| op.code == SAD_EXPR);
if (!POINTER_TYPE_P (op.type) && !INTEGRAL_TYPE_P (op.type)
&& !SCALAR_FLOAT_TYPE_P (op.type))
return false;
/* Do not try to vectorize bit-precision reductions. */
if (!type_has_mode_precision_p (op.type))
return false;
/* For lane-reducing ops we're reducing the number of reduction PHIs
which means the only use of that may be in the lane-reducing operation. */
if (lane_reduc_code_p
&& reduc_chain_length != 1
&& !only_slp_reduc_chain)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"lane-reducing reduction with extra stmts.\n");
return false;
}
/* All uses but the last are expected to be defined in the loop.
The last use is the reduction variable. In case of nested cycle this
assumption is not true: we use reduc_index to record the index of the
reduction variable. */
slp_tree *slp_op = XALLOCAVEC (slp_tree, op.num_ops);
/* We need to skip an extra operand for COND_EXPRs with embedded
comparison. */
unsigned opno_adjust = 0;
if (op.code == COND_EXPR && COMPARISON_CLASS_P (op.ops[0]))
opno_adjust = 1;
for (i = 0; i < (int) op.num_ops; i++)
{
/* The condition of COND_EXPR is checked in vectorizable_condition(). */
if (i == 0 && op.code == COND_EXPR)
continue;
stmt_vec_info def_stmt_info;
enum vect_def_type dt;
if (!vect_is_simple_use (loop_vinfo, stmt_info, slp_for_stmt_info,
i + opno_adjust, &op.ops[i], &slp_op[i], &dt,
&vectype_op[i], &def_stmt_info))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"use not simple.\n");
return false;
}
if (i == STMT_VINFO_REDUC_IDX (stmt_info))
continue;
/* There should be only one cycle def in the stmt, the one
leading to reduc_def. */
if (VECTORIZABLE_CYCLE_DEF (dt))
return false;
if (!vectype_op[i])
vectype_op[i]
= get_vectype_for_scalar_type (loop_vinfo,
TREE_TYPE (op.ops[i]), slp_op[i]);
/* To properly compute ncopies we are interested in the widest
non-reduction input type in case we're looking at a widening
accumulation that we later handle in vect_transform_reduction. */
if (lane_reduc_code_p
&& vectype_op[i]
&& (!vectype_in
|| (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in)))
< GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_op[i]))))))
vectype_in = vectype_op[i];
if (op.code == COND_EXPR)
{
/* Record how the non-reduction-def value of COND_EXPR is defined. */
if (dt == vect_constant_def)
{
cond_reduc_dt = dt;
cond_reduc_val = op.ops[i];
}
if (dt == vect_induction_def
&& def_stmt_info
&& is_nonwrapping_integer_induction (def_stmt_info, loop))
{
cond_reduc_dt = dt;
cond_stmt_vinfo = def_stmt_info;
}
}
}
if (!vectype_in)
vectype_in = STMT_VINFO_VECTYPE (phi_info);
STMT_VINFO_REDUC_VECTYPE_IN (reduc_info) = vectype_in;
enum vect_reduction_type v_reduc_type = STMT_VINFO_REDUC_TYPE (phi_info);
STMT_VINFO_REDUC_TYPE (reduc_info) = v_reduc_type;
/* If we have a condition reduction, see if we can simplify it further. */
if (v_reduc_type == COND_REDUCTION)
{
if (slp_node)
return false;
/* When the condition uses the reduction value in the condition, fail. */
if (STMT_VINFO_REDUC_IDX (stmt_info) == 0)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"condition depends on previous iteration\n");
return false;
}
if (reduc_chain_length == 1
&& (direct_internal_fn_supported_p (IFN_FOLD_EXTRACT_LAST, vectype_in,
OPTIMIZE_FOR_SPEED)
|| direct_internal_fn_supported_p (IFN_LEN_FOLD_EXTRACT_LAST,
vectype_in,
OPTIMIZE_FOR_SPEED)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"optimizing condition reduction with"
" FOLD_EXTRACT_LAST.\n");
STMT_VINFO_REDUC_TYPE (reduc_info) = EXTRACT_LAST_REDUCTION;
}
else if (cond_reduc_dt == vect_induction_def)
{
tree base
= STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (cond_stmt_vinfo);
tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (cond_stmt_vinfo);
gcc_assert (TREE_CODE (base) == INTEGER_CST
&& TREE_CODE (step) == INTEGER_CST);
cond_reduc_val = NULL_TREE;
enum tree_code cond_reduc_op_code = ERROR_MARK;
tree res = PHI_RESULT (STMT_VINFO_STMT (cond_stmt_vinfo));
if (!types_compatible_p (TREE_TYPE (res), TREE_TYPE (base)))
;
/* Find a suitable value, for MAX_EXPR below base, for MIN_EXPR
above base; punt if base is the minimum value of the type for
MAX_EXPR or maximum value of the type for MIN_EXPR for now. */
else if (tree_int_cst_sgn (step) == -1)
{
cond_reduc_op_code = MIN_EXPR;
if (tree_int_cst_sgn (base) == -1)
cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
else if (tree_int_cst_lt (base,
TYPE_MAX_VALUE (TREE_TYPE (base))))
cond_reduc_val
= int_const_binop (PLUS_EXPR, base, integer_one_node);
}
else
{
cond_reduc_op_code = MAX_EXPR;
if (tree_int_cst_sgn (base) == 1)
cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
else if (tree_int_cst_lt (TYPE_MIN_VALUE (TREE_TYPE (base)),
base))
cond_reduc_val
= int_const_binop (MINUS_EXPR, base, integer_one_node);
}
if (cond_reduc_val)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"condition expression based on "
"integer induction.\n");
STMT_VINFO_REDUC_CODE (reduc_info) = cond_reduc_op_code;
STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info)
= cond_reduc_val;
STMT_VINFO_REDUC_TYPE (reduc_info) = INTEGER_INDUC_COND_REDUCTION;
}
}
else if (cond_reduc_dt == vect_constant_def)
{
enum vect_def_type cond_initial_dt;
tree cond_initial_val = vect_phi_initial_value (reduc_def_phi);
vect_is_simple_use (cond_initial_val, loop_vinfo, &cond_initial_dt);
if (cond_initial_dt == vect_constant_def
&& types_compatible_p (TREE_TYPE (cond_initial_val),
TREE_TYPE (cond_reduc_val)))
{
tree e = fold_binary (LE_EXPR, boolean_type_node,
cond_initial_val, cond_reduc_val);
if (e && (integer_onep (e) || integer_zerop (e)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"condition expression based on "
"compile time constant.\n");
/* Record reduction code at analysis stage. */
STMT_VINFO_REDUC_CODE (reduc_info)
= integer_onep (e) ? MAX_EXPR : MIN_EXPR;
STMT_VINFO_REDUC_TYPE (reduc_info) = CONST_COND_REDUCTION;
}
}
}
}
if (STMT_VINFO_LIVE_P (phi_info))
return false;
if (slp_node)
ncopies = 1;
else
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
gcc_assert (ncopies >= 1);
poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
if (nested_cycle)
{
gcc_assert (STMT_VINFO_DEF_TYPE (reduc_info)
== vect_double_reduction_def);
double_reduc = true;
}
/* 4.2. Check support for the epilog operation.
If STMT represents a reduction pattern, then the type of the
reduction variable may be different than the type of the rest
of the arguments. For example, consider the case of accumulation
of shorts into an int accumulator; The original code:
S1: int_a = (int) short_a;
orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
was replaced with:
STMT: int_acc = widen_sum <short_a, int_acc>
This means that:
1. The tree-code that is used to create the vector operation in the
epilog code (that reduces the partial results) is not the
tree-code of STMT, but is rather the tree-code of the original
stmt from the pattern that STMT is replacing. I.e, in the example
above we want to use 'widen_sum' in the loop, but 'plus' in the
epilog.
2. The type (mode) we use to check available target support
for the vector operation to be created in the *epilog*, is
determined by the type of the reduction variable (in the example
above we'd check this: optab_handler (plus_optab, vect_int_mode])).
However the type (mode) we use to check available target support
for the vector operation to be created *inside the loop*, is
determined by the type of the other arguments to STMT (in the
example we'd check this: optab_handler (widen_sum_optab,
vect_short_mode)).
This is contrary to "regular" reductions, in which the types of all
the arguments are the same as the type of the reduction variable.
For "regular" reductions we can therefore use the same vector type
(and also the same tree-code) when generating the epilog code and
when generating the code inside the loop. */
code_helper orig_code = STMT_VINFO_REDUC_CODE (phi_info);
STMT_VINFO_REDUC_CODE (reduc_info) = orig_code;
vect_reduction_type reduction_type = STMT_VINFO_REDUC_TYPE (reduc_info);
if (reduction_type == TREE_CODE_REDUCTION)
{
/* Check whether it's ok to change the order of the computation.
Generally, when vectorizing a reduction we change the order of the
computation. This may change the behavior of the program in some
cases, so we need to check that this is ok. One exception is when
vectorizing an outer-loop: the inner-loop is executed sequentially,
and therefore vectorizing reductions in the inner-loop during
outer-loop vectorization is safe. Likewise when we are vectorizing
a series of reductions using SLP and the VF is one the reductions
are performed in scalar order. */
if (slp_node
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info)
&& known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1u))
;
else if (needs_fold_left_reduction_p (op.type, orig_code))
{
/* When vectorizing a reduction chain w/o SLP the reduction PHI
is not directy used in stmt. */
if (!only_slp_reduc_chain
&& reduc_chain_length != 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"in-order reduction chain without SLP.\n");
return false;
}
STMT_VINFO_REDUC_TYPE (reduc_info)
= reduction_type = FOLD_LEFT_REDUCTION;
}
else if (!commutative_binary_op_p (orig_code, op.type)
|| !associative_binary_op_p (orig_code, op.type))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction: not commutative/associative");
return false;
}
}
if ((double_reduc || reduction_type != TREE_CODE_REDUCTION)
&& ncopies > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"multiple types in double reduction or condition "
"reduction or fold-left reduction.\n");
return false;
}
internal_fn reduc_fn = IFN_LAST;
if (reduction_type == TREE_CODE_REDUCTION
|| reduction_type == FOLD_LEFT_REDUCTION
|| reduction_type == INTEGER_INDUC_COND_REDUCTION
|| reduction_type == CONST_COND_REDUCTION)
{
if (reduction_type == FOLD_LEFT_REDUCTION
? fold_left_reduction_fn (orig_code, &reduc_fn)
: reduction_fn_for_scalar_code (orig_code, &reduc_fn))
{
if (reduc_fn != IFN_LAST
&& !direct_internal_fn_supported_p (reduc_fn, vectype_out,
OPTIMIZE_FOR_SPEED))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduc op not supported by target.\n");
reduc_fn = IFN_LAST;
}
}
else
{
if (!nested_cycle || double_reduc)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"no reduc code for scalar code.\n");
return false;
}
}
}
else if (reduction_type == COND_REDUCTION)
{
int scalar_precision
= GET_MODE_PRECISION (SCALAR_TYPE_MODE (op.type));
cr_index_scalar_type = make_unsigned_type (scalar_precision);
cr_index_vector_type = get_same_sized_vectype (cr_index_scalar_type,
vectype_out);
if (direct_internal_fn_supported_p (IFN_REDUC_MAX, cr_index_vector_type,
OPTIMIZE_FOR_SPEED))
reduc_fn = IFN_REDUC_MAX;
}
STMT_VINFO_REDUC_FN (reduc_info) = reduc_fn;
if (reduction_type != EXTRACT_LAST_REDUCTION
&& (!nested_cycle || double_reduc)
&& reduc_fn == IFN_LAST
&& !nunits_out.is_constant ())
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"missing target support for reduction on"
" variable-length vectors.\n");
return false;
}
/* For SLP reductions, see if there is a neutral value we can use. */
tree neutral_op = NULL_TREE;
if (slp_node)
{
tree initial_value = NULL_TREE;
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info) != NULL)
initial_value = vect_phi_initial_value (reduc_def_phi);
neutral_op = neutral_op_for_reduction (TREE_TYPE (vectype_out),
orig_code, initial_value);
}
if (double_reduc && reduction_type == FOLD_LEFT_REDUCTION)
{
/* We can't support in-order reductions of code such as this:
for (int i = 0; i < n1; ++i)
for (int j = 0; j < n2; ++j)
l += a[j];
since GCC effectively transforms the loop when vectorizing:
for (int i = 0; i < n1 / VF; ++i)
for (int j = 0; j < n2; ++j)
for (int k = 0; k < VF; ++k)
l += a[j];
which is a reassociation of the original operation. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"in-order double reduction not supported.\n");
return false;
}
if (reduction_type == FOLD_LEFT_REDUCTION
&& slp_node
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
{
/* We cannot use in-order reductions in this case because there is
an implicit reassociation of the operations involved. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"in-order unchained SLP reductions not supported.\n");
return false;
}
/* For double reductions, and for SLP reductions with a neutral value,
we construct a variable-length initial vector by loading a vector
full of the neutral value and then shift-and-inserting the start
values into the low-numbered elements. */
if ((double_reduc || neutral_op)
&& !nunits_out.is_constant ()
&& !direct_internal_fn_supported_p (IFN_VEC_SHL_INSERT,
vectype_out, OPTIMIZE_FOR_SPEED))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction on variable-length vectors requires"
" target support for a vector-shift-and-insert"
" operation.\n");
return false;
}
/* Check extra constraints for variable-length unchained SLP reductions. */
if (slp_node
&& !REDUC_GROUP_FIRST_ELEMENT (stmt_info)
&& !nunits_out.is_constant ())
{
/* We checked above that we could build the initial vector when
there's a neutral element value. Check here for the case in
which each SLP statement has its own initial value and in which
that value needs to be repeated for every instance of the
statement within the initial vector. */
unsigned int group_size = SLP_TREE_LANES (slp_node);
if (!neutral_op
&& !can_duplicate_and_interleave_p (loop_vinfo, group_size,
TREE_TYPE (vectype_out)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported form of SLP reduction for"
" variable-length vectors: cannot build"
" initial vector.\n");
return false;
}
/* The epilogue code relies on the number of elements being a multiple
of the group size. The duplicate-and-interleave approach to setting
up the initial vector does too. */
if (!multiple_p (nunits_out, group_size))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported form of SLP reduction for"
" variable-length vectors: the vector size"
" is not a multiple of the number of results.\n");
return false;
}
}
if (reduction_type == COND_REDUCTION)
{
widest_int ni;
if (! max_loop_iterations (loop, &ni))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"loop count not known, cannot create cond "
"reduction.\n");
return false;
}
/* Convert backedges to iterations. */
ni += 1;
/* The additional index will be the same type as the condition. Check
that the loop can fit into this less one (because we'll use up the
zero slot for when there are no matches). */
tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
if (wi::geu_p (ni, wi::to_widest (max_index)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"loop size is greater than data size.\n");
return false;
}
}
/* In case the vectorization factor (VF) is bigger than the number
of elements that we can fit in a vectype (nunits), we have to generate
more than one vector stmt - i.e - we need to "unroll" the
vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation. */
/* If the reduction is used in an outer loop we need to generate
VF intermediate results, like so (e.g. for ncopies=2):
r0 = phi (init, r0)
r1 = phi (init, r1)
r0 = x0 + r0;
r1 = x1 + r1;
(i.e. we generate VF results in 2 registers).
In this case we have a separate def-use cycle for each copy, and therefore
for each copy we get the vector def for the reduction variable from the
respective phi node created for this copy.
Otherwise (the reduction is unused in the loop nest), we can combine
together intermediate results, like so (e.g. for ncopies=2):
r = phi (init, r)
r = x0 + r;
r = x1 + r;
(i.e. we generate VF/2 results in a single register).
In this case for each copy we get the vector def for the reduction variable
from the vectorized reduction operation generated in the previous iteration.
This only works when we see both the reduction PHI and its only consumer
in vectorizable_reduction and there are no intermediate stmts
participating. When unrolling we want each unrolled iteration to have its
own reduction accumulator since one of the main goals of unrolling a
reduction is to reduce the aggregate loop-carried latency. */
if (ncopies > 1
&& (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
&& reduc_chain_length == 1
&& loop_vinfo->suggested_unroll_factor == 1)
single_defuse_cycle = true;
if (single_defuse_cycle || lane_reduc_code_p)
{
gcc_assert (op.code != COND_EXPR);
/* 4. Supportable by target? */
bool ok = true;
/* 4.1. check support for the operation in the loop
This isn't necessary for the lane reduction codes, since they
can only be produced by pattern matching, and it's up to the
pattern matcher to test for support. The main reason for
specifically skipping this step is to avoid rechecking whether
mixed-sign dot-products can be implemented using signed
dot-products. */
machine_mode vec_mode = TYPE_MODE (vectype_in);
if (!lane_reduc_code_p
&& !directly_supported_p (op.code, vectype_in, optab_vector))
{
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "op not supported by target.\n");
if (maybe_ne (GET_MODE_SIZE (vec_mode), UNITS_PER_WORD)
|| !vect_can_vectorize_without_simd_p (op.code))
ok = false;
else
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "proceeding using word mode.\n");
}
if (vect_emulated_vector_p (vectype_in)
&& !vect_can_vectorize_without_simd_p (op.code))
{
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "using word mode not possible.\n");
return false;
}
/* lane-reducing operations have to go through vect_transform_reduction.
For the other cases try without the single cycle optimization. */
if (!ok)
{
if (lane_reduc_code_p)
return false;
else
single_defuse_cycle = false;
}
}
STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info) = single_defuse_cycle;
/* If the reduction stmt is one of the patterns that have lane
reduction embedded we cannot handle the case of ! single_defuse_cycle. */
if ((ncopies > 1 && ! single_defuse_cycle)
&& lane_reduc_code_p)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"multi def-use cycle not possible for lane-reducing "
"reduction operation\n");
return false;
}
if (slp_node
&& !(!single_defuse_cycle
&& !lane_reduc_code_p
&& reduction_type != FOLD_LEFT_REDUCTION))
for (i = 0; i < (int) op.num_ops; i++)
if (!vect_maybe_update_slp_op_vectype (slp_op[i], vectype_op[i]))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector types for invariants\n");
return false;
}
if (slp_node)
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
else
vec_num = 1;
vect_model_reduction_cost (loop_vinfo, stmt_info, reduc_fn,
reduction_type, ncopies, cost_vec);
/* Cost the reduction op inside the loop if transformed via
vect_transform_reduction. Otherwise this is costed by the
separate vectorizable_* routines. */
if (single_defuse_cycle || lane_reduc_code_p)
{
int factor = 1;
if (vect_is_emulated_mixed_dot_prod (loop_vinfo, stmt_info))
/* Three dot-products and a subtraction. */
factor = 4;
record_stmt_cost (cost_vec, ncopies * factor, vector_stmt,
stmt_info, 0, vect_body);
}
if (dump_enabled_p ()
&& reduction_type == FOLD_LEFT_REDUCTION)
dump_printf_loc (MSG_NOTE, vect_location,
"using an in-order (fold-left) reduction.\n");
STMT_VINFO_TYPE (orig_stmt_of_analysis) = cycle_phi_info_type;
/* All but single defuse-cycle optimized, lane-reducing and fold-left
reductions go through their own vectorizable_* routines. */
if (!single_defuse_cycle
&& !lane_reduc_code_p
&& reduction_type != FOLD_LEFT_REDUCTION)
{
stmt_vec_info tem
= vect_stmt_to_vectorize (STMT_VINFO_REDUC_DEF (phi_info));
if (slp_node && REDUC_GROUP_FIRST_ELEMENT (tem))
{
gcc_assert (!REDUC_GROUP_NEXT_ELEMENT (tem));
tem = REDUC_GROUP_FIRST_ELEMENT (tem);
}
STMT_VINFO_DEF_TYPE (vect_orig_stmt (tem)) = vect_internal_def;
STMT_VINFO_DEF_TYPE (tem) = vect_internal_def;
}
else if (loop_vinfo && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo))
{
vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
vec_loop_lens *lens = &LOOP_VINFO_LENS (loop_vinfo);
internal_fn cond_fn = get_conditional_internal_fn (op.code, op.type);
if (reduction_type != FOLD_LEFT_REDUCTION
&& !use_mask_by_cond_expr_p (op.code, cond_fn, vectype_in)
&& (cond_fn == IFN_LAST
|| !direct_internal_fn_supported_p (cond_fn, vectype_in,
OPTIMIZE_FOR_SPEED)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't operate on partial vectors because"
" no conditional operation is available.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
else if (reduction_type == FOLD_LEFT_REDUCTION
&& reduc_fn == IFN_LAST
&& !expand_vec_cond_expr_p (vectype_in,
truth_type_for (vectype_in),
SSA_NAME))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't operate on partial vectors because"
" no conditional operation is available.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
else if (reduction_type == FOLD_LEFT_REDUCTION
&& reduc_fn == IFN_LAST
&& FLOAT_TYPE_P (vectype_in)
&& HONOR_SIGNED_ZEROS (vectype_in)
&& HONOR_SIGN_DEPENDENT_ROUNDING (vectype_in))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't operate on partial vectors because"
" signed zeros cannot be preserved.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
else
{
internal_fn mask_reduc_fn
= get_masked_reduction_fn (reduc_fn, vectype_in);
if (mask_reduc_fn == IFN_MASK_LEN_FOLD_LEFT_PLUS)
vect_record_loop_len (loop_vinfo, lens, ncopies * vec_num,
vectype_in, 1);
else
vect_record_loop_mask (loop_vinfo, masks, ncopies * vec_num,
vectype_in, NULL);
}
}
return true;
}
/* STMT_INFO is a dot-product reduction whose multiplication operands
have different signs. Emit a sequence to emulate the operation
using a series of signed DOT_PROD_EXPRs and return the last
statement generated. VEC_DEST is the result of the vector operation
and VOP lists its inputs. */
static gassign *
vect_emulate_mixed_dot_prod (loop_vec_info loop_vinfo, stmt_vec_info stmt_info,
gimple_stmt_iterator *gsi, tree vec_dest,
tree vop[3])
{
tree wide_vectype = signed_type_for (TREE_TYPE (vec_dest));
tree narrow_vectype = signed_type_for (TREE_TYPE (vop[0]));
tree narrow_elttype = TREE_TYPE (narrow_vectype);
gimple *new_stmt;
/* Make VOP[0] the unsigned operand VOP[1] the signed operand. */
if (!TYPE_UNSIGNED (TREE_TYPE (vop[0])))
std::swap (vop[0], vop[1]);
/* Convert all inputs to signed types. */
for (int i = 0; i < 3; ++i)
if (TYPE_UNSIGNED (TREE_TYPE (vop[i])))
{
tree tmp = make_ssa_name (signed_type_for (TREE_TYPE (vop[i])));
new_stmt = gimple_build_assign (tmp, NOP_EXPR, vop[i]);
vect_finish_stmt_generation (loop_vinfo, stmt_info, new_stmt, gsi);
vop[i] = tmp;
}
/* In the comments below we assume 8-bit inputs for simplicity,
but the approach works for any full integer type. */
/* Create a vector of -128. */
tree min_narrow_elttype = TYPE_MIN_VALUE (narrow_elttype);
tree min_narrow = build_vector_from_val (narrow_vectype,
min_narrow_elttype);
/* Create a vector of 64. */
auto half_wi = wi::lrshift (wi::to_wide (min_narrow_elttype), 1);
tree half_narrow = wide_int_to_tree (narrow_elttype, half_wi);
half_narrow = build_vector_from_val (narrow_vectype, half_narrow);
/* Emit: SUB_RES = VOP[0] - 128. */
tree sub_res = make_ssa_name (narrow_vectype);
new_stmt = gimple_build_assign (sub_res, PLUS_EXPR, vop[0], min_narrow);
vect_finish_stmt_generation (loop_vinfo, stmt_info, new_stmt, gsi);
/* Emit:
STAGE1 = DOT_PROD_EXPR <VOP[1], 64, VOP[2]>;
STAGE2 = DOT_PROD_EXPR <VOP[1], 64, STAGE1>;
STAGE3 = DOT_PROD_EXPR <SUB_RES, -128, STAGE2>;
on the basis that x * y == (x - 128) * y + 64 * y + 64 * y
Doing the two 64 * y steps first allows more time to compute x. */
tree stage1 = make_ssa_name (wide_vectype);
new_stmt = gimple_build_assign (stage1, DOT_PROD_EXPR,
vop[1], half_narrow, vop[2]);
vect_finish_stmt_generation (loop_vinfo, stmt_info, new_stmt, gsi);
tree stage2 = make_ssa_name (wide_vectype);
new_stmt = gimple_build_assign (stage2, DOT_PROD_EXPR,
vop[1], half_narrow, stage1);
vect_finish_stmt_generation (loop_vinfo, stmt_info, new_stmt, gsi);
tree stage3 = make_ssa_name (wide_vectype);
new_stmt = gimple_build_assign (stage3, DOT_PROD_EXPR,
sub_res, vop[1], stage2);
vect_finish_stmt_generation (loop_vinfo, stmt_info, new_stmt, gsi);
/* Convert STAGE3 to the reduction type. */
return gimple_build_assign (vec_dest, CONVERT_EXPR, stage3);
}
/* Transform the definition stmt STMT_INFO of a reduction PHI backedge
value. */
bool
vect_transform_reduction (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info, gimple_stmt_iterator *gsi,
gimple **vec_stmt, slp_tree slp_node)
{
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int i;
int ncopies;
int vec_num;
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
gcc_assert (reduc_info->is_reduc_info);
if (nested_in_vect_loop_p (loop, stmt_info))
{
loop = loop->inner;
gcc_assert (STMT_VINFO_DEF_TYPE (reduc_info) == vect_double_reduction_def);
}
gimple_match_op op;
if (!gimple_extract_op (stmt_info->stmt, &op))
gcc_unreachable ();
/* All uses but the last are expected to be defined in the loop.
The last use is the reduction variable. In case of nested cycle this
assumption is not true: we use reduc_index to record the index of the
reduction variable. */
stmt_vec_info phi_info = STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info));
gphi *reduc_def_phi = as_a <gphi *> (phi_info->stmt);
int reduc_index = STMT_VINFO_REDUC_IDX (stmt_info);
tree vectype_in = STMT_VINFO_REDUC_VECTYPE_IN (reduc_info);
if (slp_node)
{
ncopies = 1;
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
}
else
{
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
vec_num = 1;
}
code_helper code = canonicalize_code (op.code, op.type);
internal_fn cond_fn = get_conditional_internal_fn (code, op.type);
vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
vec_loop_lens *lens = &LOOP_VINFO_LENS (loop_vinfo);
bool mask_by_cond_expr = use_mask_by_cond_expr_p (code, cond_fn, vectype_in);
/* Transform. */
tree new_temp = NULL_TREE;
auto_vec<tree> vec_oprnds0;
auto_vec<tree> vec_oprnds1;
auto_vec<tree> vec_oprnds2;
tree def0;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
/* FORNOW: Multiple types are not supported for condition. */
if (code == COND_EXPR)
gcc_assert (ncopies == 1);
bool masked_loop_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
vect_reduction_type reduction_type = STMT_VINFO_REDUC_TYPE (reduc_info);
if (reduction_type == FOLD_LEFT_REDUCTION)
{
internal_fn reduc_fn = STMT_VINFO_REDUC_FN (reduc_info);
gcc_assert (code.is_tree_code ());
return vectorize_fold_left_reduction
(loop_vinfo, stmt_info, gsi, vec_stmt, slp_node, reduc_def_phi,
tree_code (code), reduc_fn, op.ops, vectype_in, reduc_index, masks,
lens);
}
bool single_defuse_cycle = STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info);
gcc_assert (single_defuse_cycle
|| code == DOT_PROD_EXPR
|| code == WIDEN_SUM_EXPR
|| code == SAD_EXPR);
/* Create the destination vector */
tree scalar_dest = gimple_get_lhs (stmt_info->stmt);
tree vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
vect_get_vec_defs (loop_vinfo, stmt_info, slp_node, ncopies,
single_defuse_cycle && reduc_index == 0
? NULL_TREE : op.ops[0], &vec_oprnds0,
single_defuse_cycle && reduc_index == 1
? NULL_TREE : op.ops[1], &vec_oprnds1,
op.num_ops == 3
&& !(single_defuse_cycle && reduc_index == 2)
? op.ops[2] : NULL_TREE, &vec_oprnds2);
if (single_defuse_cycle)
{
gcc_assert (!slp_node);
vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
op.ops[reduc_index],
reduc_index == 0 ? &vec_oprnds0
: (reduc_index == 1 ? &vec_oprnds1
: &vec_oprnds2));
}
bool emulated_mixed_dot_prod
= vect_is_emulated_mixed_dot_prod (loop_vinfo, stmt_info);
FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
{
gimple *new_stmt;
tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
if (masked_loop_p && !mask_by_cond_expr)
{
/* No conditional ifns have been defined for dot-product yet. */
gcc_assert (code != DOT_PROD_EXPR);
/* Make sure that the reduction accumulator is vop[0]. */
if (reduc_index == 1)
{
gcc_assert (commutative_binary_op_p (code, op.type));
std::swap (vop[0], vop[1]);
}
tree mask = vect_get_loop_mask (loop_vinfo, gsi, masks,
vec_num * ncopies, vectype_in, i);
gcall *call = gimple_build_call_internal (cond_fn, 4, mask,
vop[0], vop[1], vop[0]);
new_temp = make_ssa_name (vec_dest, call);
gimple_call_set_lhs (call, new_temp);
gimple_call_set_nothrow (call, true);
vect_finish_stmt_generation (loop_vinfo, stmt_info, call, gsi);
new_stmt = call;
}
else
{
if (op.num_ops == 3)
vop[2] = vec_oprnds2[i];
if (masked_loop_p && mask_by_cond_expr)
{
tree mask = vect_get_loop_mask (loop_vinfo, gsi, masks,
vec_num * ncopies, vectype_in, i);
build_vect_cond_expr (code, vop, mask, gsi);
}
if (emulated_mixed_dot_prod)
new_stmt = vect_emulate_mixed_dot_prod (loop_vinfo, stmt_info, gsi,
vec_dest, vop);
else if (code.is_internal_fn ())
new_stmt = gimple_build_call_internal (internal_fn (code),
op.num_ops,
vop[0], vop[1], vop[2]);
else
new_stmt = gimple_build_assign (vec_dest, tree_code (op.code),
vop[0], vop[1], vop[2]);
new_temp = make_ssa_name (vec_dest, new_stmt);
gimple_set_lhs (new_stmt, new_temp);
vect_finish_stmt_generation (loop_vinfo, stmt_info, new_stmt, gsi);
}
if (slp_node)
slp_node->push_vec_def (new_stmt);
else if (single_defuse_cycle
&& i < ncopies - 1)
{
if (reduc_index == 0)
vec_oprnds0.safe_push (gimple_get_lhs (new_stmt));
else if (reduc_index == 1)
vec_oprnds1.safe_push (gimple_get_lhs (new_stmt));
else if (reduc_index == 2)
vec_oprnds2.safe_push (gimple_get_lhs (new_stmt));
}
else
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
}
if (!slp_node)
*vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0];
return true;
}
/* Transform phase of a cycle PHI. */
bool
vect_transform_cycle_phi (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info, gimple **vec_stmt,
slp_tree slp_node, slp_instance slp_node_instance)
{
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int i;
int ncopies;
int j;
bool nested_cycle = false;
int vec_num;
if (nested_in_vect_loop_p (loop, stmt_info))
{
loop = loop->inner;
nested_cycle = true;
}
stmt_vec_info reduc_stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
reduc_stmt_info = vect_stmt_to_vectorize (reduc_stmt_info);
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
gcc_assert (reduc_info->is_reduc_info);
if (STMT_VINFO_REDUC_TYPE (reduc_info) == EXTRACT_LAST_REDUCTION
|| STMT_VINFO_REDUC_TYPE (reduc_info) == FOLD_LEFT_REDUCTION)
/* Leave the scalar phi in place. */
return true;
tree vectype_in = STMT_VINFO_REDUC_VECTYPE_IN (reduc_info);
/* For a nested cycle we do not fill the above. */
if (!vectype_in)
vectype_in = STMT_VINFO_VECTYPE (stmt_info);
gcc_assert (vectype_in);
if (slp_node)
{
/* The size vect_schedule_slp_instance computes is off for us. */
vec_num = vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
* SLP_TREE_LANES (slp_node), vectype_in);
ncopies = 1;
}
else
{
vec_num = 1;
ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
}
/* Check whether we should use a single PHI node and accumulate
vectors to one before the backedge. */
if (STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info))
ncopies = 1;
/* Create the destination vector */
gphi *phi = as_a <gphi *> (stmt_info->stmt);
tree vec_dest = vect_create_destination_var (gimple_phi_result (phi),
vectype_out);
/* Get the loop-entry arguments. */
tree vec_initial_def = NULL_TREE;
auto_vec<tree> vec_initial_defs;
if (slp_node)
{
vec_initial_defs.reserve (vec_num);
if (nested_cycle)
{
unsigned phi_idx = loop_preheader_edge (loop)->dest_idx;
vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[phi_idx],
&vec_initial_defs);
}
else
{
gcc_assert (slp_node == slp_node_instance->reduc_phis);
vec<tree> &initial_values = reduc_info->reduc_initial_values;
vec<stmt_vec_info> &stmts = SLP_TREE_SCALAR_STMTS (slp_node);
unsigned int num_phis = stmts.length ();
if (REDUC_GROUP_FIRST_ELEMENT (reduc_stmt_info))
num_phis = 1;
initial_values.reserve (num_phis);
for (unsigned int i = 0; i < num_phis; ++i)
{
gphi *this_phi = as_a<gphi *> (stmts[i]->stmt);
initial_values.quick_push (vect_phi_initial_value (this_phi));
}
if (vec_num == 1)
vect_find_reusable_accumulator (loop_vinfo, reduc_info);
if (!initial_values.is_empty ())
{
tree initial_value
= (num_phis == 1 ? initial_values[0] : NULL_TREE);
code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
tree neutral_op
= neutral_op_for_reduction (TREE_TYPE (vectype_out),
code, initial_value);
get_initial_defs_for_reduction (loop_vinfo, reduc_info,
&vec_initial_defs, vec_num,
stmts.length (), neutral_op);
}
}
}
else
{
/* Get at the scalar def before the loop, that defines the initial
value of the reduction variable. */
tree initial_def = vect_phi_initial_value (phi);
reduc_info->reduc_initial_values.safe_push (initial_def);
/* Optimize: if initial_def is for REDUC_MAX smaller than the base
and we can't use zero for induc_val, use initial_def. Similarly
for REDUC_MIN and initial_def larger than the base. */
if (STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
{
tree induc_val = STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info);
if (TREE_CODE (initial_def) == INTEGER_CST
&& !integer_zerop (induc_val)
&& ((STMT_VINFO_REDUC_CODE (reduc_info) == MAX_EXPR
&& tree_int_cst_lt (initial_def, induc_val))
|| (STMT_VINFO_REDUC_CODE (reduc_info) == MIN_EXPR
&& tree_int_cst_lt (induc_val, initial_def))))
{
induc_val = initial_def;
/* Communicate we used the initial_def to epilouge
generation. */
STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info) = NULL_TREE;
}
vec_initial_def = build_vector_from_val (vectype_out, induc_val);
}
else if (nested_cycle)
{
/* Do not use an adjustment def as that case is not supported
correctly if ncopies is not one. */
vect_get_vec_defs_for_operand (loop_vinfo, reduc_stmt_info,
ncopies, initial_def,
&vec_initial_defs);
}
else if (STMT_VINFO_REDUC_TYPE (reduc_info) == CONST_COND_REDUCTION
|| STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION)
/* Fill the initial vector with the initial scalar value. */
vec_initial_def
= get_initial_def_for_reduction (loop_vinfo, reduc_stmt_info,
initial_def, initial_def);
else
{
if (ncopies == 1)
vect_find_reusable_accumulator (loop_vinfo, reduc_info);
if (!reduc_info->reduc_initial_values.is_empty ())
{
initial_def = reduc_info->reduc_initial_values[0];
code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
tree neutral_op
= neutral_op_for_reduction (TREE_TYPE (initial_def),
code, initial_def);
gcc_assert (neutral_op);
/* Try to simplify the vector initialization by applying an
adjustment after the reduction has been performed. */
if (!reduc_info->reused_accumulator
&& STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
&& !operand_equal_p (neutral_op, initial_def))
{
STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (reduc_info)
= initial_def;
initial_def = neutral_op;
}
vec_initial_def
= get_initial_def_for_reduction (loop_vinfo, reduc_info,
initial_def, neutral_op);
}
}
}
if (vec_initial_def)
{
vec_initial_defs.create (ncopies);
for (i = 0; i < ncopies; ++i)
vec_initial_defs.quick_push (vec_initial_def);
}
if (auto *accumulator = reduc_info->reused_accumulator)
{
tree def = accumulator->reduc_input;
if (!useless_type_conversion_p (vectype_out, TREE_TYPE (def)))
{
unsigned int nreduc;
bool res = constant_multiple_p (TYPE_VECTOR_SUBPARTS
(TREE_TYPE (def)),
TYPE_VECTOR_SUBPARTS (vectype_out),
&nreduc);
gcc_assert (res);
gimple_seq stmts = NULL;
/* Reduce the single vector to a smaller one. */
if (nreduc != 1)
{
/* Perform the reduction in the appropriate type. */
tree rvectype = vectype_out;
if (!useless_type_conversion_p (TREE_TYPE (vectype_out),
TREE_TYPE (TREE_TYPE (def))))
rvectype = build_vector_type (TREE_TYPE (TREE_TYPE (def)),
TYPE_VECTOR_SUBPARTS
(vectype_out));
def = vect_create_partial_epilog (def, rvectype,
STMT_VINFO_REDUC_CODE
(reduc_info),
&stmts);
}
/* The epilogue loop might use a different vector mode, like
VNx2DI vs. V2DI. */
if (TYPE_MODE (vectype_out) != TYPE_MODE (TREE_TYPE (def)))
{
tree reduc_type = build_vector_type_for_mode
(TREE_TYPE (TREE_TYPE (def)), TYPE_MODE (vectype_out));
def = gimple_convert (&stmts, reduc_type, def);
}
/* Adjust the input so we pick up the partially reduced value
for the skip edge in vect_create_epilog_for_reduction. */
accumulator->reduc_input = def;
/* And the reduction could be carried out using a different sign. */
if (!useless_type_conversion_p (vectype_out, TREE_TYPE (def)))
def = gimple_convert (&stmts, vectype_out, def);
if (loop_vinfo->main_loop_edge)
{
/* While we'd like to insert on the edge this will split
blocks and disturb bookkeeping, we also will eventually
need this on the skip edge. Rely on sinking to
fixup optimal placement and insert in the pred. */
gimple_stmt_iterator gsi
= gsi_last_bb (loop_vinfo->main_loop_edge->src);
/* Insert before a cond that eventually skips the
epilogue. */
if (!gsi_end_p (gsi) && stmt_ends_bb_p (gsi_stmt (gsi)))
gsi_prev (&gsi);
gsi_insert_seq_after (&gsi, stmts, GSI_CONTINUE_LINKING);
}
else
gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
stmts);
}
if (loop_vinfo->main_loop_edge)
vec_initial_defs[0]
= vect_get_main_loop_result (loop_vinfo, def,
vec_initial_defs[0]);
else
vec_initial_defs.safe_push (def);
}
/* Generate the reduction PHIs upfront. */
for (i = 0; i < vec_num; i++)
{
tree vec_init_def = vec_initial_defs[i];
for (j = 0; j < ncopies; j++)
{
/* Create the reduction-phi that defines the reduction
operand. */
gphi *new_phi = create_phi_node (vec_dest, loop->header);
/* Set the loop-entry arg of the reduction-phi. */
if (j != 0 && nested_cycle)
vec_init_def = vec_initial_defs[j];
add_phi_arg (new_phi, vec_init_def, loop_preheader_edge (loop),
UNKNOWN_LOCATION);
/* The loop-latch arg is set in epilogue processing. */
if (slp_node)
slp_node->push_vec_def (new_phi);
else
{
if (j == 0)
*vec_stmt = new_phi;
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_phi);
}
}
}
return true;
}
/* Vectorizes LC PHIs. */
bool
vectorizable_lc_phi (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info, gimple **vec_stmt,
slp_tree slp_node)
{
if (!loop_vinfo
|| !is_a <gphi *> (stmt_info->stmt)
|| gimple_phi_num_args (stmt_info->stmt) != 1)
return false;
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
return false;
if (!vec_stmt) /* transformation not required. */
{
/* Deal with copies from externs or constants that disguise as
loop-closed PHI nodes (PR97886). */
if (slp_node
&& !vect_maybe_update_slp_op_vectype (SLP_TREE_CHILDREN (slp_node)[0],
SLP_TREE_VECTYPE (slp_node)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector types for invariants\n");
return false;
}
STMT_VINFO_TYPE (stmt_info) = lc_phi_info_type;
return true;
}
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
tree scalar_dest = gimple_phi_result (stmt_info->stmt);
basic_block bb = gimple_bb (stmt_info->stmt);
edge e = single_pred_edge (bb);
tree vec_dest = vect_create_destination_var (scalar_dest, vectype);
auto_vec<tree> vec_oprnds;
vect_get_vec_defs (loop_vinfo, stmt_info, slp_node,
!slp_node ? vect_get_num_copies (loop_vinfo, vectype) : 1,
gimple_phi_arg_def (stmt_info->stmt, 0), &vec_oprnds);
for (unsigned i = 0; i < vec_oprnds.length (); i++)
{
/* Create the vectorized LC PHI node. */
gphi *new_phi = create_phi_node (vec_dest, bb);
add_phi_arg (new_phi, vec_oprnds[i], e, UNKNOWN_LOCATION);
if (slp_node)
slp_node->push_vec_def (new_phi);
else
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_phi);
}
if (!slp_node)
*vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0];
return true;
}
/* Vectorizes PHIs. */
bool
vectorizable_phi (vec_info *,
stmt_vec_info stmt_info, gimple **vec_stmt,
slp_tree slp_node, stmt_vector_for_cost *cost_vec)
{
if (!is_a <gphi *> (stmt_info->stmt) || !slp_node)
return false;
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
return false;
tree vectype = SLP_TREE_VECTYPE (slp_node);
if (!vec_stmt) /* transformation not required. */
{
slp_tree child;
unsigned i;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), i, child)
if (!child)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"PHI node with unvectorized backedge def\n");
return false;
}
else if (!vect_maybe_update_slp_op_vectype (child, vectype))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector types for invariants\n");
return false;
}
else if (SLP_TREE_DEF_TYPE (child) == vect_internal_def
&& !useless_type_conversion_p (vectype,
SLP_TREE_VECTYPE (child)))
{
/* With bools we can have mask and non-mask precision vectors
or different non-mask precisions. while pattern recog is
supposed to guarantee consistency here bugs in it can cause
mismatches (PR103489 and PR103800 for example).
Deal with them here instead of ICEing later. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector type setup from "
"bool pattern detection\n");
return false;
}
/* For single-argument PHIs assume coalescing which means zero cost
for the scalar and the vector PHIs. This avoids artificially
favoring the vector path (but may pessimize it in some cases). */
if (gimple_phi_num_args (as_a <gphi *> (stmt_info->stmt)) > 1)
record_stmt_cost (cost_vec, SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node),
vector_stmt, stmt_info, vectype, 0, vect_body);
STMT_VINFO_TYPE (stmt_info) = phi_info_type;
return true;
}
tree scalar_dest = gimple_phi_result (stmt_info->stmt);
basic_block bb = gimple_bb (stmt_info->stmt);
tree vec_dest = vect_create_destination_var (scalar_dest, vectype);
auto_vec<gphi *> new_phis;
for (unsigned i = 0; i < gimple_phi_num_args (stmt_info->stmt); ++i)
{
slp_tree child = SLP_TREE_CHILDREN (slp_node)[i];
/* Skip not yet vectorized defs. */
if (SLP_TREE_DEF_TYPE (child) == vect_internal_def
&& SLP_TREE_VEC_DEFS (child).is_empty ())
continue;
auto_vec<tree> vec_oprnds;
vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[i], &vec_oprnds);
if (!new_phis.exists ())
{
new_phis.create (vec_oprnds.length ());
for (unsigned j = 0; j < vec_oprnds.length (); j++)
{
/* Create the vectorized LC PHI node. */
new_phis.quick_push (create_phi_node (vec_dest, bb));
slp_node->push_vec_def (new_phis[j]);
}
}
edge e = gimple_phi_arg_edge (as_a <gphi *> (stmt_info->stmt), i);
for (unsigned j = 0; j < vec_oprnds.length (); j++)
add_phi_arg (new_phis[j], vec_oprnds[j], e, UNKNOWN_LOCATION);
}
/* We should have at least one already vectorized child. */
gcc_assert (new_phis.exists ());
return true;
}
/* Vectorizes first order recurrences. An overview of the transformation
is described below. Suppose we have the following loop.
int t = 0;
for (int i = 0; i < n; ++i)
{
b[i] = a[i] - t;
t = a[i];
}
There is a first-order recurrence on 'a'. For this loop, the scalar IR
looks (simplified) like:
scalar.preheader:
init = 0;
scalar.body:
i = PHI <0(scalar.preheader), i+1(scalar.body)>
_2 = PHI <(init(scalar.preheader), <_1(scalar.body)>
_1 = a[i]
b[i] = _1 - _2
if (i < n) goto scalar.body
In this example, _2 is a recurrence because it's value depends on the
previous iteration. We vectorize this as (VF = 4)
vector.preheader:
vect_init = vect_cst(..., ..., ..., 0)
vector.body
i = PHI <0(vector.preheader), i+4(vector.body)>
vect_1 = PHI <vect_init(vector.preheader), v2(vector.body)>
vect_2 = a[i, i+1, i+2, i+3];
vect_3 = vec_perm (vect_1, vect_2, { 3, 4, 5, 6 })
b[i, i+1, i+2, i+3] = vect_2 - vect_3
if (..) goto vector.body
In this function, vectorizable_recurr, we code generate both the
vector PHI node and the permute since those together compute the
vectorized value of the scalar PHI. We do not yet have the
backedge value to fill in there nor into the vec_perm. Those
are filled in maybe_set_vectorized_backedge_value and
vect_schedule_scc.
TODO: Since the scalar loop does not have a use of the recurrence
outside of the loop the natural way to implement peeling via
vectorizing the live value doesn't work. For now peeling of loops
with a recurrence is not implemented. For SLP the supported cases
are restricted to those requiring a single vector recurrence PHI. */
bool
vectorizable_recurr (loop_vec_info loop_vinfo, stmt_vec_info stmt_info,
gimple **vec_stmt, slp_tree slp_node,
stmt_vector_for_cost *cost_vec)
{
if (!loop_vinfo || !is_a<gphi *> (stmt_info->stmt))
return false;
gphi *phi = as_a<gphi *> (stmt_info->stmt);
/* So far we only support first-order recurrence auto-vectorization. */
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_first_order_recurrence)
return false;
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
unsigned ncopies;
if (slp_node)
ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
else
ncopies = vect_get_num_copies (loop_vinfo, vectype);
poly_int64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
unsigned dist = slp_node ? SLP_TREE_LANES (slp_node) : 1;
/* We need to be able to make progress with a single vector. */
if (maybe_gt (dist * 2, nunits))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"first order recurrence exceeds half of "
"a vector\n");
return false;
}
/* First-order recurrence autovectorization needs to handle permutation
with indices = [nunits-1, nunits, nunits+1, ...]. */
vec_perm_builder sel (nunits, 1, 3);
for (int i = 0; i < 3; ++i)
sel.quick_push (nunits - dist + i);
vec_perm_indices indices (sel, 2, nunits);
if (!vec_stmt) /* transformation not required. */
{
if (!can_vec_perm_const_p (TYPE_MODE (vectype), TYPE_MODE (vectype),
indices))
return false;
if (slp_node)
{
/* We eventually need to set a vector type on invariant
arguments. */
unsigned j;
slp_tree child;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), j, child)
if (!vect_maybe_update_slp_op_vectype
(child, SLP_TREE_VECTYPE (slp_node)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector types for "
"invariants\n");
return false;
}
}
/* The recurrence costs the initialization vector and one permute
for each copy. */
unsigned prologue_cost = record_stmt_cost (cost_vec, 1, scalar_to_vec,
stmt_info, 0, vect_prologue);
unsigned inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
stmt_info, 0, vect_body);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"vectorizable_recurr: inside_cost = %d, "
"prologue_cost = %d .\n", inside_cost,
prologue_cost);
STMT_VINFO_TYPE (stmt_info) = recurr_info_type;
return true;
}
edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
basic_block bb = gimple_bb (phi);
tree preheader = PHI_ARG_DEF_FROM_EDGE (phi, pe);
if (!useless_type_conversion_p (TREE_TYPE (vectype), TREE_TYPE (preheader)))
{
gimple_seq stmts = NULL;
preheader = gimple_convert (&stmts, TREE_TYPE (vectype), preheader);
gsi_insert_seq_on_edge_immediate (pe, stmts);
}
tree vec_init = build_vector_from_val (vectype, preheader);
vec_init = vect_init_vector (loop_vinfo, stmt_info, vec_init, vectype, NULL);
/* Create the vectorized first-order PHI node. */
tree vec_dest = vect_get_new_vect_var (vectype,
vect_simple_var, "vec_recur_");
gphi *new_phi = create_phi_node (vec_dest, bb);
add_phi_arg (new_phi, vec_init, pe, UNKNOWN_LOCATION);
/* Insert shuffles the first-order recurrence autovectorization.
result = VEC_PERM <vec_recur, vect_1, index[nunits-1, nunits, ...]>. */
tree perm = vect_gen_perm_mask_checked (vectype, indices);
/* Insert the required permute after the latch definition. The
second and later operands are tentative and will be updated when we have
vectorized the latch definition. */
edge le = loop_latch_edge (LOOP_VINFO_LOOP (loop_vinfo));
gimple *latch_def = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, le));
gimple_stmt_iterator gsi2 = gsi_for_stmt (latch_def);
gsi_next (&gsi2);
for (unsigned i = 0; i < ncopies; ++i)
{
vec_dest = make_ssa_name (vectype);
gassign *vperm
= gimple_build_assign (vec_dest, VEC_PERM_EXPR,
i == 0 ? gimple_phi_result (new_phi) : NULL,
NULL, perm);
vect_finish_stmt_generation (loop_vinfo, stmt_info, vperm, &gsi2);
if (slp_node)
slp_node->push_vec_def (vperm);
else
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (vperm);
}
if (!slp_node)
*vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0];
return true;
}
/* Return true if VECTYPE represents a vector that requires lowering
by the vector lowering pass. */
bool
vect_emulated_vector_p (tree vectype)
{
return (!VECTOR_MODE_P (TYPE_MODE (vectype))
&& (!VECTOR_BOOLEAN_TYPE_P (vectype)
|| TYPE_PRECISION (TREE_TYPE (vectype)) != 1));
}
/* Return true if we can emulate CODE on an integer mode representation
of a vector. */
bool
vect_can_vectorize_without_simd_p (tree_code code)
{
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
case NEGATE_EXPR:
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_NOT_EXPR:
return true;
default:
return false;
}
}
/* Likewise, but taking a code_helper. */
bool
vect_can_vectorize_without_simd_p (code_helper code)
{
return (code.is_tree_code ()
&& vect_can_vectorize_without_simd_p (tree_code (code)));
}
/* Create vector init for vectorized iv. */
static tree
vect_create_nonlinear_iv_init (gimple_seq* stmts, tree init_expr,
tree step_expr, poly_uint64 nunits,
tree vectype,
enum vect_induction_op_type induction_type)
{
unsigned HOST_WIDE_INT const_nunits;
tree vec_shift, vec_init, new_name;
unsigned i;
tree itype = TREE_TYPE (vectype);
/* iv_loop is the loop to be vectorized. Create:
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr). */
new_name = gimple_convert (stmts, itype, init_expr);
switch (induction_type)
{
case vect_step_op_shr:
case vect_step_op_shl:
/* Build the Initial value from shift_expr. */
vec_init = gimple_build_vector_from_val (stmts,
vectype,
new_name);
vec_shift = gimple_build (stmts, VEC_SERIES_EXPR, vectype,
build_zero_cst (itype), step_expr);
vec_init = gimple_build (stmts,
(induction_type == vect_step_op_shr
? RSHIFT_EXPR : LSHIFT_EXPR),
vectype, vec_init, vec_shift);
break;
case vect_step_op_neg:
{
vec_init = gimple_build_vector_from_val (stmts,
vectype,
new_name);
tree vec_neg = gimple_build (stmts, NEGATE_EXPR,
vectype, vec_init);
/* The encoding has 2 interleaved stepped patterns. */
vec_perm_builder sel (nunits, 2, 3);
sel.quick_grow (6);
for (i = 0; i < 3; i++)
{
sel[2 * i] = i;
sel[2 * i + 1] = i + nunits;
}
vec_perm_indices indices (sel, 2, nunits);
/* Don't use vect_gen_perm_mask_checked since can_vec_perm_const_p may
fail when vec_init is const vector. In that situation vec_perm is not
really needed. */
tree perm_mask_even
= vect_gen_perm_mask_any (vectype, indices);
vec_init = gimple_build (stmts, VEC_PERM_EXPR,
vectype,
vec_init, vec_neg,
perm_mask_even);
}
break;
case vect_step_op_mul:
{
/* Use unsigned mult to avoid UD integer overflow. */
gcc_assert (nunits.is_constant (&const_nunits));
tree utype = unsigned_type_for (itype);
tree uvectype = build_vector_type (utype,
TYPE_VECTOR_SUBPARTS (vectype));
new_name = gimple_convert (stmts, utype, new_name);
vec_init = gimple_build_vector_from_val (stmts,
uvectype,
new_name);
tree_vector_builder elts (uvectype, const_nunits, 1);
tree elt_step = build_one_cst (utype);
elts.quick_push (elt_step);
for (i = 1; i < const_nunits; i++)
{
/* Create: new_name_i = new_name + step_expr. */
elt_step = gimple_build (stmts, MULT_EXPR,
utype, elt_step, step_expr);
elts.quick_push (elt_step);
}
/* Create a vector from [new_name_0, new_name_1, ...,
new_name_nunits-1]. */
tree vec_mul = gimple_build_vector (stmts, &elts);
vec_init = gimple_build (stmts, MULT_EXPR, uvectype,
vec_init, vec_mul);
vec_init = gimple_convert (stmts, vectype, vec_init);
}
break;
default:
gcc_unreachable ();
}
return vec_init;
}
/* Peel init_expr by skip_niter for induction_type. */
tree
vect_peel_nonlinear_iv_init (gimple_seq* stmts, tree init_expr,
tree skip_niters, tree step_expr,
enum vect_induction_op_type induction_type)
{
gcc_assert (TREE_CODE (skip_niters) == INTEGER_CST);
tree type = TREE_TYPE (init_expr);
unsigned prec = TYPE_PRECISION (type);
switch (induction_type)
{
case vect_step_op_neg:
if (TREE_INT_CST_LOW (skip_niters) % 2)
init_expr = gimple_build (stmts, NEGATE_EXPR, type, init_expr);
/* else no change. */
break;
case vect_step_op_shr:
case vect_step_op_shl:
skip_niters = gimple_convert (stmts, type, skip_niters);
step_expr = gimple_build (stmts, MULT_EXPR, type, step_expr, skip_niters);
/* When shift mount >= precision, need to avoid UD.
In the original loop, there's no UD, and according to semantic,
init_expr should be 0 for lshr, ashl, and >>= (prec - 1) for ashr. */
if (!tree_fits_uhwi_p (step_expr)
|| tree_to_uhwi (step_expr) >= prec)
{
if (induction_type == vect_step_op_shl
|| TYPE_UNSIGNED (type))
init_expr = build_zero_cst (type);
else
init_expr = gimple_build (stmts, RSHIFT_EXPR, type,
init_expr,
wide_int_to_tree (type, prec - 1));
}
else
init_expr = gimple_build (stmts, (induction_type == vect_step_op_shr
? RSHIFT_EXPR : LSHIFT_EXPR),
type, init_expr, step_expr);
break;
case vect_step_op_mul:
{
tree utype = unsigned_type_for (type);
init_expr = gimple_convert (stmts, utype, init_expr);
unsigned skipn = TREE_INT_CST_LOW (skip_niters);
wide_int begin = wi::to_wide (step_expr);
for (unsigned i = 0; i != skipn - 1; i++)
begin = wi::mul (begin, wi::to_wide (step_expr));
tree mult_expr = wide_int_to_tree (utype, begin);
init_expr = gimple_build (stmts, MULT_EXPR, utype, init_expr, mult_expr);
init_expr = gimple_convert (stmts, type, init_expr);
}
break;
default:
gcc_unreachable ();
}
return init_expr;
}
/* Create vector step for vectorized iv. */
static tree
vect_create_nonlinear_iv_step (gimple_seq* stmts, tree step_expr,
poly_uint64 vf,
enum vect_induction_op_type induction_type)
{
tree expr = build_int_cst (TREE_TYPE (step_expr), vf);
tree new_name = NULL;
/* Step should be pow (step, vf) for mult induction. */
if (induction_type == vect_step_op_mul)
{
gcc_assert (vf.is_constant ());
wide_int begin = wi::to_wide (step_expr);
for (unsigned i = 0; i != vf.to_constant () - 1; i++)
begin = wi::mul (begin, wi::to_wide (step_expr));
new_name = wide_int_to_tree (TREE_TYPE (step_expr), begin);
}
else if (induction_type == vect_step_op_neg)
/* Do nothing. */
;
else
new_name = gimple_build (stmts, MULT_EXPR, TREE_TYPE (step_expr),
expr, step_expr);
return new_name;
}
static tree
vect_create_nonlinear_iv_vec_step (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info,
tree new_name, tree vectype,
enum vect_induction_op_type induction_type)
{
/* No step is needed for neg induction. */
if (induction_type == vect_step_op_neg)
return NULL;
tree t = unshare_expr (new_name);
gcc_assert (CONSTANT_CLASS_P (new_name)
|| TREE_CODE (new_name) == SSA_NAME);
tree new_vec = build_vector_from_val (vectype, t);
tree vec_step = vect_init_vector (loop_vinfo, stmt_info,
new_vec, vectype, NULL);
return vec_step;
}
/* Update vectorized iv with vect_step, induc_def is init. */
static tree
vect_update_nonlinear_iv (gimple_seq* stmts, tree vectype,
tree induc_def, tree vec_step,
enum vect_induction_op_type induction_type)
{
tree vec_def = induc_def;
switch (induction_type)
{
case vect_step_op_mul:
{
/* Use unsigned mult to avoid UD integer overflow. */
tree uvectype
= build_vector_type (unsigned_type_for (TREE_TYPE (vectype)),
TYPE_VECTOR_SUBPARTS (vectype));
vec_def = gimple_convert (stmts, uvectype, vec_def);
vec_step = gimple_convert (stmts, uvectype, vec_step);
vec_def = gimple_build (stmts, MULT_EXPR, uvectype,
vec_def, vec_step);
vec_def = gimple_convert (stmts, vectype, vec_def);
}
break;
case vect_step_op_shr:
vec_def = gimple_build (stmts, RSHIFT_EXPR, vectype,
vec_def, vec_step);
break;
case vect_step_op_shl:
vec_def = gimple_build (stmts, LSHIFT_EXPR, vectype,
vec_def, vec_step);
break;
case vect_step_op_neg:
vec_def = induc_def;
/* Do nothing. */
break;
default:
gcc_unreachable ();
}
return vec_def;
}
/* Function vectorizable_induction
Check if STMT_INFO performs an nonlinear induction computation that can be
vectorized. If VEC_STMT is also passed, vectorize the induction PHI: create
a vectorized phi to replace it, put it in VEC_STMT, and add it to the same
basic block.
Return true if STMT_INFO is vectorizable in this way. */
static bool
vectorizable_nonlinear_induction (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info,
gimple **vec_stmt, slp_tree slp_node,
stmt_vector_for_cost *cost_vec)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
unsigned ncopies;
bool nested_in_vect_loop = false;
class loop *iv_loop;
tree vec_def;
edge pe = loop_preheader_edge (loop);
basic_block new_bb;
tree vec_init, vec_step;
tree new_name;
gimple *new_stmt;
gphi *induction_phi;
tree induc_def, vec_dest;
tree init_expr, step_expr;
tree niters_skip;
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
unsigned i;
gimple_stmt_iterator si;
gphi *phi = dyn_cast <gphi *> (stmt_info->stmt);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
enum vect_induction_op_type induction_type
= STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (stmt_info);
gcc_assert (induction_type > vect_step_op_add);
if (slp_node)
ncopies = 1;
else
ncopies = vect_get_num_copies (loop_vinfo, vectype);
gcc_assert (ncopies >= 1);
/* FORNOW. Only handle nonlinear induction in the same loop. */
if (nested_in_vect_loop_p (loop, stmt_info))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"nonlinear induction in nested loop.\n");
return false;
}
iv_loop = loop;
gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
/* TODO: Support slp for nonlinear iv. There should be separate vector iv
update for each iv and a permutation to generate wanted vector iv. */
if (slp_node)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"SLP induction not supported for nonlinear"
" induction.\n");
return false;
}
if (!INTEGRAL_TYPE_P (TREE_TYPE (vectype)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"floating point nonlinear induction vectorization"
" not supported.\n");
return false;
}
step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
init_expr = vect_phi_initial_value (phi);
gcc_assert (step_expr != NULL_TREE && init_expr != NULL
&& TREE_CODE (step_expr) == INTEGER_CST);
/* step_expr should be aligned with init_expr,
.i.e. uint64 a >> 1, step is int, but vector<uint64> shift is used. */
step_expr = fold_convert (TREE_TYPE (vectype), step_expr);
if (TREE_CODE (init_expr) == INTEGER_CST)
init_expr = fold_convert (TREE_TYPE (vectype), init_expr);
else
gcc_assert (tree_nop_conversion_p (TREE_TYPE (vectype),
TREE_TYPE (init_expr)));
switch (induction_type)
{
case vect_step_op_neg:
if (TREE_CODE (init_expr) != INTEGER_CST
&& TREE_CODE (init_expr) != REAL_CST)
{
/* Check for backend support of NEGATE_EXPR and vec_perm. */
if (!directly_supported_p (NEGATE_EXPR, vectype))
return false;
/* The encoding has 2 interleaved stepped patterns. */
vec_perm_builder sel (nunits, 2, 3);
machine_mode mode = TYPE_MODE (vectype);
sel.quick_grow (6);
for (i = 0; i < 3; i++)
{
sel[i * 2] = i;
sel[i * 2 + 1] = i + nunits;
}
vec_perm_indices indices (sel, 2, nunits);
if (!can_vec_perm_const_p (mode, mode, indices))
return false;
}
break;
case vect_step_op_mul:
{
/* Check for backend support of MULT_EXPR. */
if (!directly_supported_p (MULT_EXPR, vectype))
return false;
/* ?? How to construct vector step for variable number vector.
[ 1, step, pow (step, 2), pow (step, 4), .. ]. */
if (!vf.is_constant ())
return false;
}
break;
case vect_step_op_shr:
/* Check for backend support of RSHIFT_EXPR. */
if (!directly_supported_p (RSHIFT_EXPR, vectype, optab_vector))
return false;
/* Don't shift more than type precision to avoid UD. */
if (!tree_fits_uhwi_p (step_expr)
|| maybe_ge (nunits * tree_to_uhwi (step_expr),
TYPE_PRECISION (TREE_TYPE (init_expr))))
return false;
break;
case vect_step_op_shl:
/* Check for backend support of RSHIFT_EXPR. */
if (!directly_supported_p (LSHIFT_EXPR, vectype, optab_vector))
return false;
/* Don't shift more than type precision to avoid UD. */
if (!tree_fits_uhwi_p (step_expr)
|| maybe_ge (nunits * tree_to_uhwi (step_expr),
TYPE_PRECISION (TREE_TYPE (init_expr))))
return false;
break;
default:
gcc_unreachable ();
}
if (!vec_stmt) /* transformation not required. */
{
unsigned inside_cost = 0, prologue_cost = 0;
/* loop cost for vec_loop. Neg induction doesn't have any
inside_cost. */
inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
stmt_info, 0, vect_body);
/* loop cost for vec_loop. Neg induction doesn't have any
inside_cost. */
if (induction_type == vect_step_op_neg)
inside_cost = 0;
/* prologue cost for vec_init and vec_step. */
prologue_cost = record_stmt_cost (cost_vec, 2, scalar_to_vec,
stmt_info, 0, vect_prologue);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"vect_model_induction_cost: inside_cost = %d, "
"prologue_cost = %d. \n", inside_cost,
prologue_cost);
STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
DUMP_VECT_SCOPE ("vectorizable_nonlinear_induction");
return true;
}
/* Transform. */
/* Compute a vector variable, initialized with the first VF values of
the induction variable. E.g., for an iv with IV_PHI='X' and
evolution S, for a vector of 4 units, we want to compute:
[X, X + S, X + 2*S, X + 3*S]. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
pe = loop_preheader_edge (iv_loop);
/* Find the first insertion point in the BB. */
basic_block bb = gimple_bb (phi);
si = gsi_after_labels (bb);
gimple_seq stmts = NULL;
niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
/* If we are using the loop mask to "peel" for alignment then we need
to adjust the start value here. */
if (niters_skip != NULL_TREE)
init_expr = vect_peel_nonlinear_iv_init (&stmts, init_expr, niters_skip,
step_expr, induction_type);
vec_init = vect_create_nonlinear_iv_init (&stmts, init_expr,
step_expr, nunits, vectype,
induction_type);
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
stmts = NULL;
new_name = vect_create_nonlinear_iv_step (&stmts, step_expr,
vf, induction_type);
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
vec_step = vect_create_nonlinear_iv_vec_step (loop_vinfo, stmt_info,
new_name, vectype,
induction_type);
/* Create the following def-use cycle:
loop prolog:
vec_init = ...
vec_step = ...
loop:
vec_iv = PHI <vec_init, vec_loop>
...
STMT
...
vec_loop = vec_iv + vec_step; */
/* Create the induction-phi that defines the induction-operand. */
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
induction_phi = create_phi_node (vec_dest, iv_loop->header);
induc_def = PHI_RESULT (induction_phi);
/* Create the iv update inside the loop. */
stmts = NULL;
vec_def = vect_update_nonlinear_iv (&stmts, vectype,
induc_def, vec_step,
induction_type);
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
new_stmt = SSA_NAME_DEF_STMT (vec_def);
/* Set the arguments of the phi node: */
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
UNKNOWN_LOCATION);
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (induction_phi);
*vec_stmt = induction_phi;
/* In case that vectorization factor (VF) is bigger than the number
of elements that we can fit in a vectype (nunits), we have to generate
more than one vector stmt - i.e - we need to "unroll" the
vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation. */
if (ncopies > 1)
{
stmts = NULL;
/* FORNOW. This restriction should be relaxed. */
gcc_assert (!nested_in_vect_loop);
new_name = vect_create_nonlinear_iv_step (&stmts, step_expr,
nunits, induction_type);
vec_step = vect_create_nonlinear_iv_vec_step (loop_vinfo, stmt_info,
new_name, vectype,
induction_type);
vec_def = induc_def;
for (i = 1; i < ncopies; i++)
{
/* vec_i = vec_prev + vec_step. */
stmts = NULL;
vec_def = vect_update_nonlinear_iv (&stmts, vectype,
vec_def, vec_step,
induction_type);
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
new_stmt = SSA_NAME_DEF_STMT (vec_def);
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
}
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"transform induction: created def-use cycle: %G%G",
(gimple *) induction_phi, SSA_NAME_DEF_STMT (vec_def));
return true;
}
/* Function vectorizable_induction
Check if STMT_INFO performs an induction computation that can be vectorized.
If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
phi to replace it, put it in VEC_STMT, and add it to the same basic block.
Return true if STMT_INFO is vectorizable in this way. */
bool
vectorizable_induction (loop_vec_info loop_vinfo,
stmt_vec_info stmt_info,
gimple **vec_stmt, slp_tree slp_node,
stmt_vector_for_cost *cost_vec)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
unsigned ncopies;
bool nested_in_vect_loop = false;
class loop *iv_loop;
tree vec_def;
edge pe = loop_preheader_edge (loop);
basic_block new_bb;
tree new_vec, vec_init, vec_step, t;
tree new_name;
gimple *new_stmt;
gphi *induction_phi;
tree induc_def, vec_dest;
tree init_expr, step_expr;
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
unsigned i;
tree expr;
gimple_stmt_iterator si;
enum vect_induction_op_type induction_type
= STMT_VINFO_LOOP_PHI_EVOLUTION_TYPE (stmt_info);
gphi *phi = dyn_cast <gphi *> (stmt_info->stmt);
if (!phi)
return false;
if (!STMT_VINFO_RELEVANT_P (stmt_info))
return false;
/* Make sure it was recognized as induction computation. */
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
return false;
/* Handle nonlinear induction in a separate place. */
if (induction_type != vect_step_op_add)
return vectorizable_nonlinear_induction (loop_vinfo, stmt_info,
vec_stmt, slp_node, cost_vec);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
if (slp_node)
ncopies = 1;
else
ncopies = vect_get_num_copies (loop_vinfo, vectype);
gcc_assert (ncopies >= 1);
/* FORNOW. These restrictions should be relaxed. */
if (nested_in_vect_loop_p (loop, stmt_info))
{
imm_use_iterator imm_iter;
use_operand_p use_p;
gimple *exit_phi;
edge latch_e;
tree loop_arg;
if (ncopies > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"multiple types in nested loop.\n");
return false;
}
exit_phi = NULL;
latch_e = loop_latch_edge (loop->inner);
loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
{
exit_phi = use_stmt;
break;
}
}
if (exit_phi)
{
stmt_vec_info exit_phi_vinfo = loop_vinfo->lookup_stmt (exit_phi);
if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
&& !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"inner-loop induction only used outside "
"of the outer vectorized loop.\n");
return false;
}
}
nested_in_vect_loop = true;
iv_loop = loop->inner;
}
else
iv_loop = loop;
gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
if (slp_node && !nunits.is_constant ())
{
/* The current SLP code creates the step value element-by-element. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"SLP induction not supported for variable-length"
" vectors.\n");
return false;
}
if (FLOAT_TYPE_P (vectype) && !param_vect_induction_float)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"floating point induction vectorization disabled\n");
return false;
}
step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
gcc_assert (step_expr != NULL_TREE);
tree step_vectype = get_same_sized_vectype (TREE_TYPE (step_expr), vectype);
/* Check for backend support of PLUS/MINUS_EXPR. */
if (!directly_supported_p (PLUS_EXPR, step_vectype)
|| !directly_supported_p (MINUS_EXPR, step_vectype))
return false;
if (!vec_stmt) /* transformation not required. */
{
unsigned inside_cost = 0, prologue_cost = 0;
if (slp_node)
{
/* We eventually need to set a vector type on invariant
arguments. */
unsigned j;
slp_tree child;
FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), j, child)
if (!vect_maybe_update_slp_op_vectype
(child, SLP_TREE_VECTYPE (slp_node)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"incompatible vector types for "
"invariants\n");
return false;
}
/* loop cost for vec_loop. */
inside_cost
= record_stmt_cost (cost_vec,
SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node),
vector_stmt, stmt_info, 0, vect_body);
/* prologue cost for vec_init (if not nested) and step. */
prologue_cost = record_stmt_cost (cost_vec, 1 + !nested_in_vect_loop,
scalar_to_vec,
stmt_info, 0, vect_prologue);
}
else /* if (!slp_node) */
{
/* loop cost for vec_loop. */
inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
stmt_info, 0, vect_body);
/* prologue cost for vec_init and vec_step. */
prologue_cost = record_stmt_cost (cost_vec, 2, scalar_to_vec,
stmt_info, 0, vect_prologue);
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"vect_model_induction_cost: inside_cost = %d, "
"prologue_cost = %d .\n", inside_cost,
prologue_cost);
STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
DUMP_VECT_SCOPE ("vectorizable_induction");
return true;
}
/* Transform. */
/* Compute a vector variable, initialized with the first VF values of
the induction variable. E.g., for an iv with IV_PHI='X' and
evolution S, for a vector of 4 units, we want to compute:
[X, X + S, X + 2*S, X + 3*S]. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
pe = loop_preheader_edge (iv_loop);
/* Find the first insertion point in the BB. */
basic_block bb = gimple_bb (phi);
si = gsi_after_labels (bb);
/* For SLP induction we have to generate several IVs as for example
with group size 3 we need
[i0, i1, i2, i0 + S0] [i1 + S1, i2 + S2, i0 + 2*S0, i1 + 2*S1]
[i2 + 2*S2, i0 + 3*S0, i1 + 3*S1, i2 + 3*S2]. */
if (slp_node)
{
/* Enforced above. */
unsigned int const_nunits = nunits.to_constant ();
/* The initial values are vectorized, but any lanes > group_size
need adjustment. */
slp_tree init_node
= SLP_TREE_CHILDREN (slp_node)[pe->dest_idx];
/* Gather steps. Since we do not vectorize inductions as
cycles we have to reconstruct the step from SCEV data. */
unsigned group_size = SLP_TREE_LANES (slp_node);
tree *steps = XALLOCAVEC (tree, group_size);
tree *inits = XALLOCAVEC (tree, group_size);
stmt_vec_info phi_info;
FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (slp_node), i, phi_info)
{
steps[i] = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
if (!init_node)
inits[i] = gimple_phi_arg_def (as_a<gphi *> (phi_info->stmt),
pe->dest_idx);
}
/* Now generate the IVs. */
unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
gcc_assert ((const_nunits * nvects) % group_size == 0);
unsigned nivs;
if (nested_in_vect_loop)
nivs = nvects;
else
{
/* Compute the number of distinct IVs we need. First reduce
group_size if it is a multiple of const_nunits so we get
one IV for a group_size of 4 but const_nunits 2. */
unsigned group_sizep = group_size;
if (group_sizep % const_nunits == 0)
group_sizep = group_sizep / const_nunits;
nivs = least_common_multiple (group_sizep,
const_nunits) / const_nunits;
}
tree stept = TREE_TYPE (step_vectype);
tree lupdate_mul = NULL_TREE;
if (!nested_in_vect_loop)
{
/* The number of iterations covered in one vector iteration. */
unsigned lup_mul = (nvects * const_nunits) / group_size;
lupdate_mul
= build_vector_from_val (step_vectype,
SCALAR_FLOAT_TYPE_P (stept)
? build_real_from_wide (stept, lup_mul,
UNSIGNED)
: build_int_cstu (stept, lup_mul));
}
tree peel_mul = NULL_TREE;
gimple_seq init_stmts = NULL;
if (LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo))
{
if (SCALAR_FLOAT_TYPE_P (stept))
peel_mul = gimple_build (&init_stmts, FLOAT_EXPR, stept,
LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo));
else
peel_mul = gimple_convert (&init_stmts, stept,
LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo));
peel_mul = gimple_build_vector_from_val (&init_stmts,
step_vectype, peel_mul);
}
unsigned ivn;
auto_vec<tree> vec_steps;
for (ivn = 0; ivn < nivs; ++ivn)
{
tree_vector_builder step_elts (step_vectype, const_nunits, 1);
tree_vector_builder init_elts (vectype, const_nunits, 1);
tree_vector_builder mul_elts (step_vectype, const_nunits, 1);
for (unsigned eltn = 0; eltn < const_nunits; ++eltn)
{
/* The scalar steps of the IVs. */
tree elt = steps[(ivn*const_nunits + eltn) % group_size];
elt = gimple_convert (&init_stmts, TREE_TYPE (step_vectype), elt);
step_elts.quick_push (elt);
if (!init_node)
{
/* The scalar inits of the IVs if not vectorized. */
elt = inits[(ivn*const_nunits + eltn) % group_size];
if (!useless_type_conversion_p (TREE_TYPE (vectype),
TREE_TYPE (elt)))
elt = gimple_build (&init_stmts, VIEW_CONVERT_EXPR,
TREE_TYPE (vectype), elt);
init_elts.quick_push (elt);
}
/* The number of steps to add to the initial values. */
unsigned mul_elt = (ivn*const_nunits + eltn) / group_size;
mul_elts.quick_push (SCALAR_FLOAT_TYPE_P (stept)
? build_real_from_wide (stept,
mul_elt, UNSIGNED)
: build_int_cstu (stept, mul_elt));
}
vec_step = gimple_build_vector (&init_stmts, &step_elts);
vec_steps.safe_push (vec_step);
tree step_mul = gimple_build_vector (&init_stmts, &mul_elts);
if (peel_mul)
step_mul = gimple_build (&init_stmts, PLUS_EXPR, step_vectype,
step_mul, peel_mul);
if (!init_node)
vec_init = gimple_build_vector (&init_stmts, &init_elts);
/* Create the induction-phi that defines the induction-operand. */
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var,
"vec_iv_");
induction_phi = create_phi_node (vec_dest, iv_loop->header);
induc_def = PHI_RESULT (induction_phi);
/* Create the iv update inside the loop */
tree up = vec_step;
if (lupdate_mul)
up = gimple_build (&init_stmts, MULT_EXPR, step_vectype,
vec_step, lupdate_mul);
gimple_seq stmts = NULL;
vec_def = gimple_convert (&stmts, step_vectype, induc_def);
vec_def = gimple_build (&stmts,
PLUS_EXPR, step_vectype, vec_def, up);
vec_def = gimple_convert (&stmts, vectype, vec_def);
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
UNKNOWN_LOCATION);
if (init_node)
vec_init = vect_get_slp_vect_def (init_node, ivn);
if (!nested_in_vect_loop
&& !integer_zerop (step_mul))
{
vec_def = gimple_convert (&init_stmts, step_vectype, vec_init);
up = gimple_build (&init_stmts, MULT_EXPR, step_vectype,
vec_step, step_mul);
vec_def = gimple_build (&init_stmts, PLUS_EXPR, step_vectype,
vec_def, up);
vec_init = gimple_convert (&init_stmts, vectype, vec_def);
}
/* Set the arguments of the phi node: */
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
slp_node->push_vec_def (induction_phi);
}
if (!nested_in_vect_loop)
{
/* Fill up to the number of vectors we need for the whole group. */
nivs = least_common_multiple (group_size,
const_nunits) / const_nunits;
vec_steps.reserve (nivs-ivn);
for (; ivn < nivs; ++ivn)
{
slp_node->push_vec_def (SLP_TREE_VEC_DEFS (slp_node)[0]);
vec_steps.quick_push (vec_steps[0]);
}
}
/* Re-use IVs when we can. We are generating further vector
stmts by adding VF' * stride to the IVs generated above. */
if (ivn < nvects)
{
unsigned vfp
= least_common_multiple (group_size, const_nunits) / group_size;
tree lupdate_mul
= build_vector_from_val (step_vectype,
SCALAR_FLOAT_TYPE_P (stept)
? build_real_from_wide (stept,
vfp, UNSIGNED)
: build_int_cstu (stept, vfp));
for (; ivn < nvects; ++ivn)
{
gimple *iv
= SSA_NAME_DEF_STMT (SLP_TREE_VEC_DEFS (slp_node)[ivn - nivs]);
tree def = gimple_get_lhs (iv);
if (ivn < 2*nivs)
vec_steps[ivn - nivs]
= gimple_build (&init_stmts, MULT_EXPR, step_vectype,
vec_steps[ivn - nivs], lupdate_mul);
gimple_seq stmts = NULL;
def = gimple_convert (&stmts, step_vectype, def);
def = gimple_build (&stmts, PLUS_EXPR, step_vectype,
def, vec_steps[ivn % nivs]);
def = gimple_convert (&stmts, vectype, def);
if (gimple_code (iv) == GIMPLE_PHI)
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
else
{
gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
gsi_insert_seq_after (&tgsi, stmts, GSI_CONTINUE_LINKING);
}
slp_node->push_vec_def (def);
}
}
new_bb = gsi_insert_seq_on_edge_immediate (pe, init_stmts);
gcc_assert (!new_bb);
return true;
}
init_expr = vect_phi_initial_value (phi);
gimple_seq stmts = NULL;
if (!nested_in_vect_loop)
{
/* Convert the initial value to the IV update type. */
tree new_type = TREE_TYPE (step_expr);
init_expr = gimple_convert (&stmts, new_type, init_expr);
/* If we are using the loop mask to "peel" for alignment then we need
to adjust the start value here. */
tree skip_niters = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
if (skip_niters != NULL_TREE)
{
if (FLOAT_TYPE_P (vectype))
skip_niters = gimple_build (&stmts, FLOAT_EXPR, new_type,
skip_niters);
else
skip_niters = gimple_convert (&stmts, new_type, skip_niters);
tree skip_step = gimple_build (&stmts, MULT_EXPR, new_type,
skip_niters, step_expr);
init_expr = gimple_build (&stmts, MINUS_EXPR, new_type,
init_expr, skip_step);
}
}
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
/* Create the vector that holds the initial_value of the induction. */
if (nested_in_vect_loop)
{
/* iv_loop is nested in the loop to be vectorized. init_expr had already
been created during vectorization of previous stmts. We obtain it
from the STMT_VINFO_VEC_STMT of the defining stmt. */
auto_vec<tree> vec_inits;
vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
init_expr, &vec_inits);
vec_init = vec_inits[0];
/* If the initial value is not of proper type, convert it. */
if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
{
new_stmt
= gimple_build_assign (vect_get_new_ssa_name (vectype,
vect_simple_var,
"vec_iv_"),
VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR, vectype,
vec_init));
vec_init = gimple_assign_lhs (new_stmt);
new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
new_stmt);
gcc_assert (!new_bb);
}
}
else
{
/* iv_loop is the loop to be vectorized. Create:
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
stmts = NULL;
new_name = gimple_convert (&stmts, TREE_TYPE (step_expr), init_expr);
unsigned HOST_WIDE_INT const_nunits;
if (nunits.is_constant (&const_nunits))
{
tree_vector_builder elts (step_vectype, const_nunits, 1);
elts.quick_push (new_name);
for (i = 1; i < const_nunits; i++)
{
/* Create: new_name_i = new_name + step_expr */
new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
new_name, step_expr);
elts.quick_push (new_name);
}
/* Create a vector from [new_name_0, new_name_1, ...,
new_name_nunits-1] */
vec_init = gimple_build_vector (&stmts, &elts);
}
else if (INTEGRAL_TYPE_P (TREE_TYPE (step_expr)))
/* Build the initial value directly from a VEC_SERIES_EXPR. */
vec_init = gimple_build (&stmts, VEC_SERIES_EXPR, step_vectype,
new_name, step_expr);
else
{
/* Build:
[base, base, base, ...]
+ (vectype) [0, 1, 2, ...] * [step, step, step, ...]. */
gcc_assert (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)));
gcc_assert (flag_associative_math);
tree index = build_index_vector (step_vectype, 0, 1);
tree base_vec = gimple_build_vector_from_val (&stmts, step_vectype,
new_name);
tree step_vec = gimple_build_vector_from_val (&stmts, step_vectype,
step_expr);
vec_init = gimple_build (&stmts, FLOAT_EXPR, step_vectype, index);
vec_init = gimple_build (&stmts, MULT_EXPR, step_vectype,
vec_init, step_vec);
vec_init = gimple_build (&stmts, PLUS_EXPR, step_vectype,
vec_init, base_vec);
}
vec_init = gimple_convert (&stmts, vectype, vec_init);
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
}
/* Create the vector that holds the step of the induction. */
if (nested_in_vect_loop)
/* iv_loop is nested in the loop to be vectorized. Generate:
vec_step = [S, S, S, S] */
new_name = step_expr;
else
{
/* iv_loop is the loop to be vectorized. Generate:
vec_step = [VF*S, VF*S, VF*S, VF*S] */
gimple_seq seq = NULL;
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
{
expr = build_int_cst (integer_type_node, vf);
expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
}
else
expr = build_int_cst (TREE_TYPE (step_expr), vf);
new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
expr, step_expr);
if (seq)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
gcc_assert (!new_bb);
}
}
t = unshare_expr (new_name);
gcc_assert (CONSTANT_CLASS_P (new_name)
|| TREE_CODE (new_name) == SSA_NAME);
new_vec = build_vector_from_val (step_vectype, t);
vec_step = vect_init_vector (loop_vinfo, stmt_info,
new_vec, step_vectype, NULL);
/* Create the following def-use cycle:
loop prolog:
vec_init = ...
vec_step = ...
loop:
vec_iv = PHI <vec_init, vec_loop>
...
STMT
...
vec_loop = vec_iv + vec_step; */
/* Create the induction-phi that defines the induction-operand. */
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
induction_phi = create_phi_node (vec_dest, iv_loop->header);
induc_def = PHI_RESULT (induction_phi);
/* Create the iv update inside the loop */
stmts = NULL;
vec_def = gimple_convert (&stmts, step_vectype, induc_def);
vec_def = gimple_build (&stmts, PLUS_EXPR, step_vectype, vec_def, vec_step);
vec_def = gimple_convert (&stmts, vectype, vec_def);
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
new_stmt = SSA_NAME_DEF_STMT (vec_def);
/* Set the arguments of the phi node: */
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
UNKNOWN_LOCATION);
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (induction_phi);
*vec_stmt = induction_phi;
/* In case that vectorization factor (VF) is bigger than the number
of elements that we can fit in a vectype (nunits), we have to generate
more than one vector stmt - i.e - we need to "unroll" the
vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation. */
if (ncopies > 1)
{
gimple_seq seq = NULL;
/* FORNOW. This restriction should be relaxed. */
gcc_assert (!nested_in_vect_loop);
/* Create the vector that holds the step of the induction. */
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
{
expr = build_int_cst (integer_type_node, nunits);
expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
}
else
expr = build_int_cst (TREE_TYPE (step_expr), nunits);
new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
expr, step_expr);
if (seq)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
gcc_assert (!new_bb);
}
t = unshare_expr (new_name);
gcc_assert (CONSTANT_CLASS_P (new_name)
|| TREE_CODE (new_name) == SSA_NAME);
new_vec = build_vector_from_val (step_vectype, t);
vec_step = vect_init_vector (loop_vinfo, stmt_info,
new_vec, step_vectype, NULL);
vec_def = induc_def;
for (i = 1; i < ncopies + 1; i++)
{
/* vec_i = vec_prev + vec_step */
gimple_seq stmts = NULL;
vec_def = gimple_convert (&stmts, step_vectype, vec_def);
vec_def = gimple_build (&stmts,
PLUS_EXPR, step_vectype, vec_def, vec_step);
vec_def = gimple_convert (&stmts, vectype, vec_def);
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
if (i < ncopies)
{
new_stmt = SSA_NAME_DEF_STMT (vec_def);
STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
}
else
{
/* vec_1 = vec_iv + (VF/n * S)
vec_2 = vec_1 + (VF/n * S)
...
vec_n = vec_prev + (VF/n * S) = vec_iv + VF * S = vec_loop
vec_n is used as vec_loop to save the large step register and
related operations. */
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
UNKNOWN_LOCATION);
}
}
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"transform induction: created def-use cycle: %G%G",
(gimple *) induction_phi, SSA_NAME_DEF_STMT (vec_def));
return true;
}
/* Function vectorizable_live_operation.
STMT_INFO computes a value that is used outside the loop. Check if
it can be supported. */
bool
vectorizable_live_operation (vec_info *vinfo, stmt_vec_info stmt_info,
slp_tree slp_node, slp_instance slp_node_instance,
int slp_index, bool vec_stmt_p,
stmt_vector_for_cost *cost_vec)
{
loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
imm_use_iterator imm_iter;
tree lhs, lhs_type, bitsize;
tree vectype = (slp_node
? SLP_TREE_VECTYPE (slp_node)
: STMT_VINFO_VECTYPE (stmt_info));
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
int ncopies;
gimple *use_stmt;
auto_vec<tree> vec_oprnds;
int vec_entry = 0;
poly_uint64 vec_index = 0;
gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
/* If a stmt of a reduction is live, vectorize it via
vect_create_epilog_for_reduction. vectorizable_reduction assessed
validity so just trigger the transform here. */
if (STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info)))
{
if (!vec_stmt_p)
return true;
if (slp_node)
{
/* For reduction chains the meta-info is attached to
the group leader. */
if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
stmt_info = REDUC_GROUP_FIRST_ELEMENT (stmt_info);
/* For SLP reductions we vectorize the epilogue for
all involved stmts together. */
else if (slp_index != 0)
return true;
}
stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
gcc_assert (reduc_info->is_reduc_info);
if (STMT_VINFO_REDUC_TYPE (reduc_info) == FOLD_LEFT_REDUCTION
|| STMT_VINFO_REDUC_TYPE (reduc_info) == EXTRACT_LAST_REDUCTION)
return true;
vect_create_epilog_for_reduction (loop_vinfo, stmt_info, slp_node,
slp_node_instance);
return true;
}
/* If STMT is not relevant and it is a simple assignment and its inputs are
invariant then it can remain in place, unvectorized. The original last
scalar value that it computes will be used. */
if (!STMT_VINFO_RELEVANT_P (stmt_info))
{
gcc_assert (is_simple_and_all_uses_invariant (stmt_info, loop_vinfo));
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"statement is simple and uses invariant. Leaving in "
"place.\n");
return true;
}
if (slp_node)
ncopies = 1;
else
ncopies = vect_get_num_copies (loop_vinfo, vectype);
if (slp_node)
{
gcc_assert (slp_index >= 0);
/* Get the last occurrence of the scalar index from the concatenation of
all the slp vectors. Calculate which slp vector it is and the index
within. */
int num_scalar = SLP_TREE_LANES (slp_node);
int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
poly_uint64 pos = (num_vec * nunits) - num_scalar + slp_index;
/* Calculate which vector contains the result, and which lane of
that vector we need. */
if (!can_div_trunc_p (pos, nunits, &vec_entry, &vec_index))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Cannot determine which vector holds the"
" final result.\n");
return false;
}
}
if (!vec_stmt_p)
{
/* No transformation required. */
if (loop_vinfo && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo))
{
if (slp_node)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't operate on partial vectors "
"because an SLP statement is live after "
"the loop.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
else if (ncopies > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't operate on partial vectors "
"because ncopies is greater than 1.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
else
{
gcc_assert (ncopies == 1 && !slp_node);
if (direct_internal_fn_supported_p (IFN_EXTRACT_LAST, vectype,
OPTIMIZE_FOR_SPEED))
vect_record_loop_mask (loop_vinfo,
&LOOP_VINFO_MASKS (loop_vinfo),
1, vectype, NULL);
else if (can_vec_extract_var_idx_p (
TYPE_MODE (vectype), TYPE_MODE (TREE_TYPE (vectype))))
vect_record_loop_len (loop_vinfo,
&LOOP_VINFO_LENS (loop_vinfo),
1, vectype, 1);
else
{
if (dump_enabled_p ())
dump_printf_loc (
MSG_MISSED_OPTIMIZATION, vect_location,
"can't operate on partial vectors "
"because the target doesn't support extract "
"last reduction.\n");
LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
}
}
}
/* ??? Enable for loop costing as well. */
if (!loop_vinfo)
record_stmt_cost (cost_vec, 1, vec_to_scalar, stmt_info, NULL_TREE,
0, vect_epilogue);
return true;
}
/* Use the lhs of the original scalar statement. */
gimple *stmt = vect_orig_stmt (stmt_info)->stmt;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "extracting lane for live "
"stmt %G", stmt);
lhs = gimple_get_lhs (stmt);
lhs_type = TREE_TYPE (lhs);
bitsize = vector_element_bits_tree (vectype);
/* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
tree vec_lhs, bitstart;
gimple *vec_stmt;
if (slp_node)
{
gcc_assert (!loop_vinfo
|| (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
&& !LOOP_VINFO_FULLY_WITH_LENGTH_P (loop_vinfo)));
/* Get the correct slp vectorized stmt. */
vec_lhs = SLP_TREE_VEC_DEFS (slp_node)[vec_entry];
vec_stmt = SSA_NAME_DEF_STMT (vec_lhs);
/* Get entry to use. */
bitstart = bitsize_int (vec_index);
bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
}
else
{
/* For multiple copies, get the last copy. */
vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info).last ();
vec_lhs = gimple_get_lhs (vec_stmt);
/* Get the last lane in the vector. */
bitstart = int_const_binop (MULT_EXPR, bitsize, bitsize_int (nunits - 1));
}
if (loop_vinfo)
{
/* Ensure the VEC_LHS for lane extraction stmts satisfy loop-closed PHI
requirement, insert one phi node for it. It looks like:
loop;
BB:
# lhs' = PHI <lhs>
==>
loop;
BB:
# vec_lhs' = PHI <vec_lhs>
new_tree = lane_extract <vec_lhs', ...>;
lhs' = new_tree; */
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block exit_bb = single_exit (loop)->dest;
gcc_assert (single_pred_p (exit_bb));
tree vec_lhs_phi = copy_ssa_name (vec_lhs);
gimple *phi = create_phi_node (vec_lhs_phi, exit_bb);
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, vec_lhs);
gimple_seq stmts = NULL;
tree new_tree;
if (LOOP_VINFO_FULLY_WITH_LENGTH_P (loop_vinfo))
{
/* Emit:
SCALAR_RES = VEC_EXTRACT <VEC_LHS, LEN + BIAS - 1>
where VEC_LHS is the vectorized live-out result and MASK is
the loop mask for the final iteration. */
gcc_assert (ncopies == 1 && !slp_node);
gimple_seq tem = NULL;
gimple_stmt_iterator gsi = gsi_last (tem);
tree len
= vect_get_loop_len (loop_vinfo, &gsi,
&LOOP_VINFO_LENS (loop_vinfo),
1, vectype, 0, 0);
/* BIAS - 1. */
signed char biasval = LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
tree bias_minus_one
= int_const_binop (MINUS_EXPR,
build_int_cst (TREE_TYPE (len), biasval),
build_one_cst (TREE_TYPE (len)));
/* LAST_INDEX = LEN + (BIAS - 1). */
tree last_index = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (len),
len, bias_minus_one);
/* SCALAR_RES = VEC_EXTRACT <VEC_LHS, LEN + BIAS - 1>. */
tree scalar_res
= gimple_build (&stmts, CFN_VEC_EXTRACT, TREE_TYPE (vectype),
vec_lhs_phi, last_index);
/* Convert the extracted vector element to the scalar type. */
new_tree = gimple_convert (&stmts, lhs_type, scalar_res);
}
else if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
{
/* Emit:
SCALAR_RES = EXTRACT_LAST <VEC_LHS, MASK>
where VEC_LHS is the vectorized live-out result and MASK is
the loop mask for the final iteration. */
gcc_assert (ncopies == 1 && !slp_node);
tree scalar_type = TREE_TYPE (STMT_VINFO_VECTYPE (stmt_info));
gimple_seq tem = NULL;
gimple_stmt_iterator gsi = gsi_last (tem);
tree mask = vect_get_loop_mask (loop_vinfo, &gsi,
&LOOP_VINFO_MASKS (loop_vinfo),
1, vectype, 0);
gimple_seq_add_seq (&stmts, tem);
tree scalar_res = gimple_build (&stmts, CFN_EXTRACT_LAST, scalar_type,
mask, vec_lhs_phi);
/* Convert the extracted vector element to the scalar type. */
new_tree = gimple_convert (&stmts, lhs_type, scalar_res);
}
else
{
tree bftype = TREE_TYPE (vectype);
if (VECTOR_BOOLEAN_TYPE_P (vectype))
bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
new_tree = build3 (BIT_FIELD_REF, bftype,
vec_lhs_phi, bitsize, bitstart);
new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree),
&stmts, true, NULL_TREE);
}
if (stmts)
{
gimple_stmt_iterator exit_gsi = gsi_after_labels (exit_bb);
gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
/* Remove existing phi from lhs and create one copy from new_tree. */
tree lhs_phi = NULL_TREE;
gimple_stmt_iterator gsi;
for (gsi = gsi_start_phis (exit_bb);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gimple *phi = gsi_stmt (gsi);
if ((gimple_phi_arg_def (phi, 0) == lhs))
{
remove_phi_node (&gsi, false);
lhs_phi = gimple_phi_result (phi);
gimple *copy = gimple_build_assign (lhs_phi, new_tree);
gsi_insert_before (&exit_gsi, copy, GSI_SAME_STMT);
break;
}
}
}
/* Replace use of lhs with newly computed result. If the use stmt is a
single arg PHI, just replace all uses of PHI result. It's necessary
because lcssa PHI defining lhs may be before newly inserted stmt. */
use_operand_p use_p;
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
&& !is_gimple_debug (use_stmt))
{
if (gimple_code (use_stmt) == GIMPLE_PHI
&& gimple_phi_num_args (use_stmt) == 1)
{
replace_uses_by (gimple_phi_result (use_stmt), new_tree);
}
else
{
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, new_tree);
}
update_stmt (use_stmt);
}
}
else
{
/* For basic-block vectorization simply insert the lane-extraction. */
tree bftype = TREE_TYPE (vectype);
if (VECTOR_BOOLEAN_TYPE_P (vectype))
bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
tree new_tree = build3 (BIT_FIELD_REF, bftype,
vec_lhs, bitsize, bitstart);
gimple_seq stmts = NULL;
new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree),
&stmts, true, NULL_TREE);
if (TREE_CODE (new_tree) == SSA_NAME
&& SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_tree) = 1;
if (is_a <gphi *> (vec_stmt))
{
gimple_stmt_iterator si = gsi_after_labels (gimple_bb (vec_stmt));
gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
}
else
{
gimple_stmt_iterator si = gsi_for_stmt (vec_stmt);
gsi_insert_seq_after (&si, stmts, GSI_SAME_STMT);
}
/* Replace use of lhs with newly computed result. If the use stmt is a
single arg PHI, just replace all uses of PHI result. It's necessary
because lcssa PHI defining lhs may be before newly inserted stmt. */
use_operand_p use_p;
stmt_vec_info use_stmt_info;
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
if (!is_gimple_debug (use_stmt)
&& (!(use_stmt_info = vinfo->lookup_stmt (use_stmt))
|| !PURE_SLP_STMT (vect_stmt_to_vectorize (use_stmt_info))))
{
/* ??? This can happen when the live lane ends up being
used in a vector construction code-generated by an
external SLP node (and code-generation for that already
happened). See gcc.dg/vect/bb-slp-47.c.
Doing this is what would happen if that vector CTOR
were not code-generated yet so it is not too bad.
??? In fact we'd likely want to avoid this situation
in the first place. */
if (TREE_CODE (new_tree) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (new_tree)
&& gimple_code (use_stmt) != GIMPLE_PHI
&& !vect_stmt_dominates_stmt_p (SSA_NAME_DEF_STMT (new_tree),
use_stmt))
{
enum tree_code code = gimple_assign_rhs_code (use_stmt);
gcc_checking_assert (code == SSA_NAME
|| code == CONSTRUCTOR
|| code == VIEW_CONVERT_EXPR
|| CONVERT_EXPR_CODE_P (code));
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Using original scalar computation for "
"live lane because use preceeds vector "
"def\n");
continue;
}
/* ??? It can also happen that we end up pulling a def into
a loop where replacing out-of-loop uses would require
a new LC SSA PHI node. Retain the original scalar in
those cases as well. PR98064. */
if (TREE_CODE (new_tree) == SSA_NAME
&& !SSA_NAME_IS_DEFAULT_DEF (new_tree)
&& (gimple_bb (use_stmt)->loop_father
!= gimple_bb (vec_stmt)->loop_father)
&& !flow_loop_nested_p (gimple_bb (vec_stmt)->loop_father,
gimple_bb (use_stmt)->loop_father))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Using original scalar computation for "
"live lane because there is an out-of-loop "
"definition for it\n");
continue;
}
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, new_tree);
update_stmt (use_stmt);
}
}
return true;
}
/* Kill any debug uses outside LOOP of SSA names defined in STMT_INFO. */
static void
vect_loop_kill_debug_uses (class loop *loop, stmt_vec_info stmt_info)
{
ssa_op_iter op_iter;
imm_use_iterator imm_iter;
def_operand_p def_p;
gimple *ustmt;
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt_info->stmt, op_iter, SSA_OP_DEF)
{
FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
{
basic_block bb;
if (!is_gimple_debug (ustmt))
continue;
bb = gimple_bb (ustmt);
if (!flow_bb_inside_loop_p (loop, bb))
{
if (gimple_debug_bind_p (ustmt))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"killing debug use\n");
gimple_debug_bind_reset_value (ustmt);
update_stmt (ustmt);
}
else
gcc_unreachable ();
}
}
}
}
/* Given loop represented by LOOP_VINFO, return true if computation of
LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
otherwise. */
static bool
loop_niters_no_overflow (loop_vec_info loop_vinfo)
{
/* Constant case. */
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
return true;
}
widest_int max;
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
/* Check the upper bound of loop niters. */
if (get_max_loop_iterations (loop, &max))
{
tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
signop sgn = TYPE_SIGN (type);
widest_int type_max = widest_int::from (wi::max_value (type), sgn);
if (max < type_max)
return true;
}
return false;
}
/* Return a mask type with half the number of elements as OLD_TYPE,
given that it should have mode NEW_MODE. */
tree
vect_halve_mask_nunits (tree old_type, machine_mode new_mode)
{
poly_uint64 nunits = exact_div (TYPE_VECTOR_SUBPARTS (old_type), 2);
return build_truth_vector_type_for_mode (nunits, new_mode);
}
/* Return a mask type with twice as many elements as OLD_TYPE,
given that it should have mode NEW_MODE. */
tree
vect_double_mask_nunits (tree old_type, machine_mode new_mode)
{
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (old_type) * 2;
return build_truth_vector_type_for_mode (nunits, new_mode);
}
/* Record that a fully-masked version of LOOP_VINFO would need MASKS to
contain a sequence of NVECTORS masks that each control a vector of type
VECTYPE. If SCALAR_MASK is nonnull, the fully-masked loop would AND
these vector masks with the vector version of SCALAR_MASK. */
void
vect_record_loop_mask (loop_vec_info loop_vinfo, vec_loop_masks *masks,
unsigned int nvectors, tree vectype, tree scalar_mask)
{
gcc_assert (nvectors != 0);
if (scalar_mask)
{
scalar_cond_masked_key cond (scalar_mask, nvectors);
loop_vinfo->scalar_cond_masked_set.add (cond);
}
masks->mask_set.add (std::make_pair (vectype, nvectors));
}
/* Given a complete set of masks MASKS, extract mask number INDEX
for an rgroup that operates on NVECTORS vectors of type VECTYPE,
where 0 <= INDEX < NVECTORS. Insert any set-up statements before GSI.
See the comment above vec_loop_masks for more details about the mask
arrangement. */
tree
vect_get_loop_mask (loop_vec_info loop_vinfo,
gimple_stmt_iterator *gsi, vec_loop_masks *masks,
unsigned int nvectors, tree vectype, unsigned int index)
{
if (LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo)
== vect_partial_vectors_while_ult)
{
rgroup_controls *rgm = &(masks->rgc_vec)[nvectors - 1];
tree mask_type = rgm->type;
/* Populate the rgroup's mask array, if this is the first time we've
used it. */
if (rgm->controls.is_empty ())
{
rgm->controls.safe_grow_cleared (nvectors, true);
for (unsigned int i = 0; i < nvectors; ++i)
{
tree mask = make_temp_ssa_name (mask_type, NULL, "loop_mask");
/* Provide a dummy definition until the real one is available. */
SSA_NAME_DEF_STMT (mask) = gimple_build_nop ();
rgm->controls[i] = mask;
}
}
tree mask = rgm->controls[index];
if (maybe_ne (TYPE_VECTOR_SUBPARTS (mask_type),
TYPE_VECTOR_SUBPARTS (vectype)))
{
/* A loop mask for data type X can be reused for data type Y
if X has N times more elements than Y and if Y's elements
are N times bigger than X's. In this case each sequence
of N elements in the loop mask will be all-zero or all-one.
We can then view-convert the mask so that each sequence of
N elements is replaced by a single element. */
gcc_assert (multiple_p (TYPE_VECTOR_SUBPARTS (mask_type),
TYPE_VECTOR_SUBPARTS (vectype)));
gimple_seq seq = NULL;
mask_type = truth_type_for (vectype);
mask = gimple_build (&seq, VIEW_CONVERT_EXPR, mask_type, mask);
if (seq)
gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
}
return mask;
}
else if (LOOP_VINFO_PARTIAL_VECTORS_STYLE (loop_vinfo)
== vect_partial_vectors_avx512)
{
/* The number of scalars per iteration and the number of vectors are
both compile-time constants. */
unsigned int nscalars_per_iter
= exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
rgroup_controls *rgm = &masks->rgc_vec[nscalars_per_iter - 1];
/* The stored nV is dependent on the mask type produced. */
gcc_assert (exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
TYPE_VECTOR_SUBPARTS (rgm->type)).to_constant ()
== rgm->factor);
nvectors = rgm->factor;
/* Populate the rgroup's mask array, if this is the first time we've
used it. */
if (rgm->controls.is_empty ())
{
rgm->controls.safe_grow_cleared (nvectors, true);
for (unsigned int i = 0; i < nvectors; ++i)
{
tree mask = make_temp_ssa_name (rgm->type, NULL, "loop_mask");
/* Provide a dummy definition until the real one is available. */
SSA_NAME_DEF_STMT (mask) = gimple_build_nop ();
rgm->controls[i] = mask;
}
}
if (known_eq (TYPE_VECTOR_SUBPARTS (rgm->type),
TYPE_VECTOR_SUBPARTS (vectype)))
return rgm->controls[index];
/* Split the vector if needed. Since we are dealing with integer mode
masks with AVX512 we can operate on the integer representation
performing the whole vector shifting. */
unsigned HOST_WIDE_INT factor;
bool ok = constant_multiple_p (TYPE_VECTOR_SUBPARTS (rgm->type),
TYPE_VECTOR_SUBPARTS (vectype), &factor);
gcc_assert (ok);
gcc_assert (GET_MODE_CLASS (TYPE_MODE (rgm->type)) == MODE_INT);
tree mask_type = truth_type_for (vectype);
gcc_assert (GET_MODE_CLASS (TYPE_MODE (mask_type)) == MODE_INT);
unsigned vi = index / factor;
unsigned vpart = index % factor;
tree vec = rgm->controls[vi];
gimple_seq seq = NULL;
vec = gimple_build (&seq, VIEW_CONVERT_EXPR,
lang_hooks.types.type_for_mode
(TYPE_MODE (rgm->type), 1), vec);
/* For integer mode masks simply shift the right bits into position. */
if (vpart != 0)
vec = gimple_build (&seq, RSHIFT_EXPR, TREE_TYPE (vec), vec,
build_int_cst (integer_type_node,
(TYPE_VECTOR_SUBPARTS (vectype)
* vpart)));
vec = gimple_convert (&seq, lang_hooks.types.type_for_mode
(TYPE_MODE (mask_type), 1), vec);
vec = gimple_build (&seq, VIEW_CONVERT_EXPR, mask_type, vec);
if (seq)
gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
return vec;
}
else
gcc_unreachable ();
}
/* Record that LOOP_VINFO would need LENS to contain a sequence of NVECTORS
lengths for controlling an operation on VECTYPE. The operation splits
each element of VECTYPE into FACTOR separate subelements, measuring the
length as a number of these subelements. */
void
vect_record_loop_len (loop_vec_info loop_vinfo, vec_loop_lens *lens,
unsigned int nvectors, tree vectype, unsigned int factor)
{
gcc_assert (nvectors != 0);
if (lens->length () < nvectors)
lens->safe_grow_cleared (nvectors, true);
rgroup_controls *rgl = &(*lens)[nvectors - 1];
/* The number of scalars per iteration, scalar occupied bytes and
the number of vectors are both compile-time constants. */
unsigned int nscalars_per_iter
= exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
if (rgl->max_nscalars_per_iter < nscalars_per_iter)
{
/* For now, we only support cases in which all loads and stores fall back
to VnQI or none do. */
gcc_assert (!rgl->max_nscalars_per_iter
|| (rgl->factor == 1 && factor == 1)
|| (rgl->max_nscalars_per_iter * rgl->factor
== nscalars_per_iter * factor));
rgl->max_nscalars_per_iter = nscalars_per_iter;
rgl->type = vectype;
rgl->factor = factor;
}
}
/* Given a complete set of lengths LENS, extract length number INDEX
for an rgroup that operates on NVECTORS vectors of type VECTYPE,
where 0 <= INDEX < NVECTORS. Return a value that contains FACTOR
multipled by the number of elements that should be processed.
Insert any set-up statements before GSI. */
tree
vect_get_loop_len (loop_vec_info loop_vinfo, gimple_stmt_iterator *gsi,
vec_loop_lens *lens, unsigned int nvectors, tree vectype,
unsigned int index, unsigned int factor)
{
rgroup_controls *rgl = &(*lens)[nvectors - 1];
bool use_bias_adjusted_len =
LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo) != 0;
/* Populate the rgroup's len array, if this is the first time we've
used it. */
if (rgl->controls.is_empty ())
{
rgl->controls.safe_grow_cleared (nvectors, true);
for (unsigned int i = 0; i < nvectors; ++i)
{
tree len_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
gcc_assert (len_type != NULL_TREE);
tree len = make_temp_ssa_name (len_type, NULL, "loop_len");
/* Provide a dummy definition until the real one is available. */
SSA_NAME_DEF_STMT (len) = gimple_build_nop ();
rgl->controls[i] = len;
if (use_bias_adjusted_len)
{
gcc_assert (i == 0);
tree adjusted_len =
make_temp_ssa_name (len_type, NULL, "adjusted_loop_len");
SSA_NAME_DEF_STMT (adjusted_len) = gimple_build_nop ();
rgl->bias_adjusted_ctrl = adjusted_len;
}
}
}
if (use_bias_adjusted_len)
return rgl->bias_adjusted_ctrl;
tree loop_len = rgl->controls[index];
if (rgl->factor == 1 && factor == 1)
{
poly_int64 nunits1 = TYPE_VECTOR_SUBPARTS (rgl->type);
poly_int64 nunits2 = TYPE_VECTOR_SUBPARTS (vectype);
if (maybe_ne (nunits1, nunits2))
{
/* A loop len for data type X can be reused for data type Y
if X has N times more elements than Y and if Y's elements
are N times bigger than X's. */
gcc_assert (multiple_p (nunits1, nunits2));
factor = exact_div (nunits1, nunits2).to_constant ();
tree iv_type = LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo);
gimple_seq seq = NULL;
loop_len = gimple_build (&seq, RDIV_EXPR, iv_type, loop_len,
build_int_cst (iv_type, factor));
if (seq)
gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
}
}
return loop_len;
}
/* Scale profiling counters by estimation for LOOP which is vectorized
by factor VF.
If FLAT is true, the loop we started with had unrealistically flat
profile. */
static void
scale_profile_for_vect_loop (class loop *loop, unsigned vf, bool flat)
{
/* For flat profiles do not scale down proportionally by VF and only
cap by known iteration count bounds. */
if (flat)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Vectorized loop profile seems flat; not scaling iteration "
"count down by the vectorization factor %i\n", vf);
scale_loop_profile (loop, profile_probability::always (),
get_likely_max_loop_iterations_int (loop));
return;
}
/* Loop body executes VF fewer times and exit increases VF times. */
edge exit_e = single_exit (loop);
profile_count entry_count = loop_preheader_edge (loop)->count ();
/* If we have unreliable loop profile avoid dropping entry
count bellow header count. This can happen since loops
has unrealistically low trip counts. */
while (vf > 1
&& loop->header->count > entry_count
&& loop->header->count < entry_count * vf)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Vectorization factor %i seems too large for profile "
"prevoiusly believed to be consistent; reducing.\n", vf);
vf /= 2;
}
if (entry_count.nonzero_p ())
set_edge_probability_and_rescale_others
(exit_e,
entry_count.probability_in (loop->header->count / vf));
/* Avoid producing very large exit probability when we do not have
sensible profile. */
else if (exit_e->probability < profile_probability::always () / (vf * 2))
set_edge_probability_and_rescale_others (exit_e, exit_e->probability * vf);
loop->latch->count = single_pred_edge (loop->latch)->count ();
scale_loop_profile (loop, profile_probability::always () / vf,
get_likely_max_loop_iterations_int (loop));
}
/* For a vectorized stmt DEF_STMT_INFO adjust all vectorized PHI
latch edge values originally defined by it. */
static void
maybe_set_vectorized_backedge_value (loop_vec_info loop_vinfo,
stmt_vec_info def_stmt_info)
{
tree def = gimple_get_lhs (vect_orig_stmt (def_stmt_info)->stmt);
if (!def || TREE_CODE (def) != SSA_NAME)
return;
stmt_vec_info phi_info;
imm_use_iterator iter;
use_operand_p use_p;
FOR_EACH_IMM_USE_FAST (use_p, iter, def)
{
gphi *phi = dyn_cast <gphi *> (USE_STMT (use_p));
if (!phi)
continue;
if (!(gimple_bb (phi)->loop_father->header == gimple_bb (phi)
&& (phi_info = loop_vinfo->lookup_stmt (phi))
&& STMT_VINFO_RELEVANT_P (phi_info)))
continue;
loop_p loop = gimple_bb (phi)->loop_father;
edge e = loop_latch_edge (loop);
if (PHI_ARG_DEF_FROM_EDGE (phi, e) != def)
continue;
if (VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (phi_info))
&& STMT_VINFO_REDUC_TYPE (phi_info) != FOLD_LEFT_REDUCTION
&& STMT_VINFO_REDUC_TYPE (phi_info) != EXTRACT_LAST_REDUCTION)
{
vec<gimple *> &phi_defs = STMT_VINFO_VEC_STMTS (phi_info);
vec<gimple *> &latch_defs = STMT_VINFO_VEC_STMTS (def_stmt_info);
gcc_assert (phi_defs.length () == latch_defs.length ());
for (unsigned i = 0; i < phi_defs.length (); ++i)
add_phi_arg (as_a <gphi *> (phi_defs[i]),
gimple_get_lhs (latch_defs[i]), e,
gimple_phi_arg_location (phi, e->dest_idx));
}
else if (STMT_VINFO_DEF_TYPE (phi_info) == vect_first_order_recurrence)
{
/* For first order recurrences we have to update both uses of
the latch definition, the one in the PHI node and the one
in the generated VEC_PERM_EXPR. */
vec<gimple *> &phi_defs = STMT_VINFO_VEC_STMTS (phi_info);
vec<gimple *> &latch_defs = STMT_VINFO_VEC_STMTS (def_stmt_info);
gcc_assert (phi_defs.length () == latch_defs.length ());
tree phidef = gimple_assign_rhs1 (phi_defs[0]);
gphi *vphi = as_a <gphi *> (SSA_NAME_DEF_STMT (phidef));
for (unsigned i = 0; i < phi_defs.length (); ++i)
{
gassign *perm = as_a <gassign *> (phi_defs[i]);
if (i > 0)
gimple_assign_set_rhs1 (perm, gimple_get_lhs (latch_defs[i-1]));
gimple_assign_set_rhs2 (perm, gimple_get_lhs (latch_defs[i]));
update_stmt (perm);
}
add_phi_arg (vphi, gimple_get_lhs (latch_defs.last ()), e,
gimple_phi_arg_location (phi, e->dest_idx));
}
}
}
/* Vectorize STMT_INFO if relevant, inserting any new instructions before GSI.
When vectorizing STMT_INFO as a store, set *SEEN_STORE to its
stmt_vec_info. */
static bool
vect_transform_loop_stmt (loop_vec_info loop_vinfo, stmt_vec_info stmt_info,
gimple_stmt_iterator *gsi, stmt_vec_info *seen_store)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"------>vectorizing statement: %G", stmt_info->stmt);
if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
vect_loop_kill_debug_uses (loop, stmt_info);
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
return false;
if (STMT_VINFO_VECTYPE (stmt_info))
{
poly_uint64 nunits
= TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
if (!STMT_SLP_TYPE (stmt_info)
&& maybe_ne (nunits, vf)
&& dump_enabled_p ())
/* For SLP VF is set according to unrolling factor, and not
to vector size, hence for SLP this print is not valid. */
dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
}
/* Pure SLP statements have already been vectorized. We still need
to apply loop vectorization to hybrid SLP statements. */
if (PURE_SLP_STMT (stmt_info))
return false;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
if (vect_transform_stmt (loop_vinfo, stmt_info, gsi, NULL, NULL))
*seen_store = stmt_info;
return true;
}
/* Helper function to pass to simplify_replace_tree to enable replacing tree's
in the hash_map with its corresponding values. */
static tree
find_in_mapping (tree t, void *context)
{
hash_map<tree,tree>* mapping = (hash_map<tree, tree>*) context;
tree *value = mapping->get (t);
return value ? *value : t;
}
/* Update EPILOGUE's loop_vec_info. EPILOGUE was constructed as a copy of the
original loop that has now been vectorized.
The inits of the data_references need to be advanced with the number of
iterations of the main loop. This has been computed in vect_do_peeling and
is stored in parameter ADVANCE. We first restore the data_references
initial offset with the values recored in ORIG_DRS_INIT.
Since the loop_vec_info of this EPILOGUE was constructed for the original
loop, its stmt_vec_infos all point to the original statements. These need
to be updated to point to their corresponding copies as well as the SSA_NAMES
in their PATTERN_DEF_SEQs and RELATED_STMTs.
The data_reference's connections also need to be updated. Their
corresponding dr_vec_info need to be reconnected to the EPILOGUE's
stmt_vec_infos, their statements need to point to their corresponding copy,
if they are gather loads or scatter stores then their reference needs to be
updated to point to its corresponding copy and finally we set
'base_misaligned' to false as we have already peeled for alignment in the
prologue of the main loop. */
static void
update_epilogue_loop_vinfo (class loop *epilogue, tree advance)
{
loop_vec_info epilogue_vinfo = loop_vec_info_for_loop (epilogue);
auto_vec<gimple *> stmt_worklist;
hash_map<tree,tree> mapping;
gimple *orig_stmt, *new_stmt;
gimple_stmt_iterator epilogue_gsi;
gphi_iterator epilogue_phi_gsi;
stmt_vec_info stmt_vinfo = NULL, related_vinfo;
basic_block *epilogue_bbs = get_loop_body (epilogue);
unsigned i;
free (LOOP_VINFO_BBS (epilogue_vinfo));
LOOP_VINFO_BBS (epilogue_vinfo) = epilogue_bbs;
/* Advance data_reference's with the number of iterations of the previous
loop and its prologue. */
vect_update_inits_of_drs (epilogue_vinfo, advance, PLUS_EXPR);
/* The EPILOGUE loop is a copy of the original loop so they share the same
gimple UIDs. In this loop we update the loop_vec_info of the EPILOGUE to
point to the copied statements. We also create a mapping of all LHS' in
the original loop and all the LHS' in the EPILOGUE and create worklists to
update teh STMT_VINFO_PATTERN_DEF_SEQs and STMT_VINFO_RELATED_STMTs. */
for (unsigned i = 0; i < epilogue->num_nodes; ++i)
{
for (epilogue_phi_gsi = gsi_start_phis (epilogue_bbs[i]);
!gsi_end_p (epilogue_phi_gsi); gsi_next (&epilogue_phi_gsi))
{
new_stmt = epilogue_phi_gsi.phi ();
gcc_assert (gimple_uid (new_stmt) > 0);
stmt_vinfo
= epilogue_vinfo->stmt_vec_infos[gimple_uid (new_stmt) - 1];
orig_stmt = STMT_VINFO_STMT (stmt_vinfo);
STMT_VINFO_STMT (stmt_vinfo) = new_stmt;
mapping.put (gimple_phi_result (orig_stmt),
gimple_phi_result (new_stmt));
/* PHI nodes can not have patterns or related statements. */
gcc_assert (STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) == NULL
&& STMT_VINFO_RELATED_STMT (stmt_vinfo) == NULL);
}
for (epilogue_gsi = gsi_start_bb (epilogue_bbs[i]);
!gsi_end_p (epilogue_gsi); gsi_next (&epilogue_gsi))
{
new_stmt = gsi_stmt (epilogue_gsi);
if (is_gimple_debug (new_stmt))
continue;
gcc_assert (gimple_uid (new_stmt) > 0);
stmt_vinfo
= epilogue_vinfo->stmt_vec_infos[gimple_uid (new_stmt) - 1];
orig_stmt = STMT_VINFO_STMT (stmt_vinfo);
STMT_VINFO_STMT (stmt_vinfo) = new_stmt;
if (tree old_lhs = gimple_get_lhs (orig_stmt))
mapping.put (old_lhs, gimple_get_lhs (new_stmt));
if (STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo))
{
gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo);
for (gimple_stmt_iterator gsi = gsi_start (seq);
!gsi_end_p (gsi); gsi_next (&gsi))
stmt_worklist.safe_push (gsi_stmt (gsi));
}
related_vinfo = STMT_VINFO_RELATED_STMT (stmt_vinfo);
if (related_vinfo != NULL && related_vinfo != stmt_vinfo)
{
gimple *stmt = STMT_VINFO_STMT (related_vinfo);
stmt_worklist.safe_push (stmt);
/* Set BB such that the assert in
'get_initial_def_for_reduction' is able to determine that
the BB of the related stmt is inside this loop. */
gimple_set_bb (stmt,
gimple_bb (new_stmt));
related_vinfo = STMT_VINFO_RELATED_STMT (related_vinfo);
gcc_assert (related_vinfo == NULL
|| related_vinfo == stmt_vinfo);
}
}
}
/* The PATTERN_DEF_SEQs and RELATED_STMTs in the epilogue were constructed
using the original main loop and thus need to be updated to refer to the
cloned variables used in the epilogue. */
for (unsigned i = 0; i < stmt_worklist.length (); ++i)
{
gimple *stmt = stmt_worklist[i];
tree *new_op;
for (unsigned j = 1; j < gimple_num_ops (stmt); ++j)
{
tree op = gimple_op (stmt, j);
if ((new_op = mapping.get(op)))
gimple_set_op (stmt, j, *new_op);
else
{
/* PR92429: The last argument of simplify_replace_tree disables
folding when replacing arguments. This is required as
otherwise you might end up with different statements than the
ones analyzed in vect_loop_analyze, leading to different
vectorization. */
op = simplify_replace_tree (op, NULL_TREE, NULL_TREE,
&find_in_mapping, &mapping, false);
gimple_set_op (stmt, j, op);
}
}
}
struct data_reference *dr;
vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (epilogue_vinfo);
FOR_EACH_VEC_ELT (datarefs, i, dr)
{
orig_stmt = DR_STMT (dr);
gcc_assert (gimple_uid (orig_stmt) > 0);
stmt_vinfo = epilogue_vinfo->stmt_vec_infos[gimple_uid (orig_stmt) - 1];
/* Data references for gather loads and scatter stores do not use the
updated offset we set using ADVANCE. Instead we have to make sure the
reference in the data references point to the corresponding copy of
the original in the epilogue. */
if (STMT_VINFO_MEMORY_ACCESS_TYPE (vect_stmt_to_vectorize (stmt_vinfo))
== VMAT_GATHER_SCATTER)
{
DR_REF (dr)
= simplify_replace_tree (DR_REF (dr), NULL_TREE, NULL_TREE,
&find_in_mapping, &mapping);
DR_BASE_ADDRESS (dr)
= simplify_replace_tree (DR_BASE_ADDRESS (dr), NULL_TREE, NULL_TREE,
&find_in_mapping, &mapping);
}
DR_STMT (dr) = STMT_VINFO_STMT (stmt_vinfo);
stmt_vinfo->dr_aux.stmt = stmt_vinfo;
/* The vector size of the epilogue is smaller than that of the main loop
so the alignment is either the same or lower. This means the dr will
thus by definition be aligned. */
STMT_VINFO_DR_INFO (stmt_vinfo)->base_misaligned = false;
}
epilogue_vinfo->shared->datarefs_copy.release ();
epilogue_vinfo->shared->save_datarefs ();
}
/* Function vect_transform_loop.
The analysis phase has determined that the loop is vectorizable.
Vectorize the loop - created vectorized stmts to replace the scalar
stmts in the loop, and update the loop exit condition.
Returns scalar epilogue loop if any. */
class loop *
vect_transform_loop (loop_vec_info loop_vinfo, gimple *loop_vectorized_call)
{
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
class loop *epilogue = NULL;
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
int i;
tree niters_vector = NULL_TREE;
tree step_vector = NULL_TREE;
tree niters_vector_mult_vf = NULL_TREE;
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
unsigned int lowest_vf = constant_lower_bound (vf);
gimple *stmt;
bool check_profitability = false;
unsigned int th;
bool flat = maybe_flat_loop_profile (loop);
DUMP_VECT_SCOPE ("vec_transform_loop");
loop_vinfo->shared->check_datarefs ();
/* Use the more conservative vectorization threshold. If the number
of iterations is constant assume the cost check has been performed
by our caller. If the threshold makes all loops profitable that
run at least the (estimated) vectorization factor number of times
checking is pointless, too. */
th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
if (vect_apply_runtime_profitability_check_p (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Profitability threshold is %d loop iterations.\n",
th);
check_profitability = true;
}
/* Make sure there exists a single-predecessor exit bb. Do this before
versioning. */
edge e = single_exit (loop);
if (! single_pred_p (e->dest))
{
split_loop_exit_edge (e, true);
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "split exit edge\n");
}
/* Version the loop first, if required, so the profitability check
comes first. */
if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
{
class loop *sloop
= vect_loop_versioning (loop_vinfo, loop_vectorized_call);
sloop->force_vectorize = false;
check_profitability = false;
}
/* Make sure there exists a single-predecessor exit bb also on the
scalar loop copy. Do this after versioning but before peeling
so CFG structure is fine for both scalar and if-converted loop
to make slpeel_duplicate_current_defs_from_edges face matched
loop closed PHI nodes on the exit. */
if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
{
e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
if (! single_pred_p (e->dest))
{
split_loop_exit_edge (e, true);
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
}
}
tree niters = vect_build_loop_niters (loop_vinfo);
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
tree advance;
drs_init_vec orig_drs_init;
epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector,
&step_vector, &niters_vector_mult_vf, th,
check_profitability, niters_no_overflow,
&advance);
if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo)
&& LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo).initialized_p ())
{
/* Ifcvt duplicates loop preheader, loop body and produces an basic
block after loop exit. We need to scale all that. */
basic_block preheader
= loop_preheader_edge (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))->src;
preheader->count
= preheader->count.apply_probability
(LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo));
scale_loop_frequencies (LOOP_VINFO_SCALAR_LOOP (loop_vinfo),
LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo));
single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))->dest->count
= preheader->count;
}
if (niters_vector == NULL_TREE)
{
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
&& known_eq (lowest_vf, vf))
{
niters_vector
= build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
LOOP_VINFO_INT_NITERS (loop_vinfo) / lowest_vf);
step_vector = build_one_cst (TREE_TYPE (niters));
}
else if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
&step_vector, niters_no_overflow);
else
/* vect_do_peeling subtracted the number of peeled prologue
iterations from LOOP_VINFO_NITERS. */
vect_gen_vector_loop_niters (loop_vinfo, LOOP_VINFO_NITERS (loop_vinfo),
&niters_vector, &step_vector,
niters_no_overflow);
}
/* 1) Make sure the loop header has exactly two entries
2) Make sure we have a preheader basic block. */
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
split_edge (loop_preheader_edge (loop));
if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
/* This will deal with any possible peeling. */
vect_prepare_for_masked_peels (loop_vinfo);
/* Schedule the SLP instances first, then handle loop vectorization
below. */
if (!loop_vinfo->slp_instances.is_empty ())
{
DUMP_VECT_SCOPE ("scheduling SLP instances");
vect_schedule_slp (loop_vinfo, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
}
/* FORNOW: the vectorizer supports only loops which body consist
of one basic block (header + empty latch). When the vectorizer will
support more involved loop forms, the order by which the BBs are
traversed need to be reconsidered. */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
stmt_vec_info stmt_info;
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
gphi *phi = si.phi ();
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"------>vectorizing phi: %G", (gimple *) phi);
stmt_info = loop_vinfo->lookup_stmt (phi);
if (!stmt_info)
continue;
if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
vect_loop_kill_debug_uses (loop, stmt_info);
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
continue;
if (STMT_VINFO_VECTYPE (stmt_info)
&& (maybe_ne
(TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info)), vf))
&& dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_first_order_recurrence
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def)
&& ! PURE_SLP_STMT (stmt_info))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
vect_transform_stmt (loop_vinfo, stmt_info, NULL, NULL, NULL);
}
}
for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
gsi_next (&si))
{
gphi *phi = si.phi ();
stmt_info = loop_vinfo->lookup_stmt (phi);
if (!stmt_info)
continue;
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
continue;
if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def
|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_first_order_recurrence)
&& ! PURE_SLP_STMT (stmt_info))
maybe_set_vectorized_backedge_value (loop_vinfo, stmt_info);
}
for (gimple_stmt_iterator si = gsi_start_bb (bb);
!gsi_end_p (si);)
{
stmt = gsi_stmt (si);
/* During vectorization remove existing clobber stmts. */
if (gimple_clobber_p (stmt))
{
unlink_stmt_vdef (stmt);
gsi_remove (&si, true);
release_defs (stmt);
}
else
{
/* Ignore vector stmts created in the outer loop. */
stmt_info = loop_vinfo->lookup_stmt (stmt);
/* vector stmts created in the outer-loop during vectorization of
stmts in an inner-loop may not have a stmt_info, and do not
need to be vectorized. */
stmt_vec_info seen_store = NULL;
if (stmt_info)
{
if (STMT_VINFO_IN_PATTERN_P (stmt_info))
{
gimple *def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
for (gimple_stmt_iterator subsi = gsi_start (def_seq);
!gsi_end_p (subsi); gsi_next (&subsi))
{
stmt_vec_info pat_stmt_info
= loop_vinfo->lookup_stmt (gsi_stmt (subsi));
vect_transform_loop_stmt (loop_vinfo, pat_stmt_info,
&si, &seen_store);
}
stmt_vec_info pat_stmt_info
= STMT_VINFO_RELATED_STMT (stmt_info);
if (vect_transform_loop_stmt (loop_vinfo, pat_stmt_info,
&si, &seen_store))
maybe_set_vectorized_backedge_value (loop_vinfo,
pat_stmt_info);
}
else
{
if (vect_transform_loop_stmt (loop_vinfo, stmt_info, &si,
&seen_store))
maybe_set_vectorized_backedge_value (loop_vinfo,
stmt_info);
}
}
gsi_next (&si);
if (seen_store)
{
if (STMT_VINFO_GROUPED_ACCESS (seen_store))
/* Interleaving. If IS_STORE is TRUE, the
vectorization of the interleaving chain was
completed - free all the stores in the chain. */
vect_remove_stores (loop_vinfo,
DR_GROUP_FIRST_ELEMENT (seen_store));
else
/* Free the attached stmt_vec_info and remove the stmt. */
loop_vinfo->remove_stmt (stmt_info);
}
}
}
/* Stub out scalar statements that must not survive vectorization.
Doing this here helps with grouped statements, or statements that
are involved in patterns. */
for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gcall *call = dyn_cast <gcall *> (gsi_stmt (gsi));
if (!call || !gimple_call_internal_p (call))
continue;
internal_fn ifn = gimple_call_internal_fn (call);
if (ifn == IFN_MASK_LOAD)
{
tree lhs = gimple_get_lhs (call);
if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
{
tree zero = build_zero_cst (TREE_TYPE (lhs));
gimple *new_stmt = gimple_build_assign (lhs, zero);
gsi_replace (&gsi, new_stmt, true);
}
}
else if (conditional_internal_fn_code (ifn) != ERROR_MARK)
{
tree lhs = gimple_get_lhs (call);
if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
{
tree else_arg
= gimple_call_arg (call, gimple_call_num_args (call) - 1);
gimple *new_stmt = gimple_build_assign (lhs, else_arg);
gsi_replace (&gsi, new_stmt, true);
}
}
}
} /* BBs in loop */
/* The vectorization factor is always > 1, so if we use an IV increment of 1.
a zero NITERS becomes a nonzero NITERS_VECTOR. */
if (integer_onep (step_vector))
niters_no_overflow = true;
vect_set_loop_condition (loop, loop_vinfo, niters_vector, step_vector,
niters_vector_mult_vf, !niters_no_overflow);
unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
/* True if the final iteration might not handle a full vector's
worth of scalar iterations. */
bool final_iter_may_be_partial
= LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo);
/* The minimum number of iterations performed by the epilogue. This
is 1 when peeling for gaps because we always need a final scalar
iteration. */
int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
/* +1 to convert latch counts to loop iteration counts,
-min_epilogue_iters to remove iterations that cannot be performed
by the vector code. */
int bias_for_lowest = 1 - min_epilogue_iters;
int bias_for_assumed = bias_for_lowest;
int alignment_npeels = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
if (alignment_npeels && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
{
/* When the amount of peeling is known at compile time, the first
iteration will have exactly alignment_npeels active elements.
In the worst case it will have at least one. */
int min_first_active = (alignment_npeels > 0 ? alignment_npeels : 1);
bias_for_lowest += lowest_vf - min_first_active;
bias_for_assumed += assumed_vf - min_first_active;
}
/* In these calculations the "- 1" converts loop iteration counts
back to latch counts. */
if (loop->any_upper_bound)
{
loop_vec_info main_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
loop->nb_iterations_upper_bound
= (final_iter_may_be_partial
? wi::udiv_ceil (loop->nb_iterations_upper_bound + bias_for_lowest,
lowest_vf) - 1
: wi::udiv_floor (loop->nb_iterations_upper_bound + bias_for_lowest,
lowest_vf) - 1);
if (main_vinfo
/* Both peeling for alignment and peeling for gaps can end up
with the scalar epilogue running for more than VF-1 iterations. */
&& !main_vinfo->peeling_for_alignment
&& !main_vinfo->peeling_for_gaps)
{
unsigned int bound;
poly_uint64 main_iters
= upper_bound (LOOP_VINFO_VECT_FACTOR (main_vinfo),
LOOP_VINFO_COST_MODEL_THRESHOLD (main_vinfo));
main_iters
= upper_bound (main_iters,
LOOP_VINFO_VERSIONING_THRESHOLD (main_vinfo));
if (can_div_away_from_zero_p (main_iters,
LOOP_VINFO_VECT_FACTOR (loop_vinfo),
&bound))
loop->nb_iterations_upper_bound
= wi::umin ((widest_int) (bound - 1),
loop->nb_iterations_upper_bound);
}
}
if (loop->any_likely_upper_bound)
loop->nb_iterations_likely_upper_bound
= (final_iter_may_be_partial
? wi::udiv_ceil (loop->nb_iterations_likely_upper_bound
+ bias_for_lowest, lowest_vf) - 1
: wi::udiv_floor (loop->nb_iterations_likely_upper_bound
+ bias_for_lowest, lowest_vf) - 1);
if (loop->any_estimate)
loop->nb_iterations_estimate
= (final_iter_may_be_partial
? wi::udiv_ceil (loop->nb_iterations_estimate + bias_for_assumed,
assumed_vf) - 1
: wi::udiv_floor (loop->nb_iterations_estimate + bias_for_assumed,
assumed_vf) - 1);
scale_profile_for_vect_loop (loop, assumed_vf, flat);
if (dump_enabled_p ())
{
if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
{
dump_printf_loc (MSG_NOTE, vect_location,
"LOOP VECTORIZED\n");
if (loop->inner)
dump_printf_loc (MSG_NOTE, vect_location,
"OUTER LOOP VECTORIZED\n");
dump_printf (MSG_NOTE, "\n");
}
else
dump_printf_loc (MSG_NOTE, vect_location,
"LOOP EPILOGUE VECTORIZED (MODE=%s)\n",
GET_MODE_NAME (loop_vinfo->vector_mode));
}
/* Loops vectorized with a variable factor won't benefit from
unrolling/peeling. */
if (!vf.is_constant ())
{
loop->unroll = 1;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "Disabling unrolling due to"
" variable-length vectorization factor\n");
}
/* Free SLP instances here because otherwise stmt reference counting
won't work. */
slp_instance instance;
FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
vect_free_slp_instance (instance);
LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
/* Clear-up safelen field since its value is invalid after vectorization
since vectorized loop can have loop-carried dependencies. */
loop->safelen = 0;
if (epilogue)
{
update_epilogue_loop_vinfo (epilogue, advance);
epilogue->simduid = loop->simduid;
epilogue->force_vectorize = loop->force_vectorize;
epilogue->dont_vectorize = false;
}
return epilogue;
}
/* The code below is trying to perform simple optimization - revert
if-conversion for masked stores, i.e. if the mask of a store is zero
do not perform it and all stored value producers also if possible.
For example,
for (i=0; i<n; i++)
if (c[i])
{
p1[i] += 1;
p2[i] = p3[i] +2;
}
this transformation will produce the following semi-hammock:
if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
{
vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
vect__12.22_172 = vect__11.19_170 + vect_cst__171;
MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
vect__19.28_184 = vect__18.25_182 + vect_cst__183;
MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
}
*/
void
optimize_mask_stores (class loop *loop)
{
basic_block *bbs = get_loop_body (loop);
unsigned nbbs = loop->num_nodes;
unsigned i;
basic_block bb;
class loop *bb_loop;
gimple_stmt_iterator gsi;
gimple *stmt;
auto_vec<gimple *> worklist;
auto_purge_vect_location sentinel;
vect_location = find_loop_location (loop);
/* Pick up all masked stores in loop if any. */
for (i = 0; i < nbbs; i++)
{
bb = bbs[i];
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
gsi_next (&gsi))
{
stmt = gsi_stmt (gsi);
if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
worklist.safe_push (stmt);
}
}
free (bbs);
if (worklist.is_empty ())
return;
/* Loop has masked stores. */
while (!worklist.is_empty ())
{
gimple *last, *last_store;
edge e, efalse;
tree mask;
basic_block store_bb, join_bb;
gimple_stmt_iterator gsi_to;
tree vdef, new_vdef;
gphi *phi;
tree vectype;
tree zero;
last = worklist.pop ();
mask = gimple_call_arg (last, 2);
bb = gimple_bb (last);
/* Create then_bb and if-then structure in CFG, then_bb belongs to
the same loop as if_bb. It could be different to LOOP when two
level loop-nest is vectorized and mask_store belongs to the inner
one. */
e = split_block (bb, last);
bb_loop = bb->loop_father;
gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
join_bb = e->dest;
store_bb = create_empty_bb (bb);
add_bb_to_loop (store_bb, bb_loop);
e->flags = EDGE_TRUE_VALUE;
efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
/* Put STORE_BB to likely part. */
efalse->probability = profile_probability::likely ();
e->probability = efalse->probability.invert ();
store_bb->count = efalse->count ();
make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
if (dom_info_available_p (CDI_DOMINATORS))
set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Create new block %d to sink mask stores.",
store_bb->index);
/* Create vector comparison with boolean result. */
vectype = TREE_TYPE (mask);
zero = build_zero_cst (vectype);
stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
gsi = gsi_last_bb (bb);
gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
/* Create new PHI node for vdef of the last masked store:
.MEM_2 = VDEF <.MEM_1>
will be converted to
.MEM.3 = VDEF <.MEM_1>
and new PHI node will be created in join bb
.MEM_2 = PHI <.MEM_1, .MEM_3>
*/
vdef = gimple_vdef (last);
new_vdef = make_ssa_name (gimple_vop (cfun), last);
gimple_set_vdef (last, new_vdef);
phi = create_phi_node (vdef, join_bb);
add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
/* Put all masked stores with the same mask to STORE_BB if possible. */
while (true)
{
gimple_stmt_iterator gsi_from;
gimple *stmt1 = NULL;
/* Move masked store to STORE_BB. */
last_store = last;
gsi = gsi_for_stmt (last);
gsi_from = gsi;
/* Shift GSI to the previous stmt for further traversal. */
gsi_prev (&gsi);
gsi_to = gsi_start_bb (store_bb);
gsi_move_before (&gsi_from, &gsi_to);
/* Setup GSI_TO to the non-empty block start. */
gsi_to = gsi_start_bb (store_bb);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Move stmt to created bb\n%G", last);
/* Move all stored value producers if possible. */
while (!gsi_end_p (gsi))
{
tree lhs;
imm_use_iterator imm_iter;
use_operand_p use_p;
bool res;
/* Skip debug statements. */
if (is_gimple_debug (gsi_stmt (gsi)))
{
gsi_prev (&gsi);
continue;
}
stmt1 = gsi_stmt (gsi);
/* Do not consider statements writing to memory or having
volatile operand. */
if (gimple_vdef (stmt1)
|| gimple_has_volatile_ops (stmt1))
break;
gsi_from = gsi;
gsi_prev (&gsi);
lhs = gimple_get_lhs (stmt1);
if (!lhs)
break;
/* LHS of vectorized stmt must be SSA_NAME. */
if (TREE_CODE (lhs) != SSA_NAME)
break;
if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
{
/* Remove dead scalar statement. */
if (has_zero_uses (lhs))
{
gsi_remove (&gsi_from, true);
continue;
}
}
/* Check that LHS does not have uses outside of STORE_BB. */
res = true;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
{
gimple *use_stmt;
use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (gimple_bb (use_stmt) != store_bb)
{
res = false;
break;
}
}
if (!res)
break;
if (gimple_vuse (stmt1)
&& gimple_vuse (stmt1) != gimple_vuse (last_store))
break;
/* Can move STMT1 to STORE_BB. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Move stmt to created bb\n%G", stmt1);
gsi_move_before (&gsi_from, &gsi_to);
/* Shift GSI_TO for further insertion. */
gsi_prev (&gsi_to);
}
/* Put other masked stores with the same mask to STORE_BB. */
if (worklist.is_empty ()
|| gimple_call_arg (worklist.last (), 2) != mask
|| worklist.last () != stmt1)
break;
last = worklist.pop ();
}
add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);
}
}
/* Decide whether it is possible to use a zero-based induction variable
when vectorizing LOOP_VINFO with partial vectors. If it is, return
the value that the induction variable must be able to hold in order
to ensure that the rgroups eventually have no active vector elements.
Return -1 otherwise. */
widest_int
vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo)
{
tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
unsigned HOST_WIDE_INT max_vf = vect_max_vf (loop_vinfo);
/* Calculate the value that the induction variable must be able
to hit in order to ensure that we end the loop with an all-false mask.
This involves adding the maximum number of inactive trailing scalar
iterations. */
widest_int iv_limit = -1;
if (max_loop_iterations (loop, &iv_limit))
{
if (niters_skip)
{
/* Add the maximum number of skipped iterations to the
maximum iteration count. */
if (TREE_CODE (niters_skip) == INTEGER_CST)
iv_limit += wi::to_widest (niters_skip);
else
iv_limit += max_vf - 1;
}
else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
/* Make a conservatively-correct assumption. */
iv_limit += max_vf - 1;
/* IV_LIMIT is the maximum number of latch iterations, which is also
the maximum in-range IV value. Round this value down to the previous
vector alignment boundary and then add an extra full iteration. */
poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
iv_limit = (iv_limit & -(int) known_alignment (vf)) + max_vf;
}
return iv_limit;
}
/* For the given rgroup_controls RGC, check whether an induction variable
would ever hit a value that produces a set of all-false masks or zero
lengths before wrapping around. Return true if it's possible to wrap
around before hitting the desirable value, otherwise return false. */
bool
vect_rgroup_iv_might_wrap_p (loop_vec_info loop_vinfo, rgroup_controls *rgc)
{
widest_int iv_limit = vect_iv_limit_for_partial_vectors (loop_vinfo);
if (iv_limit == -1)
return true;
tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
unsigned int compare_precision = TYPE_PRECISION (compare_type);
unsigned nitems = rgc->max_nscalars_per_iter * rgc->factor;
if (wi::min_precision (iv_limit * nitems, UNSIGNED) > compare_precision)
return true;
return false;
}
|