aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-vect-loop.c
blob: d3facf67bf951ce6c3bacd8c0d5baeacb4d36503 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
/* Loop Vectorization
   Copyright (C) 2003-2019 Free Software Foundation, Inc.
   Contributed by Dorit Naishlos <dorit@il.ibm.com> and
   Ira Rosen <irar@il.ibm.com>

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "cfganal.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "tree-ssa-loop-ivopts.h"
#include "tree-ssa-loop-manip.h"
#include "tree-ssa-loop-niter.h"
#include "tree-ssa-loop.h"
#include "cfgloop.h"
#include "params.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "gimple-fold.h"
#include "cgraph.h"
#include "tree-cfg.h"
#include "tree-if-conv.h"
#include "internal-fn.h"
#include "tree-vector-builder.h"
#include "vec-perm-indices.h"
#include "tree-eh.h"

/* Loop Vectorization Pass.

   This pass tries to vectorize loops.

   For example, the vectorizer transforms the following simple loop:

        short a[N]; short b[N]; short c[N]; int i;

        for (i=0; i<N; i++){
          a[i] = b[i] + c[i];
        }

   as if it was manually vectorized by rewriting the source code into:

        typedef int __attribute__((mode(V8HI))) v8hi;
        short a[N];  short b[N]; short c[N];   int i;
        v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
        v8hi va, vb, vc;

        for (i=0; i<N/8; i++){
          vb = pb[i];
          vc = pc[i];
          va = vb + vc;
          pa[i] = va;
        }

        The main entry to this pass is vectorize_loops(), in which
   the vectorizer applies a set of analyses on a given set of loops,
   followed by the actual vectorization transformation for the loops that
   had successfully passed the analysis phase.
        Throughout this pass we make a distinction between two types of
   data: scalars (which are represented by SSA_NAMES), and memory references
   ("data-refs").  These two types of data require different handling both
   during analysis and transformation. The types of data-refs that the
   vectorizer currently supports are ARRAY_REFS which base is an array DECL
   (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
   accesses are required to have a simple (consecutive) access pattern.

   Analysis phase:
   ===============
        The driver for the analysis phase is vect_analyze_loop().
   It applies a set of analyses, some of which rely on the scalar evolution
   analyzer (scev) developed by Sebastian Pop.

        During the analysis phase the vectorizer records some information
   per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
   loop, as well as general information about the loop as a whole, which is
   recorded in a "loop_vec_info" struct attached to each loop.

   Transformation phase:
   =====================
        The loop transformation phase scans all the stmts in the loop, and
   creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
   the loop that needs to be vectorized.  It inserts the vector code sequence
   just before the scalar stmt S, and records a pointer to the vector code
   in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
   attached to S).  This pointer will be used for the vectorization of following
   stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
   otherwise, we rely on dead code elimination for removing it.

        For example, say stmt S1 was vectorized into stmt VS1:

   VS1: vb = px[i];
   S1:  b = x[i];    STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
   S2:  a = b;

   To vectorize stmt S2, the vectorizer first finds the stmt that defines
   the operand 'b' (S1), and gets the relevant vector def 'vb' from the
   vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)).  The
   resulting sequence would be:

   VS1: vb = px[i];
   S1:  b = x[i];       STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
   VS2: va = vb;
   S2:  a = b;          STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2

        Operands that are not SSA_NAMEs, are data-refs that appear in
   load/store operations (like 'x[i]' in S1), and are handled differently.

   Target modeling:
   =================
        Currently the only target specific information that is used is the
   size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
   Targets that can support different sizes of vectors, for now will need
   to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".  More
   flexibility will be added in the future.

        Since we only vectorize operations which vector form can be
   expressed using existing tree codes, to verify that an operation is
   supported, the vectorizer checks the relevant optab at the relevant
   machine_mode (e.g, optab_handler (add_optab, V8HImode)).  If
   the value found is CODE_FOR_nothing, then there's no target support, and
   we can't vectorize the stmt.

   For additional information on this project see:
   http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/

static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);

/* Subroutine of vect_determine_vf_for_stmt that handles only one
   statement.  VECTYPE_MAYBE_SET_P is true if STMT_VINFO_VECTYPE
   may already be set for general statements (not just data refs).  */

static opt_result
vect_determine_vf_for_stmt_1 (stmt_vec_info stmt_info,
			      bool vectype_maybe_set_p,
			      poly_uint64 *vf,
			      vec<stmt_vec_info > *mask_producers)
{
  gimple *stmt = stmt_info->stmt;

  if ((!STMT_VINFO_RELEVANT_P (stmt_info)
       && !STMT_VINFO_LIVE_P (stmt_info))
      || gimple_clobber_p (stmt))
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
      return opt_result::success ();
    }

  tree stmt_vectype, nunits_vectype;
  opt_result res = vect_get_vector_types_for_stmt (stmt_info, &stmt_vectype,
						   &nunits_vectype);
  if (!res)
    return res;

  if (stmt_vectype)
    {
      if (STMT_VINFO_VECTYPE (stmt_info))
	/* The only case when a vectype had been already set is for stmts
	   that contain a data ref, or for "pattern-stmts" (stmts generated
	   by the vectorizer to represent/replace a certain idiom).  */
	gcc_assert ((STMT_VINFO_DATA_REF (stmt_info)
		     || vectype_maybe_set_p)
		    && STMT_VINFO_VECTYPE (stmt_info) == stmt_vectype);
      else if (stmt_vectype == boolean_type_node)
	mask_producers->safe_push (stmt_info);
      else
	STMT_VINFO_VECTYPE (stmt_info) = stmt_vectype;
    }

  if (nunits_vectype)
    vect_update_max_nunits (vf, nunits_vectype);

  return opt_result::success ();
}

/* Subroutine of vect_determine_vectorization_factor.  Set the vector
   types of STMT_INFO and all attached pattern statements and update
   the vectorization factor VF accordingly.  If some of the statements
   produce a mask result whose vector type can only be calculated later,
   add them to MASK_PRODUCERS.  Return true on success or false if
   something prevented vectorization.  */

static opt_result
vect_determine_vf_for_stmt (stmt_vec_info stmt_info, poly_uint64 *vf,
			    vec<stmt_vec_info > *mask_producers)
{
  vec_info *vinfo = stmt_info->vinfo;
  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: %G",
		     stmt_info->stmt);
  opt_result res
    = vect_determine_vf_for_stmt_1 (stmt_info, false, vf, mask_producers);
  if (!res)
    return res;

  if (STMT_VINFO_IN_PATTERN_P (stmt_info)
      && STMT_VINFO_RELATED_STMT (stmt_info))
    {
      gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
      stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);

      /* If a pattern statement has def stmts, analyze them too.  */
      for (gimple_stmt_iterator si = gsi_start (pattern_def_seq);
	   !gsi_end_p (si); gsi_next (&si))
	{
	  stmt_vec_info def_stmt_info = vinfo->lookup_stmt (gsi_stmt (si));
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "==> examining pattern def stmt: %G",
			     def_stmt_info->stmt);
	  if (!vect_determine_vf_for_stmt_1 (def_stmt_info, true,
					     vf, mask_producers))
	  res = vect_determine_vf_for_stmt_1 (def_stmt_info, true,
					      vf, mask_producers);
	  if (!res)
	    return res;
	}

      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "==> examining pattern statement: %G",
			 stmt_info->stmt);
      res = vect_determine_vf_for_stmt_1 (stmt_info, true, vf, mask_producers);
      if (!res)
	return res;
    }

  return opt_result::success ();
}

/* Function vect_determine_vectorization_factor

   Determine the vectorization factor (VF).  VF is the number of data elements
   that are operated upon in parallel in a single iteration of the vectorized
   loop.  For example, when vectorizing a loop that operates on 4byte elements,
   on a target with vector size (VS) 16byte, the VF is set to 4, since 4
   elements can fit in a single vector register.

   We currently support vectorization of loops in which all types operated upon
   are of the same size.  Therefore this function currently sets VF according to
   the size of the types operated upon, and fails if there are multiple sizes
   in the loop.

   VF is also the factor by which the loop iterations are strip-mined, e.g.:
   original loop:
        for (i=0; i<N; i++){
          a[i] = b[i] + c[i];
        }

   vectorized loop:
        for (i=0; i<N; i+=VF){
          a[i:VF] = b[i:VF] + c[i:VF];
        }
*/

static opt_result
vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  unsigned nbbs = loop->num_nodes;
  poly_uint64 vectorization_factor = 1;
  tree scalar_type = NULL_TREE;
  gphi *phi;
  tree vectype;
  stmt_vec_info stmt_info;
  unsigned i;
  auto_vec<stmt_vec_info> mask_producers;

  DUMP_VECT_SCOPE ("vect_determine_vectorization_factor");

  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];

      for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
	   gsi_next (&si))
	{
	  phi = si.phi ();
	  stmt_info = loop_vinfo->lookup_stmt (phi);
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: %G",
			     phi);

	  gcc_assert (stmt_info);

	  if (STMT_VINFO_RELEVANT_P (stmt_info)
	      || STMT_VINFO_LIVE_P (stmt_info))
            {
	      gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
              scalar_type = TREE_TYPE (PHI_RESULT (phi));

	      if (dump_enabled_p ())
		dump_printf_loc (MSG_NOTE, vect_location,
				 "get vectype for scalar type:  %T\n",
				 scalar_type);

	      vectype = get_vectype_for_scalar_type (scalar_type);
	      if (!vectype)
		return opt_result::failure_at (phi,
					       "not vectorized: unsupported "
					       "data-type %T\n",
					       scalar_type);
	      STMT_VINFO_VECTYPE (stmt_info) = vectype;

	      if (dump_enabled_p ())
		dump_printf_loc (MSG_NOTE, vect_location, "vectype: %T\n",
				 vectype);

	      if (dump_enabled_p ())
		{
		  dump_printf_loc (MSG_NOTE, vect_location, "nunits = ");
		  dump_dec (MSG_NOTE, TYPE_VECTOR_SUBPARTS (vectype));
		  dump_printf (MSG_NOTE, "\n");
		}

	      vect_update_max_nunits (&vectorization_factor, vectype);
	    }
	}

      for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
	   gsi_next (&si))
	{
	  stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
	  opt_result res
	    = vect_determine_vf_for_stmt (stmt_info, &vectorization_factor,
					  &mask_producers);
	  if (!res)
	    return res;
        }
    }

  /* TODO: Analyze cost. Decide if worth while to vectorize.  */
  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = ");
      dump_dec (MSG_NOTE, vectorization_factor);
      dump_printf (MSG_NOTE, "\n");
    }

  if (known_le (vectorization_factor, 1U))
    return opt_result::failure_at (vect_location,
				   "not vectorized: unsupported data-type\n");
  LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;

  for (i = 0; i < mask_producers.length (); i++)
    {
      stmt_info = mask_producers[i];
      opt_tree mask_type = vect_get_mask_type_for_stmt (stmt_info);
      if (!mask_type)
	return opt_result::propagate_failure (mask_type);
      STMT_VINFO_VECTYPE (stmt_info) = mask_type;
    }

  return opt_result::success ();
}


/* Function vect_is_simple_iv_evolution.

   FORNOW: A simple evolution of an induction variables in the loop is
   considered a polynomial evolution.  */

static bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
                             tree * step)
{
  tree init_expr;
  tree step_expr;
  tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
  basic_block bb;

  /* When there is no evolution in this loop, the evolution function
     is not "simple".  */
  if (evolution_part == NULL_TREE)
    return false;

  /* When the evolution is a polynomial of degree >= 2
     the evolution function is not "simple".  */
  if (tree_is_chrec (evolution_part))
    return false;

  step_expr = evolution_part;
  init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location, "step: %T,  init: %T\n",
		     step_expr, init_expr);

  *init = init_expr;
  *step = step_expr;

  if (TREE_CODE (step_expr) != INTEGER_CST
      && (TREE_CODE (step_expr) != SSA_NAME
	  || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
	      && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
	  || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
	      && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
		  || !flag_associative_math)))
      && (TREE_CODE (step_expr) != REAL_CST
	  || !flag_associative_math))
    {
      if (dump_enabled_p ())
        dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
                         "step unknown.\n");
      return false;
    }

  return true;
}

/* Return true if PHI, described by STMT_INFO, is the inner PHI in
   what we are assuming is a double reduction.  For example, given
   a structure like this:

      outer1:
	x_1 = PHI <x_4(outer2), ...>;
	...

      inner:
	x_2 = PHI <x_1(outer1), ...>;
	...
	x_3 = ...;
	...

      outer2:
	x_4 = PHI <x_3(inner)>;
	...

   outer loop analysis would treat x_1 as a double reduction phi and
   this function would then return true for x_2.  */

static bool
vect_inner_phi_in_double_reduction_p (stmt_vec_info stmt_info, gphi *phi)
{
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  use_operand_p use_p;
  ssa_op_iter op_iter;
  FOR_EACH_PHI_ARG (use_p, phi, op_iter, SSA_OP_USE)
    if (stmt_vec_info def_info = loop_vinfo->lookup_def (USE_FROM_PTR (use_p)))
      if (STMT_VINFO_DEF_TYPE (def_info) == vect_double_reduction_def)
	return true;
  return false;
}

/* Function vect_analyze_scalar_cycles_1.

   Examine the cross iteration def-use cycles of scalar variables
   in LOOP.  LOOP_VINFO represents the loop that is now being
   considered for vectorization (can be LOOP, or an outer-loop
   enclosing LOOP).  */

static void
vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
{
  basic_block bb = loop->header;
  tree init, step;
  auto_vec<stmt_vec_info, 64> worklist;
  gphi_iterator gsi;
  bool double_reduc;

  DUMP_VECT_SCOPE ("vect_analyze_scalar_cycles");

  /* First - identify all inductions.  Reduction detection assumes that all the
     inductions have been identified, therefore, this order must not be
     changed.  */
  for (gsi = gsi_start_phis  (bb); !gsi_end_p (gsi); gsi_next (&gsi))
    {
      gphi *phi = gsi.phi ();
      tree access_fn = NULL;
      tree def = PHI_RESULT (phi);
      stmt_vec_info stmt_vinfo = loop_vinfo->lookup_stmt (phi);

      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G", phi);

      /* Skip virtual phi's.  The data dependences that are associated with
         virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.  */
      if (virtual_operand_p (def))
	continue;

      STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;

      /* Analyze the evolution function.  */
      access_fn = analyze_scalar_evolution (loop, def);
      if (access_fn)
	{
	  STRIP_NOPS (access_fn);
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "Access function of PHI: %T\n", access_fn);
	  STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
	    = initial_condition_in_loop_num (access_fn, loop->num);
	  STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
	    = evolution_part_in_loop_num (access_fn, loop->num);
	}

      if (!access_fn
	  || vect_inner_phi_in_double_reduction_p (stmt_vinfo, phi)
	  || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
	  || (LOOP_VINFO_LOOP (loop_vinfo) != loop
	      && TREE_CODE (step) != INTEGER_CST))
	{
	  worklist.safe_push (stmt_vinfo);
	  continue;
	}

      gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
		  != NULL_TREE);
      gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);

      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
      STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
    }


  /* Second - identify all reductions and nested cycles.  */
  while (worklist.length () > 0)
    {
      stmt_vec_info stmt_vinfo = worklist.pop ();
      gphi *phi = as_a <gphi *> (stmt_vinfo->stmt);
      tree def = PHI_RESULT (phi);

      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G", phi);

      gcc_assert (!virtual_operand_p (def)
		  && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);

      stmt_vec_info reduc_stmt_info
	= vect_force_simple_reduction (loop_vinfo, stmt_vinfo,
				       &double_reduc, false);
      if (reduc_stmt_info)
        {
          if (double_reduc)
            {
              if (dump_enabled_p ())
                dump_printf_loc (MSG_NOTE, vect_location,
				 "Detected double reduction.\n");

              STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
	      STMT_VINFO_DEF_TYPE (reduc_stmt_info)
		= vect_double_reduction_def;
            }
          else
            {
              if (loop != LOOP_VINFO_LOOP (loop_vinfo))
                {
                  if (dump_enabled_p ())
                    dump_printf_loc (MSG_NOTE, vect_location,
				     "Detected vectorizable nested cycle.\n");

                  STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
		  STMT_VINFO_DEF_TYPE (reduc_stmt_info) = vect_nested_cycle;
                }
              else
                {
                  if (dump_enabled_p ())
                    dump_printf_loc (MSG_NOTE, vect_location,
				     "Detected reduction.\n");

                  STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
		  STMT_VINFO_DEF_TYPE (reduc_stmt_info) = vect_reduction_def;
                  /* Store the reduction cycles for possible vectorization in
                     loop-aware SLP if it was not detected as reduction
		     chain.  */
		  if (! REDUC_GROUP_FIRST_ELEMENT (reduc_stmt_info))
		    LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push
		      (reduc_stmt_info);
                }
            }
        }
      else
        if (dump_enabled_p ())
          dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			   "Unknown def-use cycle pattern.\n");
    }
}


/* Function vect_analyze_scalar_cycles.

   Examine the cross iteration def-use cycles of scalar variables, by
   analyzing the loop-header PHIs of scalar variables.  Classify each
   cycle as one of the following: invariant, induction, reduction, unknown.
   We do that for the loop represented by LOOP_VINFO, and also to its
   inner-loop, if exists.
   Examples for scalar cycles:

   Example1: reduction:

              loop1:
              for (i=0; i<N; i++)
                 sum += a[i];

   Example2: induction:

              loop2:
              for (i=0; i<N; i++)
                 a[i] = i;  */

static void
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);

  vect_analyze_scalar_cycles_1 (loop_vinfo, loop);

  /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
     Reductions in such inner-loop therefore have different properties than
     the reductions in the nest that gets vectorized:
     1. When vectorized, they are executed in the same order as in the original
        scalar loop, so we can't change the order of computation when
        vectorizing them.
     2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
        current checks are too strict.  */

  if (loop->inner)
    vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
}

/* Transfer group and reduction information from STMT_INFO to its
   pattern stmt.  */

static void
vect_fixup_reduc_chain (stmt_vec_info stmt_info)
{
  stmt_vec_info firstp = STMT_VINFO_RELATED_STMT (stmt_info);
  stmt_vec_info stmtp;
  gcc_assert (!REDUC_GROUP_FIRST_ELEMENT (firstp)
	      && REDUC_GROUP_FIRST_ELEMENT (stmt_info));
  REDUC_GROUP_SIZE (firstp) = REDUC_GROUP_SIZE (stmt_info);
  do
    {
      stmtp = STMT_VINFO_RELATED_STMT (stmt_info);
      REDUC_GROUP_FIRST_ELEMENT (stmtp) = firstp;
      stmt_info = REDUC_GROUP_NEXT_ELEMENT (stmt_info);
      if (stmt_info)
	REDUC_GROUP_NEXT_ELEMENT (stmtp)
	  = STMT_VINFO_RELATED_STMT (stmt_info);
    }
  while (stmt_info);
  STMT_VINFO_DEF_TYPE (stmtp) = vect_reduction_def;
}

/* Fixup scalar cycles that now have their stmts detected as patterns.  */

static void
vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
{
  stmt_vec_info first;
  unsigned i;

  FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
    if (STMT_VINFO_IN_PATTERN_P (first))
      {
	stmt_vec_info next = REDUC_GROUP_NEXT_ELEMENT (first);
	while (next)
	  {
	    if (! STMT_VINFO_IN_PATTERN_P (next))
	      break;
	    next = REDUC_GROUP_NEXT_ELEMENT (next);
	  }
	/* If not all stmt in the chain are patterns try to handle
	   the chain without patterns.  */
	if (! next)
	  {
	    vect_fixup_reduc_chain (first);
	    LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
	      = STMT_VINFO_RELATED_STMT (first);
	  }
      }
}

/* Function vect_get_loop_niters.

   Determine how many iterations the loop is executed and place it
   in NUMBER_OF_ITERATIONS.  Place the number of latch iterations
   in NUMBER_OF_ITERATIONSM1.  Place the condition under which the
   niter information holds in ASSUMPTIONS.

   Return the loop exit condition.  */


static gcond *
vect_get_loop_niters (struct loop *loop, tree *assumptions,
		      tree *number_of_iterations, tree *number_of_iterationsm1)
{
  edge exit = single_exit (loop);
  struct tree_niter_desc niter_desc;
  tree niter_assumptions, niter, may_be_zero;
  gcond *cond = get_loop_exit_condition (loop);

  *assumptions = boolean_true_node;
  *number_of_iterationsm1 = chrec_dont_know;
  *number_of_iterations = chrec_dont_know;
  DUMP_VECT_SCOPE ("get_loop_niters");

  if (!exit)
    return cond;

  niter = chrec_dont_know;
  may_be_zero = NULL_TREE;
  niter_assumptions = boolean_true_node;
  if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
      || chrec_contains_undetermined (niter_desc.niter))
    return cond;

  niter_assumptions = niter_desc.assumptions;
  may_be_zero = niter_desc.may_be_zero;
  niter = niter_desc.niter;

  if (may_be_zero && integer_zerop (may_be_zero))
    may_be_zero = NULL_TREE;

  if (may_be_zero)
    {
      if (COMPARISON_CLASS_P (may_be_zero))
	{
	  /* Try to combine may_be_zero with assumptions, this can simplify
	     computation of niter expression.  */
	  if (niter_assumptions && !integer_nonzerop (niter_assumptions))
	    niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
					     niter_assumptions,
					     fold_build1 (TRUTH_NOT_EXPR,
							  boolean_type_node,
							  may_be_zero));
	  else
	    niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
				 build_int_cst (TREE_TYPE (niter), 0),
				 rewrite_to_non_trapping_overflow (niter));

	  may_be_zero = NULL_TREE;
	}
      else if (integer_nonzerop (may_be_zero))
	{
	  *number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
	  *number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
	  return cond;
	}
      else
	return cond;
    }

  *assumptions = niter_assumptions;
  *number_of_iterationsm1 = niter;

  /* We want the number of loop header executions which is the number
     of latch executions plus one.
     ???  For UINT_MAX latch executions this number overflows to zero
     for loops like do { n++; } while (n != 0);  */
  if (niter && !chrec_contains_undetermined (niter))
    niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
			  build_int_cst (TREE_TYPE (niter), 1));
  *number_of_iterations = niter;

  return cond;
}

/* Function bb_in_loop_p

   Used as predicate for dfs order traversal of the loop bbs.  */

static bool
bb_in_loop_p (const_basic_block bb, const void *data)
{
  const struct loop *const loop = (const struct loop *)data;
  if (flow_bb_inside_loop_p (loop, bb))
    return true;
  return false;
}


/* Create and initialize a new loop_vec_info struct for LOOP_IN, as well as
   stmt_vec_info structs for all the stmts in LOOP_IN.  */

_loop_vec_info::_loop_vec_info (struct loop *loop_in, vec_info_shared *shared)
  : vec_info (vec_info::loop, init_cost (loop_in), shared),
    loop (loop_in),
    bbs (XCNEWVEC (basic_block, loop->num_nodes)),
    num_itersm1 (NULL_TREE),
    num_iters (NULL_TREE),
    num_iters_unchanged (NULL_TREE),
    num_iters_assumptions (NULL_TREE),
    th (0),
    versioning_threshold (0),
    vectorization_factor (0),
    max_vectorization_factor (0),
    mask_skip_niters (NULL_TREE),
    mask_compare_type (NULL_TREE),
    simd_if_cond (NULL_TREE),
    unaligned_dr (NULL),
    peeling_for_alignment (0),
    ptr_mask (0),
    ivexpr_map (NULL),
    scan_map (NULL),
    slp_unrolling_factor (1),
    single_scalar_iteration_cost (0),
    vectorizable (false),
    can_fully_mask_p (true),
    fully_masked_p (false),
    peeling_for_gaps (false),
    peeling_for_niter (false),
    operands_swapped (false),
    no_data_dependencies (false),
    has_mask_store (false),
    scalar_loop (NULL),
    orig_loop_info (NULL)
{
  /* CHECKME: We want to visit all BBs before their successors (except for
     latch blocks, for which this assertion wouldn't hold).  In the simple
     case of the loop forms we allow, a dfs order of the BBs would the same
     as reversed postorder traversal, so we are safe.  */

  unsigned int nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
					  bbs, loop->num_nodes, loop);
  gcc_assert (nbbs == loop->num_nodes);

  for (unsigned int i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];
      gimple_stmt_iterator si;

      for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
	{
	  gimple *phi = gsi_stmt (si);
	  gimple_set_uid (phi, 0);
	  add_stmt (phi);
	}

      for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
	{
	  gimple *stmt = gsi_stmt (si);
	  gimple_set_uid (stmt, 0);
	  add_stmt (stmt);
	  /* If .GOMP_SIMD_LANE call for the current loop has 3 arguments, the
	     third argument is the #pragma omp simd if (x) condition, when 0,
	     loop shouldn't be vectorized, when non-zero constant, it should
	     be vectorized normally, otherwise versioned with vectorized loop
	     done if the condition is non-zero at runtime.  */
	  if (loop_in->simduid
	      && is_gimple_call (stmt)
	      && gimple_call_internal_p (stmt)
	      && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
	      && gimple_call_num_args (stmt) >= 3
	      && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
	      && (loop_in->simduid
		  == SSA_NAME_VAR (gimple_call_arg (stmt, 0))))
	    {
	      tree arg = gimple_call_arg (stmt, 2);
	      if (integer_zerop (arg) || TREE_CODE (arg) == SSA_NAME)
		simd_if_cond = arg;
	      else
		gcc_assert (integer_nonzerop (arg));
	    }
	}
    }
}

/* Free all levels of MASKS.  */

void
release_vec_loop_masks (vec_loop_masks *masks)
{
  rgroup_masks *rgm;
  unsigned int i;
  FOR_EACH_VEC_ELT (*masks, i, rgm)
    rgm->masks.release ();
  masks->release ();
}

/* Free all memory used by the _loop_vec_info, as well as all the
   stmt_vec_info structs of all the stmts in the loop.  */

_loop_vec_info::~_loop_vec_info ()
{
  int nbbs;
  gimple_stmt_iterator si;
  int j;

  nbbs = loop->num_nodes;
  for (j = 0; j < nbbs; j++)
    {
      basic_block bb = bbs[j];
      for (si = gsi_start_bb (bb); !gsi_end_p (si); )
        {
	  gimple *stmt = gsi_stmt (si);

	  /* We may have broken canonical form by moving a constant
	     into RHS1 of a commutative op.  Fix such occurrences.  */
	  if (operands_swapped && is_gimple_assign (stmt))
	    {
	      enum tree_code code = gimple_assign_rhs_code (stmt);

	      if ((code == PLUS_EXPR
		   || code == POINTER_PLUS_EXPR
		   || code == MULT_EXPR)
		  && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
		swap_ssa_operands (stmt,
				   gimple_assign_rhs1_ptr (stmt),
				   gimple_assign_rhs2_ptr (stmt));
	      else if (code == COND_EXPR
		       && CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt)))
		{
		  tree cond_expr = gimple_assign_rhs1 (stmt);
		  enum tree_code cond_code = TREE_CODE (cond_expr);

		  if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
		    {
		      bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr,
								  0));
		      cond_code = invert_tree_comparison (cond_code,
							  honor_nans);
		      if (cond_code != ERROR_MARK)
			{
			  TREE_SET_CODE (cond_expr, cond_code);
			  swap_ssa_operands (stmt,
					     gimple_assign_rhs2_ptr (stmt),
					     gimple_assign_rhs3_ptr (stmt));
			}
		    }
		}
	    }
          gsi_next (&si);
        }
    }

  free (bbs);

  release_vec_loop_masks (&masks);
  delete ivexpr_map;
  delete scan_map;

  loop->aux = NULL;
}

/* Return an invariant or register for EXPR and emit necessary
   computations in the LOOP_VINFO loop preheader.  */

tree
cse_and_gimplify_to_preheader (loop_vec_info loop_vinfo, tree expr)
{
  if (is_gimple_reg (expr)
      || is_gimple_min_invariant (expr))
    return expr;

  if (! loop_vinfo->ivexpr_map)
    loop_vinfo->ivexpr_map = new hash_map<tree_operand_hash, tree>;
  tree &cached = loop_vinfo->ivexpr_map->get_or_insert (expr);
  if (! cached)
    {
      gimple_seq stmts = NULL;
      cached = force_gimple_operand (unshare_expr (expr),
				     &stmts, true, NULL_TREE);
      if (stmts)
	{
	  edge e = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
	  gsi_insert_seq_on_edge_immediate (e, stmts);
	}
    }
  return cached;
}

/* Return true if we can use CMP_TYPE as the comparison type to produce
   all masks required to mask LOOP_VINFO.  */

static bool
can_produce_all_loop_masks_p (loop_vec_info loop_vinfo, tree cmp_type)
{
  rgroup_masks *rgm;
  unsigned int i;
  FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
    if (rgm->mask_type != NULL_TREE
	&& !direct_internal_fn_supported_p (IFN_WHILE_ULT,
					    cmp_type, rgm->mask_type,
					    OPTIMIZE_FOR_SPEED))
      return false;
  return true;
}

/* Calculate the maximum number of scalars per iteration for every
   rgroup in LOOP_VINFO.  */

static unsigned int
vect_get_max_nscalars_per_iter (loop_vec_info loop_vinfo)
{
  unsigned int res = 1;
  unsigned int i;
  rgroup_masks *rgm;
  FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
    res = MAX (res, rgm->max_nscalars_per_iter);
  return res;
}

/* Each statement in LOOP_VINFO can be masked where necessary.  Check
   whether we can actually generate the masks required.  Return true if so,
   storing the type of the scalar IV in LOOP_VINFO_MASK_COMPARE_TYPE.  */

static bool
vect_verify_full_masking (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  unsigned int min_ni_width;
  unsigned int max_nscalars_per_iter
    = vect_get_max_nscalars_per_iter (loop_vinfo);

  /* Use a normal loop if there are no statements that need masking.
     This only happens in rare degenerate cases: it means that the loop
     has no loads, no stores, and no live-out values.  */
  if (LOOP_VINFO_MASKS (loop_vinfo).is_empty ())
    return false;

  /* Get the maximum number of iterations that is representable
     in the counter type.  */
  tree ni_type = TREE_TYPE (LOOP_VINFO_NITERSM1 (loop_vinfo));
  widest_int max_ni = wi::to_widest (TYPE_MAX_VALUE (ni_type)) + 1;

  /* Get a more refined estimate for the number of iterations.  */
  widest_int max_back_edges;
  if (max_loop_iterations (loop, &max_back_edges))
    max_ni = wi::smin (max_ni, max_back_edges + 1);

  /* Account for rgroup masks, in which each bit is replicated N times.  */
  max_ni *= max_nscalars_per_iter;

  /* Work out how many bits we need to represent the limit.  */
  min_ni_width = wi::min_precision (max_ni, UNSIGNED);

  /* Find a scalar mode for which WHILE_ULT is supported.  */
  opt_scalar_int_mode cmp_mode_iter;
  tree cmp_type = NULL_TREE;
  tree iv_type = NULL_TREE;
  widest_int iv_limit = vect_iv_limit_for_full_masking (loop_vinfo);
  unsigned int iv_precision = UINT_MAX;

  if (iv_limit != -1)
    iv_precision = wi::min_precision (iv_limit * max_nscalars_per_iter,
				      UNSIGNED);

  FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
    {
      unsigned int cmp_bits = GET_MODE_BITSIZE (cmp_mode_iter.require ());
      if (cmp_bits >= min_ni_width
	  && targetm.scalar_mode_supported_p (cmp_mode_iter.require ()))
	{
	  tree this_type = build_nonstandard_integer_type (cmp_bits, true);
	  if (this_type
	      && can_produce_all_loop_masks_p (loop_vinfo, this_type))
	    {
	      /* Although we could stop as soon as we find a valid mode,
		 there are at least two reasons why that's not always the
		 best choice:

		 - An IV that's Pmode or wider is more likely to be reusable
		   in address calculations than an IV that's narrower than
		   Pmode.

		 - Doing the comparison in IV_PRECISION or wider allows
		   a natural 0-based IV, whereas using a narrower comparison
		   type requires mitigations against wrap-around.

		 Conversely, if the IV limit is variable, doing the comparison
		 in a wider type than the original type can introduce
		 unnecessary extensions, so picking the widest valid mode
		 is not always a good choice either.

		 Here we prefer the first IV type that's Pmode or wider,
		 and the first comparison type that's IV_PRECISION or wider.
		 (The comparison type must be no wider than the IV type,
		 to avoid extensions in the vector loop.)

		 ??? We might want to try continuing beyond Pmode for ILP32
		 targets if CMP_BITS < IV_PRECISION.  */
	      iv_type = this_type;
	      if (!cmp_type || iv_precision > TYPE_PRECISION (cmp_type))
		cmp_type = this_type;
	      if (cmp_bits >= GET_MODE_BITSIZE (Pmode))
		break;
	    }
	}
    }

  if (!cmp_type)
    return false;

  LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo) = cmp_type;
  LOOP_VINFO_MASK_IV_TYPE (loop_vinfo) = iv_type;
  return true;
}

/* Calculate the cost of one scalar iteration of the loop.  */
static void
vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes, factor;
  int innerloop_iters, i;

  DUMP_VECT_SCOPE ("vect_compute_single_scalar_iteration_cost");

  /* Gather costs for statements in the scalar loop.  */

  /* FORNOW.  */
  innerloop_iters = 1;
  if (loop->inner)
    innerloop_iters = 50; /* FIXME */

  for (i = 0; i < nbbs; i++)
    {
      gimple_stmt_iterator si;
      basic_block bb = bbs[i];

      if (bb->loop_father == loop->inner)
        factor = innerloop_iters;
      else
        factor = 1;

      for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
        {
	  gimple *stmt = gsi_stmt (si);
	  stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt);

          if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
            continue;

          /* Skip stmts that are not vectorized inside the loop.  */
	  stmt_vec_info vstmt_info = vect_stmt_to_vectorize (stmt_info);
          if (!STMT_VINFO_RELEVANT_P (vstmt_info)
              && (!STMT_VINFO_LIVE_P (vstmt_info)
                  || !VECTORIZABLE_CYCLE_DEF
			(STMT_VINFO_DEF_TYPE (vstmt_info))))
            continue;

	  vect_cost_for_stmt kind;
          if (STMT_VINFO_DATA_REF (stmt_info))
            {
              if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
               kind = scalar_load;
             else
               kind = scalar_store;
            }
          else
            kind = scalar_stmt;

	  record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
			    factor, kind, stmt_info, 0, vect_prologue);
        }
    }

  /* Now accumulate cost.  */
  void *target_cost_data = init_cost (loop);
  stmt_info_for_cost *si;
  int j;
  FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
		    j, si)
    (void) add_stmt_cost (target_cost_data, si->count,
			  si->kind, si->stmt_info, si->misalign,
			  vect_body);
  unsigned dummy, body_cost = 0;
  finish_cost (target_cost_data, &dummy, &body_cost, &dummy);
  destroy_cost_data (target_cost_data);
  LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo) = body_cost;
}


/* Function vect_analyze_loop_form_1.

   Verify that certain CFG restrictions hold, including:
   - the loop has a pre-header
   - the loop has a single entry and exit
   - the loop exit condition is simple enough
   - the number of iterations can be analyzed, i.e, a countable loop.  The
     niter could be analyzed under some assumptions.  */

opt_result
vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
			  tree *assumptions, tree *number_of_iterationsm1,
			  tree *number_of_iterations, gcond **inner_loop_cond)
{
  DUMP_VECT_SCOPE ("vect_analyze_loop_form");

  /* Different restrictions apply when we are considering an inner-most loop,
     vs. an outer (nested) loop.
     (FORNOW. May want to relax some of these restrictions in the future).  */

  if (!loop->inner)
    {
      /* Inner-most loop.  We currently require that the number of BBs is
	 exactly 2 (the header and latch).  Vectorizable inner-most loops
	 look like this:

                        (pre-header)
                           |
                          header <--------+
                           | |            |
                           | +--> latch --+
                           |
                        (exit-bb)  */

      if (loop->num_nodes != 2)
	return opt_result::failure_at (vect_location,
				       "not vectorized:"
				       " control flow in loop.\n");

      if (empty_block_p (loop->header))
	return opt_result::failure_at (vect_location,
				       "not vectorized: empty loop.\n");
    }
  else
    {
      struct loop *innerloop = loop->inner;
      edge entryedge;

      /* Nested loop. We currently require that the loop is doubly-nested,
	 contains a single inner loop, and the number of BBs is exactly 5.
	 Vectorizable outer-loops look like this:

			(pre-header)
			   |
			  header <---+
			   |         |
		          inner-loop |
			   |         |
			  tail ------+
			   |
		        (exit-bb)

	 The inner-loop has the properties expected of inner-most loops
	 as described above.  */

      if ((loop->inner)->inner || (loop->inner)->next)
	return opt_result::failure_at (vect_location,
				       "not vectorized:"
				       " multiple nested loops.\n");

      if (loop->num_nodes != 5)
	return opt_result::failure_at (vect_location,
				       "not vectorized:"
				       " control flow in loop.\n");

      entryedge = loop_preheader_edge (innerloop);
      if (entryedge->src != loop->header
	  || !single_exit (innerloop)
	  || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
	return opt_result::failure_at (vect_location,
				       "not vectorized:"
				       " unsupported outerloop form.\n");

      /* Analyze the inner-loop.  */
      tree inner_niterm1, inner_niter, inner_assumptions;
      opt_result res
	= vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
				    &inner_assumptions, &inner_niterm1,
				    &inner_niter, NULL);
      if (!res)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "not vectorized: Bad inner loop.\n");
	  return res;
	}

      /* Don't support analyzing niter under assumptions for inner
	 loop.  */
      if (!integer_onep (inner_assumptions))
	return opt_result::failure_at (vect_location,
				       "not vectorized: Bad inner loop.\n");

      if (!expr_invariant_in_loop_p (loop, inner_niter))
	return opt_result::failure_at (vect_location,
				       "not vectorized: inner-loop count not"
				       " invariant.\n");

      if (dump_enabled_p ())
        dump_printf_loc (MSG_NOTE, vect_location,
			 "Considering outer-loop vectorization.\n");
    }

  if (!single_exit (loop))
    return opt_result::failure_at (vect_location,
				   "not vectorized: multiple exits.\n");
  if (EDGE_COUNT (loop->header->preds) != 2)
    return opt_result::failure_at (vect_location,
				   "not vectorized:"
				   " too many incoming edges.\n");

  /* We assume that the loop exit condition is at the end of the loop. i.e,
     that the loop is represented as a do-while (with a proper if-guard
     before the loop if needed), where the loop header contains all the
     executable statements, and the latch is empty.  */
  if (!empty_block_p (loop->latch)
      || !gimple_seq_empty_p (phi_nodes (loop->latch)))
    return opt_result::failure_at (vect_location,
				   "not vectorized: latch block not empty.\n");

  /* Make sure the exit is not abnormal.  */
  edge e = single_exit (loop);
  if (e->flags & EDGE_ABNORMAL)
    return opt_result::failure_at (vect_location,
				   "not vectorized:"
				   " abnormal loop exit edge.\n");

  *loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
				     number_of_iterationsm1);
  if (!*loop_cond)
    return opt_result::failure_at
      (vect_location,
       "not vectorized: complicated exit condition.\n");

  if (integer_zerop (*assumptions)
      || !*number_of_iterations
      || chrec_contains_undetermined (*number_of_iterations))
    return opt_result::failure_at
      (*loop_cond,
       "not vectorized: number of iterations cannot be computed.\n");

  if (integer_zerop (*number_of_iterations))
    return opt_result::failure_at
      (*loop_cond,
       "not vectorized: number of iterations = 0.\n");

  return opt_result::success ();
}

/* Analyze LOOP form and return a loop_vec_info if it is of suitable form.  */

opt_loop_vec_info
vect_analyze_loop_form (struct loop *loop, vec_info_shared *shared)
{
  tree assumptions, number_of_iterations, number_of_iterationsm1;
  gcond *loop_cond, *inner_loop_cond = NULL;

  opt_result res
    = vect_analyze_loop_form_1 (loop, &loop_cond,
				&assumptions, &number_of_iterationsm1,
				&number_of_iterations, &inner_loop_cond);
  if (!res)
    return opt_loop_vec_info::propagate_failure (res);

  loop_vec_info loop_vinfo = new _loop_vec_info (loop, shared);
  LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
  LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
  LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
  if (!integer_onep (assumptions))
    {
      /* We consider to vectorize this loop by versioning it under
	 some assumptions.  In order to do this, we need to clear
	 existing information computed by scev and niter analyzer.  */
      scev_reset_htab ();
      free_numbers_of_iterations_estimates (loop);
      /* Also set flag for this loop so that following scev and niter
	 analysis are done under the assumptions.  */
      loop_constraint_set (loop, LOOP_C_FINITE);
      /* Also record the assumptions for versioning.  */
      LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
    }

  if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
    {
      if (dump_enabled_p ())
        {
          dump_printf_loc (MSG_NOTE, vect_location,
			   "Symbolic number of iterations is ");
	  dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
          dump_printf (MSG_NOTE, "\n");
        }
    }

  stmt_vec_info loop_cond_info = loop_vinfo->lookup_stmt (loop_cond);
  STMT_VINFO_TYPE (loop_cond_info) = loop_exit_ctrl_vec_info_type;
  if (inner_loop_cond)
    {
      stmt_vec_info inner_loop_cond_info
	= loop_vinfo->lookup_stmt (inner_loop_cond);
      STMT_VINFO_TYPE (inner_loop_cond_info) = loop_exit_ctrl_vec_info_type;
    }

  gcc_assert (!loop->aux);
  loop->aux = loop_vinfo;
  return opt_loop_vec_info::success (loop_vinfo);
}



/* Scan the loop stmts and dependent on whether there are any (non-)SLP
   statements update the vectorization factor.  */

static void
vect_update_vf_for_slp (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes;
  poly_uint64 vectorization_factor;
  int i;

  DUMP_VECT_SCOPE ("vect_update_vf_for_slp");

  vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  gcc_assert (known_ne (vectorization_factor, 0U));

  /* If all the stmts in the loop can be SLPed, we perform only SLP, and
     vectorization factor of the loop is the unrolling factor required by
     the SLP instances.  If that unrolling factor is 1, we say, that we
     perform pure SLP on loop - cross iteration parallelism is not
     exploited.  */
  bool only_slp_in_loop = true;
  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];
      for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
	   gsi_next (&si))
	{
	  stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
	  stmt_info = vect_stmt_to_vectorize (stmt_info);
	  if ((STMT_VINFO_RELEVANT_P (stmt_info)
	       || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
	      && !PURE_SLP_STMT (stmt_info))
	    /* STMT needs both SLP and loop-based vectorization.  */
	    only_slp_in_loop = false;
	}
    }

  if (only_slp_in_loop)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "Loop contains only SLP stmts\n");
      vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
    }
  else
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "Loop contains SLP and non-SLP stmts\n");
      /* Both the vectorization factor and unroll factor have the form
	 current_vector_size * X for some rational X, so they must have
	 a common multiple.  */
      vectorization_factor
	= force_common_multiple (vectorization_factor,
				 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
    }

  LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, vect_location,
		       "Updating vectorization factor to ");
      dump_dec (MSG_NOTE, vectorization_factor);
      dump_printf (MSG_NOTE, ".\n");
    }
}

/* Return true if STMT_INFO describes a double reduction phi and if
   the other phi in the reduction is also relevant for vectorization.
   This rejects cases such as:

      outer1:
	x_1 = PHI <x_3(outer2), ...>;
	...

      inner:
	x_2 = ...;
	...

      outer2:
	x_3 = PHI <x_2(inner)>;

   if nothing in x_2 or elsewhere makes x_1 relevant.  */

static bool
vect_active_double_reduction_p (stmt_vec_info stmt_info)
{
  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
    return false;

  return STMT_VINFO_RELEVANT_P (STMT_VINFO_REDUC_DEF (stmt_info));
}

/* Function vect_analyze_loop_operations.

   Scan the loop stmts and make sure they are all vectorizable.  */

static opt_result
vect_analyze_loop_operations (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes;
  int i;
  stmt_vec_info stmt_info;
  bool need_to_vectorize = false;
  bool ok;

  DUMP_VECT_SCOPE ("vect_analyze_loop_operations");

  auto_vec<stmt_info_for_cost> cost_vec;

  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];

      for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
	   gsi_next (&si))
        {
          gphi *phi = si.phi ();
          ok = true;

	  stmt_info = loop_vinfo->lookup_stmt (phi);
          if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location, "examining phi: %G", phi);
	  if (virtual_operand_p (gimple_phi_result (phi)))
	    continue;

          /* Inner-loop loop-closed exit phi in outer-loop vectorization
             (i.e., a phi in the tail of the outer-loop).  */
          if (! is_loop_header_bb_p (bb))
            {
              /* FORNOW: we currently don't support the case that these phis
                 are not used in the outerloop (unless it is double reduction,
                 i.e., this phi is vect_reduction_def), cause this case
                 requires to actually do something here.  */
              if (STMT_VINFO_LIVE_P (stmt_info)
		  && !vect_active_double_reduction_p (stmt_info))
		return opt_result::failure_at (phi,
					       "Unsupported loop-closed phi"
					       " in outer-loop.\n");

              /* If PHI is used in the outer loop, we check that its operand
                 is defined in the inner loop.  */
              if (STMT_VINFO_RELEVANT_P (stmt_info))
                {
                  tree phi_op;

                  if (gimple_phi_num_args (phi) != 1)
                    return opt_result::failure_at (phi, "unsupported phi");

                  phi_op = PHI_ARG_DEF (phi, 0);
		  stmt_vec_info op_def_info = loop_vinfo->lookup_def (phi_op);
		  if (!op_def_info)
		    return opt_result::failure_at (phi, "unsupported phi");

		  if (STMT_VINFO_RELEVANT (op_def_info) != vect_used_in_outer
		      && (STMT_VINFO_RELEVANT (op_def_info)
			  != vect_used_in_outer_by_reduction))
		    return opt_result::failure_at (phi, "unsupported phi");
                }

              continue;
            }

          gcc_assert (stmt_info);

          if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
               || STMT_VINFO_LIVE_P (stmt_info))
              && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
	    /* A scalar-dependence cycle that we don't support.  */
	    return opt_result::failure_at (phi,
					   "not vectorized:"
					   " scalar dependence cycle.\n");

          if (STMT_VINFO_RELEVANT_P (stmt_info))
            {
              need_to_vectorize = true;
              if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
		  && ! PURE_SLP_STMT (stmt_info))
		ok = vectorizable_induction (stmt_info, NULL, NULL, NULL,
					     &cost_vec);
	      else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
			|| STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
		       && ! PURE_SLP_STMT (stmt_info))
		ok = vectorizable_reduction (stmt_info, NULL, NULL, NULL, NULL,
					     &cost_vec);
            }

	  /* SLP PHIs are tested by vect_slp_analyze_node_operations.  */
	  if (ok
	      && STMT_VINFO_LIVE_P (stmt_info)
	      && !PURE_SLP_STMT (stmt_info))
	    ok = vectorizable_live_operation (stmt_info, NULL, NULL, -1, NULL,
					      &cost_vec);

          if (!ok)
	    return opt_result::failure_at (phi,
					   "not vectorized: relevant phi not "
					   "supported: %G",
					   static_cast <gimple *> (phi));
        }

      for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
	   gsi_next (&si))
        {
	  gimple *stmt = gsi_stmt (si);
	  if (!gimple_clobber_p (stmt))
	    {
	      opt_result res
		= vect_analyze_stmt (loop_vinfo->lookup_stmt (stmt),
				     &need_to_vectorize,
				     NULL, NULL, &cost_vec);
	      if (!res)
		return res;
	    }
        }
    } /* bbs */

  add_stmt_costs (loop_vinfo->target_cost_data, &cost_vec);

  /* All operations in the loop are either irrelevant (deal with loop
     control, or dead), or only used outside the loop and can be moved
     out of the loop (e.g. invariants, inductions).  The loop can be
     optimized away by scalar optimizations.  We're better off not
     touching this loop.  */
  if (!need_to_vectorize)
    {
      if (dump_enabled_p ())
        dump_printf_loc (MSG_NOTE, vect_location,
			 "All the computation can be taken out of the loop.\n");
      return opt_result::failure_at
	(vect_location,
	 "not vectorized: redundant loop. no profit to vectorize.\n");
    }

  return opt_result::success ();
}

/* Analyze the cost of the loop described by LOOP_VINFO.  Decide if it
   is worthwhile to vectorize.  Return 1 if definitely yes, 0 if
   definitely no, or -1 if it's worth retrying.  */

static int
vect_analyze_loop_costing (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);

  /* Only fully-masked loops can have iteration counts less than the
     vectorization factor.  */
  if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
    {
      HOST_WIDE_INT max_niter;

      if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
	max_niter = LOOP_VINFO_INT_NITERS (loop_vinfo);
      else
	max_niter = max_stmt_executions_int (loop);

      if (max_niter != -1
	  && (unsigned HOST_WIDE_INT) max_niter < assumed_vf)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "not vectorized: iteration count smaller than "
			     "vectorization factor.\n");
	  return 0;
	}
    }

  int min_profitable_iters, min_profitable_estimate;
  vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
				      &min_profitable_estimate);

  if (min_profitable_iters < 0)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "not vectorized: vectorization not profitable.\n");
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "not vectorized: vector version will never be "
			 "profitable.\n");
      return -1;
    }

  int min_scalar_loop_bound = (PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
			       * assumed_vf);

  /* Use the cost model only if it is more conservative than user specified
     threshold.  */
  unsigned int th = (unsigned) MAX (min_scalar_loop_bound,
				    min_profitable_iters);

  LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;

  if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
      && LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "not vectorized: vectorization not profitable.\n");
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "not vectorized: iteration count smaller than user "
			 "specified loop bound parameter or minimum profitable "
			 "iterations (whichever is more conservative).\n");
      return 0;
    }

  HOST_WIDE_INT estimated_niter = estimated_stmt_executions_int (loop);
  if (estimated_niter == -1)
    estimated_niter = likely_max_stmt_executions_int (loop);
  if (estimated_niter != -1
      && ((unsigned HOST_WIDE_INT) estimated_niter
	  < MAX (th, (unsigned) min_profitable_estimate)))
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "not vectorized: estimated iteration count too "
			 "small.\n");
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "not vectorized: estimated iteration count smaller "
			 "than specified loop bound parameter or minimum "
			 "profitable iterations (whichever is more "
			 "conservative).\n");
      return -1;
    }

  return 1;
}

static opt_result
vect_get_datarefs_in_loop (loop_p loop, basic_block *bbs,
			   vec<data_reference_p> *datarefs,
			   unsigned int *n_stmts)
{
  *n_stmts = 0;
  for (unsigned i = 0; i < loop->num_nodes; i++)
    for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
	 !gsi_end_p (gsi); gsi_next (&gsi))
      {
	gimple *stmt = gsi_stmt (gsi);
	if (is_gimple_debug (stmt))
	  continue;
	++(*n_stmts);
	opt_result res = vect_find_stmt_data_reference (loop, stmt, datarefs);
	if (!res)
	  {
	    if (is_gimple_call (stmt) && loop->safelen)
	      {
		tree fndecl = gimple_call_fndecl (stmt), op;
		if (fndecl != NULL_TREE)
		  {
		    cgraph_node *node = cgraph_node::get (fndecl);
		    if (node != NULL && node->simd_clones != NULL)
		      {
			unsigned int j, n = gimple_call_num_args (stmt);
			for (j = 0; j < n; j++)
			  {
			    op = gimple_call_arg (stmt, j);
			    if (DECL_P (op)
				|| (REFERENCE_CLASS_P (op)
				    && get_base_address (op)))
			      break;
			  }
			op = gimple_call_lhs (stmt);
			/* Ignore #pragma omp declare simd functions
			   if they don't have data references in the
			   call stmt itself.  */
			if (j == n
			    && !(op
				 && (DECL_P (op)
				     || (REFERENCE_CLASS_P (op)
					 && get_base_address (op)))))
			  continue;
		      }
		  }
	      }
	    return res;
	  }
	/* If dependence analysis will give up due to the limit on the
	   number of datarefs stop here and fail fatally.  */
	if (datarefs->length ()
	    > (unsigned)PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
	  return opt_result::failure_at (stmt, "exceeded param "
					 "loop-max-datarefs-for-datadeps\n");
      }
  return opt_result::success ();
}

/* Look for SLP-only access groups and turn each individual access into its own
   group.  */
static void
vect_dissolve_slp_only_groups (loop_vec_info loop_vinfo)
{
  unsigned int i;
  struct data_reference *dr;

  DUMP_VECT_SCOPE ("vect_dissolve_slp_only_groups");

  vec<data_reference_p> datarefs = loop_vinfo->shared->datarefs;
  FOR_EACH_VEC_ELT (datarefs, i, dr)
    {
      gcc_assert (DR_REF (dr));
      stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (DR_STMT (dr));

      /* Check if the load is a part of an interleaving chain.  */
      if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
	{
	  stmt_vec_info first_element = DR_GROUP_FIRST_ELEMENT (stmt_info);
	  unsigned int group_size = DR_GROUP_SIZE (first_element);

	  /* Check if SLP-only groups.  */
	  if (!STMT_SLP_TYPE (stmt_info)
	      && STMT_VINFO_SLP_VECT_ONLY (first_element))
	    {
	      /* Dissolve the group.  */
	      STMT_VINFO_SLP_VECT_ONLY (first_element) = false;

	      stmt_vec_info vinfo = first_element;
	      while (vinfo)
		{
		  stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (vinfo);
		  DR_GROUP_FIRST_ELEMENT (vinfo) = vinfo;
		  DR_GROUP_NEXT_ELEMENT (vinfo) = NULL;
		  DR_GROUP_SIZE (vinfo) = 1;
		  DR_GROUP_GAP (vinfo) = group_size - 1;
		  vinfo = next;
		}
	    }
	}
    }
}

/* Function vect_analyze_loop_2.

   Apply a set of analyses on LOOP, and create a loop_vec_info struct
   for it.  The different analyses will record information in the
   loop_vec_info struct.  */
static opt_result
vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal, unsigned *n_stmts)
{
  opt_result ok = opt_result::success ();
  int res;
  unsigned int max_vf = MAX_VECTORIZATION_FACTOR;
  poly_uint64 min_vf = 2;

  /* The first group of checks is independent of the vector size.  */
  fatal = true;

  if (LOOP_VINFO_SIMD_IF_COND (loop_vinfo)
      && integer_zerop (LOOP_VINFO_SIMD_IF_COND (loop_vinfo)))
    return opt_result::failure_at (vect_location,
				   "not vectorized: simd if(0)\n");

  /* Find all data references in the loop (which correspond to vdefs/vuses)
     and analyze their evolution in the loop.  */

  loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);

  /* Gather the data references and count stmts in the loop.  */
  if (!LOOP_VINFO_DATAREFS (loop_vinfo).exists ())
    {
      opt_result res
	= vect_get_datarefs_in_loop (loop, LOOP_VINFO_BBS (loop_vinfo),
				     &LOOP_VINFO_DATAREFS (loop_vinfo),
				     n_stmts);
      if (!res)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "not vectorized: loop contains function "
			     "calls or data references that cannot "
			     "be analyzed\n");
	  return res;
	}
      loop_vinfo->shared->save_datarefs ();
    }
  else
    loop_vinfo->shared->check_datarefs ();

  /* Analyze the data references and also adjust the minimal
     vectorization factor according to the loads and stores.  */

  ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
  if (!ok)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "bad data references.\n");
      return ok;
    }

  /* Classify all cross-iteration scalar data-flow cycles.
     Cross-iteration cycles caused by virtual phis are analyzed separately.  */
  vect_analyze_scalar_cycles (loop_vinfo);

  vect_pattern_recog (loop_vinfo);

  vect_fixup_scalar_cycles_with_patterns (loop_vinfo);

  /* Analyze the access patterns of the data-refs in the loop (consecutive,
     complex, etc.). FORNOW: Only handle consecutive access pattern.  */

  ok = vect_analyze_data_ref_accesses (loop_vinfo);
  if (!ok)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "bad data access.\n");
      return ok;
    }

  /* Data-flow analysis to detect stmts that do not need to be vectorized.  */

  ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
  if (!ok)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "unexpected pattern.\n");
      return ok;
    }

  /* While the rest of the analysis below depends on it in some way.  */
  fatal = false;

  /* Analyze data dependences between the data-refs in the loop
     and adjust the maximum vectorization factor according to
     the dependences.
     FORNOW: fail at the first data dependence that we encounter.  */

  ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
  if (!ok)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "bad data dependence.\n");
      return ok;
    }
  if (max_vf != MAX_VECTORIZATION_FACTOR
      && maybe_lt (max_vf, min_vf))
    return opt_result::failure_at (vect_location, "bad data dependence.\n");
  LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo) = max_vf;

  ok = vect_determine_vectorization_factor (loop_vinfo);
  if (!ok)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "can't determine vectorization factor.\n");
      return ok;
    }
  if (max_vf != MAX_VECTORIZATION_FACTOR
      && maybe_lt (max_vf, LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
    return opt_result::failure_at (vect_location, "bad data dependence.\n");

  /* Compute the scalar iteration cost.  */
  vect_compute_single_scalar_iteration_cost (loop_vinfo);

  poly_uint64 saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  unsigned th;

  /* Check the SLP opportunities in the loop, analyze and build SLP trees.  */
  ok = vect_analyze_slp (loop_vinfo, *n_stmts);
  if (!ok)
    return ok;

  /* If there are any SLP instances mark them as pure_slp.  */
  bool slp = vect_make_slp_decision (loop_vinfo);
  if (slp)
    {
      /* Find stmts that need to be both vectorized and SLPed.  */
      vect_detect_hybrid_slp (loop_vinfo);

      /* Update the vectorization factor based on the SLP decision.  */
      vect_update_vf_for_slp (loop_vinfo);
    }

  bool saved_can_fully_mask_p = LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo);

  /* We don't expect to have to roll back to anything other than an empty
     set of rgroups.  */
  gcc_assert (LOOP_VINFO_MASKS (loop_vinfo).is_empty ());

  /* This is the point where we can re-start analysis with SLP forced off.  */
start_over:

  /* Now the vectorization factor is final.  */
  poly_uint64 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  gcc_assert (known_ne (vectorization_factor, 0U));

  if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, vect_location,
		       "vectorization_factor = ");
      dump_dec (MSG_NOTE, vectorization_factor);
      dump_printf (MSG_NOTE, ", niters = %wd\n",
		   LOOP_VINFO_INT_NITERS (loop_vinfo));
    }

  HOST_WIDE_INT max_niter
    = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));

  /* Analyze the alignment of the data-refs in the loop.
     Fail if a data reference is found that cannot be vectorized.  */

  ok = vect_analyze_data_refs_alignment (loop_vinfo);
  if (!ok)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "bad data alignment.\n");
      return ok;
    }

  /* Prune the list of ddrs to be tested at run-time by versioning for alias.
     It is important to call pruning after vect_analyze_data_ref_accesses,
     since we use grouping information gathered by interleaving analysis.  */
  ok = vect_prune_runtime_alias_test_list (loop_vinfo);
  if (!ok)
    return ok;

  /* Do not invoke vect_enhance_data_refs_alignment for epilogue
     vectorization, since we do not want to add extra peeling or
     add versioning for alignment.  */
  if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
    /* This pass will decide on using loop versioning and/or loop peeling in
       order to enhance the alignment of data references in the loop.  */
    ok = vect_enhance_data_refs_alignment (loop_vinfo);
  else
    ok = vect_verify_datarefs_alignment (loop_vinfo);
  if (!ok)
    return ok;

  if (slp)
    {
      /* Analyze operations in the SLP instances.  Note this may
	 remove unsupported SLP instances which makes the above
	 SLP kind detection invalid.  */
      unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
      vect_slp_analyze_operations (loop_vinfo);
      if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
	{
	  ok = opt_result::failure_at (vect_location,
				       "unsupported SLP instances\n");
	  goto again;
	}
    }

  /* Dissolve SLP-only groups.  */
  vect_dissolve_slp_only_groups (loop_vinfo);

  /* Scan all the remaining operations in the loop that are not subject
     to SLP and make sure they are vectorizable.  */
  ok = vect_analyze_loop_operations (loop_vinfo);
  if (!ok)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "bad operation or unsupported loop bound.\n");
      return ok;
    }

  /* Decide whether to use a fully-masked loop for this vectorization
     factor.  */
  LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
    = (LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo)
       && vect_verify_full_masking (loop_vinfo));
  if (dump_enabled_p ())
    {
      if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
	dump_printf_loc (MSG_NOTE, vect_location,
			 "using a fully-masked loop.\n");
      else
	dump_printf_loc (MSG_NOTE, vect_location,
			 "not using a fully-masked loop.\n");
    }

  /* If epilog loop is required because of data accesses with gaps,
     one additional iteration needs to be peeled.  Check if there is
     enough iterations for vectorization.  */
  if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
      && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
      && !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
    {
      poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
      tree scalar_niters = LOOP_VINFO_NITERSM1 (loop_vinfo);

      if (known_lt (wi::to_widest (scalar_niters), vf))
	return opt_result::failure_at (vect_location,
				       "loop has no enough iterations to"
				       " support peeling for gaps.\n");
    }

  /* Check the costings of the loop make vectorizing worthwhile.  */
  res = vect_analyze_loop_costing (loop_vinfo);
  if (res < 0)
    {
      ok = opt_result::failure_at (vect_location,
				   "Loop costings may not be worthwhile.\n");
      goto again;
    }
  if (!res)
    return opt_result::failure_at (vect_location,
				   "Loop costings not worthwhile.\n");

  /* Decide whether we need to create an epilogue loop to handle
     remaining scalar iterations.  */
  th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);

  unsigned HOST_WIDE_INT const_vf;
  if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
    /* The main loop handles all iterations.  */
    LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
  else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
	   && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
    {
      /* Work out the (constant) number of iterations that need to be
	 peeled for reasons other than niters.  */
      unsigned int peel_niter = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
      if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
	peel_niter += 1;
      if (!multiple_p (LOOP_VINFO_INT_NITERS (loop_vinfo) - peel_niter,
		       LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
	LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
    }
  else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
	   /* ??? When peeling for gaps but not alignment, we could
	      try to check whether the (variable) niters is known to be
	      VF * N + 1.  That's something of a niche case though.  */
	   || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
	   || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&const_vf)
	   || ((tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
		< (unsigned) exact_log2 (const_vf))
	       /* In case of versioning, check if the maximum number of
		  iterations is greater than th.  If they are identical,
		  the epilogue is unnecessary.  */
	       && (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
		   || ((unsigned HOST_WIDE_INT) max_niter
		       > (th / const_vf) * const_vf))))
    LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;

  /* If an epilogue loop is required make sure we can create one.  */
  if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
      || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
    {
      if (dump_enabled_p ())
        dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
      if (!vect_can_advance_ivs_p (loop_vinfo)
	  || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
					   single_exit (LOOP_VINFO_LOOP
							 (loop_vinfo))))
        {
	  ok = opt_result::failure_at (vect_location,
				       "not vectorized: can't create required "
				       "epilog loop\n");
          goto again;
        }
    }

  /* During peeling, we need to check if number of loop iterations is
     enough for both peeled prolog loop and vector loop.  This check
     can be merged along with threshold check of loop versioning, so
     increase threshold for this case if necessary.  */
  if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
    {
      poly_uint64 niters_th = 0;

      if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
	{
	  /* Niters for peeled prolog loop.  */
	  if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
	    {
	      dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
	      tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
	      niters_th += TYPE_VECTOR_SUBPARTS (vectype) - 1;
	    }
	  else
	    niters_th += LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
	}

      /* Niters for at least one iteration of vectorized loop.  */
      if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
	niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
      /* One additional iteration because of peeling for gap.  */
      if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
	niters_th += 1;
      LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = niters_th;
    }

  gcc_assert (known_eq (vectorization_factor,
			LOOP_VINFO_VECT_FACTOR (loop_vinfo)));

  /* Ok to vectorize!  */
  return opt_result::success ();

again:
  /* Ensure that "ok" is false (with an opt_problem if dumping is enabled).  */
  gcc_assert (!ok);

  /* Try again with SLP forced off but if we didn't do any SLP there is
     no point in re-trying.  */
  if (!slp)
    return ok;

  /* If there are reduction chains re-trying will fail anyway.  */
  if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
    return ok;

  /* Likewise if the grouped loads or stores in the SLP cannot be handled
     via interleaving or lane instructions.  */
  slp_instance instance;
  slp_tree node;
  unsigned i, j;
  FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
    {
      stmt_vec_info vinfo;
      vinfo = SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0];
      if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
	continue;
      vinfo = DR_GROUP_FIRST_ELEMENT (vinfo);
      unsigned int size = DR_GROUP_SIZE (vinfo);
      tree vectype = STMT_VINFO_VECTYPE (vinfo);
      if (! vect_store_lanes_supported (vectype, size, false)
	 && ! known_eq (TYPE_VECTOR_SUBPARTS (vectype), 1U)
	 && ! vect_grouped_store_supported (vectype, size))
	return opt_result::failure_at (vinfo->stmt,
				       "unsupported grouped store\n");
      FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
	{
	  vinfo = SLP_TREE_SCALAR_STMTS (node)[0];
	  vinfo = DR_GROUP_FIRST_ELEMENT (vinfo);
	  bool single_element_p = !DR_GROUP_NEXT_ELEMENT (vinfo);
	  size = DR_GROUP_SIZE (vinfo);
	  vectype = STMT_VINFO_VECTYPE (vinfo);
	  if (! vect_load_lanes_supported (vectype, size, false)
	      && ! vect_grouped_load_supported (vectype, single_element_p,
						size))
	    return opt_result::failure_at (vinfo->stmt,
					   "unsupported grouped load\n");
	}
    }

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "re-trying with SLP disabled\n");

  /* Roll back state appropriately.  No SLP this time.  */
  slp = false;
  /* Restore vectorization factor as it were without SLP.  */
  LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
  /* Free the SLP instances.  */
  FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
    vect_free_slp_instance (instance, false);
  LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
  /* Reset SLP type to loop_vect on all stmts.  */
  for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
    {
      basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
      for (gimple_stmt_iterator si = gsi_start_phis (bb);
	   !gsi_end_p (si); gsi_next (&si))
	{
	  stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
	  STMT_SLP_TYPE (stmt_info) = loop_vect;
	}
      for (gimple_stmt_iterator si = gsi_start_bb (bb);
	   !gsi_end_p (si); gsi_next (&si))
	{
	  stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
	  STMT_SLP_TYPE (stmt_info) = loop_vect;
	  if (STMT_VINFO_IN_PATTERN_P (stmt_info))
	    {
	      gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
	      stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
	      STMT_SLP_TYPE (stmt_info) = loop_vect;
	      for (gimple_stmt_iterator pi = gsi_start (pattern_def_seq);
		   !gsi_end_p (pi); gsi_next (&pi))
		STMT_SLP_TYPE (loop_vinfo->lookup_stmt (gsi_stmt (pi)))
		  = loop_vect;
	    }
	}
    }
  /* Free optimized alias test DDRS.  */
  LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).truncate (0);
  LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
  LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).release ();
  /* Reset target cost data.  */
  destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
  LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
    = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
  /* Reset accumulated rgroup information.  */
  release_vec_loop_masks (&LOOP_VINFO_MASKS (loop_vinfo));
  /* Reset assorted flags.  */
  LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
  LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
  LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
  LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = 0;
  LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = saved_can_fully_mask_p;

  goto start_over;
}

/* Function vect_analyze_loop.

   Apply a set of analyses on LOOP, and create a loop_vec_info struct
   for it.  The different analyses will record information in the
   loop_vec_info struct.  If ORIG_LOOP_VINFO is not NULL epilogue must
   be vectorized.  */
opt_loop_vec_info
vect_analyze_loop (struct loop *loop, loop_vec_info orig_loop_vinfo,
		   vec_info_shared *shared)
{
  auto_vector_sizes vector_sizes;

  /* Autodetect first vector size we try.  */
  current_vector_size = 0;
  targetm.vectorize.autovectorize_vector_sizes (&vector_sizes,
						loop->simdlen != 0);
  unsigned int next_size = 0;

  DUMP_VECT_SCOPE ("analyze_loop_nest");

  if (loop_outer (loop)
      && loop_vec_info_for_loop (loop_outer (loop))
      && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
    return opt_loop_vec_info::failure_at (vect_location,
					  "outer-loop already vectorized.\n");

  if (!find_loop_nest (loop, &shared->loop_nest))
    return opt_loop_vec_info::failure_at
      (vect_location,
       "not vectorized: loop nest containing two or more consecutive inner"
       " loops cannot be vectorized\n");

  unsigned n_stmts = 0;
  poly_uint64 autodetected_vector_size = 0;
  opt_loop_vec_info first_loop_vinfo = opt_loop_vec_info::success (NULL);
  poly_uint64 first_vector_size = 0;
  while (1)
    {
      /* Check the CFG characteristics of the loop (nesting, entry/exit).  */
      opt_loop_vec_info loop_vinfo
	= vect_analyze_loop_form (loop, shared);
      if (!loop_vinfo)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "bad loop form.\n");
	  gcc_checking_assert (first_loop_vinfo == NULL);
	  return loop_vinfo;
	}

      bool fatal = false;

      if (orig_loop_vinfo)
	LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = orig_loop_vinfo;

      opt_result res = vect_analyze_loop_2 (loop_vinfo, fatal, &n_stmts);
      if (res)
	{
	  LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;

	  if (loop->simdlen
	      && maybe_ne (LOOP_VINFO_VECT_FACTOR (loop_vinfo),
			   (unsigned HOST_WIDE_INT) loop->simdlen))
	    {
	      if (first_loop_vinfo == NULL)
		{
		  first_loop_vinfo = loop_vinfo;
		  first_vector_size = current_vector_size;
		  loop->aux = NULL;
		}
	      else
		delete loop_vinfo;
	    }
	  else
	    {
	      delete first_loop_vinfo;
	      return loop_vinfo;
	    }
	}
      else
	delete loop_vinfo;

      if (next_size == 0)
	autodetected_vector_size = current_vector_size;

      if (next_size < vector_sizes.length ()
	  && known_eq (vector_sizes[next_size], autodetected_vector_size))
	next_size += 1;

      if (fatal)
	{
	  gcc_checking_assert (first_loop_vinfo == NULL);
	  return opt_loop_vec_info::propagate_failure (res);
	}

      if (next_size == vector_sizes.length ()
	  || known_eq (current_vector_size, 0U))
	{
	  if (first_loop_vinfo)
	    {
	      current_vector_size = first_vector_size;
	      loop->aux = (loop_vec_info) first_loop_vinfo;
	      if (dump_enabled_p ())
		{
		  dump_printf_loc (MSG_NOTE, vect_location,
				   "***** Choosing vector size ");
		  dump_dec (MSG_NOTE, current_vector_size);
		  dump_printf (MSG_NOTE, "\n");
		}
	      return first_loop_vinfo;
	    }
	  else
	    return opt_loop_vec_info::propagate_failure (res);
	}

      /* Try the next biggest vector size.  */
      current_vector_size = vector_sizes[next_size++];
      if (dump_enabled_p ())
	{
	  dump_printf_loc (MSG_NOTE, vect_location,
			   "***** Re-trying analysis with "
			   "vector size ");
	  dump_dec (MSG_NOTE, current_vector_size);
	  dump_printf (MSG_NOTE, "\n");
	}
    }
}

/* Return true if there is an in-order reduction function for CODE, storing
   it in *REDUC_FN if so.  */

static bool
fold_left_reduction_fn (tree_code code, internal_fn *reduc_fn)
{
  switch (code)
    {
    case PLUS_EXPR:
      *reduc_fn = IFN_FOLD_LEFT_PLUS;
      return true;

    default:
      return false;
    }
}

/* Function reduction_fn_for_scalar_code

   Input:
   CODE - tree_code of a reduction operations.

   Output:
   REDUC_FN - the corresponding internal function to be used to reduce the
      vector of partial results into a single scalar result, or IFN_LAST
      if the operation is a supported reduction operation, but does not have
      such an internal function.

   Return FALSE if CODE currently cannot be vectorized as reduction.  */

static bool
reduction_fn_for_scalar_code (enum tree_code code, internal_fn *reduc_fn)
{
  switch (code)
    {
      case MAX_EXPR:
        *reduc_fn = IFN_REDUC_MAX;
        return true;

      case MIN_EXPR:
        *reduc_fn = IFN_REDUC_MIN;
        return true;

      case PLUS_EXPR:
        *reduc_fn = IFN_REDUC_PLUS;
        return true;

      case BIT_AND_EXPR:
	*reduc_fn = IFN_REDUC_AND;
	return true;

      case BIT_IOR_EXPR:
	*reduc_fn = IFN_REDUC_IOR;
	return true;

      case BIT_XOR_EXPR:
	*reduc_fn = IFN_REDUC_XOR;
	return true;

      case MULT_EXPR:
      case MINUS_EXPR:
        *reduc_fn = IFN_LAST;
        return true;

      default:
       return false;
    }
}

/* If there is a neutral value X such that SLP reduction NODE would not
   be affected by the introduction of additional X elements, return that X,
   otherwise return null.  CODE is the code of the reduction.  REDUC_CHAIN
   is true if the SLP statements perform a single reduction, false if each
   statement performs an independent reduction.  */

static tree
neutral_op_for_slp_reduction (slp_tree slp_node, tree_code code,
			      bool reduc_chain)
{
  vec<stmt_vec_info> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
  stmt_vec_info stmt_vinfo = stmts[0];
  tree vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);
  tree scalar_type = TREE_TYPE (vector_type);
  struct loop *loop = gimple_bb (stmt_vinfo->stmt)->loop_father;
  gcc_assert (loop);

  switch (code)
    {
    case WIDEN_SUM_EXPR:
    case DOT_PROD_EXPR:
    case SAD_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
      return build_zero_cst (scalar_type);

    case MULT_EXPR:
      return build_one_cst (scalar_type);

    case BIT_AND_EXPR:
      return build_all_ones_cst (scalar_type);

    case MAX_EXPR:
    case MIN_EXPR:
      /* For MIN/MAX the initial values are neutral.  A reduction chain
	 has only a single initial value, so that value is neutral for
	 all statements.  */
      if (reduc_chain)
	return PHI_ARG_DEF_FROM_EDGE (stmt_vinfo->stmt,
				      loop_preheader_edge (loop));
      return NULL_TREE;

    default:
      return NULL_TREE;
    }
}

/* Error reporting helper for vect_is_simple_reduction below.  GIMPLE statement
   STMT is printed with a message MSG. */

static void
report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
{
  dump_printf_loc (msg_type, vect_location, "%s%G", msg, stmt);
}

/* DEF_STMT_INFO occurs in a loop that contains a potential reduction
   operation.  Return true if the results of DEF_STMT_INFO are something
   that can be accumulated by such a reduction.  */

static bool
vect_valid_reduction_input_p (stmt_vec_info def_stmt_info)
{
  return (is_gimple_assign (def_stmt_info->stmt)
	  || is_gimple_call (def_stmt_info->stmt)
	  || STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_induction_def
	  || (gimple_code (def_stmt_info->stmt) == GIMPLE_PHI
	      && STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_internal_def
	      && !is_loop_header_bb_p (gimple_bb (def_stmt_info->stmt))));
}

/* Detect SLP reduction of the form:

   #a1 = phi <a5, a0>
   a2 = operation (a1)
   a3 = operation (a2)
   a4 = operation (a3)
   a5 = operation (a4)

   #a = phi <a5>

   PHI is the reduction phi node (#a1 = phi <a5, a0> above)
   FIRST_STMT is the first reduction stmt in the chain
   (a2 = operation (a1)).

   Return TRUE if a reduction chain was detected.  */

static bool
vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
		       gimple *first_stmt)
{
  struct loop *loop = (gimple_bb (phi))->loop_father;
  struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
  enum tree_code code;
  gimple *loop_use_stmt = NULL;
  stmt_vec_info use_stmt_info;
  tree lhs;
  imm_use_iterator imm_iter;
  use_operand_p use_p;
  int nloop_uses, size = 0, n_out_of_loop_uses;
  bool found = false;

  if (loop != vect_loop)
    return false;

  auto_vec<stmt_vec_info, 8> reduc_chain;
  lhs = PHI_RESULT (phi);
  code = gimple_assign_rhs_code (first_stmt);
  while (1)
    {
      nloop_uses = 0;
      n_out_of_loop_uses = 0;
      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
        {
	  gimple *use_stmt = USE_STMT (use_p);
	  if (is_gimple_debug (use_stmt))
	    continue;

          /* Check if we got back to the reduction phi.  */
	  if (use_stmt == phi)
            {
	      loop_use_stmt = use_stmt;
              found = true;
              break;
            }

          if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
            {
	      loop_use_stmt = use_stmt;
	      nloop_uses++;
            }
           else
             n_out_of_loop_uses++;

           /* There are can be either a single use in the loop or two uses in
              phi nodes.  */
           if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
             return false;
        }

      if (found)
        break;

      /* We reached a statement with no loop uses.  */
      if (nloop_uses == 0)
	return false;

      /* This is a loop exit phi, and we haven't reached the reduction phi.  */
      if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
        return false;

      if (!is_gimple_assign (loop_use_stmt)
	  || code != gimple_assign_rhs_code (loop_use_stmt)
	  || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
        return false;

      /* Insert USE_STMT into reduction chain.  */
      use_stmt_info = loop_info->lookup_stmt (loop_use_stmt);
      reduc_chain.safe_push (use_stmt_info);

      lhs = gimple_assign_lhs (loop_use_stmt);
      size++;
   }

  if (!found || loop_use_stmt != phi || size < 2)
    return false;

  /* Swap the operands, if needed, to make the reduction operand be the second
     operand.  */
  lhs = PHI_RESULT (phi);
  for (unsigned i = 0; i < reduc_chain.length (); ++i)
    {
      gassign *next_stmt = as_a <gassign *> (reduc_chain[i]->stmt);
      if (gimple_assign_rhs2 (next_stmt) == lhs)
	{
	  tree op = gimple_assign_rhs1 (next_stmt);
	  stmt_vec_info def_stmt_info = loop_info->lookup_def (op);

	  /* Check that the other def is either defined in the loop
	     ("vect_internal_def"), or it's an induction (defined by a
	     loop-header phi-node).  */
	  if (def_stmt_info
	      && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt))
	      && vect_valid_reduction_input_p (def_stmt_info))
	    {
	      lhs = gimple_assign_lhs (next_stmt);
 	      continue;
	    }

	  return false;
	}
      else
	{
          tree op = gimple_assign_rhs2 (next_stmt);
	  stmt_vec_info def_stmt_info = loop_info->lookup_def (op);

          /* Check that the other def is either defined in the loop
            ("vect_internal_def"), or it's an induction (defined by a
            loop-header phi-node).  */
	  if (def_stmt_info
	      && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt))
	      && vect_valid_reduction_input_p (def_stmt_info))
  	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: %G",
				 next_stmt);

	      swap_ssa_operands (next_stmt,
	 		         gimple_assign_rhs1_ptr (next_stmt),
                                 gimple_assign_rhs2_ptr (next_stmt));
	      update_stmt (next_stmt);

	      if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
		LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
	    }
	  else
	    return false;
        }

      lhs = gimple_assign_lhs (next_stmt);
    }

  /* Build up the actual chain.  */
  for (unsigned i = 0; i < reduc_chain.length () - 1; ++i)
    {
      REDUC_GROUP_FIRST_ELEMENT (reduc_chain[i]) = reduc_chain[0];
      REDUC_GROUP_NEXT_ELEMENT (reduc_chain[i]) = reduc_chain[i+1];
    }
  REDUC_GROUP_FIRST_ELEMENT (reduc_chain.last ()) = reduc_chain[0];
  REDUC_GROUP_NEXT_ELEMENT (reduc_chain.last ()) = NULL;

  /* Save the chain for further analysis in SLP detection.  */
  LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (reduc_chain[0]);
  REDUC_GROUP_SIZE (reduc_chain[0]) = size;

  return true;
}

/* Return true if we need an in-order reduction for operation CODE
   on type TYPE.  NEED_WRAPPING_INTEGRAL_OVERFLOW is true if integer
   overflow must wrap.  */

static bool
needs_fold_left_reduction_p (tree type, tree_code code,
			     bool need_wrapping_integral_overflow)
{
  /* CHECKME: check for !flag_finite_math_only too?  */
  if (SCALAR_FLOAT_TYPE_P (type))
    switch (code)
      {
      case MIN_EXPR:
      case MAX_EXPR:
	return false;

      default:
	return !flag_associative_math;
      }

  if (INTEGRAL_TYPE_P (type))
    {
      if (!operation_no_trapping_overflow (type, code))
	return true;
      if (need_wrapping_integral_overflow
	  && !TYPE_OVERFLOW_WRAPS (type)
	  && operation_can_overflow (code))
	return true;
      return false;
    }

  if (SAT_FIXED_POINT_TYPE_P (type))
    return true;

  return false;
}

/* Return true if the reduction PHI in LOOP with latch arg LOOP_ARG and
   reduction operation CODE has a handled computation expression.  */

bool
check_reduction_path (dump_user_location_t loc, loop_p loop, gphi *phi,
		      tree loop_arg, enum tree_code code)
{
  auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
  auto_bitmap visited;
  tree lookfor = PHI_RESULT (phi);
  ssa_op_iter curri;
  use_operand_p curr = op_iter_init_phiuse (&curri, phi, SSA_OP_USE);
  while (USE_FROM_PTR (curr) != loop_arg)
    curr = op_iter_next_use (&curri);
  curri.i = curri.numops;
  do
    {
      path.safe_push (std::make_pair (curri, curr));
      tree use = USE_FROM_PTR (curr);
      if (use == lookfor)
	break;
      gimple *def = SSA_NAME_DEF_STMT (use);
      if (gimple_nop_p (def)
	  || ! flow_bb_inside_loop_p (loop, gimple_bb (def)))
	{
pop:
	  do
	    {
	      std::pair<ssa_op_iter, use_operand_p> x = path.pop ();
	      curri = x.first;
	      curr = x.second;
	      do
		curr = op_iter_next_use (&curri);
	      /* Skip already visited or non-SSA operands (from iterating
	         over PHI args).  */
	      while (curr != NULL_USE_OPERAND_P
		     && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
			 || ! bitmap_set_bit (visited,
					      SSA_NAME_VERSION
					        (USE_FROM_PTR (curr)))));
	    }
	  while (curr == NULL_USE_OPERAND_P && ! path.is_empty ());
	  if (curr == NULL_USE_OPERAND_P)
	    break;
	}
      else
	{
	  if (gimple_code (def) == GIMPLE_PHI)
	    curr = op_iter_init_phiuse (&curri, as_a <gphi *>(def), SSA_OP_USE);
	  else
	    curr = op_iter_init_use (&curri, def, SSA_OP_USE);
	  while (curr != NULL_USE_OPERAND_P
		 && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
		     || ! bitmap_set_bit (visited,
					  SSA_NAME_VERSION
					    (USE_FROM_PTR (curr)))))
	    curr = op_iter_next_use (&curri);
	  if (curr == NULL_USE_OPERAND_P)
	    goto pop;
	}
    }
  while (1);
  if (dump_file && (dump_flags & TDF_DETAILS))
    {
      dump_printf_loc (MSG_NOTE, loc, "reduction path: ");
      unsigned i;
      std::pair<ssa_op_iter, use_operand_p> *x;
      FOR_EACH_VEC_ELT (path, i, x)
	dump_printf (MSG_NOTE, "%T ", USE_FROM_PTR (x->second));
      dump_printf (MSG_NOTE, "\n");
    }

  /* Check whether the reduction path detected is valid.  */
  bool fail = path.length () == 0;
  bool neg = false;
  for (unsigned i = 1; i < path.length (); ++i)
    {
      gimple *use_stmt = USE_STMT (path[i].second);
      tree op = USE_FROM_PTR (path[i].second);
      if (! has_single_use (op)
	  || ! is_gimple_assign (use_stmt))
	{
	  fail = true;
	  break;
	}
      if (gimple_assign_rhs_code (use_stmt) != code)
	{
	  if (code == PLUS_EXPR
	      && gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
	    {
	      /* Track whether we negate the reduction value each iteration.  */
	      if (gimple_assign_rhs2 (use_stmt) == op)
		neg = ! neg;
	    }
	  else
	    {
	      fail = true;
	      break;
	    }
	}
    }
  return ! fail && ! neg;
}


/* Function vect_is_simple_reduction

   (1) Detect a cross-iteration def-use cycle that represents a simple
   reduction computation.  We look for the following pattern:

   loop_header:
     a1 = phi < a0, a2 >
     a3 = ...
     a2 = operation (a3, a1)

   or

   a3 = ...
   loop_header:
     a1 = phi < a0, a2 >
     a2 = operation (a3, a1)

   such that:
   1. operation is commutative and associative and it is safe to
      change the order of the computation
   2. no uses for a2 in the loop (a2 is used out of the loop)
   3. no uses of a1 in the loop besides the reduction operation
   4. no uses of a1 outside the loop.

   Conditions 1,4 are tested here.
   Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.

   (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
   nested cycles.

   (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
   reductions:

     a1 = phi < a0, a2 >
     inner loop (def of a3)
     a2 = phi < a3 >

   (4) Detect condition expressions, ie:
     for (int i = 0; i < N; i++)
       if (a[i] < val)
	ret_val = a[i];

*/

static stmt_vec_info
vect_is_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info,
			  bool *double_reduc,
			  bool need_wrapping_integral_overflow,
			  enum vect_reduction_type *v_reduc_type)
{
  gphi *phi = as_a <gphi *> (phi_info->stmt);
  struct loop *loop = (gimple_bb (phi))->loop_father;
  struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
  bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop);
  gimple *phi_use_stmt = NULL;
  enum tree_code orig_code, code;
  tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
  tree type;
  tree name;
  imm_use_iterator imm_iter;
  use_operand_p use_p;
  bool phi_def;

  *double_reduc = false;
  *v_reduc_type = TREE_CODE_REDUCTION;

  tree phi_name = PHI_RESULT (phi);
  /* ???  If there are no uses of the PHI result the inner loop reduction
     won't be detected as possibly double-reduction by vectorizable_reduction
     because that tries to walk the PHI arg from the preheader edge which
     can be constant.  See PR60382.  */
  if (has_zero_uses (phi_name))
    return NULL;
  unsigned nphi_def_loop_uses = 0;
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name)
    {
      gimple *use_stmt = USE_STMT (use_p);
      if (is_gimple_debug (use_stmt))
	continue;

      if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
        {
          if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "intermediate value used outside loop.\n");

          return NULL;
        }

      nphi_def_loop_uses++;
      phi_use_stmt = use_stmt;
    }

  edge latch_e = loop_latch_edge (loop);
  tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
  if (TREE_CODE (loop_arg) != SSA_NAME)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "reduction: not ssa_name: %T\n", loop_arg);
      return NULL;
    }

  stmt_vec_info def_stmt_info = loop_info->lookup_def (loop_arg);
  if (!def_stmt_info
      || !flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt)))
    return NULL;

  if (gassign *def_stmt = dyn_cast <gassign *> (def_stmt_info->stmt))
    {
      name = gimple_assign_lhs (def_stmt);
      phi_def = false;
    }
  else if (gphi *def_stmt = dyn_cast <gphi *> (def_stmt_info->stmt))
    {
      name = PHI_RESULT (def_stmt);
      phi_def = true;
    }
  else
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "reduction: unhandled reduction operation: %G",
			 def_stmt_info->stmt);
      return NULL;
    }

  unsigned nlatch_def_loop_uses = 0;
  auto_vec<gphi *, 3> lcphis;
  bool inner_loop_of_double_reduc = false;
  FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
    {
      gimple *use_stmt = USE_STMT (use_p);
      if (is_gimple_debug (use_stmt))
	continue;
      if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
	nlatch_def_loop_uses++;
      else
	{
	  /* We can have more than one loop-closed PHI.  */
	  lcphis.safe_push (as_a <gphi *> (use_stmt));
	  if (nested_in_vect_loop
	      && (STMT_VINFO_DEF_TYPE (loop_info->lookup_stmt (use_stmt))
		  == vect_double_reduction_def))
	    inner_loop_of_double_reduc = true;
	}
    }

  /* If this isn't a nested cycle or if the nested cycle reduction value
     is used ouside of the inner loop we cannot handle uses of the reduction
     value.  */
  if ((!nested_in_vect_loop || inner_loop_of_double_reduc)
      && (nlatch_def_loop_uses > 1 || nphi_def_loop_uses > 1))
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "reduction used in loop.\n");
      return NULL;
    }

  /* If DEF_STMT is a phi node itself, we expect it to have a single argument
     defined in the inner loop.  */
  if (phi_def)
    {
      gphi *def_stmt = as_a <gphi *> (def_stmt_info->stmt);
      op1 = PHI_ARG_DEF (def_stmt, 0);

      if (gimple_phi_num_args (def_stmt) != 1
          || TREE_CODE (op1) != SSA_NAME)
        {
          if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "unsupported phi node definition.\n");

          return NULL;
        }

      gimple *def1 = SSA_NAME_DEF_STMT (op1);
      if (gimple_bb (def1)
	  && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
          && loop->inner
          && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
          && is_gimple_assign (def1)
	  && is_a <gphi *> (phi_use_stmt)
	  && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
        {
          if (dump_enabled_p ())
            report_vect_op (MSG_NOTE, def_stmt,
			    "detected double reduction: ");

          *double_reduc = true;
	  return def_stmt_info;
        }

      return NULL;
    }

  /* If we are vectorizing an inner reduction we are executing that
     in the original order only in case we are not dealing with a
     double reduction.  */
  bool check_reduction = true;
  if (flow_loop_nested_p (vect_loop, loop))
    {
      gphi *lcphi;
      unsigned i;
      check_reduction = false;
      FOR_EACH_VEC_ELT (lcphis, i, lcphi)
	FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi))
	  {
	    gimple *use_stmt = USE_STMT (use_p);
	    if (is_gimple_debug (use_stmt))
	      continue;
	    if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt)))
	      check_reduction = true;
	  }
    }

  gassign *def_stmt = as_a <gassign *> (def_stmt_info->stmt);
  code = orig_code = gimple_assign_rhs_code (def_stmt);

  if (nested_in_vect_loop && !check_reduction)
    {
      /* FIXME: Even for non-reductions code generation is funneled
	 through vectorizable_reduction for the stmt defining the
	 PHI latch value.  So we have to artificially restrict ourselves
	 for the supported operations.  */
      switch (get_gimple_rhs_class (code))
	{
	case GIMPLE_BINARY_RHS:
	case GIMPLE_TERNARY_RHS:
	  break;
	default:
	  /* Not supported by vectorizable_reduction.  */
	  if (dump_enabled_p ())
	    report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
			    "nested cycle: not handled operation: ");
	  return NULL;
	}
      if (dump_enabled_p ())
	report_vect_op (MSG_NOTE, def_stmt, "detected nested cycle: ");
      return def_stmt_info;
    }

  /* We can handle "res -= x[i]", which is non-associative by
     simply rewriting this into "res += -x[i]".  Avoid changing
     gimple instruction for the first simple tests and only do this
     if we're allowed to change code at all.  */
  if (code == MINUS_EXPR && gimple_assign_rhs2 (def_stmt) != phi_name)
    code = PLUS_EXPR;

  if (code == COND_EXPR)
    {
      if (! nested_in_vect_loop)
	*v_reduc_type = COND_REDUCTION;

      op3 = gimple_assign_rhs1 (def_stmt);
      if (COMPARISON_CLASS_P (op3))
        {
          op4 = TREE_OPERAND (op3, 1);
          op3 = TREE_OPERAND (op3, 0);
        }
      if (op3 == phi_name || op4 == phi_name)
	{
	  if (dump_enabled_p ())
	    report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
			    "reduction: condition depends on previous"
			    " iteration: ");
	  return NULL;
	}

      op1 = gimple_assign_rhs2 (def_stmt);
      op2 = gimple_assign_rhs3 (def_stmt);
    }
  else if (!commutative_tree_code (code) || !associative_tree_code (code))
    {
      if (dump_enabled_p ())
	report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
			"reduction: not commutative/associative: ");
      return NULL;
    }
  else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
    {
      op1 = gimple_assign_rhs1 (def_stmt);
      op2 = gimple_assign_rhs2 (def_stmt);
    }
  else
    {
      if (dump_enabled_p ())
	report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
			"reduction: not handled operation: ");
      return NULL;
    }

  if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
    {
      if (dump_enabled_p ())
	report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
			"reduction: both uses not ssa_names: ");

      return NULL;
    }

  type = TREE_TYPE (gimple_assign_lhs (def_stmt));
  if ((TREE_CODE (op1) == SSA_NAME
       && !types_compatible_p (type,TREE_TYPE (op1)))
      || (TREE_CODE (op2) == SSA_NAME
          && !types_compatible_p (type, TREE_TYPE (op2)))
      || (op3 && TREE_CODE (op3) == SSA_NAME
          && !types_compatible_p (type, TREE_TYPE (op3)))
      || (op4 && TREE_CODE (op4) == SSA_NAME
          && !types_compatible_p (type, TREE_TYPE (op4))))
    {
      if (dump_enabled_p ())
        {
          dump_printf_loc (MSG_NOTE, vect_location,
			   "reduction: multiple types: operation type: "
			   "%T, operands types: %T,%T",
			   type,  TREE_TYPE (op1), TREE_TYPE (op2));
          if (op3)
	    dump_printf (MSG_NOTE, ",%T", TREE_TYPE (op3));

          if (op4)
	    dump_printf (MSG_NOTE, ",%T", TREE_TYPE (op4));
          dump_printf (MSG_NOTE, "\n");
        }

      return NULL;
    }

  /* Check whether it's ok to change the order of the computation.
     Generally, when vectorizing a reduction we change the order of the
     computation.  This may change the behavior of the program in some
     cases, so we need to check that this is ok.  One exception is when
     vectorizing an outer-loop: the inner-loop is executed sequentially,
     and therefore vectorizing reductions in the inner-loop during
     outer-loop vectorization is safe.  */
  if (check_reduction
      && *v_reduc_type == TREE_CODE_REDUCTION
      && needs_fold_left_reduction_p (type, code,
				      need_wrapping_integral_overflow))
    *v_reduc_type = FOLD_LEFT_REDUCTION;

  /* Reduction is safe. We're dealing with one of the following:
     1) integer arithmetic and no trapv
     2) floating point arithmetic, and special flags permit this optimization
     3) nested cycle (i.e., outer loop vectorization).  */
  stmt_vec_info def1_info = loop_info->lookup_def (op1);
  stmt_vec_info def2_info = loop_info->lookup_def (op2);
  if (code != COND_EXPR && !def1_info && !def2_info)
    {
      if (dump_enabled_p ())
	report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
      return NULL;
    }

  /* Check that one def is the reduction def, defined by PHI,
     the other def is either defined in the loop ("vect_internal_def"),
     or it's an induction (defined by a loop-header phi-node).  */

  if (def2_info
      && def2_info->stmt == phi
      && (code == COND_EXPR
	  || !def1_info
	  || !flow_bb_inside_loop_p (loop, gimple_bb (def1_info->stmt))
	  || vect_valid_reduction_input_p (def1_info)))
    {
      if (dump_enabled_p ())
	report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
      return def_stmt_info;
    }

  if (def1_info
      && def1_info->stmt == phi
      && (code == COND_EXPR
	  || !def2_info
	  || !flow_bb_inside_loop_p (loop, gimple_bb (def2_info->stmt))
	  || vect_valid_reduction_input_p (def2_info)))
    {
      if (! nested_in_vect_loop && orig_code != MINUS_EXPR)
	{
	  /* Check if we can swap operands (just for simplicity - so that
	     the rest of the code can assume that the reduction variable
	     is always the last (second) argument).  */
	  if (code == COND_EXPR)
	    {
	      /* Swap cond_expr by inverting the condition.  */
	      tree cond_expr = gimple_assign_rhs1 (def_stmt);
	      enum tree_code invert_code = ERROR_MARK;
	      enum tree_code cond_code = TREE_CODE (cond_expr);

	      if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
		{
		  bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
		  invert_code = invert_tree_comparison (cond_code, honor_nans);
		}
	      if (invert_code != ERROR_MARK)
		{
		  TREE_SET_CODE (cond_expr, invert_code);
		  swap_ssa_operands (def_stmt,
				     gimple_assign_rhs2_ptr (def_stmt),
				     gimple_assign_rhs3_ptr (def_stmt));
		}
	      else
		{
		  if (dump_enabled_p ())
		    report_vect_op (MSG_NOTE, def_stmt,
				    "detected reduction: cannot swap operands "
				    "for cond_expr");
		  return NULL;
		}
	    }
	  else
	    swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
			       gimple_assign_rhs2_ptr (def_stmt));

	  if (dump_enabled_p ())
	    report_vect_op (MSG_NOTE, def_stmt,
			    "detected reduction: need to swap operands: ");

	  if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
	    LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
        }
      else
        {
          if (dump_enabled_p ())
            report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
        }

      return def_stmt_info;
    }

  /* Try to find SLP reduction chain.  */
  if (! nested_in_vect_loop
      && code != COND_EXPR
      && orig_code != MINUS_EXPR
      && vect_is_slp_reduction (loop_info, phi, def_stmt))
    {
      if (dump_enabled_p ())
        report_vect_op (MSG_NOTE, def_stmt,
			"reduction: detected reduction chain: ");

      return def_stmt_info;
    }

  /* Look for the expression computing loop_arg from loop PHI result.  */
  if (check_reduction_path (vect_location, loop, phi, loop_arg, code))
    return def_stmt_info;

  if (dump_enabled_p ())
    {
      report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
		      "reduction: unknown pattern: ");
    }

  return NULL;
}

/* Wrapper around vect_is_simple_reduction, which will modify code
   in-place if it enables detection of more reductions.  Arguments
   as there.  */

stmt_vec_info
vect_force_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info,
			     bool *double_reduc,
			     bool need_wrapping_integral_overflow)
{
  enum vect_reduction_type v_reduc_type;
  stmt_vec_info def_info
    = vect_is_simple_reduction (loop_info, phi_info, double_reduc,
				need_wrapping_integral_overflow,
				&v_reduc_type);
  if (def_info)
    {
      STMT_VINFO_REDUC_TYPE (phi_info) = v_reduc_type;
      STMT_VINFO_REDUC_DEF (phi_info) = def_info;
      STMT_VINFO_REDUC_TYPE (def_info) = v_reduc_type;
      STMT_VINFO_REDUC_DEF (def_info) = phi_info;
    }
  return def_info;
}

/* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times.  */
int
vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
                             int *peel_iters_epilogue,
                             stmt_vector_for_cost *scalar_cost_vec,
			     stmt_vector_for_cost *prologue_cost_vec,
			     stmt_vector_for_cost *epilogue_cost_vec)
{
  int retval = 0;
  int assumed_vf = vect_vf_for_cost (loop_vinfo);

  if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
    {
      *peel_iters_epilogue = assumed_vf / 2;
      if (dump_enabled_p ())
        dump_printf_loc (MSG_NOTE, vect_location,
			 "cost model: epilogue peel iters set to vf/2 "
			 "because loop iterations are unknown .\n");

      /* If peeled iterations are known but number of scalar loop
         iterations are unknown, count a taken branch per peeled loop.  */
      retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
				 NULL, 0, vect_prologue);
      retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
				 NULL, 0, vect_epilogue);
    }
  else
    {
      int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
      peel_iters_prologue = niters < peel_iters_prologue ?
                            niters : peel_iters_prologue;
      *peel_iters_epilogue = (niters - peel_iters_prologue) % assumed_vf;
      /* If we need to peel for gaps, but no peeling is required, we have to
	 peel VF iterations.  */
      if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
	*peel_iters_epilogue = assumed_vf;
    }

  stmt_info_for_cost *si;
  int j;
  if (peel_iters_prologue)
    FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
      retval += record_stmt_cost (prologue_cost_vec,
				  si->count * peel_iters_prologue,
				  si->kind, si->stmt_info, si->misalign,
				  vect_prologue);
  if (*peel_iters_epilogue)
    FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
      retval += record_stmt_cost (epilogue_cost_vec,
				  si->count * *peel_iters_epilogue,
				  si->kind, si->stmt_info, si->misalign,
				  vect_epilogue);

  return retval;
}

/* Function vect_estimate_min_profitable_iters

   Return the number of iterations required for the vector version of the
   loop to be profitable relative to the cost of the scalar version of the
   loop.

   *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
   of iterations for vectorization.  -1 value means loop vectorization
   is not profitable.  This returned value may be used for dynamic
   profitability check.

   *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
   for static check against estimated number of iterations.  */

static void
vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
				    int *ret_min_profitable_niters,
				    int *ret_min_profitable_estimate)
{
  int min_profitable_iters;
  int min_profitable_estimate;
  int peel_iters_prologue;
  int peel_iters_epilogue;
  unsigned vec_inside_cost = 0;
  int vec_outside_cost = 0;
  unsigned vec_prologue_cost = 0;
  unsigned vec_epilogue_cost = 0;
  int scalar_single_iter_cost = 0;
  int scalar_outside_cost = 0;
  int assumed_vf = vect_vf_for_cost (loop_vinfo);
  int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
  void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);

  /* Cost model disabled.  */
  if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
      *ret_min_profitable_niters = 0;
      *ret_min_profitable_estimate = 0;
      return;
    }

  /* Requires loop versioning tests to handle misalignment.  */
  if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
    {
      /*  FIXME: Make cost depend on complexity of individual check.  */
      unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
      (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
			    vect_prologue);
      if (dump_enabled_p ())
	dump_printf (MSG_NOTE,
		     "cost model: Adding cost of checks for loop "
		     "versioning to treat misalignment.\n");
    }

  /* Requires loop versioning with alias checks.  */
  if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
    {
      /*  FIXME: Make cost depend on complexity of individual check.  */
      unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
      (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
			    vect_prologue);
      len = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).length ();
      if (len)
	/* Count LEN - 1 ANDs and LEN comparisons.  */
	(void) add_stmt_cost (target_cost_data, len * 2 - 1, scalar_stmt,
			      NULL, 0, vect_prologue);
      len = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).length ();
      if (len)
	{
	  /* Count LEN - 1 ANDs and LEN comparisons.  */
	  unsigned int nstmts = len * 2 - 1;
	  /* +1 for each bias that needs adding.  */
	  for (unsigned int i = 0; i < len; ++i)
	    if (!LOOP_VINFO_LOWER_BOUNDS (loop_vinfo)[i].unsigned_p)
	      nstmts += 1;
	  (void) add_stmt_cost (target_cost_data, nstmts, scalar_stmt,
				NULL, 0, vect_prologue);
	}
      if (dump_enabled_p ())
	dump_printf (MSG_NOTE,
		     "cost model: Adding cost of checks for loop "
		     "versioning aliasing.\n");
    }

  /* Requires loop versioning with niter checks.  */
  if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
    {
      /*  FIXME: Make cost depend on complexity of individual check.  */
      (void) add_stmt_cost (target_cost_data, 1, vector_stmt, NULL, 0,
			    vect_prologue);
      if (dump_enabled_p ())
	dump_printf (MSG_NOTE,
		     "cost model: Adding cost of checks for loop "
		     "versioning niters.\n");
    }

  if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
    (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
			  vect_prologue);

  /* Count statements in scalar loop.  Using this as scalar cost for a single
     iteration for now.

     TODO: Add outer loop support.

     TODO: Consider assigning different costs to different scalar
     statements.  */

  scalar_single_iter_cost
    = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);

  /* Add additional cost for the peeled instructions in prologue and epilogue
     loop.  (For fully-masked loops there will be no peeling.)

     FORNOW: If we don't know the value of peel_iters for prologue or epilogue
     at compile-time - we assume it's vf/2 (the worst would be vf-1).

     TODO: Build an expression that represents peel_iters for prologue and
     epilogue to be used in a run-time test.  */

  if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
    {
      peel_iters_prologue = 0;
      peel_iters_epilogue = 0;

      if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
	{
	  /* We need to peel exactly one iteration.  */
	  peel_iters_epilogue += 1;
	  stmt_info_for_cost *si;
	  int j;
	  FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
			    j, si)
	    (void) add_stmt_cost (target_cost_data, si->count,
				  si->kind, si->stmt_info, si->misalign,
				  vect_epilogue);
	}
    }
  else if (npeel < 0)
    {
      peel_iters_prologue = assumed_vf / 2;
      if (dump_enabled_p ())
	dump_printf (MSG_NOTE, "cost model: "
		     "prologue peel iters set to vf/2.\n");

      /* If peeling for alignment is unknown, loop bound of main loop becomes
         unknown.  */
      peel_iters_epilogue = assumed_vf / 2;
      if (dump_enabled_p ())
	dump_printf (MSG_NOTE, "cost model: "
		     "epilogue peel iters set to vf/2 because "
		     "peeling for alignment is unknown.\n");

      /* If peeled iterations are unknown, count a taken branch and a not taken
         branch per peeled loop. Even if scalar loop iterations are known,
         vector iterations are not known since peeled prologue iterations are
         not known. Hence guards remain the same.  */
      (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
			    NULL, 0, vect_prologue);
      (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
			    NULL, 0, vect_prologue);
      (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
			    NULL, 0, vect_epilogue);
      (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
			    NULL, 0, vect_epilogue);
      stmt_info_for_cost *si;
      int j;
      FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
	{
	  (void) add_stmt_cost (target_cost_data,
				si->count * peel_iters_prologue,
				si->kind, si->stmt_info, si->misalign,
				vect_prologue);
	  (void) add_stmt_cost (target_cost_data,
				si->count * peel_iters_epilogue,
				si->kind, si->stmt_info, si->misalign,
				vect_epilogue);
	}
    }
  else
    {
      stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
      stmt_info_for_cost *si;
      int j;
      void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);

      prologue_cost_vec.create (2);
      epilogue_cost_vec.create (2);
      peel_iters_prologue = npeel;

      (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
					  &peel_iters_epilogue,
					  &LOOP_VINFO_SCALAR_ITERATION_COST
					    (loop_vinfo),
					  &prologue_cost_vec,
					  &epilogue_cost_vec);

      FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
	(void) add_stmt_cost (data, si->count, si->kind, si->stmt_info,
			      si->misalign, vect_prologue);

      FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
	(void) add_stmt_cost (data, si->count, si->kind, si->stmt_info,
			      si->misalign, vect_epilogue);

      prologue_cost_vec.release ();
      epilogue_cost_vec.release ();
    }

  /* FORNOW: The scalar outside cost is incremented in one of the
     following ways:

     1. The vectorizer checks for alignment and aliasing and generates
     a condition that allows dynamic vectorization.  A cost model
     check is ANDED with the versioning condition.  Hence scalar code
     path now has the added cost of the versioning check.

       if (cost > th & versioning_check)
         jmp to vector code

     Hence run-time scalar is incremented by not-taken branch cost.

     2. The vectorizer then checks if a prologue is required.  If the
     cost model check was not done before during versioning, it has to
     be done before the prologue check.

       if (cost <= th)
         prologue = scalar_iters
       if (prologue == 0)
         jmp to vector code
       else
         execute prologue
       if (prologue == num_iters)
	 go to exit

     Hence the run-time scalar cost is incremented by a taken branch,
     plus a not-taken branch, plus a taken branch cost.

     3. The vectorizer then checks if an epilogue is required.  If the
     cost model check was not done before during prologue check, it
     has to be done with the epilogue check.

       if (prologue == 0)
         jmp to vector code
       else
         execute prologue
       if (prologue == num_iters)
	 go to exit
       vector code:
         if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
           jmp to epilogue

     Hence the run-time scalar cost should be incremented by 2 taken
     branches.

     TODO: The back end may reorder the BBS's differently and reverse
     conditions/branch directions.  Change the estimates below to
     something more reasonable.  */

  /* If the number of iterations is known and we do not do versioning, we can
     decide whether to vectorize at compile time.  Hence the scalar version
     do not carry cost model guard costs.  */
  if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
      || LOOP_REQUIRES_VERSIONING (loop_vinfo))
    {
      /* Cost model check occurs at versioning.  */
      if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
	scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
      else
	{
	  /* Cost model check occurs at prologue generation.  */
	  if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
	    scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
	      + vect_get_stmt_cost (cond_branch_not_taken); 
	  /* Cost model check occurs at epilogue generation.  */
	  else
	    scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken); 
	}
    }

  /* Complete the target-specific cost calculations.  */
  finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
	       &vec_inside_cost, &vec_epilogue_cost);

  vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
  
  if (dump_enabled_p ())
    {
      dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
      dump_printf (MSG_NOTE, "  Vector inside of loop cost: %d\n",
                   vec_inside_cost);
      dump_printf (MSG_NOTE, "  Vector prologue cost: %d\n",
                   vec_prologue_cost);
      dump_printf (MSG_NOTE, "  Vector epilogue cost: %d\n",
                   vec_epilogue_cost);
      dump_printf (MSG_NOTE, "  Scalar iteration cost: %d\n",
                   scalar_single_iter_cost);
      dump_printf (MSG_NOTE, "  Scalar outside cost: %d\n",
                   scalar_outside_cost);
      dump_printf (MSG_NOTE, "  Vector outside cost: %d\n",
                   vec_outside_cost);
      dump_printf (MSG_NOTE, "  prologue iterations: %d\n",
                   peel_iters_prologue);
      dump_printf (MSG_NOTE, "  epilogue iterations: %d\n",
                   peel_iters_epilogue);
    }

  /* Calculate number of iterations required to make the vector version
     profitable, relative to the loop bodies only.  The following condition
     must hold true:
     SIC * niters + SOC > VIC * ((niters - NPEEL) / VF) + VOC
     where
     SIC = scalar iteration cost, VIC = vector iteration cost,
     VOC = vector outside cost, VF = vectorization factor,
     NPEEL = prologue iterations + epilogue iterations,
     SOC = scalar outside cost for run time cost model check.  */

  int saving_per_viter = (scalar_single_iter_cost * assumed_vf
			  - vec_inside_cost);
  if (saving_per_viter <= 0)
    {
      if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
	warning_at (vect_location.get_location_t (), OPT_Wopenmp_simd,
		    "vectorization did not happen for a simd loop");

      if (dump_enabled_p ())
        dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "cost model: the vector iteration cost = %d "
			 "divided by the scalar iteration cost = %d "
			 "is greater or equal to the vectorization factor = %d"
                         ".\n",
			 vec_inside_cost, scalar_single_iter_cost, assumed_vf);
      *ret_min_profitable_niters = -1;
      *ret_min_profitable_estimate = -1;
      return;
    }

  /* ??? The "if" arm is written to handle all cases; see below for what
     we would do for !LOOP_VINFO_FULLY_MASKED_P.  */
  if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
    {
      /* Rewriting the condition above in terms of the number of
	 vector iterations (vniters) rather than the number of
	 scalar iterations (niters) gives:

	 SIC * (vniters * VF + NPEEL) + SOC > VIC * vniters + VOC

	 <==> vniters * (SIC * VF - VIC) > VOC - SIC * NPEEL - SOC

	 For integer N, X and Y when X > 0:

	 N * X > Y <==> N >= (Y /[floor] X) + 1.  */
      int outside_overhead = (vec_outside_cost
			      - scalar_single_iter_cost * peel_iters_prologue
			      - scalar_single_iter_cost * peel_iters_epilogue
			      - scalar_outside_cost);
      /* We're only interested in cases that require at least one
	 vector iteration.  */
      int min_vec_niters = 1;
      if (outside_overhead > 0)
	min_vec_niters = outside_overhead / saving_per_viter + 1;

      if (dump_enabled_p ())
	dump_printf (MSG_NOTE, "  Minimum number of vector iterations: %d\n",
		     min_vec_niters);

      if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
	{
	  /* Now that we know the minimum number of vector iterations,
	     find the minimum niters for which the scalar cost is larger:

	     SIC * niters > VIC * vniters + VOC - SOC

	     We know that the minimum niters is no more than
	     vniters * VF + NPEEL, but it might be (and often is) less
	     than that if a partial vector iteration is cheaper than the
	     equivalent scalar code.  */
	  int threshold = (vec_inside_cost * min_vec_niters
			   + vec_outside_cost
			   - scalar_outside_cost);
	  if (threshold <= 0)
	    min_profitable_iters = 1;
	  else
	    min_profitable_iters = threshold / scalar_single_iter_cost + 1;
	}
      else
	/* Convert the number of vector iterations into a number of
	   scalar iterations.  */
	min_profitable_iters = (min_vec_niters * assumed_vf
				+ peel_iters_prologue
				+ peel_iters_epilogue);
    }
  else
    {
      min_profitable_iters = ((vec_outside_cost - scalar_outside_cost)
			      * assumed_vf
			      - vec_inside_cost * peel_iters_prologue
			      - vec_inside_cost * peel_iters_epilogue);
      if (min_profitable_iters <= 0)
        min_profitable_iters = 0;
      else
	{
	  min_profitable_iters /= saving_per_viter;

	  if ((scalar_single_iter_cost * assumed_vf * min_profitable_iters)
	      <= (((int) vec_inside_cost * min_profitable_iters)
		  + (((int) vec_outside_cost - scalar_outside_cost)
		     * assumed_vf)))
	    min_profitable_iters++;
	}
    }

  if (dump_enabled_p ())
    dump_printf (MSG_NOTE,
		 "  Calculated minimum iters for profitability: %d\n",
		 min_profitable_iters);

  if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
      && min_profitable_iters < (assumed_vf + peel_iters_prologue))
    /* We want the vectorized loop to execute at least once.  */
    min_profitable_iters = assumed_vf + peel_iters_prologue;

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
                     "  Runtime profitability threshold = %d\n",
                     min_profitable_iters);

  *ret_min_profitable_niters = min_profitable_iters;

  /* Calculate number of iterations required to make the vector version
     profitable, relative to the loop bodies only.

     Non-vectorized variant is SIC * niters and it must win over vector
     variant on the expected loop trip count.  The following condition must hold true:
     SIC * niters > VIC * ((niters - NPEEL) / VF) + VOC + SOC  */

  if (vec_outside_cost <= 0)
    min_profitable_estimate = 0;
  else if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
    {
      /* This is a repeat of the code above, but with + SOC rather
	 than - SOC.  */
      int outside_overhead = (vec_outside_cost
			      - scalar_single_iter_cost * peel_iters_prologue
			      - scalar_single_iter_cost * peel_iters_epilogue
			      + scalar_outside_cost);
      int min_vec_niters = 1;
      if (outside_overhead > 0)
	min_vec_niters = outside_overhead / saving_per_viter + 1;

      if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
	{
	  int threshold = (vec_inside_cost * min_vec_niters
			   + vec_outside_cost
			   + scalar_outside_cost);
	  min_profitable_estimate = threshold / scalar_single_iter_cost + 1;
	}
      else
	min_profitable_estimate = (min_vec_niters * assumed_vf
				   + peel_iters_prologue
				   + peel_iters_epilogue);
    }
  else
    {
      min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost)
				 * assumed_vf
				 - vec_inside_cost * peel_iters_prologue
				 - vec_inside_cost * peel_iters_epilogue)
				 / ((scalar_single_iter_cost * assumed_vf)
				   - vec_inside_cost);
    }
  min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "  Static estimate profitability threshold = %d\n",
		     min_profitable_estimate);

  *ret_min_profitable_estimate = min_profitable_estimate;
}

/* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
   vector elements (not bits) for a vector with NELT elements.  */
static void
calc_vec_perm_mask_for_shift (unsigned int offset, unsigned int nelt,
			      vec_perm_builder *sel)
{
  /* The encoding is a single stepped pattern.  Any wrap-around is handled
     by vec_perm_indices.  */
  sel->new_vector (nelt, 1, 3);
  for (unsigned int i = 0; i < 3; i++)
    sel->quick_push (i + offset);
}

/* Checks whether the target supports whole-vector shifts for vectors of mode
   MODE.  This is the case if _either_ the platform handles vec_shr_optab, _or_
   it supports vec_perm_const with masks for all necessary shift amounts.  */
static bool
have_whole_vector_shift (machine_mode mode)
{
  if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
    return true;

  /* Variable-length vectors should be handled via the optab.  */
  unsigned int nelt;
  if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
    return false;

  vec_perm_builder sel;
  vec_perm_indices indices;
  for (unsigned int i = nelt / 2; i >= 1; i /= 2)
    {
      calc_vec_perm_mask_for_shift (i, nelt, &sel);
      indices.new_vector (sel, 2, nelt);
      if (!can_vec_perm_const_p (mode, indices, false))
	return false;
    }
  return true;
}

/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
   functions. Design better to avoid maintenance issues.  */

/* Function vect_model_reduction_cost.

   Models cost for a reduction operation, including the vector ops
   generated within the strip-mine loop, the initial definition before
   the loop, and the epilogue code that must be generated.  */

static void
vect_model_reduction_cost (stmt_vec_info stmt_info, internal_fn reduc_fn,
			   int ncopies, stmt_vector_for_cost *cost_vec)
{
  int prologue_cost = 0, epilogue_cost = 0, inside_cost;
  enum tree_code code;
  optab optab;
  tree vectype;
  machine_mode mode;
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = NULL;

  if (loop_vinfo)
    loop = LOOP_VINFO_LOOP (loop_vinfo);

  /* Condition reductions generate two reductions in the loop.  */
  vect_reduction_type reduction_type
    = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info);
  if (reduction_type == COND_REDUCTION)
    ncopies *= 2;

  vectype = STMT_VINFO_VECTYPE (stmt_info);
  mode = TYPE_MODE (vectype);
  stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);

  code = gimple_assign_rhs_code (orig_stmt_info->stmt);

  if (reduction_type == EXTRACT_LAST_REDUCTION
      || reduction_type == FOLD_LEFT_REDUCTION)
    {
      /* No extra instructions needed in the prologue.  */
      prologue_cost = 0;

      if (reduction_type == EXTRACT_LAST_REDUCTION || reduc_fn != IFN_LAST)
	/* Count one reduction-like operation per vector.  */
	inside_cost = record_stmt_cost (cost_vec, ncopies, vec_to_scalar,
					stmt_info, 0, vect_body);
      else
	{
	  /* Use NELEMENTS extracts and NELEMENTS scalar ops.  */
	  unsigned int nelements = ncopies * vect_nunits_for_cost (vectype);
	  inside_cost = record_stmt_cost (cost_vec, nelements,
					  vec_to_scalar, stmt_info, 0,
					  vect_body);
	  inside_cost += record_stmt_cost (cost_vec, nelements,
					   scalar_stmt, stmt_info, 0,
					   vect_body);
	}
    }
  else
    {
      /* Add in cost for initial definition.
	 For cond reduction we have four vectors: initial index, step,
	 initial result of the data reduction, initial value of the index
	 reduction.  */
      int prologue_stmts = reduction_type == COND_REDUCTION ? 4 : 1;
      prologue_cost += record_stmt_cost (cost_vec, prologue_stmts,
					 scalar_to_vec, stmt_info, 0,
					 vect_prologue);

      /* Cost of reduction op inside loop.  */
      inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
				      stmt_info, 0, vect_body);
    }

  /* Determine cost of epilogue code.

     We have a reduction operator that will reduce the vector in one statement.
     Also requires scalar extract.  */

  if (!loop || !nested_in_vect_loop_p (loop, orig_stmt_info))
    {
      if (reduc_fn != IFN_LAST)
	{
	  if (reduction_type == COND_REDUCTION)
	    {
	      /* An EQ stmt and an COND_EXPR stmt.  */
	      epilogue_cost += record_stmt_cost (cost_vec, 2,
						 vector_stmt, stmt_info, 0,
						 vect_epilogue);
	      /* Reduction of the max index and a reduction of the found
		 values.  */
	      epilogue_cost += record_stmt_cost (cost_vec, 2,
						 vec_to_scalar, stmt_info, 0,
						 vect_epilogue);
	      /* A broadcast of the max value.  */
	      epilogue_cost += record_stmt_cost (cost_vec, 1,
						 scalar_to_vec, stmt_info, 0,
						 vect_epilogue);
	    }
	  else
	    {
	      epilogue_cost += record_stmt_cost (cost_vec, 1, vector_stmt,
						 stmt_info, 0, vect_epilogue);
	      epilogue_cost += record_stmt_cost (cost_vec, 1,
						 vec_to_scalar, stmt_info, 0,
						 vect_epilogue);
	    }
	}
      else if (reduction_type == COND_REDUCTION)
	{
	  unsigned estimated_nunits = vect_nunits_for_cost (vectype);
	  /* Extraction of scalar elements.  */
	  epilogue_cost += record_stmt_cost (cost_vec,
					     2 * estimated_nunits,
					     vec_to_scalar, stmt_info, 0,
					     vect_epilogue);
	  /* Scalar max reductions via COND_EXPR / MAX_EXPR.  */
	  epilogue_cost += record_stmt_cost (cost_vec,
					     2 * estimated_nunits - 3,
					     scalar_stmt, stmt_info, 0,
					     vect_epilogue);
	}
      else if (reduction_type == EXTRACT_LAST_REDUCTION
	       || reduction_type == FOLD_LEFT_REDUCTION)
	/* No extra instructions need in the epilogue.  */
	;
      else
	{
	  int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
	  tree bitsize =
	    TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt_info->stmt)));
	  int element_bitsize = tree_to_uhwi (bitsize);
	  int nelements = vec_size_in_bits / element_bitsize;

	  if (code == COND_EXPR)
	    code = MAX_EXPR;

	  optab = optab_for_tree_code (code, vectype, optab_default);

	  /* We have a whole vector shift available.  */
	  if (optab != unknown_optab
	      && VECTOR_MODE_P (mode)
	      && optab_handler (optab, mode) != CODE_FOR_nothing
	      && have_whole_vector_shift (mode))
	    {
	      /* Final reduction via vector shifts and the reduction operator.
		 Also requires scalar extract.  */
	      epilogue_cost += record_stmt_cost (cost_vec,
						 exact_log2 (nelements) * 2,
						 vector_stmt, stmt_info, 0,
						 vect_epilogue);
	      epilogue_cost += record_stmt_cost (cost_vec, 1,
						 vec_to_scalar, stmt_info, 0,
						 vect_epilogue);
	    }	  
	  else
	    /* Use extracts and reduction op for final reduction.  For N
	       elements, we have N extracts and N-1 reduction ops.  */
	    epilogue_cost += record_stmt_cost (cost_vec, 
					       nelements + nelements - 1,
					       vector_stmt, stmt_info, 0,
					       vect_epilogue);
	}
    }

  if (dump_enabled_p ())
    dump_printf (MSG_NOTE, 
                 "vect_model_reduction_cost: inside_cost = %d, "
                 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
                 prologue_cost, epilogue_cost);
}


/* Function vect_model_induction_cost.

   Models cost for induction operations.  */

static void
vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies,
			   stmt_vector_for_cost *cost_vec)
{
  unsigned inside_cost, prologue_cost;

  if (PURE_SLP_STMT (stmt_info))
    return;

  /* loop cost for vec_loop.  */
  inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
				  stmt_info, 0, vect_body);

  /* prologue cost for vec_init and vec_step.  */
  prologue_cost = record_stmt_cost (cost_vec, 2, scalar_to_vec,
				    stmt_info, 0, vect_prologue);

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
                     "vect_model_induction_cost: inside_cost = %d, "
                     "prologue_cost = %d .\n", inside_cost, prologue_cost);
}



/* Function get_initial_def_for_reduction

   Input:
   STMT_VINFO - a stmt that performs a reduction operation in the loop.
   INIT_VAL - the initial value of the reduction variable

   Output:
   ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
        of the reduction (used for adjusting the epilog - see below).
   Return a vector variable, initialized according to the operation that
	STMT_VINFO performs. This vector will be used as the initial value
	of the vector of partial results.

   Option1 (adjust in epilog): Initialize the vector as follows:
     add/bit or/xor:    [0,0,...,0,0]
     mult/bit and:      [1,1,...,1,1]
     min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
   and when necessary (e.g. add/mult case) let the caller know
   that it needs to adjust the result by init_val.

   Option2: Initialize the vector as follows:
     add/bit or/xor:    [init_val,0,0,...,0]
     mult/bit and:      [init_val,1,1,...,1]
     min/max/cond_expr: [init_val,init_val,...,init_val]
   and no adjustments are needed.

   For example, for the following code:

   s = init_val;
   for (i=0;i<n;i++)
     s = s + a[i];

   STMT_VINFO is 's = s + a[i]', and the reduction variable is 's'.
   For a vector of 4 units, we want to return either [0,0,0,init_val],
   or [0,0,0,0] and let the caller know that it needs to adjust
   the result at the end by 'init_val'.

   FORNOW, we are using the 'adjust in epilog' scheme, because this way the
   initialization vector is simpler (same element in all entries), if
   ADJUSTMENT_DEF is not NULL, and Option2 otherwise.

   A cost model should help decide between these two schemes.  */

tree
get_initial_def_for_reduction (stmt_vec_info stmt_vinfo, tree init_val,
                               tree *adjustment_def)
{
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree scalar_type = TREE_TYPE (init_val);
  tree vectype = get_vectype_for_scalar_type (scalar_type);
  enum tree_code code = gimple_assign_rhs_code (stmt_vinfo->stmt);
  tree def_for_init;
  tree init_def;
  REAL_VALUE_TYPE real_init_val = dconst0;
  int int_init_val = 0;
  gimple_seq stmts = NULL;

  gcc_assert (vectype);

  gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
	      || SCALAR_FLOAT_TYPE_P (scalar_type));

  gcc_assert (nested_in_vect_loop_p (loop, stmt_vinfo)
	      || loop == (gimple_bb (stmt_vinfo->stmt))->loop_father);

  vect_reduction_type reduction_type
    = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo);

  switch (code)
    {
    case WIDEN_SUM_EXPR:
    case DOT_PROD_EXPR:
    case SAD_EXPR:
    case PLUS_EXPR:
    case MINUS_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case MULT_EXPR:
    case BIT_AND_EXPR:
      {
        /* ADJUSTMENT_DEF is NULL when called from
           vect_create_epilog_for_reduction to vectorize double reduction.  */
        if (adjustment_def)
	  *adjustment_def = init_val;

        if (code == MULT_EXPR)
          {
            real_init_val = dconst1;
            int_init_val = 1;
          }

        if (code == BIT_AND_EXPR)
          int_init_val = -1;

        if (SCALAR_FLOAT_TYPE_P (scalar_type))
          def_for_init = build_real (scalar_type, real_init_val);
        else
          def_for_init = build_int_cst (scalar_type, int_init_val);

	if (adjustment_def)
	  /* Option1: the first element is '0' or '1' as well.  */
	  init_def = gimple_build_vector_from_val (&stmts, vectype,
						   def_for_init);
	else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant ())
	  {
	    /* Option2 (variable length): the first element is INIT_VAL.  */
	    init_def = gimple_build_vector_from_val (&stmts, vectype,
						     def_for_init);
	    init_def = gimple_build (&stmts, CFN_VEC_SHL_INSERT,
				     vectype, init_def, init_val);
	  }
	else
	  {
	    /* Option2: the first element is INIT_VAL.  */
	    tree_vector_builder elts (vectype, 1, 2);
	    elts.quick_push (init_val);
	    elts.quick_push (def_for_init);
	    init_def = gimple_build_vector (&stmts, &elts);
	  }
      }
      break;

    case MIN_EXPR:
    case MAX_EXPR:
    case COND_EXPR:
      {
	if (adjustment_def)
          {
	    *adjustment_def = NULL_TREE;
	    if (reduction_type != COND_REDUCTION
		&& reduction_type != EXTRACT_LAST_REDUCTION)
	      {
		init_def = vect_get_vec_def_for_operand (init_val, stmt_vinfo);
		break;
	      }
	  }
	init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
	init_def = gimple_build_vector_from_val (&stmts, vectype, init_val);
      }
      break;

    default:
      gcc_unreachable ();
    }

  if (stmts)
    gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
  return init_def;
}

/* Get at the initial defs for the reduction PHIs in SLP_NODE.
   NUMBER_OF_VECTORS is the number of vector defs to create.
   If NEUTRAL_OP is nonnull, introducing extra elements of that
   value will not change the result.  */

static void
get_initial_defs_for_reduction (slp_tree slp_node,
				vec<tree> *vec_oprnds,
				unsigned int number_of_vectors,
				bool reduc_chain, tree neutral_op)
{
  vec<stmt_vec_info> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
  stmt_vec_info stmt_vinfo = stmts[0];
  unsigned HOST_WIDE_INT nunits;
  unsigned j, number_of_places_left_in_vector;
  tree vector_type;
  unsigned int group_size = stmts.length ();
  unsigned int i;
  struct loop *loop;

  vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);

  gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def);

  loop = (gimple_bb (stmt_vinfo->stmt))->loop_father;
  gcc_assert (loop);
  edge pe = loop_preheader_edge (loop);

  gcc_assert (!reduc_chain || neutral_op);

  /* NUMBER_OF_COPIES is the number of times we need to use the same values in
     created vectors. It is greater than 1 if unrolling is performed.

     For example, we have two scalar operands, s1 and s2 (e.g., group of
     strided accesses of size two), while NUNITS is four (i.e., four scalars
     of this type can be packed in a vector).  The output vector will contain
     two copies of each scalar operand: {s1, s2, s1, s2}.  (NUMBER_OF_COPIES
     will be 2).

     If REDUC_GROUP_SIZE > NUNITS, the scalars will be split into several
     vectors containing the operands.

     For example, NUNITS is four as before, and the group size is 8
     (s1, s2, ..., s8).  We will create two vectors {s1, s2, s3, s4} and
     {s5, s6, s7, s8}.  */

  if (!TYPE_VECTOR_SUBPARTS (vector_type).is_constant (&nunits))
    nunits = group_size;

  number_of_places_left_in_vector = nunits;
  bool constant_p = true;
  tree_vector_builder elts (vector_type, nunits, 1);
  elts.quick_grow (nunits);
  gimple_seq ctor_seq = NULL;
  for (j = 0; j < nunits * number_of_vectors; ++j)
    {
      tree op;
      i = j % group_size;
      stmt_vinfo = stmts[i];

      /* Get the def before the loop.  In reduction chain we have only
	 one initial value.  Else we have as many as PHIs in the group.  */
      if (reduc_chain)
	op = j != 0 ? neutral_op : PHI_ARG_DEF_FROM_EDGE (stmt_vinfo->stmt, pe);
      else if (((vec_oprnds->length () + 1) * nunits
		- number_of_places_left_in_vector >= group_size)
	       && neutral_op)
	op = neutral_op;
      else
	op = PHI_ARG_DEF_FROM_EDGE (stmt_vinfo->stmt, pe);

      /* Create 'vect_ = {op0,op1,...,opn}'.  */
      number_of_places_left_in_vector--;
      elts[nunits - number_of_places_left_in_vector - 1] = op;
      if (!CONSTANT_CLASS_P (op))
	constant_p = false;

      if (number_of_places_left_in_vector == 0)
	{
	  tree init;
	  if (constant_p && !neutral_op
	      ? multiple_p (TYPE_VECTOR_SUBPARTS (vector_type), nunits)
	      : known_eq (TYPE_VECTOR_SUBPARTS (vector_type), nunits))
	    /* Build the vector directly from ELTS.  */
	    init = gimple_build_vector (&ctor_seq, &elts);
	  else if (neutral_op)
	    {
	      /* Build a vector of the neutral value and shift the
		 other elements into place.  */
	      init = gimple_build_vector_from_val (&ctor_seq, vector_type,
						   neutral_op);
	      int k = nunits;
	      while (k > 0 && elts[k - 1] == neutral_op)
		k -= 1;
	      while (k > 0)
		{
		  k -= 1;
		  init = gimple_build (&ctor_seq, CFN_VEC_SHL_INSERT,
				       vector_type, init, elts[k]);
		}
	    }
	  else
	    {
	      /* First time round, duplicate ELTS to fill the
		 required number of vectors.  */
	      duplicate_and_interleave (&ctor_seq, vector_type, elts,
					number_of_vectors, *vec_oprnds);
	      break;
	    }
	  vec_oprnds->quick_push (init);

	  number_of_places_left_in_vector = nunits;
	  elts.new_vector (vector_type, nunits, 1);
	  elts.quick_grow (nunits);
	  constant_p = true;
	}
    }
  if (ctor_seq != NULL)
    gsi_insert_seq_on_edge_immediate (pe, ctor_seq);
}


/* Function vect_create_epilog_for_reduction

   Create code at the loop-epilog to finalize the result of a reduction
   computation. 
  
   VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector 
     reduction statements. 
   STMT_INFO is the scalar reduction stmt that is being vectorized.
   NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
     number of elements that we can fit in a vectype (nunits).  In this case
     we have to generate more than one vector stmt - i.e - we need to "unroll"
     the vector stmt by a factor VF/nunits.  For more details see documentation
     in vectorizable_operation.
   REDUC_FN is the internal function for the epilog reduction.
   REDUCTION_PHIS is a list of the phi-nodes that carry the reduction 
     computation.
   REDUC_INDEX is the index of the operand in the right hand side of the 
     statement that is defined by REDUCTION_PHI.
   DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
   SLP_NODE is an SLP node containing a group of reduction statements. The 
     first one in this group is STMT_INFO.
   INDUC_VAL is for INTEGER_INDUC_COND_REDUCTION the value to use for the case
     when the COND_EXPR is never true in the loop.  For MAX_EXPR, it needs to
     be smaller than any value of the IV in the loop, for MIN_EXPR larger than
     any value of the IV in the loop.
   INDUC_CODE is the code for epilog reduction if INTEGER_INDUC_COND_REDUCTION.
   NEUTRAL_OP is the value given by neutral_op_for_slp_reduction; it is
     null if this is not an SLP reduction

   This function:
   1. Creates the reduction def-use cycles: sets the arguments for 
      REDUCTION_PHIS:
      The loop-entry argument is the vectorized initial-value of the reduction.
      The loop-latch argument is taken from VECT_DEFS - the vector of partial 
      sums.
   2. "Reduces" each vector of partial results VECT_DEFS into a single result,
      by calling the function specified by REDUC_FN if available, or by
      other means (whole-vector shifts or a scalar loop).
      The function also creates a new phi node at the loop exit to preserve
      loop-closed form, as illustrated below.

     The flow at the entry to this function:

        loop:
          vec_def = phi <null, null>            # REDUCTION_PHI
          VECT_DEF = vector_stmt                # vectorized form of STMT_INFO
          s_loop = scalar_stmt                  # (scalar) STMT_INFO
        loop_exit:
          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
          use <s_out0>
          use <s_out0>

     The above is transformed by this function into:

        loop:
          vec_def = phi <vec_init, VECT_DEF>    # REDUCTION_PHI
          VECT_DEF = vector_stmt                # vectorized form of STMT_INFO
          s_loop = scalar_stmt                  # (scalar) STMT_INFO
        loop_exit:
          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
          v_out1 = phi <VECT_DEF>               # NEW_EXIT_PHI
          v_out2 = reduce <v_out1>
          s_out3 = extract_field <v_out2, 0>
          s_out4 = adjust_result <s_out3>
          use <s_out4>
          use <s_out4>
*/

static void
vect_create_epilog_for_reduction (vec<tree> vect_defs,
				  stmt_vec_info stmt_info,
				  gimple *reduc_def_stmt,
				  int ncopies, internal_fn reduc_fn,
				  vec<stmt_vec_info> reduction_phis,
                                  bool double_reduc, 
				  slp_tree slp_node,
				  slp_instance slp_node_instance,
				  tree induc_val, enum tree_code induc_code,
				  tree neutral_op)
{
  stmt_vec_info prev_phi_info;
  tree vectype;
  machine_mode mode;
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
  basic_block exit_bb;
  tree scalar_dest;
  tree scalar_type;
  gimple *new_phi = NULL, *phi;
  stmt_vec_info phi_info;
  gimple_stmt_iterator exit_gsi;
  tree vec_dest;
  tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
  gimple *epilog_stmt = NULL;
  enum tree_code code = gimple_assign_rhs_code (stmt_info->stmt);
  gimple *exit_phi;
  tree bitsize;
  tree adjustment_def = NULL;
  tree vec_initial_def = NULL;
  tree expr, def, initial_def = NULL;
  tree orig_name, scalar_result;
  imm_use_iterator imm_iter, phi_imm_iter;
  use_operand_p use_p, phi_use_p;
  gimple *use_stmt;
  stmt_vec_info reduction_phi_info = NULL;
  bool nested_in_vect_loop = false;
  auto_vec<gimple *> new_phis;
  auto_vec<stmt_vec_info> inner_phis;
  int j, i;
  auto_vec<tree> scalar_results;
  unsigned int group_size = 1, k, ratio;
  auto_vec<tree> vec_initial_defs;
  auto_vec<gimple *> phis;
  bool slp_reduc = false;
  bool direct_slp_reduc;
  tree new_phi_result;
  stmt_vec_info inner_phi = NULL;
  tree induction_index = NULL_TREE;

  if (slp_node)
    group_size = SLP_TREE_SCALAR_STMTS (slp_node).length (); 

  if (nested_in_vect_loop_p (loop, stmt_info))
    {
      outer_loop = loop;
      loop = loop->inner;
      nested_in_vect_loop = true;
      gcc_assert (!slp_node);
    }

  vectype = STMT_VINFO_VECTYPE (stmt_info);
  gcc_assert (vectype);
  mode = TYPE_MODE (vectype);

  /* 1. Create the reduction def-use cycle:
     Set the arguments of REDUCTION_PHIS, i.e., transform

        loop:
          vec_def = phi <null, null>            # REDUCTION_PHI
          VECT_DEF = vector_stmt                # vectorized form of STMT
          ...

     into:

        loop:
          vec_def = phi <vec_init, VECT_DEF>    # REDUCTION_PHI
          VECT_DEF = vector_stmt                # vectorized form of STMT
          ...

     (in case of SLP, do it for all the phis). */

  /* Get the loop-entry arguments.  */
  enum vect_def_type initial_def_dt = vect_unknown_def_type;
  if (slp_node)
    {
      unsigned vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
      vec_initial_defs.reserve (vec_num);
      get_initial_defs_for_reduction (slp_node_instance->reduc_phis,
				      &vec_initial_defs, vec_num,
				      REDUC_GROUP_FIRST_ELEMENT (stmt_info),
				      neutral_op);
    }
  else
    {
      /* Get at the scalar def before the loop, that defines the initial value
	 of the reduction variable.  */
      initial_def = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
					   loop_preheader_edge (loop));
      /* Optimize: if initial_def is for REDUC_MAX smaller than the base
	 and we can't use zero for induc_val, use initial_def.  Similarly
	 for REDUC_MIN and initial_def larger than the base.  */
      if (TREE_CODE (initial_def) == INTEGER_CST
	  && (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
	      == INTEGER_INDUC_COND_REDUCTION)
	  && !integer_zerop (induc_val)
	  && ((induc_code == MAX_EXPR
	       && tree_int_cst_lt (initial_def, induc_val))
	      || (induc_code == MIN_EXPR
		  && tree_int_cst_lt (induc_val, initial_def))))
	induc_val = initial_def;

      if (double_reduc)
	/* In case of double reduction we only create a vector variable
	   to be put in the reduction phi node.  The actual statement
	   creation is done later in this function.  */
	vec_initial_def = vect_create_destination_var (initial_def, vectype);
      else if (nested_in_vect_loop)
	{
	  /* Do not use an adjustment def as that case is not supported
	     correctly if ncopies is not one.  */
	  vect_is_simple_use (initial_def, loop_vinfo, &initial_def_dt);
	  vec_initial_def = vect_get_vec_def_for_operand (initial_def,
							  stmt_info);
	}
      else
	vec_initial_def
	  = get_initial_def_for_reduction (stmt_info, initial_def,
					   &adjustment_def);
      vec_initial_defs.create (1);
      vec_initial_defs.quick_push (vec_initial_def);
    }

  /* Set phi nodes arguments.  */
  FOR_EACH_VEC_ELT (reduction_phis, i, phi_info)
    {
      tree vec_init_def = vec_initial_defs[i];
      tree def = vect_defs[i];
      for (j = 0; j < ncopies; j++)
        {
	  if (j != 0)
	    {
	      phi_info = STMT_VINFO_RELATED_STMT (phi_info);
	      if (nested_in_vect_loop)
		vec_init_def
		  = vect_get_vec_def_for_stmt_copy (loop_vinfo, vec_init_def);
	    }

	  /* Set the loop-entry arg of the reduction-phi.  */

	  gphi *phi = as_a <gphi *> (phi_info->stmt);
	  if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
	      == INTEGER_INDUC_COND_REDUCTION)
	    {
	      /* Initialise the reduction phi to zero.  This prevents initial
		 values of non-zero interferring with the reduction op.  */
	      gcc_assert (ncopies == 1);
	      gcc_assert (i == 0);

	      tree vec_init_def_type = TREE_TYPE (vec_init_def);
	      tree induc_val_vec
		= build_vector_from_val (vec_init_def_type, induc_val);

	      add_phi_arg (phi, induc_val_vec, loop_preheader_edge (loop),
			   UNKNOWN_LOCATION);
	    }
	  else
	    add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
			 UNKNOWN_LOCATION);

          /* Set the loop-latch arg for the reduction-phi.  */
          if (j > 0)
	    def = vect_get_vec_def_for_stmt_copy (loop_vinfo, def);

	  add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);

          if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "transform reduction: created def-use cycle: %G%G",
			     phi, SSA_NAME_DEF_STMT (def));
        }
    }

  /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
     which is updated with the current index of the loop for every match of
     the original loop's cond_expr (VEC_STMT).  This results in a vector
     containing the last time the condition passed for that vector lane.
     The first match will be a 1 to allow 0 to be used for non-matching
     indexes.  If there are no matches at all then the vector will be all
     zeroes.  */
  if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
    {
      tree indx_before_incr, indx_after_incr;
      poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype);

      gimple *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info)->stmt;
      gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);

      int scalar_precision
	= GET_MODE_PRECISION (SCALAR_TYPE_MODE (TREE_TYPE (vectype)));
      tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
      tree cr_index_vector_type = build_vector_type
	(cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype));

      /* First we create a simple vector induction variable which starts
	 with the values {1,2,3,...} (SERIES_VECT) and increments by the
	 vector size (STEP).  */

      /* Create a {1,2,3,...} vector.  */
      tree series_vect = build_index_vector (cr_index_vector_type, 1, 1);

      /* Create a vector of the step value.  */
      tree step = build_int_cst (cr_index_scalar_type, nunits_out);
      tree vec_step = build_vector_from_val (cr_index_vector_type, step);

      /* Create an induction variable.  */
      gimple_stmt_iterator incr_gsi;
      bool insert_after;
      standard_iv_increment_position (loop, &incr_gsi, &insert_after);
      create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
		 insert_after, &indx_before_incr, &indx_after_incr);

      /* Next create a new phi node vector (NEW_PHI_TREE) which starts
	 filled with zeros (VEC_ZERO).  */

      /* Create a vector of 0s.  */
      tree zero = build_zero_cst (cr_index_scalar_type);
      tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);

      /* Create a vector phi node.  */
      tree new_phi_tree = make_ssa_name (cr_index_vector_type);
      new_phi = create_phi_node (new_phi_tree, loop->header);
      loop_vinfo->add_stmt (new_phi);
      add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
		   loop_preheader_edge (loop), UNKNOWN_LOCATION);

      /* Now take the condition from the loops original cond_expr
	 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
	 every match uses values from the induction variable
	 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
	 (NEW_PHI_TREE).
	 Finally, we update the phi (NEW_PHI_TREE) to take the value of
	 the new cond_expr (INDEX_COND_EXPR).  */

      /* Duplicate the condition from vec_stmt.  */
      tree ccompare = unshare_expr (gimple_assign_rhs1 (vec_stmt));

      /* Create a conditional, where the condition is taken from vec_stmt
	 (CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
	 else is the phi (NEW_PHI_TREE).  */
      tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
				     ccompare, indx_before_incr,
				     new_phi_tree);
      induction_index = make_ssa_name (cr_index_vector_type);
      gimple *index_condition = gimple_build_assign (induction_index,
						     index_cond_expr);
      gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
      stmt_vec_info index_vec_info = loop_vinfo->add_stmt (index_condition);
      STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;

      /* Update the phi with the vec cond.  */
      add_phi_arg (as_a <gphi *> (new_phi), induction_index,
		   loop_latch_edge (loop), UNKNOWN_LOCATION);
    }

  /* 2. Create epilog code.
        The reduction epilog code operates across the elements of the vector
        of partial results computed by the vectorized loop.
        The reduction epilog code consists of:

        step 1: compute the scalar result in a vector (v_out2)
        step 2: extract the scalar result (s_out3) from the vector (v_out2)
        step 3: adjust the scalar result (s_out3) if needed.

        Step 1 can be accomplished using one the following three schemes:
          (scheme 1) using reduc_fn, if available.
          (scheme 2) using whole-vector shifts, if available.
          (scheme 3) using a scalar loop. In this case steps 1+2 above are
                     combined.

          The overall epilog code looks like this:

          s_out0 = phi <s_loop>         # original EXIT_PHI
          v_out1 = phi <VECT_DEF>       # NEW_EXIT_PHI
          v_out2 = reduce <v_out1>              # step 1
          s_out3 = extract_field <v_out2, 0>    # step 2
          s_out4 = adjust_result <s_out3>       # step 3

          (step 3 is optional, and steps 1 and 2 may be combined).
          Lastly, the uses of s_out0 are replaced by s_out4.  */


  /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
         v_out1 = phi <VECT_DEF> 
         Store them in NEW_PHIS.  */

  exit_bb = single_exit (loop)->dest;
  prev_phi_info = NULL;
  new_phis.create (vect_defs.length ());
  FOR_EACH_VEC_ELT (vect_defs, i, def)
    {
      for (j = 0; j < ncopies; j++)
        {
	  tree new_def = copy_ssa_name (def);
          phi = create_phi_node (new_def, exit_bb);
	  stmt_vec_info phi_info = loop_vinfo->add_stmt (phi);
          if (j == 0)
            new_phis.quick_push (phi);
          else
	    {
	      def = vect_get_vec_def_for_stmt_copy (loop_vinfo, def);
	      STMT_VINFO_RELATED_STMT (prev_phi_info) = phi_info;
	    }

          SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
	  prev_phi_info = phi_info;
        }
    }

  /* The epilogue is created for the outer-loop, i.e., for the loop being
     vectorized.  Create exit phis for the outer loop.  */
  if (double_reduc)
    {
      loop = outer_loop;
      exit_bb = single_exit (loop)->dest;
      inner_phis.create (vect_defs.length ());
      FOR_EACH_VEC_ELT (new_phis, i, phi)
	{
	  stmt_vec_info phi_info = loop_vinfo->lookup_stmt (phi);
	  tree new_result = copy_ssa_name (PHI_RESULT (phi));
	  gphi *outer_phi = create_phi_node (new_result, exit_bb);
	  SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
			   PHI_RESULT (phi));
	  prev_phi_info = loop_vinfo->add_stmt (outer_phi);
	  inner_phis.quick_push (phi_info);
	  new_phis[i] = outer_phi;
	  while (STMT_VINFO_RELATED_STMT (phi_info))
            {
	      phi_info = STMT_VINFO_RELATED_STMT (phi_info);
	      new_result = copy_ssa_name (PHI_RESULT (phi_info->stmt));
	      outer_phi = create_phi_node (new_result, exit_bb);
	      SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
			       PHI_RESULT (phi_info->stmt));
	      stmt_vec_info outer_phi_info = loop_vinfo->add_stmt (outer_phi);
	      STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi_info;
	      prev_phi_info = outer_phi_info;
	    }
	}
    }

  exit_gsi = gsi_after_labels (exit_bb);

  /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
         (i.e. when reduc_fn is not available) and in the final adjustment
	 code (if needed).  Also get the original scalar reduction variable as
         defined in the loop.  In case STMT is a "pattern-stmt" (i.e. - it
         represents a reduction pattern), the tree-code and scalar-def are
         taken from the original stmt that the pattern-stmt (STMT) replaces.
         Otherwise (it is a regular reduction) - the tree-code and scalar-def
         are taken from STMT.  */

  stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);
  if (orig_stmt_info != stmt_info)
    {
      /* Reduction pattern  */
      gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
      gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt_info);
    }

  code = gimple_assign_rhs_code (orig_stmt_info->stmt);
  /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
     partial results are added and not subtracted.  */
  if (code == MINUS_EXPR) 
    code = PLUS_EXPR;
  
  scalar_dest = gimple_assign_lhs (orig_stmt_info->stmt);
  scalar_type = TREE_TYPE (scalar_dest);
  scalar_results.create (group_size); 
  new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
  bitsize = TYPE_SIZE (scalar_type);

  /* In case this is a reduction in an inner-loop while vectorizing an outer
     loop - we don't need to extract a single scalar result at the end of the
     inner-loop (unless it is double reduction, i.e., the use of reduction is
     outside the outer-loop).  The final vector of partial results will be used
     in the vectorized outer-loop, or reduced to a scalar result at the end of
     the outer-loop.  */
  if (nested_in_vect_loop && !double_reduc)
    goto vect_finalize_reduction;

  /* SLP reduction without reduction chain, e.g.,
     # a1 = phi <a2, a0>
     # b1 = phi <b2, b0>
     a2 = operation (a1)
     b2 = operation (b1)  */
  slp_reduc = (slp_node && !REDUC_GROUP_FIRST_ELEMENT (stmt_info));

  /* True if we should implement SLP_REDUC using native reduction operations
     instead of scalar operations.  */
  direct_slp_reduc = (reduc_fn != IFN_LAST
		      && slp_reduc
		      && !TYPE_VECTOR_SUBPARTS (vectype).is_constant ());

  /* In case of reduction chain, e.g.,
     # a1 = phi <a3, a0>
     a2 = operation (a1)
     a3 = operation (a2),

     we may end up with more than one vector result.  Here we reduce them to
     one vector.  */
  if (REDUC_GROUP_FIRST_ELEMENT (stmt_info) || direct_slp_reduc)
    {
      tree first_vect = PHI_RESULT (new_phis[0]);
      gassign *new_vec_stmt = NULL;
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      for (k = 1; k < new_phis.length (); k++)
        {
	  gimple *next_phi = new_phis[k];
          tree second_vect = PHI_RESULT (next_phi);
          tree tem = make_ssa_name (vec_dest, new_vec_stmt);
          new_vec_stmt = gimple_build_assign (tem, code,
					      first_vect, second_vect);
          gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
	  first_vect = tem;
        }

      new_phi_result = first_vect;
      if (new_vec_stmt)
        {
          new_phis.truncate (0);
          new_phis.safe_push (new_vec_stmt);
        }
    }
  /* Likewise if we couldn't use a single defuse cycle.  */
  else if (ncopies > 1)
    {
      gcc_assert (new_phis.length () == 1);
      tree first_vect = PHI_RESULT (new_phis[0]);
      gassign *new_vec_stmt = NULL;
      vec_dest = vect_create_destination_var (scalar_dest, vectype);
      stmt_vec_info next_phi_info = loop_vinfo->lookup_stmt (new_phis[0]);
      for (int k = 1; k < ncopies; ++k)
	{
	  next_phi_info = STMT_VINFO_RELATED_STMT (next_phi_info);
	  tree second_vect = PHI_RESULT (next_phi_info->stmt);
          tree tem = make_ssa_name (vec_dest, new_vec_stmt);
          new_vec_stmt = gimple_build_assign (tem, code,
					      first_vect, second_vect);
          gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
	  first_vect = tem;
	}
      new_phi_result = first_vect;
      new_phis.truncate (0);
      new_phis.safe_push (new_vec_stmt);
    }
  else
    new_phi_result = PHI_RESULT (new_phis[0]);

  if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
      && reduc_fn != IFN_LAST)
    {
      /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
	 various data values where the condition matched and another vector
	 (INDUCTION_INDEX) containing all the indexes of those matches.  We
	 need to extract the last matching index (which will be the index with
	 highest value) and use this to index into the data vector.
	 For the case where there were no matches, the data vector will contain
	 all default values and the index vector will be all zeros.  */

      /* Get various versions of the type of the vector of indexes.  */
      tree index_vec_type = TREE_TYPE (induction_index);
      gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
      tree index_scalar_type = TREE_TYPE (index_vec_type);
      tree index_vec_cmp_type = build_same_sized_truth_vector_type
	(index_vec_type);

      /* Get an unsigned integer version of the type of the data vector.  */
      int scalar_precision
	= GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
      tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
      tree vectype_unsigned = build_vector_type
	(scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));

      /* First we need to create a vector (ZERO_VEC) of zeros and another
	 vector (MAX_INDEX_VEC) filled with the last matching index, which we
	 can create using a MAX reduction and then expanding.
	 In the case where the loop never made any matches, the max index will
	 be zero.  */

      /* Vector of {0, 0, 0,...}.  */
      tree zero_vec = make_ssa_name (vectype);
      tree zero_vec_rhs = build_zero_cst (vectype);
      gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
      gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);

      /* Find maximum value from the vector of found indexes.  */
      tree max_index = make_ssa_name (index_scalar_type);
      gcall *max_index_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
							  1, induction_index);
      gimple_call_set_lhs (max_index_stmt, max_index);
      gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);

      /* Vector of {max_index, max_index, max_index,...}.  */
      tree max_index_vec = make_ssa_name (index_vec_type);
      tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
						      max_index);
      gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
							max_index_vec_rhs);
      gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);

      /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
	 with the vector (INDUCTION_INDEX) of found indexes, choosing values
	 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
	 otherwise.  Only one value should match, resulting in a vector
	 (VEC_COND) with one data value and the rest zeros.
	 In the case where the loop never made any matches, every index will
	 match, resulting in a vector with all data values (which will all be
	 the default value).  */

      /* Compare the max index vector to the vector of found indexes to find
	 the position of the max value.  */
      tree vec_compare = make_ssa_name (index_vec_cmp_type);
      gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
						      induction_index,
						      max_index_vec);
      gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);

      /* Use the compare to choose either values from the data vector or
	 zero.  */
      tree vec_cond = make_ssa_name (vectype);
      gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
						   vec_compare, new_phi_result,
						   zero_vec);
      gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);

      /* Finally we need to extract the data value from the vector (VEC_COND)
	 into a scalar (MATCHED_DATA_REDUC).  Logically we want to do a OR
	 reduction, but because this doesn't exist, we can use a MAX reduction
	 instead.  The data value might be signed or a float so we need to cast
	 it first.
	 In the case where the loop never made any matches, the data values are
	 all identical, and so will reduce down correctly.  */

      /* Make the matched data values unsigned.  */
      tree vec_cond_cast = make_ssa_name (vectype_unsigned);
      tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
				       vec_cond);
      gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
							VIEW_CONVERT_EXPR,
							vec_cond_cast_rhs);
      gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);

      /* Reduce down to a scalar value.  */
      tree data_reduc = make_ssa_name (scalar_type_unsigned);
      gcall *data_reduc_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
							   1, vec_cond_cast);
      gimple_call_set_lhs (data_reduc_stmt, data_reduc);
      gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);

      /* Convert the reduced value back to the result type and set as the
	 result.  */
      gimple_seq stmts = NULL;
      new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
			       data_reduc);
      gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
      scalar_results.safe_push (new_temp);
    }
  else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
	   && reduc_fn == IFN_LAST)
    {
      /* Condition reduction without supported IFN_REDUC_MAX.  Generate
	 idx = 0;
         idx_val = induction_index[0];
	 val = data_reduc[0];
         for (idx = 0, val = init, i = 0; i < nelts; ++i)
	   if (induction_index[i] > idx_val)
	     val = data_reduc[i], idx_val = induction_index[i];
	 return val;  */

      tree data_eltype = TREE_TYPE (TREE_TYPE (new_phi_result));
      tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
      unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
      poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
      /* Enforced by vectorizable_reduction, which ensures we have target
	 support before allowing a conditional reduction on variable-length
	 vectors.  */
      unsigned HOST_WIDE_INT v_size = el_size * nunits.to_constant ();
      tree idx_val = NULL_TREE, val = NULL_TREE;
      for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
	{
	  tree old_idx_val = idx_val;
	  tree old_val = val;
	  idx_val = make_ssa_name (idx_eltype);
	  epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
					     build3 (BIT_FIELD_REF, idx_eltype,
						     induction_index,
						     bitsize_int (el_size),
						     bitsize_int (off)));
	  gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	  val = make_ssa_name (data_eltype);
	  epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
					     build3 (BIT_FIELD_REF,
						     data_eltype,
						     new_phi_result,
						     bitsize_int (el_size),
						     bitsize_int (off)));
	  gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	  if (off != 0)
	    {
	      tree new_idx_val = idx_val;
	      tree new_val = val;
	      if (off != v_size - el_size)
		{
		  new_idx_val = make_ssa_name (idx_eltype);
		  epilog_stmt = gimple_build_assign (new_idx_val,
						     MAX_EXPR, idx_val,
						     old_idx_val);
		  gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
		}
	      new_val = make_ssa_name (data_eltype);
	      epilog_stmt = gimple_build_assign (new_val,
						 COND_EXPR,
						 build2 (GT_EXPR,
							 boolean_type_node,
							 idx_val,
							 old_idx_val),
						 val, old_val);
	      gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	      idx_val = new_idx_val;
	      val = new_val;
	    }
	}
      /* Convert the reduced value back to the result type and set as the
	 result.  */
      gimple_seq stmts = NULL;
      val = gimple_convert (&stmts, scalar_type, val);
      gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
      scalar_results.safe_push (val);
    }

  /* 2.3 Create the reduction code, using one of the three schemes described
         above. In SLP we simply need to extract all the elements from the 
         vector (without reducing them), so we use scalar shifts.  */
  else if (reduc_fn != IFN_LAST && !slp_reduc)
    {
      tree tmp;
      tree vec_elem_type;

      /* Case 1:  Create:
         v_out2 = reduc_expr <v_out1>  */

      if (dump_enabled_p ())
        dump_printf_loc (MSG_NOTE, vect_location,
			 "Reduce using direct vector reduction.\n");

      vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
      if (!useless_type_conversion_p (scalar_type, vec_elem_type))
	{
	  tree tmp_dest
	    = vect_create_destination_var (scalar_dest, vec_elem_type);
	  epilog_stmt = gimple_build_call_internal (reduc_fn, 1,
						    new_phi_result);
	  gimple_set_lhs (epilog_stmt, tmp_dest);
	  new_temp = make_ssa_name (tmp_dest, epilog_stmt);
	  gimple_set_lhs (epilog_stmt, new_temp);
	  gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);

	  epilog_stmt = gimple_build_assign (new_scalar_dest, NOP_EXPR,
					     new_temp);
	}
      else
	{
	  epilog_stmt = gimple_build_call_internal (reduc_fn, 1,
						    new_phi_result);
	  gimple_set_lhs (epilog_stmt, new_scalar_dest);
	}

      new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
      gimple_set_lhs (epilog_stmt, new_temp);
      gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);

      if ((STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
	   == INTEGER_INDUC_COND_REDUCTION)
	  && !operand_equal_p (initial_def, induc_val, 0))
	{
	  /* Earlier we set the initial value to be a vector if induc_val
	     values.  Check the result and if it is induc_val then replace
	     with the original initial value, unless induc_val is
	     the same as initial_def already.  */
	  tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
				  induc_val);

	  tmp = make_ssa_name (new_scalar_dest);
	  epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
					     initial_def, new_temp);
	  gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	  new_temp = tmp;
	}

      scalar_results.safe_push (new_temp);
    }
  else if (direct_slp_reduc)
    {
      /* Here we create one vector for each of the REDUC_GROUP_SIZE results,
	 with the elements for other SLP statements replaced with the
	 neutral value.  We can then do a normal reduction on each vector.  */

      /* Enforced by vectorizable_reduction.  */
      gcc_assert (new_phis.length () == 1);
      gcc_assert (pow2p_hwi (group_size));

      slp_tree orig_phis_slp_node = slp_node_instance->reduc_phis;
      vec<stmt_vec_info> orig_phis
	= SLP_TREE_SCALAR_STMTS (orig_phis_slp_node);
      gimple_seq seq = NULL;

      /* Build a vector {0, 1, 2, ...}, with the same number of elements
	 and the same element size as VECTYPE.  */
      tree index = build_index_vector (vectype, 0, 1);
      tree index_type = TREE_TYPE (index);
      tree index_elt_type = TREE_TYPE (index_type);
      tree mask_type = build_same_sized_truth_vector_type (index_type);

      /* Create a vector that, for each element, identifies which of
	 the REDUC_GROUP_SIZE results should use it.  */
      tree index_mask = build_int_cst (index_elt_type, group_size - 1);
      index = gimple_build (&seq, BIT_AND_EXPR, index_type, index,
			    build_vector_from_val (index_type, index_mask));

      /* Get a neutral vector value.  This is simply a splat of the neutral
	 scalar value if we have one, otherwise the initial scalar value
	 is itself a neutral value.  */
      tree vector_identity = NULL_TREE;
      if (neutral_op)
	vector_identity = gimple_build_vector_from_val (&seq, vectype,
							neutral_op);
      for (unsigned int i = 0; i < group_size; ++i)
	{
	  /* If there's no univeral neutral value, we can use the
	     initial scalar value from the original PHI.  This is used
	     for MIN and MAX reduction, for example.  */
	  if (!neutral_op)
	    {
	      tree scalar_value
		= PHI_ARG_DEF_FROM_EDGE (orig_phis[i]->stmt,
					 loop_preheader_edge (loop));
	      vector_identity = gimple_build_vector_from_val (&seq, vectype,
							      scalar_value);
	    }

	  /* Calculate the equivalent of:

	     sel[j] = (index[j] == i);

	     which selects the elements of NEW_PHI_RESULT that should
	     be included in the result.  */
	  tree compare_val = build_int_cst (index_elt_type, i);
	  compare_val = build_vector_from_val (index_type, compare_val);
	  tree sel = gimple_build (&seq, EQ_EXPR, mask_type,
				   index, compare_val);

	  /* Calculate the equivalent of:

	     vec = seq ? new_phi_result : vector_identity;

	     VEC is now suitable for a full vector reduction.  */
	  tree vec = gimple_build (&seq, VEC_COND_EXPR, vectype,
				   sel, new_phi_result, vector_identity);

	  /* Do the reduction and convert it to the appropriate type.  */
	  tree scalar = gimple_build (&seq, as_combined_fn (reduc_fn),
				      TREE_TYPE (vectype), vec);
	  scalar = gimple_convert (&seq, scalar_type, scalar);
	  scalar_results.safe_push (scalar);
	}
      gsi_insert_seq_before (&exit_gsi, seq, GSI_SAME_STMT);
    }
  else
    {
      bool reduce_with_shift;
      tree vec_temp;

      /* COND reductions all do the final reduction with MAX_EXPR
	 or MIN_EXPR.  */
      if (code == COND_EXPR)
	{
	  if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
	      == INTEGER_INDUC_COND_REDUCTION)
	    code = induc_code;
	  else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
		   == CONST_COND_REDUCTION)
	    code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
	  else
	    code = MAX_EXPR;
	}

      /* See if the target wants to do the final (shift) reduction
	 in a vector mode of smaller size and first reduce upper/lower
	 halves against each other.  */
      enum machine_mode mode1 = mode;
      tree vectype1 = vectype;
      unsigned sz = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
      unsigned sz1 = sz;
      if (!slp_reduc
	  && (mode1 = targetm.vectorize.split_reduction (mode)) != mode)
	sz1 = GET_MODE_SIZE (mode1).to_constant ();

      vectype1 = get_vectype_for_scalar_type_and_size (scalar_type, sz1);
      reduce_with_shift = have_whole_vector_shift (mode1);
      if (!VECTOR_MODE_P (mode1))
	reduce_with_shift = false;
      else
	{
	  optab optab = optab_for_tree_code (code, vectype1, optab_default);
	  if (optab_handler (optab, mode1) == CODE_FOR_nothing)
	    reduce_with_shift = false;
	}

      /* First reduce the vector to the desired vector size we should
	 do shift reduction on by combining upper and lower halves.  */
      new_temp = new_phi_result;
      while (sz > sz1)
	{
	  gcc_assert (!slp_reduc);
	  sz /= 2;
	  vectype1 = get_vectype_for_scalar_type_and_size (scalar_type, sz);

	  /* The target has to make sure we support lowpart/highpart
	     extraction, either via direct vector extract or through
	     an integer mode punning.  */
	  tree dst1, dst2;
	  if (convert_optab_handler (vec_extract_optab,
				     TYPE_MODE (TREE_TYPE (new_temp)),
				     TYPE_MODE (vectype1))
	      != CODE_FOR_nothing)
	    {
	      /* Extract sub-vectors directly once vec_extract becomes
		 a conversion optab.  */
	      dst1 = make_ssa_name (vectype1);
	      epilog_stmt
		  = gimple_build_assign (dst1, BIT_FIELD_REF,
					 build3 (BIT_FIELD_REF, vectype1,
						 new_temp, TYPE_SIZE (vectype1),
						 bitsize_int (0)));
	      gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	      dst2 =  make_ssa_name (vectype1);
	      epilog_stmt
		  = gimple_build_assign (dst2, BIT_FIELD_REF,
					 build3 (BIT_FIELD_REF, vectype1,
						 new_temp, TYPE_SIZE (vectype1),
						 bitsize_int (sz * BITS_PER_UNIT)));
	      gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	    }
	  else
	    {
	      /* Extract via punning to appropriately sized integer mode
		 vector.  */
	      tree eltype = build_nonstandard_integer_type (sz * BITS_PER_UNIT,
							    1);
	      tree etype = build_vector_type (eltype, 2);
	      gcc_assert (convert_optab_handler (vec_extract_optab,
						 TYPE_MODE (etype),
						 TYPE_MODE (eltype))
			  != CODE_FOR_nothing);
	      tree tem = make_ssa_name (etype);
	      epilog_stmt = gimple_build_assign (tem, VIEW_CONVERT_EXPR,
						 build1 (VIEW_CONVERT_EXPR,
							 etype, new_temp));
	      gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	      new_temp = tem;
	      tem = make_ssa_name (eltype);
	      epilog_stmt
		  = gimple_build_assign (tem, BIT_FIELD_REF,
					 build3 (BIT_FIELD_REF, eltype,
						 new_temp, TYPE_SIZE (eltype),
						 bitsize_int (0)));
	      gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	      dst1 = make_ssa_name (vectype1);
	      epilog_stmt = gimple_build_assign (dst1, VIEW_CONVERT_EXPR,
						 build1 (VIEW_CONVERT_EXPR,
							 vectype1, tem));
	      gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	      tem = make_ssa_name (eltype);
	      epilog_stmt
		  = gimple_build_assign (tem, BIT_FIELD_REF,
					 build3 (BIT_FIELD_REF, eltype,
						 new_temp, TYPE_SIZE (eltype),
						 bitsize_int (sz * BITS_PER_UNIT)));
	      gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	      dst2 =  make_ssa_name (vectype1);
	      epilog_stmt = gimple_build_assign (dst2, VIEW_CONVERT_EXPR,
						 build1 (VIEW_CONVERT_EXPR,
							 vectype1, tem));
	      gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	    }

	  new_temp = make_ssa_name (vectype1);
	  epilog_stmt = gimple_build_assign (new_temp, code, dst1, dst2);
	  gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	}

      if (reduce_with_shift && !slp_reduc)
	{
	  int element_bitsize = tree_to_uhwi (bitsize);
	  /* Enforced by vectorizable_reduction, which disallows SLP reductions
	     for variable-length vectors and also requires direct target support
	     for loop reductions.  */
	  int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
	  int nelements = vec_size_in_bits / element_bitsize;
	  vec_perm_builder sel;
	  vec_perm_indices indices;

          int elt_offset;

          tree zero_vec = build_zero_cst (vectype1);
          /* Case 2: Create:
             for (offset = nelements/2; offset >= 1; offset/=2)
                {
                  Create:  va' = vec_shift <va, offset>
                  Create:  va = vop <va, va'>
                }  */

          tree rhs;

          if (dump_enabled_p ())
            dump_printf_loc (MSG_NOTE, vect_location,
			     "Reduce using vector shifts\n");

	  mode1 = TYPE_MODE (vectype1);
          vec_dest = vect_create_destination_var (scalar_dest, vectype1);
          for (elt_offset = nelements / 2;
               elt_offset >= 1;
               elt_offset /= 2)
            {
	      calc_vec_perm_mask_for_shift (elt_offset, nelements, &sel);
	      indices.new_vector (sel, 2, nelements);
	      tree mask = vect_gen_perm_mask_any (vectype1, indices);
	      epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
						 new_temp, zero_vec, mask);
              new_name = make_ssa_name (vec_dest, epilog_stmt);
              gimple_assign_set_lhs (epilog_stmt, new_name);
              gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);

	      epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
						 new_temp);
              new_temp = make_ssa_name (vec_dest, epilog_stmt);
              gimple_assign_set_lhs (epilog_stmt, new_temp);
              gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
            }

	  /* 2.4  Extract the final scalar result.  Create:
	     s_out3 = extract_field <v_out2, bitpos>  */

	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "extract scalar result\n");

	  rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
			bitsize, bitsize_zero_node);
	  epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
	  new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
	  gimple_assign_set_lhs (epilog_stmt, new_temp);
	  gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	  scalar_results.safe_push (new_temp);
        }
      else
        {
          /* Case 3: Create:
             s = extract_field <v_out2, 0>
             for (offset = element_size;
                  offset < vector_size;
                  offset += element_size;)
               {
                 Create:  s' = extract_field <v_out2, offset>
                 Create:  s = op <s, s'>  // For non SLP cases
               }  */

          if (dump_enabled_p ())
            dump_printf_loc (MSG_NOTE, vect_location,
			     "Reduce using scalar code.\n");

	  int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
	  int element_bitsize = tree_to_uhwi (bitsize);
          FOR_EACH_VEC_ELT (new_phis, i, new_phi)
            {
              int bit_offset;
              if (gimple_code (new_phi) == GIMPLE_PHI)
                vec_temp = PHI_RESULT (new_phi);
              else
                vec_temp = gimple_assign_lhs (new_phi);
              tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
				 bitsize_zero_node);
              epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
              new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
              gimple_assign_set_lhs (epilog_stmt, new_temp);
              gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);

              /* In SLP we don't need to apply reduction operation, so we just
                 collect s' values in SCALAR_RESULTS.  */
              if (slp_reduc)
                scalar_results.safe_push (new_temp);

              for (bit_offset = element_bitsize;
                   bit_offset < vec_size_in_bits;
                   bit_offset += element_bitsize)
                {
                  tree bitpos = bitsize_int (bit_offset);
                  tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
                                     bitsize, bitpos);

                  epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
                  new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
                  gimple_assign_set_lhs (epilog_stmt, new_name);
                  gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);

                  if (slp_reduc)
                    {
                      /* In SLP we don't need to apply reduction operation, so 
                         we just collect s' values in SCALAR_RESULTS.  */
                      new_temp = new_name;
                      scalar_results.safe_push (new_name);
                    }
                  else
                    {
		      epilog_stmt = gimple_build_assign (new_scalar_dest, code,
							 new_name, new_temp);
                      new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
                      gimple_assign_set_lhs (epilog_stmt, new_temp);
                      gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
                    }
                }
            }

          /* The only case where we need to reduce scalar results in SLP, is
             unrolling.  If the size of SCALAR_RESULTS is greater than
             REDUC_GROUP_SIZE, we reduce them combining elements modulo 
             REDUC_GROUP_SIZE.  */
          if (slp_reduc)
            {
              tree res, first_res, new_res;
	      gimple *new_stmt;
            
              /* Reduce multiple scalar results in case of SLP unrolling.  */
              for (j = group_size; scalar_results.iterate (j, &res);
                   j++)
                {
                  first_res = scalar_results[j % group_size];
		  new_stmt = gimple_build_assign (new_scalar_dest, code,
						  first_res, res);
                  new_res = make_ssa_name (new_scalar_dest, new_stmt);
                  gimple_assign_set_lhs (new_stmt, new_res);
                  gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
                  scalar_results[j % group_size] = new_res;
                }
            }
          else
            /* Not SLP - we have one scalar to keep in SCALAR_RESULTS.  */
            scalar_results.safe_push (new_temp);
        }

      if ((STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
	   == INTEGER_INDUC_COND_REDUCTION)
	  && !operand_equal_p (initial_def, induc_val, 0))
	{
	  /* Earlier we set the initial value to be a vector if induc_val
	     values.  Check the result and if it is induc_val then replace
	     with the original initial value, unless induc_val is
	     the same as initial_def already.  */
	  tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
				  induc_val);

	  tree tmp = make_ssa_name (new_scalar_dest);
	  epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
					     initial_def, new_temp);
	  gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
	  scalar_results[0] = tmp;
	}
    }
  
vect_finalize_reduction:

  if (double_reduc)
    loop = loop->inner;

  /* 2.5 Adjust the final result by the initial value of the reduction
	 variable. (When such adjustment is not needed, then
	 'adjustment_def' is zero).  For example, if code is PLUS we create:
	 new_temp = loop_exit_def + adjustment_def  */

  if (adjustment_def)
    {
      gcc_assert (!slp_reduc);
      if (nested_in_vect_loop)
	{
          new_phi = new_phis[0];
	  gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
	  expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
	  new_dest = vect_create_destination_var (scalar_dest, vectype);
	}
      else
	{
          new_temp = scalar_results[0];
	  gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
	  expr = build2 (code, scalar_type, new_temp, adjustment_def);
	  new_dest = vect_create_destination_var (scalar_dest, scalar_type);
	}

      epilog_stmt = gimple_build_assign (new_dest, expr);
      new_temp = make_ssa_name (new_dest, epilog_stmt);
      gimple_assign_set_lhs (epilog_stmt, new_temp);
      gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
      if (nested_in_vect_loop)
        {
	  stmt_vec_info epilog_stmt_info = loop_vinfo->add_stmt (epilog_stmt);
	  STMT_VINFO_RELATED_STMT (epilog_stmt_info)
	    = STMT_VINFO_RELATED_STMT (loop_vinfo->lookup_stmt (new_phi));

          if (!double_reduc)
            scalar_results.quick_push (new_temp);
          else
            scalar_results[0] = new_temp;
        }
      else
        scalar_results[0] = new_temp;

      new_phis[0] = epilog_stmt;
    }

  /* 2.6  Handle the loop-exit phis.  Replace the uses of scalar loop-exit
          phis with new adjusted scalar results, i.e., replace use <s_out0>
          with use <s_out4>.        

     Transform:
        loop_exit:
          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
          v_out1 = phi <VECT_DEF>               # NEW_EXIT_PHI
          v_out2 = reduce <v_out1>
          s_out3 = extract_field <v_out2, 0>
          s_out4 = adjust_result <s_out3>
          use <s_out0>
          use <s_out0>

     into:

        loop_exit:
          s_out0 = phi <s_loop>                 # (scalar) EXIT_PHI
          v_out1 = phi <VECT_DEF>               # NEW_EXIT_PHI
          v_out2 = reduce <v_out1>
          s_out3 = extract_field <v_out2, 0>
          s_out4 = adjust_result <s_out3>
          use <s_out4>  
          use <s_out4> */


  /* In SLP reduction chain we reduce vector results into one vector if
     necessary, hence we set here REDUC_GROUP_SIZE to 1.  SCALAR_DEST is the
     LHS of the last stmt in the reduction chain, since we are looking for
     the loop exit phi node.  */
  if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
    {
      stmt_vec_info dest_stmt_info
	= vect_orig_stmt (SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
      scalar_dest = gimple_assign_lhs (dest_stmt_info->stmt);
      group_size = 1;
    }

  /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
     case that REDUC_GROUP_SIZE is greater than vectorization factor).
     Therefore, we need to match SCALAR_RESULTS with corresponding statements.
     The first (REDUC_GROUP_SIZE / number of new vector stmts) scalar results
     correspond to the first vector stmt, etc.
     (RATIO is equal to (REDUC_GROUP_SIZE / number of new vector stmts)).  */
  if (group_size > new_phis.length ())
    {
      ratio = group_size / new_phis.length ();
      gcc_assert (!(group_size % new_phis.length ()));
    }
  else
    ratio = 1;

  stmt_vec_info epilog_stmt_info = NULL;
  for (k = 0; k < group_size; k++)
    {
      if (k % ratio == 0)
        {
	  epilog_stmt_info = loop_vinfo->lookup_stmt (new_phis[k / ratio]);
	  reduction_phi_info = reduction_phis[k / ratio];
	  if (double_reduc)
	    inner_phi = inner_phis[k / ratio];
        }

      if (slp_reduc)
        {
	  stmt_vec_info scalar_stmt_info = SLP_TREE_SCALAR_STMTS (slp_node)[k];

	  orig_stmt_info = STMT_VINFO_RELATED_STMT (scalar_stmt_info);
	  /* SLP statements can't participate in patterns.  */
	  gcc_assert (!orig_stmt_info);
	  scalar_dest = gimple_assign_lhs (scalar_stmt_info->stmt);
        }

      phis.create (3);
      /* Find the loop-closed-use at the loop exit of the original scalar
         result.  (The reduction result is expected to have two immediate uses -
         one at the latch block, and one at the loop exit).  */
      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
        if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
	    && !is_gimple_debug (USE_STMT (use_p)))
          phis.safe_push (USE_STMT (use_p));

      /* While we expect to have found an exit_phi because of loop-closed-ssa
         form we can end up without one if the scalar cycle is dead.  */

      FOR_EACH_VEC_ELT (phis, i, exit_phi)
        {
          if (outer_loop)
            {
	      stmt_vec_info exit_phi_vinfo
		= loop_vinfo->lookup_stmt (exit_phi);
              gphi *vect_phi;

	      if (double_reduc)
		STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
	      else
		STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt_info;
              if (!double_reduc
                  || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
                      != vect_double_reduction_def)
                continue;

              /* Handle double reduction:

                 stmt1: s1 = phi <s0, s2>  - double reduction phi (outer loop)
                 stmt2:   s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
                 stmt3:   s4 = use (s3)     - (regular) reduc stmt (inner loop)
                 stmt4: s2 = phi <s4>      - double reduction stmt (outer loop)

                 At that point the regular reduction (stmt2 and stmt3) is
                 already vectorized, as well as the exit phi node, stmt4.
                 Here we vectorize the phi node of double reduction, stmt1, and
                 update all relevant statements.  */

              /* Go through all the uses of s2 to find double reduction phi
                 node, i.e., stmt1 above.  */
              orig_name = PHI_RESULT (exit_phi);
              FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
                {
                  stmt_vec_info use_stmt_vinfo;
                  tree vect_phi_init, preheader_arg, vect_phi_res;
                  basic_block bb = gimple_bb (use_stmt);

                  /* Check that USE_STMT is really double reduction phi
                     node.  */
                  if (gimple_code (use_stmt) != GIMPLE_PHI
                      || gimple_phi_num_args (use_stmt) != 2
                      || bb->loop_father != outer_loop)
                    continue;
		  use_stmt_vinfo = loop_vinfo->lookup_stmt (use_stmt);
                  if (!use_stmt_vinfo
                      || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
                          != vect_double_reduction_def)
		    continue;

                  /* Create vector phi node for double reduction:
                     vs1 = phi <vs0, vs2>
                     vs1 was created previously in this function by a call to
                       vect_get_vec_def_for_operand and is stored in
                       vec_initial_def;
                     vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
                     vs0 is created here.  */

                  /* Create vector phi node.  */
                  vect_phi = create_phi_node (vec_initial_def, bb);
		  loop_vec_info_for_loop (outer_loop)->add_stmt (vect_phi);

                  /* Create vs0 - initial def of the double reduction phi.  */
                  preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
                                             loop_preheader_edge (outer_loop));
                  vect_phi_init = get_initial_def_for_reduction
		    (stmt_info, preheader_arg, NULL);

                  /* Update phi node arguments with vs0 and vs2.  */
                  add_phi_arg (vect_phi, vect_phi_init,
                               loop_preheader_edge (outer_loop),
                               UNKNOWN_LOCATION);
		  add_phi_arg (vect_phi, PHI_RESULT (inner_phi->stmt),
			       loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
                  if (dump_enabled_p ())
		    dump_printf_loc (MSG_NOTE, vect_location,
				     "created double reduction phi node: %G",
				     vect_phi);

                  vect_phi_res = PHI_RESULT (vect_phi);

                  /* Replace the use, i.e., set the correct vs1 in the regular
                     reduction phi node.  FORNOW, NCOPIES is always 1, so the
                     loop is redundant.  */
		  stmt_vec_info use_info = reduction_phi_info;
		  for (j = 0; j < ncopies; j++)
		    {
		      edge pr_edge = loop_preheader_edge (loop);
		      SET_PHI_ARG_DEF (as_a <gphi *> (use_info->stmt),
				       pr_edge->dest_idx, vect_phi_res);
		      use_info = STMT_VINFO_RELATED_STMT (use_info);
		    }
                }
            }
        }

      phis.release ();
      if (nested_in_vect_loop)
        {
          if (double_reduc)
            loop = outer_loop;
          else
            continue;
        }

      phis.create (3);
      /* Find the loop-closed-use at the loop exit of the original scalar
         result.  (The reduction result is expected to have two immediate uses,
         one at the latch block, and one at the loop exit).  For double
         reductions we are looking for exit phis of the outer loop.  */
      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
        {
          if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
	    {
	      if (!is_gimple_debug (USE_STMT (use_p)))
		phis.safe_push (USE_STMT (use_p));
	    }
          else
            {
              if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
                {
                  tree phi_res = PHI_RESULT (USE_STMT (use_p));

                  FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
                    {
                      if (!flow_bb_inside_loop_p (loop,
                                             gimple_bb (USE_STMT (phi_use_p)))
			  && !is_gimple_debug (USE_STMT (phi_use_p)))
                        phis.safe_push (USE_STMT (phi_use_p));
                    }
                }
            }
        }

      FOR_EACH_VEC_ELT (phis, i, exit_phi)
        {
          /* Replace the uses:  */
          orig_name = PHI_RESULT (exit_phi);
          scalar_result = scalar_results[k];
          FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
            FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
              SET_USE (use_p, scalar_result);
        }

      phis.release ();
    }
}

/* Return a vector of type VECTYPE that is equal to the vector select
   operation "MASK ? VEC : IDENTITY".  Insert the select statements
   before GSI.  */

static tree
merge_with_identity (gimple_stmt_iterator *gsi, tree mask, tree vectype,
		     tree vec, tree identity)
{
  tree cond = make_temp_ssa_name (vectype, NULL, "cond");
  gimple *new_stmt = gimple_build_assign (cond, VEC_COND_EXPR,
					  mask, vec, identity);
  gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
  return cond;
}

/* Successively apply CODE to each element of VECTOR_RHS, in left-to-right
   order, starting with LHS.  Insert the extraction statements before GSI and
   associate the new scalar SSA names with variable SCALAR_DEST.
   Return the SSA name for the result.  */

static tree
vect_expand_fold_left (gimple_stmt_iterator *gsi, tree scalar_dest,
		       tree_code code, tree lhs, tree vector_rhs)
{
  tree vectype = TREE_TYPE (vector_rhs);
  tree scalar_type = TREE_TYPE (vectype);
  tree bitsize = TYPE_SIZE (scalar_type);
  unsigned HOST_WIDE_INT vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
  unsigned HOST_WIDE_INT element_bitsize = tree_to_uhwi (bitsize);

  for (unsigned HOST_WIDE_INT bit_offset = 0;
       bit_offset < vec_size_in_bits;
       bit_offset += element_bitsize)
    {
      tree bitpos = bitsize_int (bit_offset);
      tree rhs = build3 (BIT_FIELD_REF, scalar_type, vector_rhs,
			 bitsize, bitpos);

      gassign *stmt = gimple_build_assign (scalar_dest, rhs);
      rhs = make_ssa_name (scalar_dest, stmt);
      gimple_assign_set_lhs (stmt, rhs);
      gsi_insert_before (gsi, stmt, GSI_SAME_STMT);

      stmt = gimple_build_assign (scalar_dest, code, lhs, rhs);
      tree new_name = make_ssa_name (scalar_dest, stmt);
      gimple_assign_set_lhs (stmt, new_name);
      gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
      lhs = new_name;
    }
  return lhs;
}

/* Get a masked internal function equivalent to REDUC_FN.  VECTYPE_IN is the
   type of the vector input.  */

static internal_fn
get_masked_reduction_fn (internal_fn reduc_fn, tree vectype_in)
{
  internal_fn mask_reduc_fn;

  switch (reduc_fn)
    {
    case IFN_FOLD_LEFT_PLUS:
      mask_reduc_fn = IFN_MASK_FOLD_LEFT_PLUS;
      break;

    default:
      return IFN_LAST;
    }

  if (direct_internal_fn_supported_p (mask_reduc_fn, vectype_in,
				      OPTIMIZE_FOR_SPEED))
    return mask_reduc_fn;
  return IFN_LAST;
}

/* Perform an in-order reduction (FOLD_LEFT_REDUCTION).  STMT_INFO is the
   statement that sets the live-out value.  REDUC_DEF_STMT is the phi
   statement.  CODE is the operation performed by STMT_INFO and OPS are
   its scalar operands.  REDUC_INDEX is the index of the operand in
   OPS that is set by REDUC_DEF_STMT.  REDUC_FN is the function that
   implements in-order reduction, or IFN_LAST if we should open-code it.
   VECTYPE_IN is the type of the vector input.  MASKS specifies the masks
   that should be used to control the operation in a fully-masked loop.  */

static bool
vectorize_fold_left_reduction (stmt_vec_info stmt_info,
			       gimple_stmt_iterator *gsi,
			       stmt_vec_info *vec_stmt, slp_tree slp_node,
			       gimple *reduc_def_stmt,
			       tree_code code, internal_fn reduc_fn,
			       tree ops[3], tree vectype_in,
			       int reduc_index, vec_loop_masks *masks)
{
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
  stmt_vec_info new_stmt_info = NULL;
  internal_fn mask_reduc_fn = get_masked_reduction_fn (reduc_fn, vectype_in);

  int ncopies;
  if (slp_node)
    ncopies = 1;
  else
    ncopies = vect_get_num_copies (loop_vinfo, vectype_in);

  gcc_assert (!nested_in_vect_loop_p (loop, stmt_info));
  gcc_assert (ncopies == 1);
  gcc_assert (TREE_CODE_LENGTH (code) == binary_op);
  gcc_assert (reduc_index == (code == MINUS_EXPR ? 0 : 1));
  gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
	      == FOLD_LEFT_REDUCTION);

  if (slp_node)
    gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (vectype_out),
			  TYPE_VECTOR_SUBPARTS (vectype_in)));

  tree op0 = ops[1 - reduc_index];

  int group_size = 1;
  stmt_vec_info scalar_dest_def_info;
  auto_vec<tree> vec_oprnds0;
  if (slp_node)
    {
      auto_vec<vec<tree> > vec_defs (2);
      auto_vec<tree> sops(2);
      sops.quick_push (ops[0]);
      sops.quick_push (ops[1]);
      vect_get_slp_defs (sops, slp_node, &vec_defs);
      vec_oprnds0.safe_splice (vec_defs[1 - reduc_index]);
      vec_defs[0].release ();
      vec_defs[1].release ();
      group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
      scalar_dest_def_info = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
    }
  else
    {
      tree loop_vec_def0 = vect_get_vec_def_for_operand (op0, stmt_info);
      vec_oprnds0.create (1);
      vec_oprnds0.quick_push (loop_vec_def0);
      scalar_dest_def_info = stmt_info;
    }

  tree scalar_dest = gimple_assign_lhs (scalar_dest_def_info->stmt);
  tree scalar_type = TREE_TYPE (scalar_dest);
  tree reduc_var = gimple_phi_result (reduc_def_stmt);

  int vec_num = vec_oprnds0.length ();
  gcc_assert (vec_num == 1 || slp_node);
  tree vec_elem_type = TREE_TYPE (vectype_out);
  gcc_checking_assert (useless_type_conversion_p (scalar_type, vec_elem_type));

  tree vector_identity = NULL_TREE;
  if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
    vector_identity = build_zero_cst (vectype_out);

  tree scalar_dest_var = vect_create_destination_var (scalar_dest, NULL);
  int i;
  tree def0;
  FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
    {
      gimple *new_stmt;
      tree mask = NULL_TREE;
      if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
	mask = vect_get_loop_mask (gsi, masks, vec_num, vectype_in, i);

      /* Handle MINUS by adding the negative.  */
      if (reduc_fn != IFN_LAST && code == MINUS_EXPR)
	{
	  tree negated = make_ssa_name (vectype_out);
	  new_stmt = gimple_build_assign (negated, NEGATE_EXPR, def0);
	  gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
	  def0 = negated;
	}

      if (mask && mask_reduc_fn == IFN_LAST)
	def0 = merge_with_identity (gsi, mask, vectype_out, def0,
				    vector_identity);

      /* On the first iteration the input is simply the scalar phi
	 result, and for subsequent iterations it is the output of
	 the preceding operation.  */
      if (reduc_fn != IFN_LAST || (mask && mask_reduc_fn != IFN_LAST))
	{
	  if (mask && mask_reduc_fn != IFN_LAST)
	    new_stmt = gimple_build_call_internal (mask_reduc_fn, 3, reduc_var,
						   def0, mask);
	  else
	    new_stmt = gimple_build_call_internal (reduc_fn, 2, reduc_var,
						   def0);
	  /* For chained SLP reductions the output of the previous reduction
	     operation serves as the input of the next. For the final statement
	     the output cannot be a temporary - we reuse the original
	     scalar destination of the last statement.  */
	  if (i != vec_num - 1)
	    {
	      gimple_set_lhs (new_stmt, scalar_dest_var);
	      reduc_var = make_ssa_name (scalar_dest_var, new_stmt);
	      gimple_set_lhs (new_stmt, reduc_var);
	    }
	}
      else
	{
	  reduc_var = vect_expand_fold_left (gsi, scalar_dest_var, code,
					     reduc_var, def0);
	  new_stmt = SSA_NAME_DEF_STMT (reduc_var);
	  /* Remove the statement, so that we can use the same code paths
	     as for statements that we've just created.  */
	  gimple_stmt_iterator tmp_gsi = gsi_for_stmt (new_stmt);
	  gsi_remove (&tmp_gsi, true);
	}

      if (i == vec_num - 1)
	{
	  gimple_set_lhs (new_stmt, scalar_dest);
	  new_stmt_info = vect_finish_replace_stmt (scalar_dest_def_info,
						    new_stmt);
	}
      else
	new_stmt_info = vect_finish_stmt_generation (scalar_dest_def_info,
						     new_stmt, gsi);

      if (slp_node)
	SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt_info);
    }

  if (!slp_node)
    STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt_info;

  return true;
}

/* Function is_nonwrapping_integer_induction.

   Check if STMT_VINO (which is part of loop LOOP) both increments and
   does not cause overflow.  */

static bool
is_nonwrapping_integer_induction (stmt_vec_info stmt_vinfo, struct loop *loop)
{
  gphi *phi = as_a <gphi *> (stmt_vinfo->stmt);
  tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
  tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
  tree lhs_type = TREE_TYPE (gimple_phi_result (phi));
  widest_int ni, max_loop_value, lhs_max;
  wi::overflow_type overflow = wi::OVF_NONE;

  /* Make sure the loop is integer based.  */
  if (TREE_CODE (base) != INTEGER_CST
      || TREE_CODE (step) != INTEGER_CST)
    return false;

  /* Check that the max size of the loop will not wrap.  */

  if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
    return true;

  if (! max_stmt_executions (loop, &ni))
    return false;

  max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
			    &overflow);
  if (overflow)
    return false;

  max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
			    TYPE_SIGN (lhs_type), &overflow);
  if (overflow)
    return false;

  return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
	  <= TYPE_PRECISION (lhs_type));
}

/* Check if masking can be supported by inserting a conditional expression.
   CODE is the code for the operation.  COND_FN is the conditional internal
   function, if it exists.  VECTYPE_IN is the type of the vector input.  */
static bool
use_mask_by_cond_expr_p (enum tree_code code, internal_fn cond_fn,
			 tree vectype_in)
{
  if (cond_fn != IFN_LAST
      && direct_internal_fn_supported_p (cond_fn, vectype_in,
					 OPTIMIZE_FOR_SPEED))
    return false;

  switch (code)
    {
    case DOT_PROD_EXPR:
    case SAD_EXPR:
      return true;

    default:
      return false;
    }
}

/* Insert a conditional expression to enable masked vectorization.  CODE is the
   code for the operation.  VOP is the array of operands.  MASK is the loop
   mask.  GSI is a statement iterator used to place the new conditional
   expression.  */
static void
build_vect_cond_expr (enum tree_code code, tree vop[3], tree mask,
		      gimple_stmt_iterator *gsi)
{
  switch (code)
    {
    case DOT_PROD_EXPR:
      {
	tree vectype = TREE_TYPE (vop[1]);
	tree zero = build_zero_cst (vectype);
	tree masked_op1 = make_temp_ssa_name (vectype, NULL, "masked_op1");
	gassign *select = gimple_build_assign (masked_op1, VEC_COND_EXPR,
					       mask, vop[1], zero);
	gsi_insert_before (gsi, select, GSI_SAME_STMT);
	vop[1] = masked_op1;
	break;
      }

    case SAD_EXPR:
      {
	tree vectype = TREE_TYPE (vop[1]);
	tree masked_op1 = make_temp_ssa_name (vectype, NULL, "masked_op1");
	gassign *select = gimple_build_assign (masked_op1, VEC_COND_EXPR,
					       mask, vop[1], vop[0]);
	gsi_insert_before (gsi, select, GSI_SAME_STMT);
	vop[1] = masked_op1;
	break;
      }

    default:
      gcc_unreachable ();
    }
}

/* Function vectorizable_reduction.

   Check if STMT_INFO performs a reduction operation that can be vectorized.
   If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized
   stmt to replace it, put it in VEC_STMT, and insert it at GSI.
   Return true if STMT_INFO is vectorizable in this way.

   This function also handles reduction idioms (patterns) that have been
   recognized in advance during vect_pattern_recog.  In this case, STMT_INFO
   may be of this form:
     X = pattern_expr (arg0, arg1, ..., X)
   and its STMT_VINFO_RELATED_STMT points to the last stmt in the original
   sequence that had been detected and replaced by the pattern-stmt
   (STMT_INFO).

   This function also handles reduction of condition expressions, for example:
     for (int i = 0; i < N; i++)
       if (a[i] < value)
	 last = a[i];
   This is handled by vectorising the loop and creating an additional vector
   containing the loop indexes for which "a[i] < value" was true.  In the
   function epilogue this is reduced to a single max value and then used to
   index into the vector of results.

   In some cases of reduction patterns, the type of the reduction variable X is
   different than the type of the other arguments of STMT_INFO.
   In such cases, the vectype that is used when transforming STMT_INFO into
   a vector stmt is different than the vectype that is used to determine the
   vectorization factor, because it consists of a different number of elements
   than the actual number of elements that are being operated upon in parallel.

   For example, consider an accumulation of shorts into an int accumulator.
   On some targets it's possible to vectorize this pattern operating on 8
   shorts at a time (hence, the vectype for purposes of determining the
   vectorization factor should be V8HI); on the other hand, the vectype that
   is used to create the vector form is actually V4SI (the type of the result).

   Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
   indicates what is the actual level of parallelism (V8HI in the example), so
   that the right vectorization factor would be derived.  This vectype
   corresponds to the type of arguments to the reduction stmt, and should *NOT*
   be used to create the vectorized stmt.  The right vectype for the vectorized
   stmt is obtained from the type of the result X:
        get_vectype_for_scalar_type (TREE_TYPE (X))

   This means that, contrary to "regular" reductions (or "regular" stmts in
   general), the following equation:
      STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
   does *NOT* necessarily hold for reduction patterns.  */

bool
vectorizable_reduction (stmt_vec_info stmt_info, gimple_stmt_iterator *gsi,
			stmt_vec_info *vec_stmt, slp_tree slp_node,
			slp_instance slp_node_instance,
			stmt_vector_for_cost *cost_vec)
{
  tree vec_dest;
  tree scalar_dest;
  tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
  tree vectype_in = NULL_TREE;
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  enum tree_code code, orig_code;
  internal_fn reduc_fn;
  machine_mode vec_mode;
  int op_type;
  optab optab;
  tree new_temp = NULL_TREE;
  enum vect_def_type dt, cond_reduc_dt = vect_unknown_def_type;
  stmt_vec_info cond_stmt_vinfo = NULL;
  enum tree_code cond_reduc_op_code = ERROR_MARK;
  tree scalar_type;
  bool is_simple_use;
  int i;
  int ncopies;
  int epilog_copies;
  stmt_vec_info prev_stmt_info, prev_phi_info;
  bool single_defuse_cycle = false;
  stmt_vec_info new_stmt_info = NULL;
  int j;
  tree ops[3];
  enum vect_def_type dts[3];
  bool nested_cycle = false, found_nested_cycle_def = false;
  bool double_reduc = false;
  basic_block def_bb;
  struct loop * def_stmt_loop;
  tree def_arg;
  auto_vec<tree> vec_oprnds0;
  auto_vec<tree> vec_oprnds1;
  auto_vec<tree> vec_oprnds2;
  auto_vec<tree> vect_defs;
  auto_vec<stmt_vec_info> phis;
  int vec_num;
  tree def0, tem;
  tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
  tree cond_reduc_val = NULL_TREE;

  /* Make sure it was already recognized as a reduction computation.  */
  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
      && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
    return false;

  if (nested_in_vect_loop_p (loop, stmt_info))
    {
      loop = loop->inner;
      nested_cycle = true;
    }

  if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
    gcc_assert (slp_node
		&& REDUC_GROUP_FIRST_ELEMENT (stmt_info) == stmt_info);

  if (gphi *phi = dyn_cast <gphi *> (stmt_info->stmt))
    {
      tree phi_result = gimple_phi_result (phi);
      /* Analysis is fully done on the reduction stmt invocation.  */
      if (! vec_stmt)
	{
	  if (slp_node)
	    slp_node_instance->reduc_phis = slp_node;

	  STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
	  return true;
	}

      if (STMT_VINFO_REDUC_TYPE (stmt_info) == FOLD_LEFT_REDUCTION)
	/* Leave the scalar phi in place.  Note that checking
	   STMT_VINFO_VEC_REDUCTION_TYPE (as below) only works
	   for reductions involving a single statement.  */
	return true;

      stmt_vec_info reduc_stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
      reduc_stmt_info = vect_stmt_to_vectorize (reduc_stmt_info);

      if (STMT_VINFO_VEC_REDUCTION_TYPE (reduc_stmt_info)
	  == EXTRACT_LAST_REDUCTION)
	/* Leave the scalar phi in place.  */
	return true;

      gassign *reduc_stmt = as_a <gassign *> (reduc_stmt_info->stmt);
      code = gimple_assign_rhs_code (reduc_stmt);
      for (unsigned k = 1; k < gimple_num_ops (reduc_stmt); ++k)
	{
	  tree op = gimple_op (reduc_stmt, k);
	  if (op == phi_result)
	    continue;
	  if (k == 1 && code == COND_EXPR)
	    continue;
	  bool is_simple_use = vect_is_simple_use (op, loop_vinfo, &dt);
	  gcc_assert (is_simple_use);
	  if (dt == vect_constant_def || dt == vect_external_def)
	    continue;
	  if (!vectype_in
	      || (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in)))
		  < GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (op)))))
	    vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op));
	  break;
	}
      /* For a nested cycle we might end up with an operation like
         phi_result * phi_result.  */
      if (!vectype_in)
	vectype_in = STMT_VINFO_VECTYPE (stmt_info);
      gcc_assert (vectype_in);

      if (slp_node)
	ncopies = 1;
      else
	ncopies = vect_get_num_copies (loop_vinfo, vectype_in);

      stmt_vec_info use_stmt_info;
      if (ncopies > 1
	  && STMT_VINFO_RELEVANT (reduc_stmt_info) <= vect_used_only_live
	  && (use_stmt_info = loop_vinfo->lookup_single_use (phi_result))
	  && vect_stmt_to_vectorize (use_stmt_info) == reduc_stmt_info)
	single_defuse_cycle = true;

      /* Create the destination vector  */
      scalar_dest = gimple_assign_lhs (reduc_stmt);
      vec_dest = vect_create_destination_var (scalar_dest, vectype_out);

      if (slp_node)
	/* The size vect_schedule_slp_instance computes is off for us.  */
	vec_num = vect_get_num_vectors
	  (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
	   * SLP_TREE_SCALAR_STMTS (slp_node).length (),
	   vectype_in);
      else
	vec_num = 1;

      /* Generate the reduction PHIs upfront.  */
      prev_phi_info = NULL;
      for (j = 0; j < ncopies; j++)
	{
	  if (j == 0 || !single_defuse_cycle)
	    {
	      for (i = 0; i < vec_num; i++)
		{
		  /* Create the reduction-phi that defines the reduction
		     operand.  */
		  gimple *new_phi = create_phi_node (vec_dest, loop->header);
		  stmt_vec_info new_phi_info = loop_vinfo->add_stmt (new_phi);

		  if (slp_node)
		    SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi_info);
		  else
		    {
		      if (j == 0)
			STMT_VINFO_VEC_STMT (stmt_info)
			  = *vec_stmt = new_phi_info;
		      else
			STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi_info;
		      prev_phi_info = new_phi_info;
		    }
		}
	    }
	}

      return true;
    }

  /* 1. Is vectorizable reduction?  */
  /* Not supportable if the reduction variable is used in the loop, unless
     it's a reduction chain.  */
  if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
      && !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
    return false;

  /* Reductions that are not used even in an enclosing outer-loop,
     are expected to be "live" (used out of the loop).  */
  if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
      && !STMT_VINFO_LIVE_P (stmt_info))
    return false;

  /* 2. Has this been recognized as a reduction pattern?

     Check if STMT represents a pattern that has been recognized
     in earlier analysis stages.  For stmts that represent a pattern,
     the STMT_VINFO_RELATED_STMT field records the last stmt in
     the original sequence that constitutes the pattern.  */

  stmt_vec_info orig_stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
  if (orig_stmt_info)
    {
      gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
      gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
    }

  /* 3. Check the operands of the operation.  The first operands are defined
        inside the loop body. The last operand is the reduction variable,
        which is defined by the loop-header-phi.  */

  gassign *stmt = as_a <gassign *> (stmt_info->stmt);

  /* Flatten RHS.  */
  switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
    {
    case GIMPLE_BINARY_RHS:
      code = gimple_assign_rhs_code (stmt);
      op_type = TREE_CODE_LENGTH (code);
      gcc_assert (op_type == binary_op);
      ops[0] = gimple_assign_rhs1 (stmt);
      ops[1] = gimple_assign_rhs2 (stmt);
      break;

    case GIMPLE_TERNARY_RHS:
      code = gimple_assign_rhs_code (stmt);
      op_type = TREE_CODE_LENGTH (code);
      gcc_assert (op_type == ternary_op);
      ops[0] = gimple_assign_rhs1 (stmt);
      ops[1] = gimple_assign_rhs2 (stmt);
      ops[2] = gimple_assign_rhs3 (stmt);
      break;

    case GIMPLE_UNARY_RHS:
      return false;

    default:
      gcc_unreachable ();
    }

  if (code == COND_EXPR && slp_node)
    return false;

  scalar_dest = gimple_assign_lhs (stmt);
  scalar_type = TREE_TYPE (scalar_dest);
  if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
      && !SCALAR_FLOAT_TYPE_P (scalar_type))
    return false;

  /* Do not try to vectorize bit-precision reductions.  */
  if (!type_has_mode_precision_p (scalar_type))
    return false;

  /* All uses but the last are expected to be defined in the loop.
     The last use is the reduction variable.  In case of nested cycle this
     assumption is not true: we use reduc_index to record the index of the
     reduction variable.  */
  stmt_vec_info reduc_def_info;
  if (orig_stmt_info)
    reduc_def_info = STMT_VINFO_REDUC_DEF (orig_stmt_info);
  else
    reduc_def_info = STMT_VINFO_REDUC_DEF (stmt_info);
  gcc_assert (reduc_def_info);
  gphi *reduc_def_phi = as_a <gphi *> (reduc_def_info->stmt);
  tree reduc_def = PHI_RESULT (reduc_def_phi);
  int reduc_index = -1;
  for (i = 0; i < op_type; i++)
    {
      /* The condition of COND_EXPR is checked in vectorizable_condition().  */
      if (i == 0 && code == COND_EXPR)
        continue;

      stmt_vec_info def_stmt_info;
      is_simple_use = vect_is_simple_use (ops[i], loop_vinfo, &dts[i], &tem,
					  &def_stmt_info);
      dt = dts[i];
      gcc_assert (is_simple_use);
      if (dt == vect_reduction_def
	  && ops[i] == reduc_def)
	{
	  reduc_index = i;
	  continue;
	}
      else if (tem)
	{
	  /* To properly compute ncopies we are interested in the widest
	     input type in case we're looking at a widening accumulation.  */
	  if (!vectype_in
	      || (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in)))
		  < GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (tem)))))
	    vectype_in = tem;
	}

      if (dt != vect_internal_def
	  && dt != vect_external_def
	  && dt != vect_constant_def
	  && dt != vect_induction_def
          && !(dt == vect_nested_cycle && nested_cycle))
	return false;

      if (dt == vect_nested_cycle
	  && ops[i] == reduc_def)
	{
	  found_nested_cycle_def = true;
	  reduc_index = i;
	}

      if (i == 1 && code == COND_EXPR)
	{
	  /* Record how value of COND_EXPR is defined.  */
	  if (dt == vect_constant_def)
	    {
	      cond_reduc_dt = dt;
	      cond_reduc_val = ops[i];
	    }
	  if (dt == vect_induction_def
	      && def_stmt_info
	      && is_nonwrapping_integer_induction (def_stmt_info, loop))
	    {
	      cond_reduc_dt = dt;
	      cond_stmt_vinfo = def_stmt_info;
	    }
	}
    }

  if (!vectype_in)
    vectype_in = vectype_out;

  /* When vectorizing a reduction chain w/o SLP the reduction PHI is not
     directy used in stmt.  */
  if (reduc_index == -1)
    {
      if (STMT_VINFO_REDUC_TYPE (stmt_info) == FOLD_LEFT_REDUCTION)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "in-order reduction chain without SLP.\n");
	  return false;
	}
    }

  if (!(reduc_index == -1
	|| dts[reduc_index] == vect_reduction_def
	|| dts[reduc_index] == vect_nested_cycle
	|| ((dts[reduc_index] == vect_internal_def
	     || dts[reduc_index] == vect_external_def
	     || dts[reduc_index] == vect_constant_def
	     || dts[reduc_index] == vect_induction_def)
	    && nested_cycle && found_nested_cycle_def)))
    {
      /* For pattern recognized stmts, orig_stmt might be a reduction,
	 but some helper statements for the pattern might not, or
	 might be COND_EXPRs with reduction uses in the condition.  */
      gcc_assert (orig_stmt_info);
      return false;
    }

  /* PHIs should not participate in patterns.  */
  gcc_assert (!STMT_VINFO_RELATED_STMT (reduc_def_info));
  enum vect_reduction_type v_reduc_type
    = STMT_VINFO_REDUC_TYPE (reduc_def_info);
  stmt_vec_info tmp = STMT_VINFO_REDUC_DEF (reduc_def_info);

  STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
  /* If we have a condition reduction, see if we can simplify it further.  */
  if (v_reduc_type == COND_REDUCTION)
    {
      /* TODO: We can't yet handle reduction chains, since we need to treat
	 each COND_EXPR in the chain specially, not just the last one.
	 E.g. for:

	    x_1 = PHI <x_3, ...>
	    x_2 = a_2 ? ... : x_1;
	    x_3 = a_3 ? ... : x_2;

	 we're interested in the last element in x_3 for which a_2 || a_3
	 is true, whereas the current reduction chain handling would
	 vectorize x_2 as a normal VEC_COND_EXPR and only treat x_3
	 as a reduction operation.  */
      if (reduc_index == -1)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "conditional reduction chains not supported\n");
	  return false;
	}

      /* vect_is_simple_reduction ensured that operand 2 is the
	 loop-carried operand.  */
      gcc_assert (reduc_index == 2);

      /* Loop peeling modifies initial value of reduction PHI, which
	 makes the reduction stmt to be transformed different to the
	 original stmt analyzed.  We need to record reduction code for
	 CONST_COND_REDUCTION type reduction at analyzing stage, thus
	 it can be used directly at transform stage.  */
      if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MAX_EXPR
	  || STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MIN_EXPR)
	{
	  /* Also set the reduction type to CONST_COND_REDUCTION.  */
	  gcc_assert (cond_reduc_dt == vect_constant_def);
	  STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = CONST_COND_REDUCTION;
	}
      else if (direct_internal_fn_supported_p (IFN_FOLD_EXTRACT_LAST,
					       vectype_in, OPTIMIZE_FOR_SPEED))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "optimizing condition reduction with"
			     " FOLD_EXTRACT_LAST.\n");
	  STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = EXTRACT_LAST_REDUCTION;
	}
      else if (cond_reduc_dt == vect_induction_def)
	{
	  tree base
	    = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (cond_stmt_vinfo);
	  tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (cond_stmt_vinfo);

	  gcc_assert (TREE_CODE (base) == INTEGER_CST
		      && TREE_CODE (step) == INTEGER_CST);
	  cond_reduc_val = NULL_TREE;
	  /* Find a suitable value, for MAX_EXPR below base, for MIN_EXPR
	     above base; punt if base is the minimum value of the type for
	     MAX_EXPR or maximum value of the type for MIN_EXPR for now.  */
	  if (tree_int_cst_sgn (step) == -1)
	    {
	      cond_reduc_op_code = MIN_EXPR;
	      if (tree_int_cst_sgn (base) == -1)
		cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
	      else if (tree_int_cst_lt (base,
					TYPE_MAX_VALUE (TREE_TYPE (base))))
		cond_reduc_val
		  = int_const_binop (PLUS_EXPR, base, integer_one_node);
	    }
	  else
	    {
	      cond_reduc_op_code = MAX_EXPR;
	      if (tree_int_cst_sgn (base) == 1)
		cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
	      else if (tree_int_cst_lt (TYPE_MIN_VALUE (TREE_TYPE (base)),
					base))
		cond_reduc_val
		  = int_const_binop (MINUS_EXPR, base, integer_one_node);
	    }
	  if (cond_reduc_val)
	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_NOTE, vect_location,
				 "condition expression based on "
				 "integer induction.\n");
	      STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
		= INTEGER_INDUC_COND_REDUCTION;
	    }
	}
      else if (cond_reduc_dt == vect_constant_def)
	{
	  enum vect_def_type cond_initial_dt;
	  gimple *def_stmt = SSA_NAME_DEF_STMT (ops[reduc_index]);
	  tree cond_initial_val
	    = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));

	  gcc_assert (cond_reduc_val != NULL_TREE);
	  vect_is_simple_use (cond_initial_val, loop_vinfo, &cond_initial_dt);
	  if (cond_initial_dt == vect_constant_def
	      && types_compatible_p (TREE_TYPE (cond_initial_val),
				     TREE_TYPE (cond_reduc_val)))
	    {
	      tree e = fold_binary (LE_EXPR, boolean_type_node,
				    cond_initial_val, cond_reduc_val);
	      if (e && (integer_onep (e) || integer_zerop (e)))
		{
		  if (dump_enabled_p ())
		    dump_printf_loc (MSG_NOTE, vect_location,
				     "condition expression based on "
				     "compile time constant.\n");
		  /* Record reduction code at analysis stage.  */
		  STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info)
		    = integer_onep (e) ? MAX_EXPR : MIN_EXPR;
		  STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
		    = CONST_COND_REDUCTION;
		}
	    }
	}
    }

  if (orig_stmt_info)
    gcc_assert (tmp == orig_stmt_info
		|| REDUC_GROUP_FIRST_ELEMENT (tmp) == orig_stmt_info);
  else
    /* We changed STMT to be the first stmt in reduction chain, hence we
       check that in this case the first element in the chain is STMT.  */
    gcc_assert (tmp == stmt_info
		|| REDUC_GROUP_FIRST_ELEMENT (tmp) == stmt_info);

  if (STMT_VINFO_LIVE_P (reduc_def_info))
    return false;

  if (slp_node)
    ncopies = 1;
  else
    ncopies = vect_get_num_copies (loop_vinfo, vectype_in);

  gcc_assert (ncopies >= 1);

  vec_mode = TYPE_MODE (vectype_in);
  poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);

  if (nested_cycle)
    {
      def_bb = gimple_bb (reduc_def_phi);
      def_stmt_loop = def_bb->loop_father;
      def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_phi,
                                       loop_preheader_edge (def_stmt_loop));
      stmt_vec_info def_arg_stmt_info = loop_vinfo->lookup_def (def_arg);
      if (def_arg_stmt_info
	  && (STMT_VINFO_DEF_TYPE (def_arg_stmt_info)
	      == vect_double_reduction_def))
        double_reduc = true;
    }

  vect_reduction_type reduction_type
    = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info);
  if ((double_reduc || reduction_type != TREE_CODE_REDUCTION)
      && ncopies > 1)
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "multiple types in double reduction or condition "
			 "reduction.\n");
      return false;
    }

  if (code == COND_EXPR)
    {
      /* Only call during the analysis stage, otherwise we'll lose
	 STMT_VINFO_TYPE.  */
      if (!vec_stmt && !vectorizable_condition (stmt_info, gsi, NULL,
						true, NULL, cost_vec))
        {
          if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "unsupported condition in reduction\n");
	  return false;
        }
    }
  else if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
	   || code == LROTATE_EXPR || code == RROTATE_EXPR)
    {
      /* Only call during the analysis stage, otherwise we'll lose
	 STMT_VINFO_TYPE.  We only support this for nested cycles
	 without double reductions at the moment.  */
      if (!nested_cycle
	  || double_reduc
	  || (!vec_stmt && !vectorizable_shift (stmt_info, gsi, NULL,
						NULL, cost_vec)))
	{
          if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "unsupported shift or rotation in reduction\n");
	  return false;
	}
    }
  else
    {
      /* 4. Supportable by target?  */

      /* 4.1. check support for the operation in the loop  */
      optab = optab_for_tree_code (code, vectype_in, optab_default);
      if (!optab)
        {
          if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "no optab.\n");

          return false;
        }

      if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
        {
          if (dump_enabled_p ())
            dump_printf (MSG_NOTE, "op not supported by target.\n");

	  if (maybe_ne (GET_MODE_SIZE (vec_mode), UNITS_PER_WORD)
	      || !vect_worthwhile_without_simd_p (loop_vinfo, code))
            return false;

          if (dump_enabled_p ())
  	    dump_printf (MSG_NOTE, "proceeding using word mode.\n");
        }

      /* Worthwhile without SIMD support?  */
      if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
	  && !vect_worthwhile_without_simd_p (loop_vinfo, code))
        {
          if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "not worthwhile without SIMD support.\n");

          return false;
        }
    }

  /* 4.2. Check support for the epilog operation.

          If STMT represents a reduction pattern, then the type of the
          reduction variable may be different than the type of the rest
          of the arguments.  For example, consider the case of accumulation
          of shorts into an int accumulator; The original code:
                        S1: int_a = (int) short_a;
          orig_stmt->   S2: int_acc = plus <int_a ,int_acc>;

          was replaced with:
                        STMT: int_acc = widen_sum <short_a, int_acc>

          This means that:
          1. The tree-code that is used to create the vector operation in the
             epilog code (that reduces the partial results) is not the
             tree-code of STMT, but is rather the tree-code of the original
             stmt from the pattern that STMT is replacing.  I.e, in the example
             above we want to use 'widen_sum' in the loop, but 'plus' in the
             epilog.
          2. The type (mode) we use to check available target support
             for the vector operation to be created in the *epilog*, is
             determined by the type of the reduction variable (in the example
             above we'd check this: optab_handler (plus_optab, vect_int_mode])).
             However the type (mode) we use to check available target support
             for the vector operation to be created *inside the loop*, is
             determined by the type of the other arguments to STMT (in the
             example we'd check this: optab_handler (widen_sum_optab,
	     vect_short_mode)).

          This is contrary to "regular" reductions, in which the types of all
          the arguments are the same as the type of the reduction variable.
          For "regular" reductions we can therefore use the same vector type
          (and also the same tree-code) when generating the epilog code and
          when generating the code inside the loop.  */

  if (orig_stmt_info
      && (reduction_type == TREE_CODE_REDUCTION
	  || reduction_type == FOLD_LEFT_REDUCTION))
    {
      /* This is a reduction pattern: get the vectype from the type of the
         reduction variable, and get the tree-code from orig_stmt.  */
      orig_code = gimple_assign_rhs_code (orig_stmt_info->stmt);
      gcc_assert (vectype_out);
      vec_mode = TYPE_MODE (vectype_out);
    }
  else
    {
      /* Regular reduction: use the same vectype and tree-code as used for
         the vector code inside the loop can be used for the epilog code. */
      orig_code = code;

      if (code == MINUS_EXPR)
	orig_code = PLUS_EXPR;

      /* For simple condition reductions, replace with the actual expression
	 we want to base our reduction around.  */
      if (reduction_type == CONST_COND_REDUCTION)
	{
	  orig_code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
	  gcc_assert (orig_code == MAX_EXPR || orig_code == MIN_EXPR);
	}
      else if (reduction_type == INTEGER_INDUC_COND_REDUCTION)
	orig_code = cond_reduc_op_code;
    }

  reduc_fn = IFN_LAST;

  if (reduction_type == TREE_CODE_REDUCTION
      || reduction_type == FOLD_LEFT_REDUCTION
      || reduction_type == INTEGER_INDUC_COND_REDUCTION
      || reduction_type == CONST_COND_REDUCTION)
    {
      if (reduction_type == FOLD_LEFT_REDUCTION
	  ? fold_left_reduction_fn (orig_code, &reduc_fn)
	  : reduction_fn_for_scalar_code (orig_code, &reduc_fn))
	{
	  if (reduc_fn != IFN_LAST
	      && !direct_internal_fn_supported_p (reduc_fn, vectype_out,
						  OPTIMIZE_FOR_SPEED))
	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
				 "reduc op not supported by target.\n");

	      reduc_fn = IFN_LAST;
	    }
	}
      else
	{
	  if (!nested_cycle || double_reduc)
	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
				 "no reduc code for scalar code.\n");

	      return false;
	    }
	}
    }
  else if (reduction_type == COND_REDUCTION)
    {
      int scalar_precision
	= GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
      cr_index_scalar_type = make_unsigned_type (scalar_precision);
      cr_index_vector_type = build_vector_type (cr_index_scalar_type,
						nunits_out);

      if (direct_internal_fn_supported_p (IFN_REDUC_MAX, cr_index_vector_type,
					  OPTIMIZE_FOR_SPEED))
	reduc_fn = IFN_REDUC_MAX;
    }

  if (reduction_type != EXTRACT_LAST_REDUCTION
      && (!nested_cycle || double_reduc)
      && reduc_fn == IFN_LAST
      && !nunits_out.is_constant ())
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "missing target support for reduction on"
			 " variable-length vectors.\n");
      return false;
    }

  /* For SLP reductions, see if there is a neutral value we can use.  */
  tree neutral_op = NULL_TREE;
  if (slp_node)
    neutral_op = neutral_op_for_slp_reduction
      (slp_node_instance->reduc_phis, code,
       REDUC_GROUP_FIRST_ELEMENT (stmt_info) != NULL);

  if (double_reduc && reduction_type == FOLD_LEFT_REDUCTION)
    {
      /* We can't support in-order reductions of code such as this:

	   for (int i = 0; i < n1; ++i)
	     for (int j = 0; j < n2; ++j)
	       l += a[j];

	 since GCC effectively transforms the loop when vectorizing:

	   for (int i = 0; i < n1 / VF; ++i)
	     for (int j = 0; j < n2; ++j)
	       for (int k = 0; k < VF; ++k)
		 l += a[j];

	 which is a reassociation of the original operation.  */
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "in-order double reduction not supported.\n");

      return false;
    }

  if (reduction_type == FOLD_LEFT_REDUCTION
      && slp_node
      && !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
    {
      /* We cannot use in-order reductions in this case because there is
	 an implicit reassociation of the operations involved.  */
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "in-order unchained SLP reductions not supported.\n");
      return false;
    }

  /* For double reductions, and for SLP reductions with a neutral value,
     we construct a variable-length initial vector by loading a vector
     full of the neutral value and then shift-and-inserting the start
     values into the low-numbered elements.  */
  if ((double_reduc || neutral_op)
      && !nunits_out.is_constant ()
      && !direct_internal_fn_supported_p (IFN_VEC_SHL_INSERT,
					  vectype_out, OPTIMIZE_FOR_SPEED))
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "reduction on variable-length vectors requires"
			 " target support for a vector-shift-and-insert"
			 " operation.\n");
      return false;
    }

  /* Check extra constraints for variable-length unchained SLP reductions.  */
  if (STMT_SLP_TYPE (stmt_info)
      && !REDUC_GROUP_FIRST_ELEMENT (stmt_info)
      && !nunits_out.is_constant ())
    {
      /* We checked above that we could build the initial vector when
	 there's a neutral element value.  Check here for the case in
	 which each SLP statement has its own initial value and in which
	 that value needs to be repeated for every instance of the
	 statement within the initial vector.  */
      unsigned int group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
      scalar_mode elt_mode = SCALAR_TYPE_MODE (TREE_TYPE (vectype_out));
      if (!neutral_op
	  && !can_duplicate_and_interleave_p (group_size, elt_mode))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "unsupported form of SLP reduction for"
			     " variable-length vectors: cannot build"
			     " initial vector.\n");
	  return false;
	}
      /* The epilogue code relies on the number of elements being a multiple
	 of the group size.  The duplicate-and-interleave approach to setting
	 up the the initial vector does too.  */
      if (!multiple_p (nunits_out, group_size))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "unsupported form of SLP reduction for"
			     " variable-length vectors: the vector size"
			     " is not a multiple of the number of results.\n");
	  return false;
	}
    }

  /* In case of widenning multiplication by a constant, we update the type
     of the constant to be the type of the other operand.  We check that the
     constant fits the type in the pattern recognition pass.  */
  if (code == DOT_PROD_EXPR
      && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
    {
      if (TREE_CODE (ops[0]) == INTEGER_CST)
        ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
      else if (TREE_CODE (ops[1]) == INTEGER_CST)
        ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
      else
        {
          if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "invalid types in dot-prod\n");

          return false;
        }
    }

  if (reduction_type == COND_REDUCTION)
    {
      widest_int ni;

      if (! max_loop_iterations (loop, &ni))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "loop count not known, cannot create cond "
			     "reduction.\n");
	  return false;
	}
      /* Convert backedges to iterations.  */
      ni += 1;

      /* The additional index will be the same type as the condition.  Check
	 that the loop can fit into this less one (because we'll use up the
	 zero slot for when there are no matches).  */
      tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
      if (wi::geu_p (ni, wi::to_widest (max_index)))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "loop size is greater than data size.\n");
	  return false;
	}
    }

  /* In case the vectorization factor (VF) is bigger than the number
     of elements that we can fit in a vectype (nunits), we have to generate
     more than one vector stmt - i.e - we need to "unroll" the
     vector stmt by a factor VF/nunits.  For more details see documentation
     in vectorizable_operation.  */

  /* If the reduction is used in an outer loop we need to generate
     VF intermediate results, like so (e.g. for ncopies=2):
	r0 = phi (init, r0)
	r1 = phi (init, r1)
	r0 = x0 + r0;
        r1 = x1 + r1;
    (i.e. we generate VF results in 2 registers).
    In this case we have a separate def-use cycle for each copy, and therefore
    for each copy we get the vector def for the reduction variable from the
    respective phi node created for this copy.

    Otherwise (the reduction is unused in the loop nest), we can combine
    together intermediate results, like so (e.g. for ncopies=2):
	r = phi (init, r)
	r = x0 + r;
	r = x1 + r;
   (i.e. we generate VF/2 results in a single register).
   In this case for each copy we get the vector def for the reduction variable
   from the vectorized reduction operation generated in the previous iteration.

   This only works when we see both the reduction PHI and its only consumer
   in vectorizable_reduction and there are no intermediate stmts
   participating.  */
  stmt_vec_info use_stmt_info;
  tree reduc_phi_result = gimple_phi_result (reduc_def_phi);
  if (ncopies > 1
      && (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
      && (use_stmt_info = loop_vinfo->lookup_single_use (reduc_phi_result))
      && vect_stmt_to_vectorize (use_stmt_info) == stmt_info)
    {
      single_defuse_cycle = true;
      epilog_copies = 1;
    }
  else
    epilog_copies = ncopies;

  /* If the reduction stmt is one of the patterns that have lane
     reduction embedded we cannot handle the case of ! single_defuse_cycle.  */
  if ((ncopies > 1
       && ! single_defuse_cycle)
      && (code == DOT_PROD_EXPR
	  || code == WIDEN_SUM_EXPR
	  || code == SAD_EXPR))
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "multi def-use cycle not possible for lane-reducing "
			 "reduction operation\n");
      return false;
    }

  if (slp_node)
    vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
  else
    vec_num = 1;

  internal_fn cond_fn = get_conditional_internal_fn (code);
  vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
  bool mask_by_cond_expr = use_mask_by_cond_expr_p (code, cond_fn, vectype_in);

  if (!vec_stmt) /* transformation not required.  */
    {
      vect_model_reduction_cost (stmt_info, reduc_fn, ncopies, cost_vec);
      if (loop_vinfo && LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo))
	{
	  if (reduction_type != FOLD_LEFT_REDUCTION
	      && !mask_by_cond_expr
	      && (cond_fn == IFN_LAST
		  || !direct_internal_fn_supported_p (cond_fn, vectype_in,
						      OPTIMIZE_FOR_SPEED)))
	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
				 "can't use a fully-masked loop because no"
				 " conditional operation is available.\n");
	      LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
	    }
	  else if (reduc_index == -1)
	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
				 "can't use a fully-masked loop for chained"
				 " reductions.\n");
	      LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
	    }
	  else
	    vect_record_loop_mask (loop_vinfo, masks, ncopies * vec_num,
				   vectype_in);
	}
      if (dump_enabled_p ()
	  && reduction_type == FOLD_LEFT_REDUCTION)
	dump_printf_loc (MSG_NOTE, vect_location,
			 "using an in-order (fold-left) reduction.\n");
      STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
      return true;
    }

  /* Transform.  */

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");

  /* FORNOW: Multiple types are not supported for condition.  */
  if (code == COND_EXPR)
    gcc_assert (ncopies == 1);

  bool masked_loop_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);

  if (reduction_type == FOLD_LEFT_REDUCTION)
    return vectorize_fold_left_reduction
      (stmt_info, gsi, vec_stmt, slp_node, reduc_def_phi, code,
       reduc_fn, ops, vectype_in, reduc_index, masks);

  if (reduction_type == EXTRACT_LAST_REDUCTION)
    {
      gcc_assert (!slp_node);
      return vectorizable_condition (stmt_info, gsi, vec_stmt,
				     true, NULL, NULL);
    }

  /* Create the destination vector  */
  vec_dest = vect_create_destination_var (scalar_dest, vectype_out);

  prev_stmt_info = NULL;
  prev_phi_info = NULL;
  if (!slp_node)
    {
      vec_oprnds0.create (1);
      vec_oprnds1.create (1);
      if (op_type == ternary_op)
        vec_oprnds2.create (1);
    }

  phis.create (vec_num);
  vect_defs.create (vec_num);
  if (!slp_node)
    vect_defs.quick_push (NULL_TREE);

  if (slp_node)
    phis.splice (SLP_TREE_VEC_STMTS (slp_node_instance->reduc_phis));
  else
    phis.quick_push (STMT_VINFO_VEC_STMT (reduc_def_info));

  for (j = 0; j < ncopies; j++)
    {
      if (code == COND_EXPR)
        {
          gcc_assert (!slp_node);
	  vectorizable_condition (stmt_info, gsi, vec_stmt,
				  true, NULL, NULL);
          break;
        }
      if (code == LSHIFT_EXPR
	  || code == RSHIFT_EXPR)
	{
	  vectorizable_shift (stmt_info, gsi, vec_stmt, slp_node, NULL);
	  break;
	}

      /* Handle uses.  */
      if (j == 0)
        {
	  if (slp_node)
	    {
	      /* Get vec defs for all the operands except the reduction index,
		 ensuring the ordering of the ops in the vector is kept.  */
	      auto_vec<tree, 3> slp_ops;
	      auto_vec<vec<tree>, 3> vec_defs;

	      slp_ops.quick_push (ops[0]);
	      slp_ops.quick_push (ops[1]);
	      if (op_type == ternary_op)
		slp_ops.quick_push (ops[2]);

	      vect_get_slp_defs (slp_ops, slp_node, &vec_defs);

	      vec_oprnds0.safe_splice (vec_defs[0]);
	      vec_defs[0].release ();
	      vec_oprnds1.safe_splice (vec_defs[1]);
	      vec_defs[1].release ();
	      if (op_type == ternary_op)
		{
		  vec_oprnds2.safe_splice (vec_defs[2]);
		  vec_defs[2].release ();
		}
	    }
          else
	    {
              vec_oprnds0.quick_push
		(vect_get_vec_def_for_operand (ops[0], stmt_info));
              vec_oprnds1.quick_push
		(vect_get_vec_def_for_operand (ops[1], stmt_info));
              if (op_type == ternary_op)
		vec_oprnds2.quick_push 
		  (vect_get_vec_def_for_operand (ops[2], stmt_info));
	    }
        }
      else
        {
          if (!slp_node)
            {
	      gcc_assert (reduc_index != -1 || ! single_defuse_cycle);

	      if (single_defuse_cycle && reduc_index == 0)
		vec_oprnds0[0] = gimple_get_lhs (new_stmt_info->stmt);
	      else
		vec_oprnds0[0]
		  = vect_get_vec_def_for_stmt_copy (loop_vinfo,
						    vec_oprnds0[0]);
	      if (single_defuse_cycle && reduc_index == 1)
		vec_oprnds1[0] = gimple_get_lhs (new_stmt_info->stmt);
	      else
		vec_oprnds1[0]
		  = vect_get_vec_def_for_stmt_copy (loop_vinfo,
						    vec_oprnds1[0]);
	      if (op_type == ternary_op)
		{
		  if (single_defuse_cycle && reduc_index == 2)
		    vec_oprnds2[0] = gimple_get_lhs (new_stmt_info->stmt);
		  else
		    vec_oprnds2[0] 
		      = vect_get_vec_def_for_stmt_copy (loop_vinfo,
							vec_oprnds2[0]);
		}
            }
        }

      FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
        {
	  tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
	  if (masked_loop_p && !mask_by_cond_expr)
	    {
	      /* Make sure that the reduction accumulator is vop[0].  */
	      if (reduc_index == 1)
		{
		  gcc_assert (commutative_tree_code (code));
		  std::swap (vop[0], vop[1]);
		}
	      tree mask = vect_get_loop_mask (gsi, masks, vec_num * ncopies,
					      vectype_in, i * ncopies + j);
	      gcall *call = gimple_build_call_internal (cond_fn, 4, mask,
							vop[0], vop[1],
							vop[0]);
	      new_temp = make_ssa_name (vec_dest, call);
	      gimple_call_set_lhs (call, new_temp);
	      gimple_call_set_nothrow (call, true);
	      new_stmt_info
		= vect_finish_stmt_generation (stmt_info, call, gsi);
	    }
	  else
	    {
	      if (op_type == ternary_op)
		vop[2] = vec_oprnds2[i];

	      if (masked_loop_p && mask_by_cond_expr)
		{
		  tree mask = vect_get_loop_mask (gsi, masks,
						  vec_num * ncopies,
						  vectype_in, i * ncopies + j);
		  build_vect_cond_expr (code, vop, mask, gsi);
		}

	      gassign *new_stmt = gimple_build_assign (vec_dest, code,
						       vop[0], vop[1], vop[2]);
	      new_temp = make_ssa_name (vec_dest, new_stmt);
	      gimple_assign_set_lhs (new_stmt, new_temp);
	      new_stmt_info
		= vect_finish_stmt_generation (stmt_info, new_stmt, gsi);
	    }

          if (slp_node)
            {
	      SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt_info);
              vect_defs.quick_push (new_temp);
            }
          else
            vect_defs[0] = new_temp;
        }

      if (slp_node)
        continue;

      if (j == 0)
	STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt_info;
      else
	STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt_info;

      prev_stmt_info = new_stmt_info;
    }

  /* Finalize the reduction-phi (set its arguments) and create the
     epilog reduction code.  */
  if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
    vect_defs[0] = gimple_get_lhs ((*vec_stmt)->stmt);

  vect_create_epilog_for_reduction (vect_defs, stmt_info, reduc_def_phi,
				    epilog_copies, reduc_fn, phis,
				    double_reduc, slp_node, slp_node_instance,
				    cond_reduc_val, cond_reduc_op_code,
				    neutral_op);

  return true;
}

/* Function vect_min_worthwhile_factor.

   For a loop where we could vectorize the operation indicated by CODE,
   return the minimum vectorization factor that makes it worthwhile
   to use generic vectors.  */
static unsigned int
vect_min_worthwhile_factor (enum tree_code code)
{
  switch (code)
    {
    case PLUS_EXPR:
    case MINUS_EXPR:
    case NEGATE_EXPR:
      return 4;

    case BIT_AND_EXPR:
    case BIT_IOR_EXPR:
    case BIT_XOR_EXPR:
    case BIT_NOT_EXPR:
      return 2;

    default:
      return INT_MAX;
    }
}

/* Return true if VINFO indicates we are doing loop vectorization and if
   it is worth decomposing CODE operations into scalar operations for
   that loop's vectorization factor.  */

bool
vect_worthwhile_without_simd_p (vec_info *vinfo, tree_code code)
{
  loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
  unsigned HOST_WIDE_INT value;
  return (loop_vinfo
	  && LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&value)
	  && value >= vect_min_worthwhile_factor (code));
}

/* Function vectorizable_induction

   Check if STMT_INFO performs an induction computation that can be vectorized.
   If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
   phi to replace it, put it in VEC_STMT, and add it to the same basic block.
   Return true if STMT_INFO is vectorizable in this way.  */

bool
vectorizable_induction (stmt_vec_info stmt_info,
			gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
			stmt_vec_info *vec_stmt, slp_tree slp_node,
			stmt_vector_for_cost *cost_vec)
{
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  unsigned ncopies;
  bool nested_in_vect_loop = false;
  struct loop *iv_loop;
  tree vec_def;
  edge pe = loop_preheader_edge (loop);
  basic_block new_bb;
  tree new_vec, vec_init, vec_step, t;
  tree new_name;
  gimple *new_stmt;
  gphi *induction_phi;
  tree induc_def, vec_dest;
  tree init_expr, step_expr;
  poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  unsigned i;
  tree expr;
  gimple_seq stmts;
  imm_use_iterator imm_iter;
  use_operand_p use_p;
  gimple *exit_phi;
  edge latch_e;
  tree loop_arg;
  gimple_stmt_iterator si;

  gphi *phi = dyn_cast <gphi *> (stmt_info->stmt);
  if (!phi)
    return false;

  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    return false;

  /* Make sure it was recognized as induction computation.  */
  if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
    return false;

  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);

  if (slp_node)
    ncopies = 1;
  else
    ncopies = vect_get_num_copies (loop_vinfo, vectype);
  gcc_assert (ncopies >= 1);

  /* FORNOW. These restrictions should be relaxed.  */
  if (nested_in_vect_loop_p (loop, stmt_info))
    {
      imm_use_iterator imm_iter;
      use_operand_p use_p;
      gimple *exit_phi;
      edge latch_e;
      tree loop_arg;

      if (ncopies > 1)
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "multiple types in nested loop.\n");
	  return false;
	}

      /* FORNOW: outer loop induction with SLP not supported.  */
      if (STMT_SLP_TYPE (stmt_info))
	return false;

      exit_phi = NULL;
      latch_e = loop_latch_edge (loop->inner);
      loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
	{
	  gimple *use_stmt = USE_STMT (use_p);
	  if (is_gimple_debug (use_stmt))
	    continue;

	  if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
	    {
	      exit_phi = use_stmt;
	      break;
	    }
	}
      if (exit_phi)
	{
	  stmt_vec_info exit_phi_vinfo = loop_vinfo->lookup_stmt (exit_phi);
	  if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
		&& !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
				 "inner-loop induction only used outside "
				 "of the outer vectorized loop.\n");
	      return false;
	    }
	}

      nested_in_vect_loop = true;
      iv_loop = loop->inner;
    }
  else
    iv_loop = loop;
  gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);

  if (slp_node && !nunits.is_constant ())
    {
      /* The current SLP code creates the initial value element-by-element.  */
      if (dump_enabled_p ())
	dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			 "SLP induction not supported for variable-length"
			 " vectors.\n");
      return false;
    }

  if (!vec_stmt) /* transformation not required.  */
    {
      STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
      DUMP_VECT_SCOPE ("vectorizable_induction");
      vect_model_induction_cost (stmt_info, ncopies, cost_vec);
      return true;
    }

  /* Transform.  */

  /* Compute a vector variable, initialized with the first VF values of
     the induction variable.  E.g., for an iv with IV_PHI='X' and
     evolution S, for a vector of 4 units, we want to compute:
     [X, X + S, X + 2*S, X + 3*S].  */

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");

  latch_e = loop_latch_edge (iv_loop);
  loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);

  step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
  gcc_assert (step_expr != NULL_TREE);

  pe = loop_preheader_edge (iv_loop);
  init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
				     loop_preheader_edge (iv_loop));

  stmts = NULL;
  if (!nested_in_vect_loop)
    {
      /* Convert the initial value to the desired type.  */
      tree new_type = TREE_TYPE (vectype);
      init_expr = gimple_convert (&stmts, new_type, init_expr);

      /* If we are using the loop mask to "peel" for alignment then we need
	 to adjust the start value here.  */
      tree skip_niters = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
      if (skip_niters != NULL_TREE)
	{
	  if (FLOAT_TYPE_P (vectype))
	    skip_niters = gimple_build (&stmts, FLOAT_EXPR, new_type,
					skip_niters);
	  else
	    skip_niters = gimple_convert (&stmts, new_type, skip_niters);
	  tree skip_step = gimple_build (&stmts, MULT_EXPR, new_type,
					 skip_niters, step_expr);
	  init_expr = gimple_build (&stmts, MINUS_EXPR, new_type,
				    init_expr, skip_step);
	}
    }

  /* Convert the step to the desired type.  */
  step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);

  if (stmts)
    {
      new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
      gcc_assert (!new_bb);
    }

  /* Find the first insertion point in the BB.  */
  basic_block bb = gimple_bb (phi);
  si = gsi_after_labels (bb);

  /* For SLP induction we have to generate several IVs as for example
     with group size 3 we need [i, i, i, i + S] [i + S, i + S, i + 2*S, i + 2*S]
     [i + 2*S, i + 3*S, i + 3*S, i + 3*S].  The step is the same uniform
     [VF*S, VF*S, VF*S, VF*S] for all.  */
  if (slp_node)
    {
      /* Enforced above.  */
      unsigned int const_nunits = nunits.to_constant ();

      /* Generate [VF*S, VF*S, ... ].  */
      if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
	{
	  expr = build_int_cst (integer_type_node, vf);
	  expr = fold_convert (TREE_TYPE (step_expr), expr);
	}
      else
	expr = build_int_cst (TREE_TYPE (step_expr), vf);
      new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
			      expr, step_expr);
      if (! CONSTANT_CLASS_P (new_name))
	new_name = vect_init_vector (stmt_info, new_name,
				     TREE_TYPE (step_expr), NULL);
      new_vec = build_vector_from_val (vectype, new_name);
      vec_step = vect_init_vector (stmt_info, new_vec, vectype, NULL);

      /* Now generate the IVs.  */
      unsigned group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
      unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
      unsigned elts = const_nunits * nvects;
      unsigned nivs = least_common_multiple (group_size,
					     const_nunits) / const_nunits;
      gcc_assert (elts % group_size == 0);
      tree elt = init_expr;
      unsigned ivn;
      for (ivn = 0; ivn < nivs; ++ivn)
	{
	  tree_vector_builder elts (vectype, const_nunits, 1);
	  stmts = NULL;
	  for (unsigned eltn = 0; eltn < const_nunits; ++eltn)
	    {
	      if (ivn*const_nunits + eltn >= group_size
		  && (ivn * const_nunits + eltn) % group_size == 0)
		elt = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (elt),
				    elt, step_expr);
	      elts.quick_push (elt);
	    }
	  vec_init = gimple_build_vector (&stmts, &elts);
	  if (stmts)
	    {
	      new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
	      gcc_assert (!new_bb);
	    }

	  /* Create the induction-phi that defines the induction-operand.  */
	  vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
	  induction_phi = create_phi_node (vec_dest, iv_loop->header);
	  stmt_vec_info induction_phi_info
	    = loop_vinfo->add_stmt (induction_phi);
	  induc_def = PHI_RESULT (induction_phi);

	  /* Create the iv update inside the loop  */
	  vec_def = make_ssa_name (vec_dest);
	  new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
	  gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
	  loop_vinfo->add_stmt (new_stmt);

	  /* Set the arguments of the phi node:  */
	  add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
	  add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
		       UNKNOWN_LOCATION);

	  SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi_info);
	}

      /* Re-use IVs when we can.  */
      if (ivn < nvects)
	{
	  unsigned vfp
	    = least_common_multiple (group_size, const_nunits) / group_size;
	  /* Generate [VF'*S, VF'*S, ... ].  */
	  if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
	    {
	      expr = build_int_cst (integer_type_node, vfp);
	      expr = fold_convert (TREE_TYPE (step_expr), expr);
	    }
	  else
	    expr = build_int_cst (TREE_TYPE (step_expr), vfp);
	  new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
				  expr, step_expr);
	  if (! CONSTANT_CLASS_P (new_name))
	    new_name = vect_init_vector (stmt_info, new_name,
					 TREE_TYPE (step_expr), NULL);
	  new_vec = build_vector_from_val (vectype, new_name);
	  vec_step = vect_init_vector (stmt_info, new_vec, vectype, NULL);
	  for (; ivn < nvects; ++ivn)
	    {
	      gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs]->stmt;
	      tree def;
	      if (gimple_code (iv) == GIMPLE_PHI)
		def = gimple_phi_result (iv);
	      else
		def = gimple_assign_lhs (iv);
	      new_stmt = gimple_build_assign (make_ssa_name (vectype),
					      PLUS_EXPR,
					      def, vec_step);
	      if (gimple_code (iv) == GIMPLE_PHI)
		gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
	      else
		{
		  gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
		  gsi_insert_after (&tgsi, new_stmt, GSI_CONTINUE_LINKING);
		}
	      SLP_TREE_VEC_STMTS (slp_node).quick_push
		(loop_vinfo->add_stmt (new_stmt));
	    }
	}

      return true;
    }

  /* Create the vector that holds the initial_value of the induction.  */
  if (nested_in_vect_loop)
    {
      /* iv_loop is nested in the loop to be vectorized.  init_expr had already
	 been created during vectorization of previous stmts.  We obtain it
	 from the STMT_VINFO_VEC_STMT of the defining stmt.  */
      vec_init = vect_get_vec_def_for_operand (init_expr, stmt_info);
      /* If the initial value is not of proper type, convert it.  */
      if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
	{
	  new_stmt
	    = gimple_build_assign (vect_get_new_ssa_name (vectype,
							  vect_simple_var,
							  "vec_iv_"),
				   VIEW_CONVERT_EXPR,
				   build1 (VIEW_CONVERT_EXPR, vectype,
					   vec_init));
	  vec_init = gimple_assign_lhs (new_stmt);
	  new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
						 new_stmt);
	  gcc_assert (!new_bb);
	  loop_vinfo->add_stmt (new_stmt);
	}
    }
  else
    {
      /* iv_loop is the loop to be vectorized. Create:
	 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr)  */
      stmts = NULL;
      new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);

      unsigned HOST_WIDE_INT const_nunits;
      if (nunits.is_constant (&const_nunits))
	{
	  tree_vector_builder elts (vectype, const_nunits, 1);
	  elts.quick_push (new_name);
	  for (i = 1; i < const_nunits; i++)
	    {
	      /* Create: new_name_i = new_name + step_expr  */
	      new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
				       new_name, step_expr);
	      elts.quick_push (new_name);
	    }
	  /* Create a vector from [new_name_0, new_name_1, ...,
	     new_name_nunits-1]  */
	  vec_init = gimple_build_vector (&stmts, &elts);
	}
      else if (INTEGRAL_TYPE_P (TREE_TYPE (step_expr)))
	/* Build the initial value directly from a VEC_SERIES_EXPR.  */
	vec_init = gimple_build (&stmts, VEC_SERIES_EXPR, vectype,
				 new_name, step_expr);
      else
	{
	  /* Build:
	        [base, base, base, ...]
		+ (vectype) [0, 1, 2, ...] * [step, step, step, ...].  */
	  gcc_assert (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)));
	  gcc_assert (flag_associative_math);
	  tree index = build_index_vector (vectype, 0, 1);
	  tree base_vec = gimple_build_vector_from_val (&stmts, vectype,
							new_name);
	  tree step_vec = gimple_build_vector_from_val (&stmts, vectype,
							step_expr);
	  vec_init = gimple_build (&stmts, FLOAT_EXPR, vectype, index);
	  vec_init = gimple_build (&stmts, MULT_EXPR, vectype,
				   vec_init, step_vec);
	  vec_init = gimple_build (&stmts, PLUS_EXPR, vectype,
				   vec_init, base_vec);
	}

      if (stmts)
	{
	  new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
	  gcc_assert (!new_bb);
	}
    }


  /* Create the vector that holds the step of the induction.  */
  if (nested_in_vect_loop)
    /* iv_loop is nested in the loop to be vectorized. Generate:
       vec_step = [S, S, S, S]  */
    new_name = step_expr;
  else
    {
      /* iv_loop is the loop to be vectorized. Generate:
	  vec_step = [VF*S, VF*S, VF*S, VF*S]  */
      gimple_seq seq = NULL;
      if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
	{
	  expr = build_int_cst (integer_type_node, vf);
	  expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
	}
      else
	expr = build_int_cst (TREE_TYPE (step_expr), vf);
      new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
			       expr, step_expr);
      if (seq)
	{
	  new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
	  gcc_assert (!new_bb);
	}
    }

  t = unshare_expr (new_name);
  gcc_assert (CONSTANT_CLASS_P (new_name)
	      || TREE_CODE (new_name) == SSA_NAME);
  new_vec = build_vector_from_val (vectype, t);
  vec_step = vect_init_vector (stmt_info, new_vec, vectype, NULL);


  /* Create the following def-use cycle:
     loop prolog:
         vec_init = ...
	 vec_step = ...
     loop:
         vec_iv = PHI <vec_init, vec_loop>
         ...
         STMT
         ...
         vec_loop = vec_iv + vec_step;  */

  /* Create the induction-phi that defines the induction-operand.  */
  vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
  induction_phi = create_phi_node (vec_dest, iv_loop->header);
  stmt_vec_info induction_phi_info = loop_vinfo->add_stmt (induction_phi);
  induc_def = PHI_RESULT (induction_phi);

  /* Create the iv update inside the loop  */
  vec_def = make_ssa_name (vec_dest);
  new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
  gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
  stmt_vec_info new_stmt_info = loop_vinfo->add_stmt (new_stmt);

  /* Set the arguments of the phi node:  */
  add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
  add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
	       UNKNOWN_LOCATION);

  STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = induction_phi_info;

  /* In case that vectorization factor (VF) is bigger than the number
     of elements that we can fit in a vectype (nunits), we have to generate
     more than one vector stmt - i.e - we need to "unroll" the
     vector stmt by a factor VF/nunits.  For more details see documentation
     in vectorizable_operation.  */

  if (ncopies > 1)
    {
      gimple_seq seq = NULL;
      stmt_vec_info prev_stmt_vinfo;
      /* FORNOW. This restriction should be relaxed.  */
      gcc_assert (!nested_in_vect_loop);

      /* Create the vector that holds the step of the induction.  */
      if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
	{
	  expr = build_int_cst (integer_type_node, nunits);
	  expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
	}
      else
	expr = build_int_cst (TREE_TYPE (step_expr), nunits);
      new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
			       expr, step_expr);
      if (seq)
	{
	  new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
	  gcc_assert (!new_bb);
	}

      t = unshare_expr (new_name);
      gcc_assert (CONSTANT_CLASS_P (new_name)
		  || TREE_CODE (new_name) == SSA_NAME);
      new_vec = build_vector_from_val (vectype, t);
      vec_step = vect_init_vector (stmt_info, new_vec, vectype, NULL);

      vec_def = induc_def;
      prev_stmt_vinfo = induction_phi_info;
      for (i = 1; i < ncopies; i++)
	{
	  /* vec_i = vec_prev + vec_step  */
	  new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
					  vec_def, vec_step);
	  vec_def = make_ssa_name (vec_dest, new_stmt);
	  gimple_assign_set_lhs (new_stmt, vec_def);
 
	  gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
	  new_stmt_info = loop_vinfo->add_stmt (new_stmt);
	  STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt_info;
	  prev_stmt_vinfo = new_stmt_info;
	}
    }

  if (nested_in_vect_loop)
    {
      /* Find the loop-closed exit-phi of the induction, and record
         the final vector of induction results:  */
      exit_phi = NULL;
      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
        {
	  gimple *use_stmt = USE_STMT (use_p);
	  if (is_gimple_debug (use_stmt))
	    continue;

	  if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
	    {
	      exit_phi = use_stmt;
	      break;
	    }
        }
      if (exit_phi)
	{
	  stmt_vec_info stmt_vinfo = loop_vinfo->lookup_stmt (exit_phi);
	  /* FORNOW. Currently not supporting the case that an inner-loop induction
	     is not used in the outer-loop (i.e. only outside the outer-loop).  */
	  gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
		      && !STMT_VINFO_LIVE_P (stmt_vinfo));

	  STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt_info;
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "vector of inductions after inner-loop:%G",
			     new_stmt);
	}
    }


  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "transform induction: created def-use cycle: %G%G",
		     induction_phi, SSA_NAME_DEF_STMT (vec_def));

  return true;
}

/* Function vectorizable_live_operation.

   STMT_INFO computes a value that is used outside the loop.  Check if
   it can be supported.  */

bool
vectorizable_live_operation (stmt_vec_info stmt_info,
			     gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
			     slp_tree slp_node, int slp_index,
			     stmt_vec_info *vec_stmt,
			     stmt_vector_for_cost *)
{
  loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  imm_use_iterator imm_iter;
  tree lhs, lhs_type, bitsize, vec_bitsize;
  tree vectype = STMT_VINFO_VECTYPE (stmt_info);
  poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
  int ncopies;
  gimple *use_stmt;
  auto_vec<tree> vec_oprnds;
  int vec_entry = 0;
  poly_uint64 vec_index = 0;

  gcc_assert (STMT_VINFO_LIVE_P (stmt_info));

  if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
    return false;

  /* FORNOW.  CHECKME.  */
  if (nested_in_vect_loop_p (loop, stmt_info))
    return false;

  /* If STMT is not relevant and it is a simple assignment and its inputs are
     invariant then it can remain in place, unvectorized.  The original last
     scalar value that it computes will be used.  */
  if (!STMT_VINFO_RELEVANT_P (stmt_info))
    {
      gcc_assert (is_simple_and_all_uses_invariant (stmt_info, loop_vinfo));
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "statement is simple and uses invariant.  Leaving in "
			 "place.\n");
      return true;
    }

  if (slp_node)
    ncopies = 1;
  else
    ncopies = vect_get_num_copies (loop_vinfo, vectype);

  if (slp_node)
    {
      gcc_assert (slp_index >= 0);

      int num_scalar = SLP_TREE_SCALAR_STMTS (slp_node).length ();
      int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);

      /* Get the last occurrence of the scalar index from the concatenation of
	 all the slp vectors. Calculate which slp vector it is and the index
	 within.  */
      poly_uint64 pos = (num_vec * nunits) - num_scalar + slp_index;

      /* Calculate which vector contains the result, and which lane of
	 that vector we need.  */
      if (!can_div_trunc_p (pos, nunits, &vec_entry, &vec_index))
	{
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
			     "Cannot determine which vector holds the"
			     " final result.\n");
	  return false;
	}
    }

  if (!vec_stmt)
    {
      /* No transformation required.  */
      if (LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo))
	{
	  if (!direct_internal_fn_supported_p (IFN_EXTRACT_LAST, vectype,
					       OPTIMIZE_FOR_SPEED))
	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
				 "can't use a fully-masked loop because "
				 "the target doesn't support extract last "
				 "reduction.\n");
	      LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
	    }
	  else if (slp_node)
	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
				 "can't use a fully-masked loop because an "
				 "SLP statement is live after the loop.\n");
	      LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
	    }
	  else if (ncopies > 1)
	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
				 "can't use a fully-masked loop because"
				 " ncopies is greater than 1.\n");
	      LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
	    }
	  else
	    {
	      gcc_assert (ncopies == 1 && !slp_node);
	      vect_record_loop_mask (loop_vinfo,
				     &LOOP_VINFO_MASKS (loop_vinfo),
				     1, vectype);
	    }
	}
      return true;
    }

  /* Use the lhs of the original scalar statement.  */
  gimple *stmt = vect_orig_stmt (stmt_info)->stmt;

  lhs = (is_a <gphi *> (stmt)) ? gimple_phi_result (stmt)
	: gimple_get_lhs (stmt);
  lhs_type = TREE_TYPE (lhs);

  bitsize = (VECTOR_BOOLEAN_TYPE_P (vectype)
	     ? bitsize_int (TYPE_PRECISION (TREE_TYPE (vectype)))
	     : TYPE_SIZE (TREE_TYPE (vectype)));
  vec_bitsize = TYPE_SIZE (vectype);

  /* Get the vectorized lhs of STMT and the lane to use (counted in bits).  */
  tree vec_lhs, bitstart;
  if (slp_node)
    {
      gcc_assert (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo));

      /* Get the correct slp vectorized stmt.  */
      gimple *vec_stmt = SLP_TREE_VEC_STMTS (slp_node)[vec_entry]->stmt;
      if (gphi *phi = dyn_cast <gphi *> (vec_stmt))
	vec_lhs = gimple_phi_result (phi);
      else
	vec_lhs = gimple_get_lhs (vec_stmt);

      /* Get entry to use.  */
      bitstart = bitsize_int (vec_index);
      bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
    }
  else
    {
      enum vect_def_type dt = STMT_VINFO_DEF_TYPE (stmt_info);
      vec_lhs = vect_get_vec_def_for_operand_1 (stmt_info, dt);
      gcc_checking_assert (ncopies == 1
			   || !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo));

      /* For multiple copies, get the last copy.  */
      for (int i = 1; i < ncopies; ++i)
	vec_lhs = vect_get_vec_def_for_stmt_copy (loop_vinfo, vec_lhs);

      /* Get the last lane in the vector.  */
      bitstart = int_const_binop (MINUS_EXPR, vec_bitsize, bitsize);
    }

  gimple_seq stmts = NULL;
  tree new_tree;
  if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
    {
      /* Emit:

	   SCALAR_RES = EXTRACT_LAST <VEC_LHS, MASK>

	 where VEC_LHS is the vectorized live-out result and MASK is
	 the loop mask for the final iteration.  */
      gcc_assert (ncopies == 1 && !slp_node);
      tree scalar_type = TREE_TYPE (STMT_VINFO_VECTYPE (stmt_info));
      tree mask = vect_get_loop_mask (gsi, &LOOP_VINFO_MASKS (loop_vinfo),
				      1, vectype, 0);
      tree scalar_res = gimple_build (&stmts, CFN_EXTRACT_LAST,
				      scalar_type, mask, vec_lhs);

      /* Convert the extracted vector element to the required scalar type.  */
      new_tree = gimple_convert (&stmts, lhs_type, scalar_res);
    }
  else
    {
      tree bftype = TREE_TYPE (vectype);
      if (VECTOR_BOOLEAN_TYPE_P (vectype))
	bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
      new_tree = build3 (BIT_FIELD_REF, bftype, vec_lhs, bitsize, bitstart);
      new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree),
				       &stmts, true, NULL_TREE);
    }

  if (stmts)
    gsi_insert_seq_on_edge_immediate (single_exit (loop), stmts);

  /* Replace use of lhs with newly computed result.  If the use stmt is a
     single arg PHI, just replace all uses of PHI result.  It's necessary
     because lcssa PHI defining lhs may be before newly inserted stmt.  */
  use_operand_p use_p;
  FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
    if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
	&& !is_gimple_debug (use_stmt))
    {
      if (gimple_code (use_stmt) == GIMPLE_PHI
	  && gimple_phi_num_args (use_stmt) == 1)
	{
	  replace_uses_by (gimple_phi_result (use_stmt), new_tree);
	}
      else
	{
	  FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
	    SET_USE (use_p, new_tree);
	}
      update_stmt (use_stmt);
    }

  return true;
}

/* Kill any debug uses outside LOOP of SSA names defined in STMT_INFO.  */

static void
vect_loop_kill_debug_uses (struct loop *loop, stmt_vec_info stmt_info)
{
  ssa_op_iter op_iter;
  imm_use_iterator imm_iter;
  def_operand_p def_p;
  gimple *ustmt;

  FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt_info->stmt, op_iter, SSA_OP_DEF)
    {
      FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
	{
	  basic_block bb;

	  if (!is_gimple_debug (ustmt))
	    continue;

	  bb = gimple_bb (ustmt);

	  if (!flow_bb_inside_loop_p (loop, bb))
	    {
	      if (gimple_debug_bind_p (ustmt))
		{
		  if (dump_enabled_p ())
		    dump_printf_loc (MSG_NOTE, vect_location,
                                     "killing debug use\n");

		  gimple_debug_bind_reset_value (ustmt);
		  update_stmt (ustmt);
		}
	      else
		gcc_unreachable ();
	    }
	}
    }
}

/* Given loop represented by LOOP_VINFO, return true if computation of
   LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
   otherwise.  */

static bool
loop_niters_no_overflow (loop_vec_info loop_vinfo)
{
  /* Constant case.  */
  if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
    {
      tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
      tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);

      gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
      gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
      if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
	return true;
    }

  widest_int max;
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  /* Check the upper bound of loop niters.  */
  if (get_max_loop_iterations (loop, &max))
    {
      tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
      signop sgn = TYPE_SIGN (type);
      widest_int type_max = widest_int::from (wi::max_value (type), sgn);
      if (max < type_max)
	return true;
    }
  return false;
}

/* Return a mask type with half the number of elements as TYPE.  */

tree
vect_halve_mask_nunits (tree type)
{
  poly_uint64 nunits = exact_div (TYPE_VECTOR_SUBPARTS (type), 2);
  return build_truth_vector_type (nunits, current_vector_size);
}

/* Return a mask type with twice as many elements as TYPE.  */

tree
vect_double_mask_nunits (tree type)
{
  poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type) * 2;
  return build_truth_vector_type (nunits, current_vector_size);
}

/* Record that a fully-masked version of LOOP_VINFO would need MASKS to
   contain a sequence of NVECTORS masks that each control a vector of type
   VECTYPE.  */

void
vect_record_loop_mask (loop_vec_info loop_vinfo, vec_loop_masks *masks,
		       unsigned int nvectors, tree vectype)
{
  gcc_assert (nvectors != 0);
  if (masks->length () < nvectors)
    masks->safe_grow_cleared (nvectors);
  rgroup_masks *rgm = &(*masks)[nvectors - 1];
  /* The number of scalars per iteration and the number of vectors are
     both compile-time constants.  */
  unsigned int nscalars_per_iter
    = exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
		 LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
  if (rgm->max_nscalars_per_iter < nscalars_per_iter)
    {
      rgm->max_nscalars_per_iter = nscalars_per_iter;
      rgm->mask_type = build_same_sized_truth_vector_type (vectype);
    }
}

/* Given a complete set of masks MASKS, extract mask number INDEX
   for an rgroup that operates on NVECTORS vectors of type VECTYPE,
   where 0 <= INDEX < NVECTORS.  Insert any set-up statements before GSI.

   See the comment above vec_loop_masks for more details about the mask
   arrangement.  */

tree
vect_get_loop_mask (gimple_stmt_iterator *gsi, vec_loop_masks *masks,
		    unsigned int nvectors, tree vectype, unsigned int index)
{
  rgroup_masks *rgm = &(*masks)[nvectors - 1];
  tree mask_type = rgm->mask_type;

  /* Populate the rgroup's mask array, if this is the first time we've
     used it.  */
  if (rgm->masks.is_empty ())
    {
      rgm->masks.safe_grow_cleared (nvectors);
      for (unsigned int i = 0; i < nvectors; ++i)
	{
	  tree mask = make_temp_ssa_name (mask_type, NULL, "loop_mask");
	  /* Provide a dummy definition until the real one is available.  */
	  SSA_NAME_DEF_STMT (mask) = gimple_build_nop ();
	  rgm->masks[i] = mask;
	}
    }

  tree mask = rgm->masks[index];
  if (maybe_ne (TYPE_VECTOR_SUBPARTS (mask_type),
		TYPE_VECTOR_SUBPARTS (vectype)))
    {
      /* A loop mask for data type X can be reused for data type Y
	 if X has N times more elements than Y and if Y's elements
	 are N times bigger than X's.  In this case each sequence
	 of N elements in the loop mask will be all-zero or all-one.
	 We can then view-convert the mask so that each sequence of
	 N elements is replaced by a single element.  */
      gcc_assert (multiple_p (TYPE_VECTOR_SUBPARTS (mask_type),
			      TYPE_VECTOR_SUBPARTS (vectype)));
      gimple_seq seq = NULL;
      mask_type = build_same_sized_truth_vector_type (vectype);
      mask = gimple_build (&seq, VIEW_CONVERT_EXPR, mask_type, mask);
      if (seq)
	gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
    }
  return mask;
}

/* Scale profiling counters by estimation for LOOP which is vectorized
   by factor VF.  */

static void
scale_profile_for_vect_loop (struct loop *loop, unsigned vf)
{
  edge preheader = loop_preheader_edge (loop);
  /* Reduce loop iterations by the vectorization factor.  */
  gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
  profile_count freq_h = loop->header->count, freq_e = preheader->count ();

  if (freq_h.nonzero_p ())
    {
      profile_probability p;

      /* Avoid dropping loop body profile counter to 0 because of zero count
	 in loop's preheader.  */
      if (!(freq_e == profile_count::zero ()))
        freq_e = freq_e.force_nonzero ();
      p = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
      scale_loop_frequencies (loop, p);
    }

  edge exit_e = single_exit (loop);
  exit_e->probability = profile_probability::always ()
				 .apply_scale (1, new_est_niter + 1);

  edge exit_l = single_pred_edge (loop->latch);
  profile_probability prob = exit_l->probability;
  exit_l->probability = exit_e->probability.invert ();
  if (prob.initialized_p () && exit_l->probability.initialized_p ())
    scale_bbs_frequencies (&loop->latch, 1, exit_l->probability / prob);
}

/* Vectorize STMT_INFO if relevant, inserting any new instructions before GSI.
   When vectorizing STMT_INFO as a store, set *SEEN_STORE to its
   stmt_vec_info.  */

static void
vect_transform_loop_stmt (loop_vec_info loop_vinfo, stmt_vec_info stmt_info,
			  gimple_stmt_iterator *gsi, stmt_vec_info *seen_store)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location,
		     "------>vectorizing statement: %G", stmt_info->stmt);

  if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
    vect_loop_kill_debug_uses (loop, stmt_info);

  if (!STMT_VINFO_RELEVANT_P (stmt_info)
      && !STMT_VINFO_LIVE_P (stmt_info))
    return;

  if (STMT_VINFO_VECTYPE (stmt_info))
    {
      poly_uint64 nunits
	= TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
      if (!STMT_SLP_TYPE (stmt_info)
	  && maybe_ne (nunits, vf)
	  && dump_enabled_p ())
	/* For SLP VF is set according to unrolling factor, and not
	   to vector size, hence for SLP this print is not valid.  */
	dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
    }

  /* Pure SLP statements have already been vectorized.  We still need
     to apply loop vectorization to hybrid SLP statements.  */
  if (PURE_SLP_STMT (stmt_info))
    return;

  if (dump_enabled_p ())
    dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");

  if (vect_transform_stmt (stmt_info, gsi, NULL, NULL))
    *seen_store = stmt_info;
}

/* Function vect_transform_loop.

   The analysis phase has determined that the loop is vectorizable.
   Vectorize the loop - created vectorized stmts to replace the scalar
   stmts in the loop, and update the loop exit condition.
   Returns scalar epilogue loop if any.  */

struct loop *
vect_transform_loop (loop_vec_info loop_vinfo)
{
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  struct loop *epilogue = NULL;
  basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
  int nbbs = loop->num_nodes;
  int i;
  tree niters_vector = NULL_TREE;
  tree step_vector = NULL_TREE;
  tree niters_vector_mult_vf = NULL_TREE;
  poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
  unsigned int lowest_vf = constant_lower_bound (vf);
  gimple *stmt;
  bool check_profitability = false;
  unsigned int th;

  DUMP_VECT_SCOPE ("vec_transform_loop");

  loop_vinfo->shared->check_datarefs ();

  /* Use the more conservative vectorization threshold.  If the number
     of iterations is constant assume the cost check has been performed
     by our caller.  If the threshold makes all loops profitable that
     run at least the (estimated) vectorization factor number of times
     checking is pointless, too.  */
  th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
  if (th >= vect_vf_for_cost (loop_vinfo)
      && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
    {
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "Profitability threshold is %d loop iterations.\n",
                         th);
      check_profitability = true;
    }

  /* Make sure there exists a single-predecessor exit bb.  Do this before 
     versioning.   */
  edge e = single_exit (loop);
  if (! single_pred_p (e->dest))
    {
      split_loop_exit_edge (e, true);
      if (dump_enabled_p ())
	dump_printf (MSG_NOTE, "split exit edge\n");
    }

  /* Version the loop first, if required, so the profitability check
     comes first.  */

  if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
    {
      poly_uint64 versioning_threshold
	= LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
      if (check_profitability
	  && ordered_p (poly_uint64 (th), versioning_threshold))
	{
	  versioning_threshold = ordered_max (poly_uint64 (th),
					      versioning_threshold);
	  check_profitability = false;
	}
      struct loop *sloop
	= vect_loop_versioning (loop_vinfo, th, check_profitability,
				versioning_threshold);
      sloop->force_vectorize = false;
      check_profitability = false;
    }

  /* Make sure there exists a single-predecessor exit bb also on the
     scalar loop copy.  Do this after versioning but before peeling
     so CFG structure is fine for both scalar and if-converted loop
     to make slpeel_duplicate_current_defs_from_edges face matched
     loop closed PHI nodes on the exit.  */
  if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
    {
      e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
      if (! single_pred_p (e->dest))
	{
	  split_loop_exit_edge (e, true);
	  if (dump_enabled_p ())
	    dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
	}
    }

  tree niters = vect_build_loop_niters (loop_vinfo);
  LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
  tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
  bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
  epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector,
			      &step_vector, &niters_vector_mult_vf, th,
			      check_profitability, niters_no_overflow);

  if (niters_vector == NULL_TREE)
    {
      if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
	  && !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
	  && known_eq (lowest_vf, vf))
	{
	  niters_vector
	    = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
			     LOOP_VINFO_INT_NITERS (loop_vinfo) / lowest_vf);
	  step_vector = build_one_cst (TREE_TYPE (niters));
	}
      else
	vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
				     &step_vector, niters_no_overflow);
    }

  /* 1) Make sure the loop header has exactly two entries
     2) Make sure we have a preheader basic block.  */

  gcc_assert (EDGE_COUNT (loop->header->preds) == 2);

  split_edge (loop_preheader_edge (loop));

  if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
      && vect_use_loop_mask_for_alignment_p (loop_vinfo))
    /* This will deal with any possible peeling.  */
    vect_prepare_for_masked_peels (loop_vinfo);

  /* Schedule the SLP instances first, then handle loop vectorization
     below.  */
  if (!loop_vinfo->slp_instances.is_empty ())
    {
      DUMP_VECT_SCOPE ("scheduling SLP instances");
      vect_schedule_slp (loop_vinfo);
    }

  /* FORNOW: the vectorizer supports only loops which body consist
     of one basic block (header + empty latch). When the vectorizer will
     support more involved loop forms, the order by which the BBs are
     traversed need to be reconsidered.  */

  for (i = 0; i < nbbs; i++)
    {
      basic_block bb = bbs[i];
      stmt_vec_info stmt_info;

      for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
	   gsi_next (&si))
        {
	  gphi *phi = si.phi ();
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "------>vectorizing phi: %G", phi);
	  stmt_info = loop_vinfo->lookup_stmt (phi);
	  if (!stmt_info)
	    continue;

	  if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
	    vect_loop_kill_debug_uses (loop, stmt_info);

	  if (!STMT_VINFO_RELEVANT_P (stmt_info)
	      && !STMT_VINFO_LIVE_P (stmt_info))
	    continue;

	  if (STMT_VINFO_VECTYPE (stmt_info)
	      && (maybe_ne
		  (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info)), vf))
	      && dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");

	  if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
	       || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
	       || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
	      && ! PURE_SLP_STMT (stmt_info))
	    {
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
	      vect_transform_stmt (stmt_info, NULL, NULL, NULL);
	    }
	}

      for (gimple_stmt_iterator si = gsi_start_bb (bb);
	   !gsi_end_p (si);)
	{
	  stmt = gsi_stmt (si);
	  /* During vectorization remove existing clobber stmts.  */
	  if (gimple_clobber_p (stmt))
	    {
	      unlink_stmt_vdef (stmt);
	      gsi_remove (&si, true);
	      release_defs (stmt);
	    }
	  else
	    {
	      stmt_info = loop_vinfo->lookup_stmt (stmt);

	      /* vector stmts created in the outer-loop during vectorization of
		 stmts in an inner-loop may not have a stmt_info, and do not
		 need to be vectorized.  */
	      stmt_vec_info seen_store = NULL;
	      if (stmt_info)
		{
		  if (STMT_VINFO_IN_PATTERN_P (stmt_info))
		    {
		      gimple *def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
		      for (gimple_stmt_iterator subsi = gsi_start (def_seq);
			   !gsi_end_p (subsi); gsi_next (&subsi))
			{
			  stmt_vec_info pat_stmt_info
			    = loop_vinfo->lookup_stmt (gsi_stmt (subsi));
			  vect_transform_loop_stmt (loop_vinfo, pat_stmt_info,
						    &si, &seen_store);
			}
		      stmt_vec_info pat_stmt_info
			= STMT_VINFO_RELATED_STMT (stmt_info);
		      vect_transform_loop_stmt (loop_vinfo, pat_stmt_info, &si,
						&seen_store);
		    }
		  vect_transform_loop_stmt (loop_vinfo, stmt_info, &si,
					    &seen_store);
		}
	      gsi_next (&si);
	      if (seen_store)
		{
		  if (STMT_VINFO_GROUPED_ACCESS (seen_store))
		    /* Interleaving.  If IS_STORE is TRUE, the
		       vectorization of the interleaving chain was
		       completed - free all the stores in the chain.  */
		    vect_remove_stores (DR_GROUP_FIRST_ELEMENT (seen_store));
		  else
		    /* Free the attached stmt_vec_info and remove the stmt.  */
		    loop_vinfo->remove_stmt (stmt_info);
		}
	    }
	}

      /* Stub out scalar statements that must not survive vectorization.
	 Doing this here helps with grouped statements, or statements that
	 are involved in patterns.  */
      for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
	   !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  gcall *call = dyn_cast <gcall *> (gsi_stmt (gsi));
	  if (call && gimple_call_internal_p (call, IFN_MASK_LOAD))
	    {
	      tree lhs = gimple_get_lhs (call);
	      if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
		{
		  tree zero = build_zero_cst (TREE_TYPE (lhs));
		  gimple *new_stmt = gimple_build_assign (lhs, zero);
		  gsi_replace (&gsi, new_stmt, true);
		}
	    }
	}
    }				/* BBs in loop */

  /* The vectorization factor is always > 1, so if we use an IV increment of 1.
     a zero NITERS becomes a nonzero NITERS_VECTOR.  */
  if (integer_onep (step_vector))
    niters_no_overflow = true;
  vect_set_loop_condition (loop, loop_vinfo, niters_vector, step_vector,
			   niters_vector_mult_vf, !niters_no_overflow);

  unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
  scale_profile_for_vect_loop (loop, assumed_vf);

  /* True if the final iteration might not handle a full vector's
     worth of scalar iterations.  */
  bool final_iter_may_be_partial = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
  /* The minimum number of iterations performed by the epilogue.  This
     is 1 when peeling for gaps because we always need a final scalar
     iteration.  */
  int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
  /* +1 to convert latch counts to loop iteration counts,
     -min_epilogue_iters to remove iterations that cannot be performed
       by the vector code.  */
  int bias_for_lowest = 1 - min_epilogue_iters;
  int bias_for_assumed = bias_for_lowest;
  int alignment_npeels = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
  if (alignment_npeels && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
    {
      /* When the amount of peeling is known at compile time, the first
	 iteration will have exactly alignment_npeels active elements.
	 In the worst case it will have at least one.  */
      int min_first_active = (alignment_npeels > 0 ? alignment_npeels : 1);
      bias_for_lowest += lowest_vf - min_first_active;
      bias_for_assumed += assumed_vf - min_first_active;
    }
  /* In these calculations the "- 1" converts loop iteration counts
     back to latch counts.  */
  if (loop->any_upper_bound)
    loop->nb_iterations_upper_bound
      = (final_iter_may_be_partial
	 ? wi::udiv_ceil (loop->nb_iterations_upper_bound + bias_for_lowest,
			  lowest_vf) - 1
	 : wi::udiv_floor (loop->nb_iterations_upper_bound + bias_for_lowest,
			   lowest_vf) - 1);
  if (loop->any_likely_upper_bound)
    loop->nb_iterations_likely_upper_bound
      = (final_iter_may_be_partial
	 ? wi::udiv_ceil (loop->nb_iterations_likely_upper_bound
			  + bias_for_lowest, lowest_vf) - 1
	 : wi::udiv_floor (loop->nb_iterations_likely_upper_bound
			   + bias_for_lowest, lowest_vf) - 1);
  if (loop->any_estimate)
    loop->nb_iterations_estimate
      = (final_iter_may_be_partial
	 ? wi::udiv_ceil (loop->nb_iterations_estimate + bias_for_assumed,
			  assumed_vf) - 1
	 : wi::udiv_floor (loop->nb_iterations_estimate + bias_for_assumed,
			   assumed_vf) - 1);

  if (dump_enabled_p ())
    {
      if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
	{
	  dump_printf_loc (MSG_NOTE, vect_location,
			   "LOOP VECTORIZED\n");
	  if (loop->inner)
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "OUTER LOOP VECTORIZED\n");
	  dump_printf (MSG_NOTE, "\n");
	}
      else
	{
	  dump_printf_loc (MSG_NOTE, vect_location,
			   "LOOP EPILOGUE VECTORIZED (VS=");
	  dump_dec (MSG_NOTE, current_vector_size);
	  dump_printf (MSG_NOTE, ")\n");
	}
    }

  /* Loops vectorized with a variable factor won't benefit from
     unrolling/peeling.  */
  if (!vf.is_constant ())
    {
      loop->unroll = 1;
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location, "Disabling unrolling due to"
			 " variable-length vectorization factor\n");
    }
  /* Free SLP instances here because otherwise stmt reference counting
     won't work.  */
  slp_instance instance;
  FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
    vect_free_slp_instance (instance, true);
  LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
  /* Clear-up safelen field since its value is invalid after vectorization
     since vectorized loop can have loop-carried dependencies.  */
  loop->safelen = 0;

  /* Don't vectorize epilogue for epilogue.  */
  if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
    epilogue = NULL;

  if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK))
    epilogue = NULL;

  if (epilogue)
    {
      auto_vector_sizes vector_sizes;
      targetm.vectorize.autovectorize_vector_sizes (&vector_sizes, false);
      unsigned int next_size = 0;

      /* Note LOOP_VINFO_NITERS_KNOWN_P and LOOP_VINFO_INT_NITERS work
         on niters already ajusted for the iterations of the prologue.  */
      if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
	  && known_eq (vf, lowest_vf))
	{
	  unsigned HOST_WIDE_INT eiters
	    = (LOOP_VINFO_INT_NITERS (loop_vinfo)
	       - LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
	  eiters
	    = eiters % lowest_vf + LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo);
	  epilogue->nb_iterations_upper_bound = eiters - 1;
	  epilogue->any_upper_bound = true;

	  unsigned int ratio;
	  while (next_size < vector_sizes.length ()
		 && !(constant_multiple_p (current_vector_size,
					   vector_sizes[next_size], &ratio)
		      && eiters >= lowest_vf / ratio))
	    next_size += 1;
	}
      else
	while (next_size < vector_sizes.length ()
	       && maybe_lt (current_vector_size, vector_sizes[next_size]))
	  next_size += 1;

      if (next_size == vector_sizes.length ())
	epilogue = NULL;
    }

  if (epilogue)
    {
      epilogue->force_vectorize = loop->force_vectorize;
      epilogue->safelen = loop->safelen;
      epilogue->dont_vectorize = false;

      /* We may need to if-convert epilogue to vectorize it.  */
      if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
	tree_if_conversion (epilogue);
    }

  return epilogue;
}

/* The code below is trying to perform simple optimization - revert
   if-conversion for masked stores, i.e. if the mask of a store is zero
   do not perform it and all stored value producers also if possible.
   For example,
     for (i=0; i<n; i++)
       if (c[i])
	{
	  p1[i] += 1;
	  p2[i] = p3[i] +2;
	}
   this transformation will produce the following semi-hammock:

   if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
     {
       vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
       vect__12.22_172 = vect__11.19_170 + vect_cst__171;
       MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
       vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
       vect__19.28_184 = vect__18.25_182 + vect_cst__183;
       MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
     }
*/

void
optimize_mask_stores (struct loop *loop)
{
  basic_block *bbs = get_loop_body (loop);
  unsigned nbbs = loop->num_nodes;
  unsigned i;
  basic_block bb;
  struct loop *bb_loop;
  gimple_stmt_iterator gsi;
  gimple *stmt;
  auto_vec<gimple *> worklist;
  auto_purge_vect_location sentinel;

  vect_location = find_loop_location (loop);
  /* Pick up all masked stores in loop if any.  */
  for (i = 0; i < nbbs; i++)
    {
      bb = bbs[i];
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
	   gsi_next (&gsi))
	{
	  stmt = gsi_stmt (gsi);
	  if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
	    worklist.safe_push (stmt);
	}
    }

  free (bbs);
  if (worklist.is_empty ())
    return;

  /* Loop has masked stores.  */
  while (!worklist.is_empty ())
    {
      gimple *last, *last_store;
      edge e, efalse;
      tree mask;
      basic_block store_bb, join_bb;
      gimple_stmt_iterator gsi_to;
      tree vdef, new_vdef;
      gphi *phi;
      tree vectype;
      tree zero;

      last = worklist.pop ();
      mask = gimple_call_arg (last, 2);
      bb = gimple_bb (last);
      /* Create then_bb and if-then structure in CFG, then_bb belongs to
	 the same loop as if_bb.  It could be different to LOOP when two
	 level loop-nest is vectorized and mask_store belongs to the inner
	 one.  */
      e = split_block (bb, last);
      bb_loop = bb->loop_father;
      gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
      join_bb = e->dest;
      store_bb = create_empty_bb (bb);
      add_bb_to_loop (store_bb, bb_loop);
      e->flags = EDGE_TRUE_VALUE;
      efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
      /* Put STORE_BB to likely part.  */
      efalse->probability = profile_probability::unlikely ();
      store_bb->count = efalse->count ();
      make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
      if (dom_info_available_p (CDI_DOMINATORS))
	set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
      if (dump_enabled_p ())
	dump_printf_loc (MSG_NOTE, vect_location,
			 "Create new block %d to sink mask stores.",
			 store_bb->index);
      /* Create vector comparison with boolean result.  */
      vectype = TREE_TYPE (mask);
      zero = build_zero_cst (vectype);
      stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
      gsi = gsi_last_bb (bb);
      gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
      /* Create new PHI node for vdef of the last masked store:
	 .MEM_2 = VDEF <.MEM_1>
	 will be converted to
	 .MEM.3 = VDEF <.MEM_1>
	 and new PHI node will be created in join bb
	 .MEM_2 = PHI <.MEM_1, .MEM_3>
      */
      vdef = gimple_vdef (last);
      new_vdef = make_ssa_name (gimple_vop (cfun), last);
      gimple_set_vdef (last, new_vdef);
      phi = create_phi_node (vdef, join_bb);
      add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);

      /* Put all masked stores with the same mask to STORE_BB if possible.  */
      while (true)
	{
	  gimple_stmt_iterator gsi_from;
	  gimple *stmt1 = NULL;

	  /* Move masked store to STORE_BB.  */
	  last_store = last;
	  gsi = gsi_for_stmt (last);
	  gsi_from = gsi;
	  /* Shift GSI to the previous stmt for further traversal.  */
	  gsi_prev (&gsi);
	  gsi_to = gsi_start_bb (store_bb);
	  gsi_move_before (&gsi_from, &gsi_to);
	  /* Setup GSI_TO to the non-empty block start.  */
	  gsi_to = gsi_start_bb (store_bb);
	  if (dump_enabled_p ())
	    dump_printf_loc (MSG_NOTE, vect_location,
			     "Move stmt to created bb\n%G", last);
	  /* Move all stored value producers if possible.  */
	  while (!gsi_end_p (gsi))
	    {
	      tree lhs;
	      imm_use_iterator imm_iter;
	      use_operand_p use_p;
	      bool res;

	      /* Skip debug statements.  */
	      if (is_gimple_debug (gsi_stmt (gsi)))
		{
		  gsi_prev (&gsi);
		  continue;
		}
	      stmt1 = gsi_stmt (gsi);
	      /* Do not consider statements writing to memory or having
		 volatile operand.  */
	      if (gimple_vdef (stmt1)
		  || gimple_has_volatile_ops (stmt1))
		break;
	      gsi_from = gsi;
	      gsi_prev (&gsi);
	      lhs = gimple_get_lhs (stmt1);
	      if (!lhs)
		break;

	      /* LHS of vectorized stmt must be SSA_NAME.  */
	      if (TREE_CODE (lhs) != SSA_NAME)
		break;

	      if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
		{
		  /* Remove dead scalar statement.  */
		  if (has_zero_uses (lhs))
		    {
		      gsi_remove (&gsi_from, true);
		      continue;
		    }
		}

	      /* Check that LHS does not have uses outside of STORE_BB.  */
	      res = true;
	      FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
		{
		  gimple *use_stmt;
		  use_stmt = USE_STMT (use_p);
		  if (is_gimple_debug (use_stmt))
		    continue;
		  if (gimple_bb (use_stmt) != store_bb)
		    {
		      res = false;
		      break;
		    }
		}
	      if (!res)
		break;

	      if (gimple_vuse (stmt1)
		  && gimple_vuse (stmt1) != gimple_vuse (last_store))
		break;

	      /* Can move STMT1 to STORE_BB.  */
	      if (dump_enabled_p ())
		dump_printf_loc (MSG_NOTE, vect_location,
				 "Move stmt to created bb\n%G", stmt1);
	      gsi_move_before (&gsi_from, &gsi_to);
	      /* Shift GSI_TO for further insertion.  */
	      gsi_prev (&gsi_to);
	    }
	  /* Put other masked stores with the same mask to STORE_BB.  */
	  if (worklist.is_empty ()
	      || gimple_call_arg (worklist.last (), 2) != mask
	      || worklist.last () != stmt1)
	    break;
	  last = worklist.pop ();
	}
      add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);
    }
}

/* Decide whether it is possible to use a zero-based induction variable
   when vectorizing LOOP_VINFO with a fully-masked loop.  If it is,
   return the value that the induction variable must be able to hold
   in order to ensure that the loop ends with an all-false mask.
   Return -1 otherwise.  */
widest_int
vect_iv_limit_for_full_masking (loop_vec_info loop_vinfo)
{
  tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
  unsigned HOST_WIDE_INT max_vf = vect_max_vf (loop_vinfo);

  /* Calculate the value that the induction variable must be able
     to hit in order to ensure that we end the loop with an all-false mask.
     This involves adding the maximum number of inactive trailing scalar
     iterations.  */
  widest_int iv_limit = -1;
  if (max_loop_iterations (loop, &iv_limit))
    {
      if (niters_skip)
	{
	  /* Add the maximum number of skipped iterations to the
	     maximum iteration count.  */
	  if (TREE_CODE (niters_skip) == INTEGER_CST)
	    iv_limit += wi::to_widest (niters_skip);
	  else
	    iv_limit += max_vf - 1;
	}
      else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
	/* Make a conservatively-correct assumption.  */
	iv_limit += max_vf - 1;

      /* IV_LIMIT is the maximum number of latch iterations, which is also
	 the maximum in-range IV value.  Round this value down to the previous
	 vector alignment boundary and then add an extra full iteration.  */
      poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
      iv_limit = (iv_limit & -(int) known_alignment (vf)) + max_vf;
    }
  return iv_limit;
}