1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
|
/* Loop Vectorization
Copyright (C) 2003-2013 Free Software Foundation, Inc.
Contributed by Dorit Naishlos <dorit@il.ibm.com> and
Ira Rosen <irar@il.ibm.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "dumpfile.h"
#include "tm.h"
#include "ggc.h"
#include "tree.h"
#include "basic-block.h"
#include "gimple-pretty-print.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "cfgloop.h"
#include "expr.h"
#include "recog.h"
#include "optabs.h"
#include "params.h"
#include "diagnostic-core.h"
#include "tree-chrec.h"
#include "tree-scalar-evolution.h"
#include "tree-vectorizer.h"
#include "target.h"
/* Loop Vectorization Pass.
This pass tries to vectorize loops.
For example, the vectorizer transforms the following simple loop:
short a[N]; short b[N]; short c[N]; int i;
for (i=0; i<N; i++){
a[i] = b[i] + c[i];
}
as if it was manually vectorized by rewriting the source code into:
typedef int __attribute__((mode(V8HI))) v8hi;
short a[N]; short b[N]; short c[N]; int i;
v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
v8hi va, vb, vc;
for (i=0; i<N/8; i++){
vb = pb[i];
vc = pc[i];
va = vb + vc;
pa[i] = va;
}
The main entry to this pass is vectorize_loops(), in which
the vectorizer applies a set of analyses on a given set of loops,
followed by the actual vectorization transformation for the loops that
had successfully passed the analysis phase.
Throughout this pass we make a distinction between two types of
data: scalars (which are represented by SSA_NAMES), and memory references
("data-refs"). These two types of data require different handling both
during analysis and transformation. The types of data-refs that the
vectorizer currently supports are ARRAY_REFS which base is an array DECL
(not a pointer), and INDIRECT_REFS through pointers; both array and pointer
accesses are required to have a simple (consecutive) access pattern.
Analysis phase:
===============
The driver for the analysis phase is vect_analyze_loop().
It applies a set of analyses, some of which rely on the scalar evolution
analyzer (scev) developed by Sebastian Pop.
During the analysis phase the vectorizer records some information
per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
loop, as well as general information about the loop as a whole, which is
recorded in a "loop_vec_info" struct attached to each loop.
Transformation phase:
=====================
The loop transformation phase scans all the stmts in the loop, and
creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
the loop that needs to be vectorized. It inserts the vector code sequence
just before the scalar stmt S, and records a pointer to the vector code
in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
attached to S). This pointer will be used for the vectorization of following
stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
otherwise, we rely on dead code elimination for removing it.
For example, say stmt S1 was vectorized into stmt VS1:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
S2: a = b;
To vectorize stmt S2, the vectorizer first finds the stmt that defines
the operand 'b' (S1), and gets the relevant vector def 'vb' from the
vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
resulting sequence would be:
VS1: vb = px[i];
S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
VS2: va = vb;
S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
Operands that are not SSA_NAMEs, are data-refs that appear in
load/store operations (like 'x[i]' in S1), and are handled differently.
Target modeling:
=================
Currently the only target specific information that is used is the
size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
Targets that can support different sizes of vectors, for now will need
to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
flexibility will be added in the future.
Since we only vectorize operations which vector form can be
expressed using existing tree codes, to verify that an operation is
supported, the vectorizer checks the relevant optab at the relevant
machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
the value found is CODE_FOR_nothing, then there's no target support, and
we can't vectorize the stmt.
For additional information on this project see:
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
*/
static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
/* Function vect_determine_vectorization_factor
Determine the vectorization factor (VF). VF is the number of data elements
that are operated upon in parallel in a single iteration of the vectorized
loop. For example, when vectorizing a loop that operates on 4byte elements,
on a target with vector size (VS) 16byte, the VF is set to 4, since 4
elements can fit in a single vector register.
We currently support vectorization of loops in which all types operated upon
are of the same size. Therefore this function currently sets VF according to
the size of the types operated upon, and fails if there are multiple sizes
in the loop.
VF is also the factor by which the loop iterations are strip-mined, e.g.:
original loop:
for (i=0; i<N; i++){
a[i] = b[i] + c[i];
}
vectorized loop:
for (i=0; i<N; i+=VF){
a[i:VF] = b[i:VF] + c[i:VF];
}
*/
static bool
vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
gimple_stmt_iterator si;
unsigned int vectorization_factor = 0;
tree scalar_type;
gimple phi;
tree vectype;
unsigned int nunits;
stmt_vec_info stmt_info;
int i;
HOST_WIDE_INT dummy;
gimple stmt, pattern_stmt = NULL;
gimple_seq pattern_def_seq = NULL;
gimple_stmt_iterator pattern_def_si = gsi_none ();
bool analyze_pattern_stmt = false;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"=== vect_determine_vectorization_factor ===");
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
phi = gsi_stmt (si);
stmt_info = vinfo_for_stmt (phi);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
}
gcc_assert (stmt_info);
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
scalar_type = TREE_TYPE (PHI_RESULT (phi));
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"get vectype for scalar type: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
}
vectype = get_vectype_for_scalar_type (scalar_type);
if (!vectype)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: unsupported "
"data-type ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
scalar_type);
}
return false;
}
STMT_VINFO_VECTYPE (stmt_info) = vectype;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
}
nunits = TYPE_VECTOR_SUBPARTS (vectype);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d", nunits);
if (!vectorization_factor
|| (nunits > vectorization_factor))
vectorization_factor = nunits;
}
}
for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
{
tree vf_vectype;
if (analyze_pattern_stmt)
stmt = pattern_stmt;
else
stmt = gsi_stmt (si);
stmt_info = vinfo_for_stmt (stmt);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"==> examining statement: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
}
gcc_assert (stmt_info);
/* Skip stmts which do not need to be vectorized. */
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
{
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
{
stmt = pattern_stmt;
stmt_info = vinfo_for_stmt (pattern_stmt);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"==> examining pattern statement: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
}
}
else
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "skip.");
gsi_next (&si);
continue;
}
}
else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
analyze_pattern_stmt = true;
/* If a pattern statement has def stmts, analyze them too. */
if (is_pattern_stmt_p (stmt_info))
{
if (pattern_def_seq == NULL)
{
pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
pattern_def_si = gsi_start (pattern_def_seq);
}
else if (!gsi_end_p (pattern_def_si))
gsi_next (&pattern_def_si);
if (pattern_def_seq != NULL)
{
gimple pattern_def_stmt = NULL;
stmt_vec_info pattern_def_stmt_info = NULL;
while (!gsi_end_p (pattern_def_si))
{
pattern_def_stmt = gsi_stmt (pattern_def_si);
pattern_def_stmt_info
= vinfo_for_stmt (pattern_def_stmt);
if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
|| STMT_VINFO_LIVE_P (pattern_def_stmt_info))
break;
gsi_next (&pattern_def_si);
}
if (!gsi_end_p (pattern_def_si))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"==> examining pattern def stmt: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
pattern_def_stmt, 0);
}
stmt = pattern_def_stmt;
stmt_info = pattern_def_stmt_info;
}
else
{
pattern_def_si = gsi_none ();
analyze_pattern_stmt = false;
}
}
else
analyze_pattern_stmt = false;
}
if (gimple_get_lhs (stmt) == NULL_TREE)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: irregular stmt.");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
0);
}
return false;
}
if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: vector stmt in loop:");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
}
return false;
}
if (STMT_VINFO_VECTYPE (stmt_info))
{
/* The only case when a vectype had been already set is for stmts
that contain a dataref, or for "pattern-stmts" (stmts
generated by the vectorizer to represent/replace a certain
idiom). */
gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
|| is_pattern_stmt_p (stmt_info)
|| !gsi_end_p (pattern_def_si));
vectype = STMT_VINFO_VECTYPE (stmt_info);
}
else
{
gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"get vectype for scalar type: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
}
vectype = get_vectype_for_scalar_type (scalar_type);
if (!vectype)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: unsupported "
"data-type ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
scalar_type);
}
return false;
}
STMT_VINFO_VECTYPE (stmt_info) = vectype;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
}
}
/* The vectorization factor is according to the smallest
scalar type (or the largest vector size, but we only
support one vector size per loop). */
scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
&dummy);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"get vectype for scalar type: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
}
vf_vectype = get_vectype_for_scalar_type (scalar_type);
if (!vf_vectype)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: unsupported data-type ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
scalar_type);
}
return false;
}
if ((GET_MODE_SIZE (TYPE_MODE (vectype))
!= GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: different sized vector "
"types in statement, ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
vectype);
dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
vf_vectype);
}
return false;
}
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
}
nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d", nunits);
if (!vectorization_factor
|| (nunits > vectorization_factor))
vectorization_factor = nunits;
if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
{
pattern_def_seq = NULL;
gsi_next (&si);
}
}
}
/* TODO: Analyze cost. Decide if worth while to vectorize. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d",
vectorization_factor);
if (vectorization_factor <= 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: unsupported data-type");
return false;
}
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
return true;
}
/* Function vect_is_simple_iv_evolution.
FORNOW: A simple evolution of an induction variables in the loop is
considered a polynomial evolution with constant step. */
static bool
vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
tree * step)
{
tree init_expr;
tree step_expr;
tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
/* When there is no evolution in this loop, the evolution function
is not "simple". */
if (evolution_part == NULL_TREE)
return false;
/* When the evolution is a polynomial of degree >= 2
the evolution function is not "simple". */
if (tree_is_chrec (evolution_part))
return false;
step_expr = evolution_part;
init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "step: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
dump_printf (MSG_NOTE, ", init: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
}
*init = init_expr;
*step = step_expr;
if (TREE_CODE (step_expr) != INTEGER_CST)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"step unknown.");
return false;
}
return true;
}
/* Function vect_analyze_scalar_cycles_1.
Examine the cross iteration def-use cycles of scalar variables
in LOOP. LOOP_VINFO represents the loop that is now being
considered for vectorization (can be LOOP, or an outer-loop
enclosing LOOP). */
static void
vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
{
basic_block bb = loop->header;
tree dumy;
vec<gimple> worklist;
worklist.create (64);
gimple_stmt_iterator gsi;
bool double_reduc;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"=== vect_analyze_scalar_cycles ===");
/* First - identify all inductions. Reduction detection assumes that all the
inductions have been identified, therefore, this order must not be
changed. */
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple phi = gsi_stmt (gsi);
tree access_fn = NULL;
tree def = PHI_RESULT (phi);
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
}
/* Skip virtual phi's. The data dependences that are associated with
virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
if (virtual_operand_p (def))
continue;
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
/* Analyze the evolution function. */
access_fn = analyze_scalar_evolution (loop, def);
if (access_fn)
{
STRIP_NOPS (access_fn);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"Access function of PHI: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
}
STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
= evolution_part_in_loop_num (access_fn, loop->num);
}
if (!access_fn
|| !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
{
worklist.safe_push (phi);
continue;
}
gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
}
/* Second - identify all reductions and nested cycles. */
while (worklist.length () > 0)
{
gimple phi = worklist.pop ();
tree def = PHI_RESULT (phi);
stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
gimple reduc_stmt;
bool nested_cycle;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
}
gcc_assert (!virtual_operand_p (def)
&& STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
&double_reduc);
if (reduc_stmt)
{
if (double_reduc)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Detected double reduction.");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
vect_double_reduction_def;
}
else
{
if (nested_cycle)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Detected vectorizable nested cycle.");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
vect_nested_cycle;
}
else
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Detected reduction.");
STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
vect_reduction_def;
/* Store the reduction cycles for possible vectorization in
loop-aware SLP. */
LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
}
}
}
else
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Unknown def-use cycle pattern.");
}
worklist.release ();
}
/* Function vect_analyze_scalar_cycles.
Examine the cross iteration def-use cycles of scalar variables, by
analyzing the loop-header PHIs of scalar variables. Classify each
cycle as one of the following: invariant, induction, reduction, unknown.
We do that for the loop represented by LOOP_VINFO, and also to its
inner-loop, if exists.
Examples for scalar cycles:
Example1: reduction:
loop1:
for (i=0; i<N; i++)
sum += a[i];
Example2: induction:
loop2:
for (i=0; i<N; i++)
a[i] = i; */
static void
vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
/* When vectorizing an outer-loop, the inner-loop is executed sequentially.
Reductions in such inner-loop therefore have different properties than
the reductions in the nest that gets vectorized:
1. When vectorized, they are executed in the same order as in the original
scalar loop, so we can't change the order of computation when
vectorizing them.
2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
current checks are too strict. */
if (loop->inner)
vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
}
/* Function vect_get_loop_niters.
Determine how many iterations the loop is executed.
If an expression that represents the number of iterations
can be constructed, place it in NUMBER_OF_ITERATIONS.
Return the loop exit condition. */
static gimple
vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
{
tree niters;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"=== get_loop_niters ===");
niters = number_of_exit_cond_executions (loop);
if (niters != NULL_TREE
&& niters != chrec_dont_know)
{
*number_of_iterations = niters;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "==> get_loop_niters:");
dump_generic_expr (MSG_NOTE, TDF_SLIM, *number_of_iterations);
}
}
return get_loop_exit_condition (loop);
}
/* Function bb_in_loop_p
Used as predicate for dfs order traversal of the loop bbs. */
static bool
bb_in_loop_p (const_basic_block bb, const void *data)
{
const struct loop *const loop = (const struct loop *)data;
if (flow_bb_inside_loop_p (loop, bb))
return true;
return false;
}
/* Function new_loop_vec_info.
Create and initialize a new loop_vec_info struct for LOOP, as well as
stmt_vec_info structs for all the stmts in LOOP. */
static loop_vec_info
new_loop_vec_info (struct loop *loop)
{
loop_vec_info res;
basic_block *bbs;
gimple_stmt_iterator si;
unsigned int i, nbbs;
res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
LOOP_VINFO_LOOP (res) = loop;
bbs = get_loop_body (loop);
/* Create/Update stmt_info for all stmts in the loop. */
for (i = 0; i < loop->num_nodes; i++)
{
basic_block bb = bbs[i];
/* BBs in a nested inner-loop will have been already processed (because
we will have called vect_analyze_loop_form for any nested inner-loop).
Therefore, for stmts in an inner-loop we just want to update the
STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
loop_info of the outer-loop we are currently considering to vectorize
(instead of the loop_info of the inner-loop).
For stmts in other BBs we need to create a stmt_info from scratch. */
if (bb->loop_father != loop)
{
/* Inner-loop bb. */
gcc_assert (loop->inner && bb->loop_father == loop->inner);
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple phi = gsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
loop_vec_info inner_loop_vinfo =
STMT_VINFO_LOOP_VINFO (stmt_info);
gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
STMT_VINFO_LOOP_VINFO (stmt_info) = res;
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
loop_vec_info inner_loop_vinfo =
STMT_VINFO_LOOP_VINFO (stmt_info);
gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
STMT_VINFO_LOOP_VINFO (stmt_info) = res;
}
}
else
{
/* bb in current nest. */
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple phi = gsi_stmt (si);
gimple_set_uid (phi, 0);
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
gimple_set_uid (stmt, 0);
set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
}
}
}
/* CHECKME: We want to visit all BBs before their successors (except for
latch blocks, for which this assertion wouldn't hold). In the simple
case of the loop forms we allow, a dfs order of the BBs would the same
as reversed postorder traversal, so we are safe. */
free (bbs);
bbs = XCNEWVEC (basic_block, loop->num_nodes);
nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
bbs, loop->num_nodes, loop);
gcc_assert (nbbs == loop->num_nodes);
LOOP_VINFO_BBS (res) = bbs;
LOOP_VINFO_NITERS (res) = NULL;
LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
LOOP_VINFO_VECTORIZABLE_P (res) = 0;
LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
LOOP_VINFO_VECT_FACTOR (res) = 0;
LOOP_VINFO_LOOP_NEST (res).create (3);
LOOP_VINFO_DATAREFS (res).create (10);
LOOP_VINFO_DDRS (res).create (10 * 10);
LOOP_VINFO_UNALIGNED_DR (res) = NULL;
LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
LOOP_VINFO_GROUPED_STORES (res).create (10);
LOOP_VINFO_REDUCTIONS (res).create (10);
LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
LOOP_VINFO_SLP_INSTANCES (res).create (10);
LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
return res;
}
/* Function destroy_loop_vec_info.
Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
stmts in the loop. */
void
destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
{
struct loop *loop;
basic_block *bbs;
int nbbs;
gimple_stmt_iterator si;
int j;
vec<slp_instance> slp_instances;
slp_instance instance;
bool swapped;
if (!loop_vinfo)
return;
loop = LOOP_VINFO_LOOP (loop_vinfo);
bbs = LOOP_VINFO_BBS (loop_vinfo);
nbbs = clean_stmts ? loop->num_nodes : 0;
swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
for (j = 0; j < nbbs; j++)
{
basic_block bb = bbs[j];
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
free_stmt_vec_info (gsi_stmt (si));
for (si = gsi_start_bb (bb); !gsi_end_p (si); )
{
gimple stmt = gsi_stmt (si);
/* We may have broken canonical form by moving a constant
into RHS1 of a commutative op. Fix such occurrences. */
if (swapped && is_gimple_assign (stmt))
{
enum tree_code code = gimple_assign_rhs_code (stmt);
if ((code == PLUS_EXPR
|| code == POINTER_PLUS_EXPR
|| code == MULT_EXPR)
&& CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
swap_tree_operands (stmt,
gimple_assign_rhs1_ptr (stmt),
gimple_assign_rhs2_ptr (stmt));
}
/* Free stmt_vec_info. */
free_stmt_vec_info (stmt);
gsi_next (&si);
}
}
free (LOOP_VINFO_BBS (loop_vinfo));
free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
FOR_EACH_VEC_ELT (slp_instances, j, instance)
vect_free_slp_instance (instance);
LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
if (LOOP_VINFO_PEELING_HTAB (loop_vinfo).is_created ())
LOOP_VINFO_PEELING_HTAB (loop_vinfo).dispose ();
destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
free (loop_vinfo);
loop->aux = NULL;
}
/* Function vect_analyze_loop_1.
Apply a set of analyses on LOOP, and create a loop_vec_info struct
for it. The different analyses will record information in the
loop_vec_info struct. This is a subset of the analyses applied in
vect_analyze_loop, to be applied on an inner-loop nested in the loop
that is now considered for (outer-loop) vectorization. */
static loop_vec_info
vect_analyze_loop_1 (struct loop *loop)
{
loop_vec_info loop_vinfo;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"===== analyze_loop_nest_1 =====");
/* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
loop_vinfo = vect_analyze_loop_form (loop);
if (!loop_vinfo)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad inner-loop form.");
return NULL;
}
return loop_vinfo;
}
/* Function vect_analyze_loop_form.
Verify that certain CFG restrictions hold, including:
- the loop has a pre-header
- the loop has a single entry and exit
- the loop exit condition is simple enough, and the number of iterations
can be analyzed (a countable loop). */
loop_vec_info
vect_analyze_loop_form (struct loop *loop)
{
loop_vec_info loop_vinfo;
gimple loop_cond;
tree number_of_iterations = NULL;
loop_vec_info inner_loop_vinfo = NULL;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"=== vect_analyze_loop_form ===");
/* Different restrictions apply when we are considering an inner-most loop,
vs. an outer (nested) loop.
(FORNOW. May want to relax some of these restrictions in the future). */
if (!loop->inner)
{
/* Inner-most loop. We currently require that the number of BBs is
exactly 2 (the header and latch). Vectorizable inner-most loops
look like this:
(pre-header)
|
header <--------+
| | |
| +--> latch --+
|
(exit-bb) */
if (loop->num_nodes != 2)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: control flow in loop.");
return NULL;
}
if (empty_block_p (loop->header))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: empty loop.");
return NULL;
}
}
else
{
struct loop *innerloop = loop->inner;
edge entryedge;
/* Nested loop. We currently require that the loop is doubly-nested,
contains a single inner loop, and the number of BBs is exactly 5.
Vectorizable outer-loops look like this:
(pre-header)
|
header <---+
| |
inner-loop |
| |
tail ------+
|
(exit-bb)
The inner-loop has the properties expected of inner-most loops
as described above. */
if ((loop->inner)->inner || (loop->inner)->next)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: multiple nested loops.");
return NULL;
}
/* Analyze the inner-loop. */
inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
if (!inner_loop_vinfo)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: Bad inner loop.");
return NULL;
}
if (!expr_invariant_in_loop_p (loop,
LOOP_VINFO_NITERS (inner_loop_vinfo)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: inner-loop count not invariant.");
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
if (loop->num_nodes != 5)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: control flow in loop.");
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
entryedge = EDGE_PRED (innerloop->header, 0);
if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
entryedge = EDGE_PRED (innerloop->header, 1);
if (entryedge->src != loop->header
|| !single_exit (innerloop)
|| single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: unsupported outerloop form.");
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Considering outer-loop vectorization.");
}
if (!single_exit (loop)
|| EDGE_COUNT (loop->header->preds) != 2)
{
if (dump_enabled_p ())
{
if (!single_exit (loop))
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: multiple exits.");
else if (EDGE_COUNT (loop->header->preds) != 2)
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: too many incoming edges.");
}
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
/* We assume that the loop exit condition is at the end of the loop. i.e,
that the loop is represented as a do-while (with a proper if-guard
before the loop if needed), where the loop header contains all the
executable statements, and the latch is empty. */
if (!empty_block_p (loop->latch)
|| !gimple_seq_empty_p (phi_nodes (loop->latch)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: latch block not empty.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
/* Make sure there exists a single-predecessor exit bb: */
if (!single_pred_p (single_exit (loop)->dest))
{
edge e = single_exit (loop);
if (!(e->flags & EDGE_ABNORMAL))
{
split_loop_exit_edge (e);
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "split exit edge.");
}
else
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: abnormal loop exit edge.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
}
loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
if (!loop_cond)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: complicated exit condition.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
if (!number_of_iterations)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: number of iterations cannot be "
"computed.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
if (chrec_contains_undetermined (number_of_iterations))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Infinite number of iterations.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
if (!NITERS_KNOWN_P (number_of_iterations))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"Symbolic number of iterations is ");
dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
}
}
else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: number of iterations = 0.");
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, true);
return NULL;
}
loop_vinfo = new_loop_vec_info (loop);
LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
/* CHECKME: May want to keep it around it in the future. */
if (inner_loop_vinfo)
destroy_loop_vec_info (inner_loop_vinfo, false);
gcc_assert (!loop->aux);
loop->aux = loop_vinfo;
return loop_vinfo;
}
/* Function vect_analyze_loop_operations.
Scan the loop stmts and make sure they are all vectorizable. */
static bool
vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
gimple_stmt_iterator si;
unsigned int vectorization_factor = 0;
int i;
gimple phi;
stmt_vec_info stmt_info;
bool need_to_vectorize = false;
int min_profitable_iters;
int min_scalar_loop_bound;
unsigned int th;
bool only_slp_in_loop = true, ok;
HOST_WIDE_INT max_niter;
HOST_WIDE_INT estimated_niter;
int min_profitable_estimate;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"=== vect_analyze_loop_operations ===");
gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
if (slp)
{
/* If all the stmts in the loop can be SLPed, we perform only SLP, and
vectorization factor of the loop is the unrolling factor required by
the SLP instances. If that unrolling factor is 1, we say, that we
perform pure SLP on loop - cross iteration parallelism is not
exploited. */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
gcc_assert (stmt_info);
if ((STMT_VINFO_RELEVANT_P (stmt_info)
|| VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
&& !PURE_SLP_STMT (stmt_info))
/* STMT needs both SLP and loop-based vectorization. */
only_slp_in_loop = false;
}
}
if (only_slp_in_loop)
vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
else
vectorization_factor = least_common_multiple (vectorization_factor,
LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Updating vectorization factor to %d ",
vectorization_factor);
}
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
phi = gsi_stmt (si);
ok = true;
stmt_info = vinfo_for_stmt (phi);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
}
/* Inner-loop loop-closed exit phi in outer-loop vectorization
(i.e., a phi in the tail of the outer-loop). */
if (! is_loop_header_bb_p (bb))
{
/* FORNOW: we currently don't support the case that these phis
are not used in the outerloop (unless it is double reduction,
i.e., this phi is vect_reduction_def), cause this case
requires to actually do something here. */
if ((!STMT_VINFO_RELEVANT_P (stmt_info)
|| STMT_VINFO_LIVE_P (stmt_info))
&& STMT_VINFO_DEF_TYPE (stmt_info)
!= vect_double_reduction_def)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"Unsupported loop-closed phi in "
"outer-loop.");
return false;
}
/* If PHI is used in the outer loop, we check that its operand
is defined in the inner loop. */
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
tree phi_op;
gimple op_def_stmt;
if (gimple_phi_num_args (phi) != 1)
return false;
phi_op = PHI_ARG_DEF (phi, 0);
if (TREE_CODE (phi_op) != SSA_NAME)
return false;
op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
if (!op_def_stmt
|| !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
|| !vinfo_for_stmt (op_def_stmt))
return false;
if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
!= vect_used_in_outer
&& STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
!= vect_used_in_outer_by_reduction)
return false;
}
continue;
}
gcc_assert (stmt_info);
if (STMT_VINFO_LIVE_P (stmt_info))
{
/* FORNOW: not yet supported. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: value used after loop.");
return false;
}
if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
{
/* A scalar-dependence cycle that we don't support. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: scalar dependence cycle.");
return false;
}
if (STMT_VINFO_RELEVANT_P (stmt_info))
{
need_to_vectorize = true;
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
ok = vectorizable_induction (phi, NULL, NULL);
}
if (!ok)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: relevant phi not "
"supported: ");
dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
}
return false;
}
}
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
return false;
}
} /* bbs */
/* All operations in the loop are either irrelevant (deal with loop
control, or dead), or only used outside the loop and can be moved
out of the loop (e.g. invariants, inductions). The loop can be
optimized away by scalar optimizations. We're better off not
touching this loop. */
if (!need_to_vectorize)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"All the computation can be taken out of the loop.");
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: redundant loop. no profit to "
"vectorize.");
return false;
}
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"vectorization_factor = %d, niters = "
HOST_WIDE_INT_PRINT_DEC, vectorization_factor,
LOOP_VINFO_INT_NITERS (loop_vinfo));
if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
|| ((max_niter = max_stmt_executions_int (loop)) != -1
&& (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: iteration count too small.");
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: iteration count smaller than "
"vectorization factor.");
return false;
}
/* Analyze cost. Decide if worth while to vectorize. */
/* Once VF is set, SLP costs should be updated since the number of created
vector stmts depends on VF. */
vect_update_slp_costs_according_to_vf (loop_vinfo);
vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
&min_profitable_estimate);
LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
if (min_profitable_iters < 0)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: vectorization not profitable.");
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: vector version will never be "
"profitable.");
return false;
}
min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
* vectorization_factor) - 1);
/* Use the cost model only if it is more conservative than user specified
threshold. */
th = (unsigned) min_scalar_loop_bound;
if (min_profitable_iters
&& (!min_scalar_loop_bound
|| min_profitable_iters > min_scalar_loop_bound))
th = (unsigned) min_profitable_iters;
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: vectorization not profitable.");
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"not vectorized: iteration count smaller than user "
"specified loop bound parameter or minimum profitable "
"iterations (whichever is more conservative).");
return false;
}
if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
&& ((unsigned HOST_WIDE_INT) estimated_niter
<= MAX (th, (unsigned)min_profitable_estimate)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: estimated iteration count too "
"small.");
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"not vectorized: estimated iteration count smaller "
"than specified loop bound parameter or minimum "
"profitable iterations (whichever is more "
"conservative).");
return false;
}
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
|| LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required.");
if (!vect_can_advance_ivs_p (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: can't create epilog loop 1.");
return false;
}
if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not vectorized: can't create epilog loop 2.");
return false;
}
}
return true;
}
/* Function vect_analyze_loop_2.
Apply a set of analyses on LOOP, and create a loop_vec_info struct
for it. The different analyses will record information in the
loop_vec_info struct. */
static bool
vect_analyze_loop_2 (loop_vec_info loop_vinfo)
{
bool ok, slp = false;
int max_vf = MAX_VECTORIZATION_FACTOR;
int min_vf = 2;
/* Find all data references in the loop (which correspond to vdefs/vuses)
and analyze their evolution in the loop. Also adjust the minimal
vectorization factor according to the loads and stores.
FORNOW: Handle only simple, array references, which
alignment can be forced, and aligned pointer-references. */
ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data references.");
return false;
}
/* Analyze the access patterns of the data-refs in the loop (consecutive,
complex, etc.). FORNOW: Only handle consecutive access pattern. */
ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data access.");
return false;
}
/* Classify all cross-iteration scalar data-flow cycles.
Cross-iteration cycles caused by virtual phis are analyzed separately. */
vect_analyze_scalar_cycles (loop_vinfo);
vect_pattern_recog (loop_vinfo, NULL);
/* Data-flow analysis to detect stmts that do not need to be vectorized. */
ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unexpected pattern.");
return false;
}
/* Analyze data dependences between the data-refs in the loop
and adjust the maximum vectorization factor according to
the dependences.
FORNOW: fail at the first data dependence that we encounter. */
ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
if (!ok
|| max_vf < min_vf)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data dependence.");
return false;
}
ok = vect_determine_vectorization_factor (loop_vinfo);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"can't determine vectorization factor.");
return false;
}
if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data dependence.");
return false;
}
/* Analyze the alignment of the data-refs in the loop.
Fail if a data reference is found that cannot be vectorized. */
ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data alignment.");
return false;
}
/* Prune the list of ddrs to be tested at run-time by versioning for alias.
It is important to call pruning after vect_analyze_data_ref_accesses,
since we use grouping information gathered by interleaving analysis. */
ok = vect_prune_runtime_alias_test_list (loop_vinfo);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"too long list of versioning for alias "
"run-time tests.");
return false;
}
/* This pass will decide on using loop versioning and/or loop peeling in
order to enhance the alignment of data references in the loop. */
ok = vect_enhance_data_refs_alignment (loop_vinfo);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad data alignment.");
return false;
}
/* Check the SLP opportunities in the loop, analyze and build SLP trees. */
ok = vect_analyze_slp (loop_vinfo, NULL);
if (ok)
{
/* Decide which possible SLP instances to SLP. */
slp = vect_make_slp_decision (loop_vinfo);
/* Find stmts that need to be both vectorized and SLPed. */
vect_detect_hybrid_slp (loop_vinfo);
}
else
return false;
/* Scan all the operations in the loop and make sure they are
vectorizable. */
ok = vect_analyze_loop_operations (loop_vinfo, slp);
if (!ok)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad operation or unsupported loop bound.");
return false;
}
return true;
}
/* Function vect_analyze_loop.
Apply a set of analyses on LOOP, and create a loop_vec_info struct
for it. The different analyses will record information in the
loop_vec_info struct. */
loop_vec_info
vect_analyze_loop (struct loop *loop)
{
loop_vec_info loop_vinfo;
unsigned int vector_sizes;
/* Autodetect first vector size we try. */
current_vector_size = 0;
vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"===== analyze_loop_nest =====");
if (loop_outer (loop)
&& loop_vec_info_for_loop (loop_outer (loop))
&& LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"outer-loop already vectorized.");
return NULL;
}
while (1)
{
/* Check the CFG characteristics of the loop (nesting, entry/exit). */
loop_vinfo = vect_analyze_loop_form (loop);
if (!loop_vinfo)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"bad loop form.");
return NULL;
}
if (vect_analyze_loop_2 (loop_vinfo))
{
LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
return loop_vinfo;
}
destroy_loop_vec_info (loop_vinfo, true);
vector_sizes &= ~current_vector_size;
if (vector_sizes == 0
|| current_vector_size == 0)
return NULL;
/* Try the next biggest vector size. */
current_vector_size = 1 << floor_log2 (vector_sizes);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"***** Re-trying analysis with "
"vector size %d\n", current_vector_size);
}
}
/* Function reduction_code_for_scalar_code
Input:
CODE - tree_code of a reduction operations.
Output:
REDUC_CODE - the corresponding tree-code to be used to reduce the
vector of partial results into a single scalar result (which
will also reside in a vector) or ERROR_MARK if the operation is
a supported reduction operation, but does not have such tree-code.
Return FALSE if CODE currently cannot be vectorized as reduction. */
static bool
reduction_code_for_scalar_code (enum tree_code code,
enum tree_code *reduc_code)
{
switch (code)
{
case MAX_EXPR:
*reduc_code = REDUC_MAX_EXPR;
return true;
case MIN_EXPR:
*reduc_code = REDUC_MIN_EXPR;
return true;
case PLUS_EXPR:
*reduc_code = REDUC_PLUS_EXPR;
return true;
case MULT_EXPR:
case MINUS_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_AND_EXPR:
*reduc_code = ERROR_MARK;
return true;
default:
return false;
}
}
/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
STMT is printed with a message MSG. */
static void
report_vect_op (int msg_type, gimple stmt, const char *msg)
{
dump_printf_loc (msg_type, vect_location, "%s", msg);
dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
}
/* Detect SLP reduction of the form:
#a1 = phi <a5, a0>
a2 = operation (a1)
a3 = operation (a2)
a4 = operation (a3)
a5 = operation (a4)
#a = phi <a5>
PHI is the reduction phi node (#a1 = phi <a5, a0> above)
FIRST_STMT is the first reduction stmt in the chain
(a2 = operation (a1)).
Return TRUE if a reduction chain was detected. */
static bool
vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
{
struct loop *loop = (gimple_bb (phi))->loop_father;
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
enum tree_code code;
gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
stmt_vec_info use_stmt_info, current_stmt_info;
tree lhs;
imm_use_iterator imm_iter;
use_operand_p use_p;
int nloop_uses, size = 0, n_out_of_loop_uses;
bool found = false;
if (loop != vect_loop)
return false;
lhs = PHI_RESULT (phi);
code = gimple_assign_rhs_code (first_stmt);
while (1)
{
nloop_uses = 0;
n_out_of_loop_uses = 0;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
{
gimple use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
use_stmt = USE_STMT (use_p);
/* Check if we got back to the reduction phi. */
if (use_stmt == phi)
{
loop_use_stmt = use_stmt;
found = true;
break;
}
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
{
if (vinfo_for_stmt (use_stmt)
&& !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
{
loop_use_stmt = use_stmt;
nloop_uses++;
}
}
else
n_out_of_loop_uses++;
/* There are can be either a single use in the loop or two uses in
phi nodes. */
if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
return false;
}
if (found)
break;
/* We reached a statement with no loop uses. */
if (nloop_uses == 0)
return false;
/* This is a loop exit phi, and we haven't reached the reduction phi. */
if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
return false;
if (!is_gimple_assign (loop_use_stmt)
|| code != gimple_assign_rhs_code (loop_use_stmt)
|| !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
return false;
/* Insert USE_STMT into reduction chain. */
use_stmt_info = vinfo_for_stmt (loop_use_stmt);
if (current_stmt)
{
current_stmt_info = vinfo_for_stmt (current_stmt);
GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
GROUP_FIRST_ELEMENT (use_stmt_info)
= GROUP_FIRST_ELEMENT (current_stmt_info);
}
else
GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
lhs = gimple_assign_lhs (loop_use_stmt);
current_stmt = loop_use_stmt;
size++;
}
if (!found || loop_use_stmt != phi || size < 2)
return false;
/* Swap the operands, if needed, to make the reduction operand be the second
operand. */
lhs = PHI_RESULT (phi);
next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
while (next_stmt)
{
if (gimple_assign_rhs2 (next_stmt) == lhs)
{
tree op = gimple_assign_rhs1 (next_stmt);
gimple def_stmt = NULL;
if (TREE_CODE (op) == SSA_NAME)
def_stmt = SSA_NAME_DEF_STMT (op);
/* Check that the other def is either defined in the loop
("vect_internal_def"), or it's an induction (defined by a
loop-header phi-node). */
if (def_stmt
&& gimple_bb (def_stmt)
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
&& (is_gimple_assign (def_stmt)
|| is_gimple_call (def_stmt)
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
== vect_induction_def
|| (gimple_code (def_stmt) == GIMPLE_PHI
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
== vect_internal_def
&& !is_loop_header_bb_p (gimple_bb (def_stmt)))))
{
lhs = gimple_assign_lhs (next_stmt);
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
continue;
}
return false;
}
else
{
tree op = gimple_assign_rhs2 (next_stmt);
gimple def_stmt = NULL;
if (TREE_CODE (op) == SSA_NAME)
def_stmt = SSA_NAME_DEF_STMT (op);
/* Check that the other def is either defined in the loop
("vect_internal_def"), or it's an induction (defined by a
loop-header phi-node). */
if (def_stmt
&& gimple_bb (def_stmt)
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
&& (is_gimple_assign (def_stmt)
|| is_gimple_call (def_stmt)
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
== vect_induction_def
|| (gimple_code (def_stmt) == GIMPLE_PHI
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
== vect_internal_def
&& !is_loop_header_bb_p (gimple_bb (def_stmt)))))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
}
swap_tree_operands (next_stmt,
gimple_assign_rhs1_ptr (next_stmt),
gimple_assign_rhs2_ptr (next_stmt));
update_stmt (next_stmt);
if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
}
else
return false;
}
lhs = gimple_assign_lhs (next_stmt);
next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
}
/* Save the chain for further analysis in SLP detection. */
first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
GROUP_SIZE (vinfo_for_stmt (first)) = size;
return true;
}
/* Function vect_is_simple_reduction_1
(1) Detect a cross-iteration def-use cycle that represents a simple
reduction computation. We look for the following pattern:
loop_header:
a1 = phi < a0, a2 >
a3 = ...
a2 = operation (a3, a1)
such that:
1. operation is commutative and associative and it is safe to
change the order of the computation (if CHECK_REDUCTION is true)
2. no uses for a2 in the loop (a2 is used out of the loop)
3. no uses of a1 in the loop besides the reduction operation
4. no uses of a1 outside the loop.
Conditions 1,4 are tested here.
Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
(2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
nested cycles, if CHECK_REDUCTION is false.
(3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
reductions:
a1 = phi < a0, a2 >
inner loop (def of a3)
a2 = phi < a3 >
If MODIFY is true it tries also to rework the code in-place to enable
detection of more reduction patterns. For the time being we rewrite
"res -= RHS" into "rhs += -RHS" when it seems worthwhile.
*/
static gimple
vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
bool check_reduction, bool *double_reduc,
bool modify)
{
struct loop *loop = (gimple_bb (phi))->loop_father;
struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
edge latch_e = loop_latch_edge (loop);
tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
gimple def_stmt, def1 = NULL, def2 = NULL;
enum tree_code orig_code, code;
tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
tree type;
int nloop_uses;
tree name;
imm_use_iterator imm_iter;
use_operand_p use_p;
bool phi_def;
*double_reduc = false;
/* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
otherwise, we assume outer loop vectorization. */
gcc_assert ((check_reduction && loop == vect_loop)
|| (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
name = PHI_RESULT (phi);
nloop_uses = 0;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
{
gimple use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"intermediate value used outside loop.");
return NULL;
}
if (vinfo_for_stmt (use_stmt)
&& !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
nloop_uses++;
if (nloop_uses > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction used in loop.");
return NULL;
}
}
if (TREE_CODE (loop_arg) != SSA_NAME)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction: not ssa_name: ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
}
return NULL;
}
def_stmt = SSA_NAME_DEF_STMT (loop_arg);
if (!def_stmt)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction: no def_stmt.");
return NULL;
}
if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
{
if (dump_enabled_p ())
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
return NULL;
}
if (is_gimple_assign (def_stmt))
{
name = gimple_assign_lhs (def_stmt);
phi_def = false;
}
else
{
name = PHI_RESULT (def_stmt);
phi_def = true;
}
nloop_uses = 0;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
{
gimple use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
&& vinfo_for_stmt (use_stmt)
&& !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
nloop_uses++;
if (nloop_uses > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduction used in loop.");
return NULL;
}
}
/* If DEF_STMT is a phi node itself, we expect it to have a single argument
defined in the inner loop. */
if (phi_def)
{
op1 = PHI_ARG_DEF (def_stmt, 0);
if (gimple_phi_num_args (def_stmt) != 1
|| TREE_CODE (op1) != SSA_NAME)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported phi node definition.");
return NULL;
}
def1 = SSA_NAME_DEF_STMT (op1);
if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
&& loop->inner
&& flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
&& is_gimple_assign (def1))
{
if (dump_enabled_p ())
report_vect_op (MSG_NOTE, def_stmt,
"detected double reduction: ");
*double_reduc = true;
return def_stmt;
}
return NULL;
}
code = orig_code = gimple_assign_rhs_code (def_stmt);
/* We can handle "res -= x[i]", which is non-associative by
simply rewriting this into "res += -x[i]". Avoid changing
gimple instruction for the first simple tests and only do this
if we're allowed to change code at all. */
if (code == MINUS_EXPR
&& modify
&& (op1 = gimple_assign_rhs1 (def_stmt))
&& TREE_CODE (op1) == SSA_NAME
&& SSA_NAME_DEF_STMT (op1) == phi)
code = PLUS_EXPR;
if (check_reduction
&& (!commutative_tree_code (code) || !associative_tree_code (code)))
{
if (dump_enabled_p ())
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: not commutative/associative: ");
return NULL;
}
if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
{
if (code != COND_EXPR)
{
if (dump_enabled_p ())
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: not binary operation: ");
return NULL;
}
op3 = gimple_assign_rhs1 (def_stmt);
if (COMPARISON_CLASS_P (op3))
{
op4 = TREE_OPERAND (op3, 1);
op3 = TREE_OPERAND (op3, 0);
}
op1 = gimple_assign_rhs2 (def_stmt);
op2 = gimple_assign_rhs3 (def_stmt);
if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
{
if (dump_enabled_p ())
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: uses not ssa_names: ");
return NULL;
}
}
else
{
op1 = gimple_assign_rhs1 (def_stmt);
op2 = gimple_assign_rhs2 (def_stmt);
if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
{
if (dump_enabled_p ())
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: uses not ssa_names: ");
return NULL;
}
}
type = TREE_TYPE (gimple_assign_lhs (def_stmt));
if ((TREE_CODE (op1) == SSA_NAME
&& !types_compatible_p (type,TREE_TYPE (op1)))
|| (TREE_CODE (op2) == SSA_NAME
&& !types_compatible_p (type, TREE_TYPE (op2)))
|| (op3 && TREE_CODE (op3) == SSA_NAME
&& !types_compatible_p (type, TREE_TYPE (op3)))
|| (op4 && TREE_CODE (op4) == SSA_NAME
&& !types_compatible_p (type, TREE_TYPE (op4))))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"reduction: multiple types: operation type: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
dump_printf (MSG_NOTE, ", operands types: ");
dump_generic_expr (MSG_NOTE, TDF_SLIM,
TREE_TYPE (op1));
dump_printf (MSG_NOTE, ",");
dump_generic_expr (MSG_NOTE, TDF_SLIM,
TREE_TYPE (op2));
if (op3)
{
dump_printf (MSG_NOTE, ",");
dump_generic_expr (MSG_NOTE, TDF_SLIM,
TREE_TYPE (op3));
}
if (op4)
{
dump_printf (MSG_NOTE, ",");
dump_generic_expr (MSG_NOTE, TDF_SLIM,
TREE_TYPE (op4));
}
}
return NULL;
}
/* Check that it's ok to change the order of the computation.
Generally, when vectorizing a reduction we change the order of the
computation. This may change the behavior of the program in some
cases, so we need to check that this is ok. One exception is when
vectorizing an outer-loop: the inner-loop is executed sequentially,
and therefore vectorizing reductions in the inner-loop during
outer-loop vectorization is safe. */
/* CHECKME: check for !flag_finite_math_only too? */
if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
&& check_reduction)
{
/* Changing the order of operations changes the semantics. */
if (dump_enabled_p ())
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: unsafe fp math optimization: ");
return NULL;
}
else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
&& check_reduction)
{
/* Changing the order of operations changes the semantics. */
if (dump_enabled_p ())
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: unsafe int math optimization: ");
return NULL;
}
else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
{
/* Changing the order of operations changes the semantics. */
if (dump_enabled_p ())
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: unsafe fixed-point math optimization: ");
return NULL;
}
/* If we detected "res -= x[i]" earlier, rewrite it into
"res += -x[i]" now. If this turns out to be useless reassoc
will clean it up again. */
if (orig_code == MINUS_EXPR)
{
tree rhs = gimple_assign_rhs2 (def_stmt);
tree negrhs = make_ssa_name (TREE_TYPE (rhs), NULL);
gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
rhs, NULL);
gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
loop_info, NULL));
gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
gimple_assign_set_rhs2 (def_stmt, negrhs);
gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
update_stmt (def_stmt);
}
/* Reduction is safe. We're dealing with one of the following:
1) integer arithmetic and no trapv
2) floating point arithmetic, and special flags permit this optimization
3) nested cycle (i.e., outer loop vectorization). */
if (TREE_CODE (op1) == SSA_NAME)
def1 = SSA_NAME_DEF_STMT (op1);
if (TREE_CODE (op2) == SSA_NAME)
def2 = SSA_NAME_DEF_STMT (op2);
if (code != COND_EXPR
&& ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
{
if (dump_enabled_p ())
report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
return NULL;
}
/* Check that one def is the reduction def, defined by PHI,
the other def is either defined in the loop ("vect_internal_def"),
or it's an induction (defined by a loop-header phi-node). */
if (def2 && def2 == phi
&& (code == COND_EXPR
|| !def1 || gimple_nop_p (def1)
|| (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
&& (is_gimple_assign (def1)
|| is_gimple_call (def1)
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
== vect_induction_def
|| (gimple_code (def1) == GIMPLE_PHI
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
== vect_internal_def
&& !is_loop_header_bb_p (gimple_bb (def1)))))))
{
if (dump_enabled_p ())
report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
return def_stmt;
}
if (def1 && def1 == phi
&& (code == COND_EXPR
|| !def2 || gimple_nop_p (def2)
|| (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
&& (is_gimple_assign (def2)
|| is_gimple_call (def2)
|| STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
== vect_induction_def
|| (gimple_code (def2) == GIMPLE_PHI
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
== vect_internal_def
&& !is_loop_header_bb_p (gimple_bb (def2)))))))
{
if (check_reduction)
{
/* Swap operands (just for simplicity - so that the rest of the code
can assume that the reduction variable is always the last (second)
argument). */
if (dump_enabled_p ())
report_vect_op (MSG_NOTE, def_stmt,
"detected reduction: need to swap operands: ");
swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
gimple_assign_rhs2_ptr (def_stmt));
if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
}
else
{
if (dump_enabled_p ())
report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
}
return def_stmt;
}
/* Try to find SLP reduction chain. */
if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
{
if (dump_enabled_p ())
report_vect_op (MSG_NOTE, def_stmt,
"reduction: detected reduction chain: ");
return def_stmt;
}
if (dump_enabled_p ())
report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
"reduction: unknown pattern: ");
return NULL;
}
/* Wrapper around vect_is_simple_reduction_1, that won't modify code
in-place. Arguments as there. */
static gimple
vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
bool check_reduction, bool *double_reduc)
{
return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
double_reduc, false);
}
/* Wrapper around vect_is_simple_reduction_1, which will modify code
in-place if it enables detection of more reductions. Arguments
as there. */
gimple
vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
bool check_reduction, bool *double_reduc)
{
return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
double_reduc, true);
}
/* Calculate the cost of one scalar iteration of the loop. */
int
vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
int innerloop_iters, i, stmt_cost;
/* Count statements in scalar loop. Using this as scalar cost for a single
iteration for now.
TODO: Add outer loop support.
TODO: Consider assigning different costs to different scalar
statements. */
/* FORNOW. */
innerloop_iters = 1;
if (loop->inner)
innerloop_iters = 50; /* FIXME */
for (i = 0; i < nbbs; i++)
{
gimple_stmt_iterator si;
basic_block bb = bbs[i];
if (bb->loop_father == loop->inner)
factor = innerloop_iters;
else
factor = 1;
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
{
gimple stmt = gsi_stmt (si);
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
continue;
/* Skip stmts that are not vectorized inside the loop. */
if (stmt_info
&& !STMT_VINFO_RELEVANT_P (stmt_info)
&& (!STMT_VINFO_LIVE_P (stmt_info)
|| !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
&& !STMT_VINFO_IN_PATTERN_P (stmt_info))
continue;
if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
{
if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
stmt_cost = vect_get_stmt_cost (scalar_load);
else
stmt_cost = vect_get_stmt_cost (scalar_store);
}
else
stmt_cost = vect_get_stmt_cost (scalar_stmt);
scalar_single_iter_cost += stmt_cost * factor;
}
}
return scalar_single_iter_cost;
}
/* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
int
vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
int *peel_iters_epilogue,
int scalar_single_iter_cost,
stmt_vector_for_cost *prologue_cost_vec,
stmt_vector_for_cost *epilogue_cost_vec)
{
int retval = 0;
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
*peel_iters_epilogue = vf/2;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"cost model: epilogue peel iters set to vf/2 "
"because loop iterations are unknown .");
/* If peeled iterations are known but number of scalar loop
iterations are unknown, count a taken branch per peeled loop. */
retval = record_stmt_cost (prologue_cost_vec, 2, cond_branch_taken,
NULL, 0, vect_prologue);
}
else
{
int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
peel_iters_prologue = niters < peel_iters_prologue ?
niters : peel_iters_prologue;
*peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
/* If we need to peel for gaps, but no peeling is required, we have to
peel VF iterations. */
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
*peel_iters_epilogue = vf;
}
if (peel_iters_prologue)
retval += record_stmt_cost (prologue_cost_vec,
peel_iters_prologue * scalar_single_iter_cost,
scalar_stmt, NULL, 0, vect_prologue);
if (*peel_iters_epilogue)
retval += record_stmt_cost (epilogue_cost_vec,
*peel_iters_epilogue * scalar_single_iter_cost,
scalar_stmt, NULL, 0, vect_epilogue);
return retval;
}
/* Function vect_estimate_min_profitable_iters
Return the number of iterations required for the vector version of the
loop to be profitable relative to the cost of the scalar version of the
loop. */
static void
vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
int *ret_min_profitable_niters,
int *ret_min_profitable_estimate)
{
int min_profitable_iters;
int min_profitable_estimate;
int peel_iters_prologue;
int peel_iters_epilogue;
unsigned vec_inside_cost = 0;
int vec_outside_cost = 0;
unsigned vec_prologue_cost = 0;
unsigned vec_epilogue_cost = 0;
int scalar_single_iter_cost = 0;
int scalar_outside_cost = 0;
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
/* Cost model disabled. */
if (!flag_vect_cost_model)
{
dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.");
*ret_min_profitable_niters = 0;
*ret_min_profitable_estimate = 0;
return;
}
/* Requires loop versioning tests to handle misalignment. */
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
{
/* FIXME: Make cost depend on complexity of individual check. */
unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
(void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
vect_prologue);
dump_printf (MSG_NOTE,
"cost model: Adding cost of checks for loop "
"versioning to treat misalignment.\n");
}
/* Requires loop versioning with alias checks. */
if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
{
/* FIXME: Make cost depend on complexity of individual check. */
unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
(void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
vect_prologue);
dump_printf (MSG_NOTE,
"cost model: Adding cost of checks for loop "
"versioning aliasing.\n");
}
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
(void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
vect_prologue);
/* Count statements in scalar loop. Using this as scalar cost for a single
iteration for now.
TODO: Add outer loop support.
TODO: Consider assigning different costs to different scalar
statements. */
scalar_single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
/* Add additional cost for the peeled instructions in prologue and epilogue
loop.
FORNOW: If we don't know the value of peel_iters for prologue or epilogue
at compile-time - we assume it's vf/2 (the worst would be vf-1).
TODO: Build an expression that represents peel_iters for prologue and
epilogue to be used in a run-time test. */
if (npeel < 0)
{
peel_iters_prologue = vf/2;
dump_printf (MSG_NOTE, "cost model: "
"prologue peel iters set to vf/2.");
/* If peeling for alignment is unknown, loop bound of main loop becomes
unknown. */
peel_iters_epilogue = vf/2;
dump_printf (MSG_NOTE, "cost model: "
"epilogue peel iters set to vf/2 because "
"peeling for alignment is unknown.");
/* If peeled iterations are unknown, count a taken branch and a not taken
branch per peeled loop. Even if scalar loop iterations are known,
vector iterations are not known since peeled prologue iterations are
not known. Hence guards remain the same. */
(void) add_stmt_cost (target_cost_data, 2, cond_branch_taken,
NULL, 0, vect_prologue);
(void) add_stmt_cost (target_cost_data, 2, cond_branch_not_taken,
NULL, 0, vect_prologue);
/* FORNOW: Don't attempt to pass individual scalar instructions to
the model; just assume linear cost for scalar iterations. */
(void) add_stmt_cost (target_cost_data,
peel_iters_prologue * scalar_single_iter_cost,
scalar_stmt, NULL, 0, vect_prologue);
(void) add_stmt_cost (target_cost_data,
peel_iters_epilogue * scalar_single_iter_cost,
scalar_stmt, NULL, 0, vect_epilogue);
}
else
{
stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
stmt_info_for_cost *si;
int j;
void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
prologue_cost_vec.create (2);
epilogue_cost_vec.create (2);
peel_iters_prologue = npeel;
(void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
&peel_iters_epilogue,
scalar_single_iter_cost,
&prologue_cost_vec,
&epilogue_cost_vec);
FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
{
struct _stmt_vec_info *stmt_info
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
(void) add_stmt_cost (data, si->count, si->kind, stmt_info,
si->misalign, vect_prologue);
}
FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
{
struct _stmt_vec_info *stmt_info
= si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
(void) add_stmt_cost (data, si->count, si->kind, stmt_info,
si->misalign, vect_epilogue);
}
prologue_cost_vec.release ();
epilogue_cost_vec.release ();
}
/* FORNOW: The scalar outside cost is incremented in one of the
following ways:
1. The vectorizer checks for alignment and aliasing and generates
a condition that allows dynamic vectorization. A cost model
check is ANDED with the versioning condition. Hence scalar code
path now has the added cost of the versioning check.
if (cost > th & versioning_check)
jmp to vector code
Hence run-time scalar is incremented by not-taken branch cost.
2. The vectorizer then checks if a prologue is required. If the
cost model check was not done before during versioning, it has to
be done before the prologue check.
if (cost <= th)
prologue = scalar_iters
if (prologue == 0)
jmp to vector code
else
execute prologue
if (prologue == num_iters)
go to exit
Hence the run-time scalar cost is incremented by a taken branch,
plus a not-taken branch, plus a taken branch cost.
3. The vectorizer then checks if an epilogue is required. If the
cost model check was not done before during prologue check, it
has to be done with the epilogue check.
if (prologue == 0)
jmp to vector code
else
execute prologue
if (prologue == num_iters)
go to exit
vector code:
if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
jmp to epilogue
Hence the run-time scalar cost should be incremented by 2 taken
branches.
TODO: The back end may reorder the BBS's differently and reverse
conditions/branch directions. Change the estimates below to
something more reasonable. */
/* If the number of iterations is known and we do not do versioning, we can
decide whether to vectorize at compile time. Hence the scalar version
do not carry cost model guard costs. */
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
{
/* Cost model check occurs at versioning. */
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
else
{
/* Cost model check occurs at prologue generation. */
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
+ vect_get_stmt_cost (cond_branch_not_taken);
/* Cost model check occurs at epilogue generation. */
else
scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
}
}
/* Complete the target-specific cost calculations. */
finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
&vec_inside_cost, &vec_epilogue_cost);
vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
/* Calculate number of iterations required to make the vector version
profitable, relative to the loop bodies only. The following condition
must hold true:
SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
where
SIC = scalar iteration cost, VIC = vector iteration cost,
VOC = vector outside cost, VF = vectorization factor,
PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
SOC = scalar outside cost for run time cost model check. */
if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
{
if (vec_outside_cost <= 0)
min_profitable_iters = 1;
else
{
min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
- vec_inside_cost * peel_iters_prologue
- vec_inside_cost * peel_iters_epilogue)
/ ((scalar_single_iter_cost * vf)
- vec_inside_cost);
if ((scalar_single_iter_cost * vf * min_profitable_iters)
<= (((int) vec_inside_cost * min_profitable_iters)
+ (((int) vec_outside_cost - scalar_outside_cost) * vf)))
min_profitable_iters++;
}
}
/* vector version will never be profitable. */
else
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"cost model: the vector iteration cost = %d "
"divided by the scalar iteration cost = %d "
"is greater or equal to the vectorization factor = %d.",
vec_inside_cost, scalar_single_iter_cost, vf);
*ret_min_profitable_niters = -1;
*ret_min_profitable_estimate = -1;
return;
}
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
vec_inside_cost);
dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
vec_prologue_cost);
dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
vec_epilogue_cost);
dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
scalar_single_iter_cost);
dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
scalar_outside_cost);
dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
vec_outside_cost);
dump_printf (MSG_NOTE, " prologue iterations: %d\n",
peel_iters_prologue);
dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
peel_iters_epilogue);
dump_printf (MSG_NOTE,
" Calculated minimum iters for profitability: %d\n",
min_profitable_iters);
}
min_profitable_iters =
min_profitable_iters < vf ? vf : min_profitable_iters;
/* Because the condition we create is:
if (niters <= min_profitable_iters)
then skip the vectorized loop. */
min_profitable_iters--;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
" Runtime profitability threshold = %d\n", min_profitable_iters);
*ret_min_profitable_niters = min_profitable_iters;
/* Calculate number of iterations required to make the vector version
profitable, relative to the loop bodies only.
Non-vectorized variant is SIC * niters and it must win over vector
variant on the expected loop trip count. The following condition must hold true:
SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
if (vec_outside_cost <= 0)
min_profitable_estimate = 1;
else
{
min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
- vec_inside_cost * peel_iters_prologue
- vec_inside_cost * peel_iters_epilogue)
/ ((scalar_single_iter_cost * vf)
- vec_inside_cost);
}
min_profitable_estimate --;
min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
" Static estimate profitability threshold = %d\n",
min_profitable_iters);
*ret_min_profitable_estimate = min_profitable_estimate;
}
/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
functions. Design better to avoid maintenance issues. */
/* Function vect_model_reduction_cost.
Models cost for a reduction operation, including the vector ops
generated within the strip-mine loop, the initial definition before
the loop, and the epilogue code that must be generated. */
static bool
vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
int ncopies)
{
int prologue_cost = 0, epilogue_cost = 0;
enum tree_code code;
optab optab;
tree vectype;
gimple stmt, orig_stmt;
tree reduction_op;
enum machine_mode mode;
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
/* Cost of reduction op inside loop. */
unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
stmt_info, 0, vect_body);
stmt = STMT_VINFO_STMT (stmt_info);
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
{
case GIMPLE_SINGLE_RHS:
gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
break;
case GIMPLE_UNARY_RHS:
reduction_op = gimple_assign_rhs1 (stmt);
break;
case GIMPLE_BINARY_RHS:
reduction_op = gimple_assign_rhs2 (stmt);
break;
case GIMPLE_TERNARY_RHS:
reduction_op = gimple_assign_rhs3 (stmt);
break;
default:
gcc_unreachable ();
}
vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
if (!vectype)
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported data-type ");
dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
TREE_TYPE (reduction_op));
}
return false;
}
mode = TYPE_MODE (vectype);
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
if (!orig_stmt)
orig_stmt = STMT_VINFO_STMT (stmt_info);
code = gimple_assign_rhs_code (orig_stmt);
/* Add in cost for initial definition. */
prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
stmt_info, 0, vect_prologue);
/* Determine cost of epilogue code.
We have a reduction operator that will reduce the vector in one statement.
Also requires scalar extract. */
if (!nested_in_vect_loop_p (loop, orig_stmt))
{
if (reduc_code != ERROR_MARK)
{
epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
stmt_info, 0, vect_epilogue);
epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
stmt_info, 0, vect_epilogue);
}
else
{
int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
tree bitsize =
TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
int element_bitsize = tree_low_cst (bitsize, 1);
int nelements = vec_size_in_bits / element_bitsize;
optab = optab_for_tree_code (code, vectype, optab_default);
/* We have a whole vector shift available. */
if (VECTOR_MODE_P (mode)
&& optab_handler (optab, mode) != CODE_FOR_nothing
&& optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
{
/* Final reduction via vector shifts and the reduction operator.
Also requires scalar extract. */
epilogue_cost += add_stmt_cost (target_cost_data,
exact_log2 (nelements) * 2,
vector_stmt, stmt_info, 0,
vect_epilogue);
epilogue_cost += add_stmt_cost (target_cost_data, 1,
vec_to_scalar, stmt_info, 0,
vect_epilogue);
}
else
/* Use extracts and reduction op for final reduction. For N
elements, we have N extracts and N-1 reduction ops. */
epilogue_cost += add_stmt_cost (target_cost_data,
nelements + nelements - 1,
vector_stmt, stmt_info, 0,
vect_epilogue);
}
}
if (dump_enabled_p ())
dump_printf (MSG_NOTE,
"vect_model_reduction_cost: inside_cost = %d, "
"prologue_cost = %d, epilogue_cost = %d .", inside_cost,
prologue_cost, epilogue_cost);
return true;
}
/* Function vect_model_induction_cost.
Models cost for induction operations. */
static void
vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
{
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
unsigned inside_cost, prologue_cost;
/* loop cost for vec_loop. */
inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
stmt_info, 0, vect_body);
/* prologue cost for vec_init and vec_step. */
prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
stmt_info, 0, vect_prologue);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"vect_model_induction_cost: inside_cost = %d, "
"prologue_cost = %d .", inside_cost, prologue_cost);
}
/* Function get_initial_def_for_induction
Input:
STMT - a stmt that performs an induction operation in the loop.
IV_PHI - the initial value of the induction variable
Output:
Return a vector variable, initialized with the first VF values of
the induction variable. E.g., for an iv with IV_PHI='X' and
evolution S, for a vector of 4 units, we want to return:
[X, X + S, X + 2*S, X + 3*S]. */
static tree
get_initial_def_for_induction (gimple iv_phi)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree scalar_type;
tree vectype;
int nunits;
edge pe = loop_preheader_edge (loop);
struct loop *iv_loop;
basic_block new_bb;
tree new_vec, vec_init, vec_step, t;
tree access_fn;
tree new_var;
tree new_name;
gimple init_stmt, induction_phi, new_stmt;
tree induc_def, vec_def, vec_dest;
tree init_expr, step_expr;
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
int i;
bool ok;
int ncopies;
tree expr;
stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
bool nested_in_vect_loop = false;
gimple_seq stmts = NULL;
imm_use_iterator imm_iter;
use_operand_p use_p;
gimple exit_phi;
edge latch_e;
tree loop_arg;
gimple_stmt_iterator si;
basic_block bb = gimple_bb (iv_phi);
tree stepvectype;
tree resvectype;
/* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
if (nested_in_vect_loop_p (loop, iv_phi))
{
nested_in_vect_loop = true;
iv_loop = loop->inner;
}
else
iv_loop = loop;
gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
latch_e = loop_latch_edge (iv_loop);
loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
gcc_assert (access_fn);
STRIP_NOPS (access_fn);
ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
&init_expr, &step_expr);
gcc_assert (ok);
pe = loop_preheader_edge (iv_loop);
scalar_type = TREE_TYPE (init_expr);
vectype = get_vectype_for_scalar_type (scalar_type);
resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
gcc_assert (vectype);
nunits = TYPE_VECTOR_SUBPARTS (vectype);
ncopies = vf / nunits;
gcc_assert (phi_info);
gcc_assert (ncopies >= 1);
/* Find the first insertion point in the BB. */
si = gsi_after_labels (bb);
/* Create the vector that holds the initial_value of the induction. */
if (nested_in_vect_loop)
{
/* iv_loop is nested in the loop to be vectorized. init_expr had already
been created during vectorization of previous stmts. We obtain it
from the STMT_VINFO_VEC_STMT of the defining stmt. */
tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
loop_preheader_edge (iv_loop));
vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
/* If the initial value is not of proper type, convert it. */
if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
{
new_stmt = gimple_build_assign_with_ops
(VIEW_CONVERT_EXPR,
vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_"),
build1 (VIEW_CONVERT_EXPR, vectype, vec_init), NULL_TREE);
vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
gimple_assign_set_lhs (new_stmt, vec_init);
new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
new_stmt);
gcc_assert (!new_bb);
set_vinfo_for_stmt (new_stmt,
new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
}
}
else
{
vec<constructor_elt, va_gc> *v;
/* iv_loop is the loop to be vectorized. Create:
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
vec_alloc (v, nunits);
bool constant_p = is_gimple_min_invariant (new_name);
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
for (i = 1; i < nunits; i++)
{
/* Create: new_name_i = new_name + step_expr */
enum tree_code code = POINTER_TYPE_P (scalar_type)
? POINTER_PLUS_EXPR : PLUS_EXPR;
new_name = fold_build2 (code, scalar_type, new_name, step_expr);
if (!is_gimple_min_invariant (new_name))
{
init_stmt = gimple_build_assign (new_var, new_name);
new_name = make_ssa_name (new_var, init_stmt);
gimple_assign_set_lhs (init_stmt, new_name);
new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
gcc_assert (!new_bb);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"created new init_stmt: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
}
constant_p = false;
}
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
}
/* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
if (constant_p)
new_vec = build_vector_from_ctor (vectype, v);
else
new_vec = build_constructor (vectype, v);
vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
}
/* Create the vector that holds the step of the induction. */
if (nested_in_vect_loop)
/* iv_loop is nested in the loop to be vectorized. Generate:
vec_step = [S, S, S, S] */
new_name = step_expr;
else
{
/* iv_loop is the loop to be vectorized. Generate:
vec_step = [VF*S, VF*S, VF*S, VF*S] */
expr = build_int_cst (TREE_TYPE (step_expr), vf);
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
expr, step_expr);
}
t = unshare_expr (new_name);
gcc_assert (CONSTANT_CLASS_P (new_name));
stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
gcc_assert (stepvectype);
new_vec = build_vector_from_val (stepvectype, t);
vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
/* Create the following def-use cycle:
loop prolog:
vec_init = ...
vec_step = ...
loop:
vec_iv = PHI <vec_init, vec_loop>
...
STMT
...
vec_loop = vec_iv + vec_step; */
/* Create the induction-phi that defines the induction-operand. */
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
induction_phi = create_phi_node (vec_dest, iv_loop->header);
set_vinfo_for_stmt (induction_phi,
new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
induc_def = PHI_RESULT (induction_phi);
/* Create the iv update inside the loop */
new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
induc_def, vec_step);
vec_def = make_ssa_name (vec_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, vec_def);
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
NULL));
/* Set the arguments of the phi node: */
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
UNKNOWN_LOCATION);
/* In case that vectorization factor (VF) is bigger than the number
of elements that we can fit in a vectype (nunits), we have to generate
more than one vector stmt - i.e - we need to "unroll" the
vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation. */
if (ncopies > 1)
{
stmt_vec_info prev_stmt_vinfo;
/* FORNOW. This restriction should be relaxed. */
gcc_assert (!nested_in_vect_loop);
/* Create the vector that holds the step of the induction. */
expr = build_int_cst (TREE_TYPE (step_expr), nunits);
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
expr, step_expr);
t = unshare_expr (new_name);
gcc_assert (CONSTANT_CLASS_P (new_name));
new_vec = build_vector_from_val (stepvectype, t);
vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
vec_def = induc_def;
prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
for (i = 1; i < ncopies; i++)
{
/* vec_i = vec_prev + vec_step */
new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
vec_def, vec_step);
vec_def = make_ssa_name (vec_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, vec_def);
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
if (!useless_type_conversion_p (resvectype, vectype))
{
new_stmt = gimple_build_assign_with_ops
(VIEW_CONVERT_EXPR,
vect_get_new_vect_var (resvectype, vect_simple_var,
"vec_iv_"),
build1 (VIEW_CONVERT_EXPR, resvectype,
gimple_assign_lhs (new_stmt)), NULL_TREE);
gimple_assign_set_lhs (new_stmt,
make_ssa_name
(gimple_assign_lhs (new_stmt), new_stmt));
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
}
set_vinfo_for_stmt (new_stmt,
new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
}
}
if (nested_in_vect_loop)
{
/* Find the loop-closed exit-phi of the induction, and record
the final vector of induction results: */
exit_phi = NULL;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
{
if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
{
exit_phi = USE_STMT (use_p);
break;
}
}
if (exit_phi)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
/* FORNOW. Currently not supporting the case that an inner-loop induction
is not used in the outer-loop (i.e. only outside the outer-loop). */
gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
&& !STMT_VINFO_LIVE_P (stmt_vinfo));
STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"vector of inductions after inner-loop:");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
}
}
}
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"transform induction: created def-use cycle: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
dump_printf (MSG_NOTE, "\n");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
SSA_NAME_DEF_STMT (vec_def), 0);
}
STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
if (!useless_type_conversion_p (resvectype, vectype))
{
new_stmt = gimple_build_assign_with_ops
(VIEW_CONVERT_EXPR,
vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
gimple_assign_set_lhs (new_stmt, induc_def);
si = gsi_after_labels (bb);
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
set_vinfo_for_stmt (new_stmt,
new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
}
return induc_def;
}
/* Function get_initial_def_for_reduction
Input:
STMT - a stmt that performs a reduction operation in the loop.
INIT_VAL - the initial value of the reduction variable
Output:
ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
of the reduction (used for adjusting the epilog - see below).
Return a vector variable, initialized according to the operation that STMT
performs. This vector will be used as the initial value of the
vector of partial results.
Option1 (adjust in epilog): Initialize the vector as follows:
add/bit or/xor: [0,0,...,0,0]
mult/bit and: [1,1,...,1,1]
min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
and when necessary (e.g. add/mult case) let the caller know
that it needs to adjust the result by init_val.
Option2: Initialize the vector as follows:
add/bit or/xor: [init_val,0,0,...,0]
mult/bit and: [init_val,1,1,...,1]
min/max/cond_expr: [init_val,init_val,...,init_val]
and no adjustments are needed.
For example, for the following code:
s = init_val;
for (i=0;i<n;i++)
s = s + a[i];
STMT is 's = s + a[i]', and the reduction variable is 's'.
For a vector of 4 units, we want to return either [0,0,0,init_val],
or [0,0,0,0] and let the caller know that it needs to adjust
the result at the end by 'init_val'.
FORNOW, we are using the 'adjust in epilog' scheme, because this way the
initialization vector is simpler (same element in all entries), if
ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
A cost model should help decide between these two schemes. */
tree
get_initial_def_for_reduction (gimple stmt, tree init_val,
tree *adjustment_def)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree scalar_type = TREE_TYPE (init_val);
tree vectype = get_vectype_for_scalar_type (scalar_type);
int nunits;
enum tree_code code = gimple_assign_rhs_code (stmt);
tree def_for_init;
tree init_def;
tree *elts;
int i;
bool nested_in_vect_loop = false;
tree init_value;
REAL_VALUE_TYPE real_init_val = dconst0;
int int_init_val = 0;
gimple def_stmt = NULL;
gcc_assert (vectype);
nunits = TYPE_VECTOR_SUBPARTS (vectype);
gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
|| SCALAR_FLOAT_TYPE_P (scalar_type));
if (nested_in_vect_loop_p (loop, stmt))
nested_in_vect_loop = true;
else
gcc_assert (loop == (gimple_bb (stmt))->loop_father);
/* In case of double reduction we only create a vector variable to be put
in the reduction phi node. The actual statement creation is done in
vect_create_epilog_for_reduction. */
if (adjustment_def && nested_in_vect_loop
&& TREE_CODE (init_val) == SSA_NAME
&& (def_stmt = SSA_NAME_DEF_STMT (init_val))
&& gimple_code (def_stmt) == GIMPLE_PHI
&& flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
&& vinfo_for_stmt (def_stmt)
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
== vect_double_reduction_def)
{
*adjustment_def = NULL;
return vect_create_destination_var (init_val, vectype);
}
if (TREE_CONSTANT (init_val))
{
if (SCALAR_FLOAT_TYPE_P (scalar_type))
init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
else
init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
}
else
init_value = init_val;
switch (code)
{
case WIDEN_SUM_EXPR:
case DOT_PROD_EXPR:
case PLUS_EXPR:
case MINUS_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case MULT_EXPR:
case BIT_AND_EXPR:
/* ADJUSMENT_DEF is NULL when called from
vect_create_epilog_for_reduction to vectorize double reduction. */
if (adjustment_def)
{
if (nested_in_vect_loop)
*adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
NULL);
else
*adjustment_def = init_val;
}
if (code == MULT_EXPR)
{
real_init_val = dconst1;
int_init_val = 1;
}
if (code == BIT_AND_EXPR)
int_init_val = -1;
if (SCALAR_FLOAT_TYPE_P (scalar_type))
def_for_init = build_real (scalar_type, real_init_val);
else
def_for_init = build_int_cst (scalar_type, int_init_val);
/* Create a vector of '0' or '1' except the first element. */
elts = XALLOCAVEC (tree, nunits);
for (i = nunits - 2; i >= 0; --i)
elts[i + 1] = def_for_init;
/* Option1: the first element is '0' or '1' as well. */
if (adjustment_def)
{
elts[0] = def_for_init;
init_def = build_vector (vectype, elts);
break;
}
/* Option2: the first element is INIT_VAL. */
elts[0] = init_val;
if (TREE_CONSTANT (init_val))
init_def = build_vector (vectype, elts);
else
{
vec<constructor_elt, va_gc> *v;
vec_alloc (v, nunits);
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
for (i = 1; i < nunits; ++i)
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
init_def = build_constructor (vectype, v);
}
break;
case MIN_EXPR:
case MAX_EXPR:
case COND_EXPR:
if (adjustment_def)
{
*adjustment_def = NULL_TREE;
init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
break;
}
init_def = build_vector_from_val (vectype, init_value);
break;
default:
gcc_unreachable ();
}
return init_def;
}
/* Function vect_create_epilog_for_reduction
Create code at the loop-epilog to finalize the result of a reduction
computation.
VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
reduction statements.
STMT is the scalar reduction stmt that is being vectorized.
NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
number of elements that we can fit in a vectype (nunits). In this case
we have to generate more than one vector stmt - i.e - we need to "unroll"
the vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation.
REDUC_CODE is the tree-code for the epilog reduction.
REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
computation.
REDUC_INDEX is the index of the operand in the right hand side of the
statement that is defined by REDUCTION_PHI.
DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
SLP_NODE is an SLP node containing a group of reduction statements. The
first one in this group is STMT.
This function:
1. Creates the reduction def-use cycles: sets the arguments for
REDUCTION_PHIS:
The loop-entry argument is the vectorized initial-value of the reduction.
The loop-latch argument is taken from VECT_DEFS - the vector of partial
sums.
2. "Reduces" each vector of partial results VECT_DEFS into a single result,
by applying the operation specified by REDUC_CODE if available, or by
other means (whole-vector shifts or a scalar loop).
The function also creates a new phi node at the loop exit to preserve
loop-closed form, as illustrated below.
The flow at the entry to this function:
loop:
vec_def = phi <null, null> # REDUCTION_PHI
VECT_DEF = vector_stmt # vectorized form of STMT
s_loop = scalar_stmt # (scalar) STMT
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
use <s_out0>
use <s_out0>
The above is transformed by this function into:
loop:
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
VECT_DEF = vector_stmt # vectorized form of STMT
s_loop = scalar_stmt # (scalar) STMT
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1>
s_out3 = extract_field <v_out2, 0>
s_out4 = adjust_result <s_out3>
use <s_out4>
use <s_out4>
*/
static void
vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
int ncopies, enum tree_code reduc_code,
vec<gimple> reduction_phis,
int reduc_index, bool double_reduc,
slp_tree slp_node)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
stmt_vec_info prev_phi_info;
tree vectype;
enum machine_mode mode;
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
basic_block exit_bb;
tree scalar_dest;
tree scalar_type;
gimple new_phi = NULL, phi;
gimple_stmt_iterator exit_gsi;
tree vec_dest;
tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
gimple epilog_stmt = NULL;
enum tree_code code = gimple_assign_rhs_code (stmt);
gimple exit_phi;
tree bitsize, bitpos;
tree adjustment_def = NULL;
tree vec_initial_def = NULL;
tree reduction_op, expr, def;
tree orig_name, scalar_result;
imm_use_iterator imm_iter, phi_imm_iter;
use_operand_p use_p, phi_use_p;
bool extract_scalar_result = false;
gimple use_stmt, orig_stmt, reduction_phi = NULL;
bool nested_in_vect_loop = false;
vec<gimple> new_phis = vNULL;
vec<gimple> inner_phis = vNULL;
enum vect_def_type dt = vect_unknown_def_type;
int j, i;
vec<tree> scalar_results = vNULL;
unsigned int group_size = 1, k, ratio;
vec<tree> vec_initial_defs = vNULL;
vec<gimple> phis;
bool slp_reduc = false;
tree new_phi_result;
gimple inner_phi = NULL;
if (slp_node)
group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
if (nested_in_vect_loop_p (loop, stmt))
{
outer_loop = loop;
loop = loop->inner;
nested_in_vect_loop = true;
gcc_assert (!slp_node);
}
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
{
case GIMPLE_SINGLE_RHS:
gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
== ternary_op);
reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
break;
case GIMPLE_UNARY_RHS:
reduction_op = gimple_assign_rhs1 (stmt);
break;
case GIMPLE_BINARY_RHS:
reduction_op = reduc_index ?
gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
break;
case GIMPLE_TERNARY_RHS:
reduction_op = gimple_op (stmt, reduc_index + 1);
break;
default:
gcc_unreachable ();
}
vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
gcc_assert (vectype);
mode = TYPE_MODE (vectype);
/* 1. Create the reduction def-use cycle:
Set the arguments of REDUCTION_PHIS, i.e., transform
loop:
vec_def = phi <null, null> # REDUCTION_PHI
VECT_DEF = vector_stmt # vectorized form of STMT
...
into:
loop:
vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
VECT_DEF = vector_stmt # vectorized form of STMT
...
(in case of SLP, do it for all the phis). */
/* Get the loop-entry arguments. */
if (slp_node)
vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
NULL, slp_node, reduc_index);
else
{
vec_initial_defs.create (1);
/* For the case of reduction, vect_get_vec_def_for_operand returns
the scalar def before the loop, that defines the initial value
of the reduction variable. */
vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
&adjustment_def);
vec_initial_defs.quick_push (vec_initial_def);
}
/* Set phi nodes arguments. */
FOR_EACH_VEC_ELT (reduction_phis, i, phi)
{
tree vec_init_def = vec_initial_defs[i];
tree def = vect_defs[i];
for (j = 0; j < ncopies; j++)
{
/* Set the loop-entry arg of the reduction-phi. */
add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
UNKNOWN_LOCATION);
/* Set the loop-latch arg for the reduction-phi. */
if (j > 0)
def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"transform reduction: created def-use cycle: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
dump_printf (MSG_NOTE, "\n");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
}
phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
}
}
vec_initial_defs.release ();
/* 2. Create epilog code.
The reduction epilog code operates across the elements of the vector
of partial results computed by the vectorized loop.
The reduction epilog code consists of:
step 1: compute the scalar result in a vector (v_out2)
step 2: extract the scalar result (s_out3) from the vector (v_out2)
step 3: adjust the scalar result (s_out3) if needed.
Step 1 can be accomplished using one the following three schemes:
(scheme 1) using reduc_code, if available.
(scheme 2) using whole-vector shifts, if available.
(scheme 3) using a scalar loop. In this case steps 1+2 above are
combined.
The overall epilog code looks like this:
s_out0 = phi <s_loop> # original EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1> # step 1
s_out3 = extract_field <v_out2, 0> # step 2
s_out4 = adjust_result <s_out3> # step 3
(step 3 is optional, and steps 1 and 2 may be combined).
Lastly, the uses of s_out0 are replaced by s_out4. */
/* 2.1 Create new loop-exit-phis to preserve loop-closed form:
v_out1 = phi <VECT_DEF>
Store them in NEW_PHIS. */
exit_bb = single_exit (loop)->dest;
prev_phi_info = NULL;
new_phis.create (vect_defs.length ());
FOR_EACH_VEC_ELT (vect_defs, i, def)
{
for (j = 0; j < ncopies; j++)
{
tree new_def = copy_ssa_name (def, NULL);
phi = create_phi_node (new_def, exit_bb);
set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
if (j == 0)
new_phis.quick_push (phi);
else
{
def = vect_get_vec_def_for_stmt_copy (dt, def);
STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
}
SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
prev_phi_info = vinfo_for_stmt (phi);
}
}
/* The epilogue is created for the outer-loop, i.e., for the loop being
vectorized. Create exit phis for the outer loop. */
if (double_reduc)
{
loop = outer_loop;
exit_bb = single_exit (loop)->dest;
inner_phis.create (vect_defs.length ());
FOR_EACH_VEC_ELT (new_phis, i, phi)
{
tree new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
gimple outer_phi = create_phi_node (new_result, exit_bb);
SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
PHI_RESULT (phi));
set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
loop_vinfo, NULL));
inner_phis.quick_push (phi);
new_phis[i] = outer_phi;
prev_phi_info = vinfo_for_stmt (outer_phi);
while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
{
phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
outer_phi = create_phi_node (new_result, exit_bb);
SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
PHI_RESULT (phi));
set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
loop_vinfo, NULL));
STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
prev_phi_info = vinfo_for_stmt (outer_phi);
}
}
}
exit_gsi = gsi_after_labels (exit_bb);
/* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
(i.e. when reduc_code is not available) and in the final adjustment
code (if needed). Also get the original scalar reduction variable as
defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
represents a reduction pattern), the tree-code and scalar-def are
taken from the original stmt that the pattern-stmt (STMT) replaces.
Otherwise (it is a regular reduction) - the tree-code and scalar-def
are taken from STMT. */
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
if (!orig_stmt)
{
/* Regular reduction */
orig_stmt = stmt;
}
else
{
/* Reduction pattern */
stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
}
code = gimple_assign_rhs_code (orig_stmt);
/* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
partial results are added and not subtracted. */
if (code == MINUS_EXPR)
code = PLUS_EXPR;
scalar_dest = gimple_assign_lhs (orig_stmt);
scalar_type = TREE_TYPE (scalar_dest);
scalar_results.create (group_size);
new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
bitsize = TYPE_SIZE (scalar_type);
/* In case this is a reduction in an inner-loop while vectorizing an outer
loop - we don't need to extract a single scalar result at the end of the
inner-loop (unless it is double reduction, i.e., the use of reduction is
outside the outer-loop). The final vector of partial results will be used
in the vectorized outer-loop, or reduced to a scalar result at the end of
the outer-loop. */
if (nested_in_vect_loop && !double_reduc)
goto vect_finalize_reduction;
/* SLP reduction without reduction chain, e.g.,
# a1 = phi <a2, a0>
# b1 = phi <b2, b0>
a2 = operation (a1)
b2 = operation (b1) */
slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
/* In case of reduction chain, e.g.,
# a1 = phi <a3, a0>
a2 = operation (a1)
a3 = operation (a2),
we may end up with more than one vector result. Here we reduce them to
one vector. */
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
{
tree first_vect = PHI_RESULT (new_phis[0]);
tree tmp;
gimple new_vec_stmt = NULL;
vec_dest = vect_create_destination_var (scalar_dest, vectype);
for (k = 1; k < new_phis.length (); k++)
{
gimple next_phi = new_phis[k];
tree second_vect = PHI_RESULT (next_phi);
tmp = build2 (code, vectype, first_vect, second_vect);
new_vec_stmt = gimple_build_assign (vec_dest, tmp);
first_vect = make_ssa_name (vec_dest, new_vec_stmt);
gimple_assign_set_lhs (new_vec_stmt, first_vect);
gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
}
new_phi_result = first_vect;
if (new_vec_stmt)
{
new_phis.truncate (0);
new_phis.safe_push (new_vec_stmt);
}
}
else
new_phi_result = PHI_RESULT (new_phis[0]);
/* 2.3 Create the reduction code, using one of the three schemes described
above. In SLP we simply need to extract all the elements from the
vector (without reducing them), so we use scalar shifts. */
if (reduc_code != ERROR_MARK && !slp_reduc)
{
tree tmp;
/*** Case 1: Create:
v_out2 = reduc_expr <v_out1> */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Reduce using direct vector reduction.");
vec_dest = vect_create_destination_var (scalar_dest, vectype);
tmp = build1 (reduc_code, vectype, new_phi_result);
epilog_stmt = gimple_build_assign (vec_dest, tmp);
new_temp = make_ssa_name (vec_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
extract_scalar_result = true;
}
else
{
enum tree_code shift_code = ERROR_MARK;
bool have_whole_vector_shift = true;
int bit_offset;
int element_bitsize = tree_low_cst (bitsize, 1);
int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
tree vec_temp;
if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
shift_code = VEC_RSHIFT_EXPR;
else
have_whole_vector_shift = false;
/* Regardless of whether we have a whole vector shift, if we're
emulating the operation via tree-vect-generic, we don't want
to use it. Only the first round of the reduction is likely
to still be profitable via emulation. */
/* ??? It might be better to emit a reduction tree code here, so that
tree-vect-generic can expand the first round via bit tricks. */
if (!VECTOR_MODE_P (mode))
have_whole_vector_shift = false;
else
{
optab optab = optab_for_tree_code (code, vectype, optab_default);
if (optab_handler (optab, mode) == CODE_FOR_nothing)
have_whole_vector_shift = false;
}
if (have_whole_vector_shift && !slp_reduc)
{
/*** Case 2: Create:
for (offset = VS/2; offset >= element_size; offset/=2)
{
Create: va' = vec_shift <va, offset>
Create: va = vop <va, va'>
} */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Reduce using vector shifts");
vec_dest = vect_create_destination_var (scalar_dest, vectype);
new_temp = new_phi_result;
for (bit_offset = vec_size_in_bits/2;
bit_offset >= element_bitsize;
bit_offset /= 2)
{
tree bitpos = size_int (bit_offset);
epilog_stmt = gimple_build_assign_with_ops (shift_code,
vec_dest, new_temp, bitpos);
new_name = make_ssa_name (vec_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_name);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
new_name, new_temp);
new_temp = make_ssa_name (vec_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
}
extract_scalar_result = true;
}
else
{
tree rhs;
/*** Case 3: Create:
s = extract_field <v_out2, 0>
for (offset = element_size;
offset < vector_size;
offset += element_size;)
{
Create: s' = extract_field <v_out2, offset>
Create: s = op <s, s'> // For non SLP cases
} */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Reduce using scalar code. ");
vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
FOR_EACH_VEC_ELT (new_phis, i, new_phi)
{
if (gimple_code (new_phi) == GIMPLE_PHI)
vec_temp = PHI_RESULT (new_phi);
else
vec_temp = gimple_assign_lhs (new_phi);
rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
bitsize_zero_node);
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
/* In SLP we don't need to apply reduction operation, so we just
collect s' values in SCALAR_RESULTS. */
if (slp_reduc)
scalar_results.safe_push (new_temp);
for (bit_offset = element_bitsize;
bit_offset < vec_size_in_bits;
bit_offset += element_bitsize)
{
tree bitpos = bitsize_int (bit_offset);
tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
bitsize, bitpos);
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_name);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
if (slp_reduc)
{
/* In SLP we don't need to apply reduction operation, so
we just collect s' values in SCALAR_RESULTS. */
new_temp = new_name;
scalar_results.safe_push (new_name);
}
else
{
epilog_stmt = gimple_build_assign_with_ops (code,
new_scalar_dest, new_name, new_temp);
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
}
}
}
/* The only case where we need to reduce scalar results in SLP, is
unrolling. If the size of SCALAR_RESULTS is greater than
GROUP_SIZE, we reduce them combining elements modulo
GROUP_SIZE. */
if (slp_reduc)
{
tree res, first_res, new_res;
gimple new_stmt;
/* Reduce multiple scalar results in case of SLP unrolling. */
for (j = group_size; scalar_results.iterate (j, &res);
j++)
{
first_res = scalar_results[j % group_size];
new_stmt = gimple_build_assign_with_ops (code,
new_scalar_dest, first_res, res);
new_res = make_ssa_name (new_scalar_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, new_res);
gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
scalar_results[j % group_size] = new_res;
}
}
else
/* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
scalar_results.safe_push (new_temp);
extract_scalar_result = false;
}
}
/* 2.4 Extract the final scalar result. Create:
s_out3 = extract_field <v_out2, bitpos> */
if (extract_scalar_result)
{
tree rhs;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"extract scalar result");
if (BYTES_BIG_ENDIAN)
bitpos = size_binop (MULT_EXPR,
bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
TYPE_SIZE (scalar_type));
else
bitpos = bitsize_zero_node;
rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
scalar_results.safe_push (new_temp);
}
vect_finalize_reduction:
if (double_reduc)
loop = loop->inner;
/* 2.5 Adjust the final result by the initial value of the reduction
variable. (When such adjustment is not needed, then
'adjustment_def' is zero). For example, if code is PLUS we create:
new_temp = loop_exit_def + adjustment_def */
if (adjustment_def)
{
gcc_assert (!slp_reduc);
if (nested_in_vect_loop)
{
new_phi = new_phis[0];
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
new_dest = vect_create_destination_var (scalar_dest, vectype);
}
else
{
new_temp = scalar_results[0];
gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
expr = build2 (code, scalar_type, new_temp, adjustment_def);
new_dest = vect_create_destination_var (scalar_dest, scalar_type);
}
epilog_stmt = gimple_build_assign (new_dest, expr);
new_temp = make_ssa_name (new_dest, epilog_stmt);
gimple_assign_set_lhs (epilog_stmt, new_temp);
SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
if (nested_in_vect_loop)
{
set_vinfo_for_stmt (epilog_stmt,
new_stmt_vec_info (epilog_stmt, loop_vinfo,
NULL));
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
if (!double_reduc)
scalar_results.quick_push (new_temp);
else
scalar_results[0] = new_temp;
}
else
scalar_results[0] = new_temp;
new_phis[0] = epilog_stmt;
}
/* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
phis with new adjusted scalar results, i.e., replace use <s_out0>
with use <s_out4>.
Transform:
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1>
s_out3 = extract_field <v_out2, 0>
s_out4 = adjust_result <s_out3>
use <s_out0>
use <s_out0>
into:
loop_exit:
s_out0 = phi <s_loop> # (scalar) EXIT_PHI
v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
v_out2 = reduce <v_out1>
s_out3 = extract_field <v_out2, 0>
s_out4 = adjust_result <s_out3>
use <s_out4>
use <s_out4> */
/* In SLP reduction chain we reduce vector results into one vector if
necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
the last stmt in the reduction chain, since we are looking for the loop
exit phi node. */
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
{
scalar_dest = gimple_assign_lhs (
SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
group_size = 1;
}
/* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
case that GROUP_SIZE is greater than vectorization factor). Therefore, we
need to match SCALAR_RESULTS with corresponding statements. The first
(GROUP_SIZE / number of new vector stmts) scalar results correspond to
the first vector stmt, etc.
(RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
if (group_size > new_phis.length ())
{
ratio = group_size / new_phis.length ();
gcc_assert (!(group_size % new_phis.length ()));
}
else
ratio = 1;
for (k = 0; k < group_size; k++)
{
if (k % ratio == 0)
{
epilog_stmt = new_phis[k / ratio];
reduction_phi = reduction_phis[k / ratio];
if (double_reduc)
inner_phi = inner_phis[k / ratio];
}
if (slp_reduc)
{
gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
/* SLP statements can't participate in patterns. */
gcc_assert (!orig_stmt);
scalar_dest = gimple_assign_lhs (current_stmt);
}
phis.create (3);
/* Find the loop-closed-use at the loop exit of the original scalar
result. (The reduction result is expected to have two immediate uses -
one at the latch block, and one at the loop exit). */
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
phis.safe_push (USE_STMT (use_p));
/* We expect to have found an exit_phi because of loop-closed-ssa
form. */
gcc_assert (!phis.is_empty ());
FOR_EACH_VEC_ELT (phis, i, exit_phi)
{
if (outer_loop)
{
stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
gimple vect_phi;
/* FORNOW. Currently not supporting the case that an inner-loop
reduction is not used in the outer-loop (but only outside the
outer-loop), unless it is double reduction. */
gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
&& !STMT_VINFO_LIVE_P (exit_phi_vinfo))
|| double_reduc);
STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
if (!double_reduc
|| STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
!= vect_double_reduction_def)
continue;
/* Handle double reduction:
stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
At that point the regular reduction (stmt2 and stmt3) is
already vectorized, as well as the exit phi node, stmt4.
Here we vectorize the phi node of double reduction, stmt1, and
update all relevant statements. */
/* Go through all the uses of s2 to find double reduction phi
node, i.e., stmt1 above. */
orig_name = PHI_RESULT (exit_phi);
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
{
stmt_vec_info use_stmt_vinfo;
stmt_vec_info new_phi_vinfo;
tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
basic_block bb = gimple_bb (use_stmt);
gimple use;
/* Check that USE_STMT is really double reduction phi
node. */
if (gimple_code (use_stmt) != GIMPLE_PHI
|| gimple_phi_num_args (use_stmt) != 2
|| bb->loop_father != outer_loop)
continue;
use_stmt_vinfo = vinfo_for_stmt (use_stmt);
if (!use_stmt_vinfo
|| STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
!= vect_double_reduction_def)
continue;
/* Create vector phi node for double reduction:
vs1 = phi <vs0, vs2>
vs1 was created previously in this function by a call to
vect_get_vec_def_for_operand and is stored in
vec_initial_def;
vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
vs0 is created here. */
/* Create vector phi node. */
vect_phi = create_phi_node (vec_initial_def, bb);
new_phi_vinfo = new_stmt_vec_info (vect_phi,
loop_vec_info_for_loop (outer_loop), NULL);
set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
/* Create vs0 - initial def of the double reduction phi. */
preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
loop_preheader_edge (outer_loop));
init_def = get_initial_def_for_reduction (stmt,
preheader_arg, NULL);
vect_phi_init = vect_init_vector (use_stmt, init_def,
vectype, NULL);
/* Update phi node arguments with vs0 and vs2. */
add_phi_arg (vect_phi, vect_phi_init,
loop_preheader_edge (outer_loop),
UNKNOWN_LOCATION);
add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"created double reduction phi node: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
}
vect_phi_res = PHI_RESULT (vect_phi);
/* Replace the use, i.e., set the correct vs1 in the regular
reduction phi node. FORNOW, NCOPIES is always 1, so the
loop is redundant. */
use = reduction_phi;
for (j = 0; j < ncopies; j++)
{
edge pr_edge = loop_preheader_edge (loop);
SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
}
}
}
}
phis.release ();
if (nested_in_vect_loop)
{
if (double_reduc)
loop = outer_loop;
else
continue;
}
phis.create (3);
/* Find the loop-closed-use at the loop exit of the original scalar
result. (The reduction result is expected to have two immediate uses,
one at the latch block, and one at the loop exit). For double
reductions we are looking for exit phis of the outer loop. */
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
{
if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
phis.safe_push (USE_STMT (use_p));
else
{
if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
{
tree phi_res = PHI_RESULT (USE_STMT (use_p));
FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
{
if (!flow_bb_inside_loop_p (loop,
gimple_bb (USE_STMT (phi_use_p))))
phis.safe_push (USE_STMT (phi_use_p));
}
}
}
}
FOR_EACH_VEC_ELT (phis, i, exit_phi)
{
/* Replace the uses: */
orig_name = PHI_RESULT (exit_phi);
scalar_result = scalar_results[k];
FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
SET_USE (use_p, scalar_result);
}
phis.release ();
}
scalar_results.release ();
inner_phis.release ();
new_phis.release ();
}
/* Function vectorizable_reduction.
Check if STMT performs a reduction operation that can be vectorized.
If VEC_STMT is also passed, vectorize the STMT: create a vectorized
stmt to replace it, put it in VEC_STMT, and insert it at GSI.
Return FALSE if not a vectorizable STMT, TRUE otherwise.
This function also handles reduction idioms (patterns) that have been
recognized in advance during vect_pattern_recog. In this case, STMT may be
of this form:
X = pattern_expr (arg0, arg1, ..., X)
and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
sequence that had been detected and replaced by the pattern-stmt (STMT).
In some cases of reduction patterns, the type of the reduction variable X is
different than the type of the other arguments of STMT.
In such cases, the vectype that is used when transforming STMT into a vector
stmt is different than the vectype that is used to determine the
vectorization factor, because it consists of a different number of elements
than the actual number of elements that are being operated upon in parallel.
For example, consider an accumulation of shorts into an int accumulator.
On some targets it's possible to vectorize this pattern operating on 8
shorts at a time (hence, the vectype for purposes of determining the
vectorization factor should be V8HI); on the other hand, the vectype that
is used to create the vector form is actually V4SI (the type of the result).
Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
indicates what is the actual level of parallelism (V8HI in the example), so
that the right vectorization factor would be derived. This vectype
corresponds to the type of arguments to the reduction stmt, and should *NOT*
be used to create the vectorized stmt. The right vectype for the vectorized
stmt is obtained from the type of the result X:
get_vectype_for_scalar_type (TREE_TYPE (X))
This means that, contrary to "regular" reductions (or "regular" stmts in
general), the following equation:
STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
does *NOT* necessarily hold for reduction patterns. */
bool
vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
gimple *vec_stmt, slp_tree slp_node)
{
tree vec_dest;
tree scalar_dest;
tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
tree vectype_in = NULL_TREE;
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
enum tree_code code, orig_code, epilog_reduc_code;
enum machine_mode vec_mode;
int op_type;
optab optab, reduc_optab;
tree new_temp = NULL_TREE;
tree def;
gimple def_stmt;
enum vect_def_type dt;
gimple new_phi = NULL;
tree scalar_type;
bool is_simple_use;
gimple orig_stmt;
stmt_vec_info orig_stmt_info;
tree expr = NULL_TREE;
int i;
int ncopies;
int epilog_copies;
stmt_vec_info prev_stmt_info, prev_phi_info;
bool single_defuse_cycle = false;
tree reduc_def = NULL_TREE;
gimple new_stmt = NULL;
int j;
tree ops[3];
bool nested_cycle = false, found_nested_cycle_def = false;
gimple reduc_def_stmt = NULL;
/* The default is that the reduction variable is the last in statement. */
int reduc_index = 2;
bool double_reduc = false, dummy;
basic_block def_bb;
struct loop * def_stmt_loop, *outer_loop = NULL;
tree def_arg;
gimple def_arg_stmt;
vec<tree> vec_oprnds0 = vNULL;
vec<tree> vec_oprnds1 = vNULL;
vec<tree> vect_defs = vNULL;
vec<gimple> phis = vNULL;
int vec_num;
tree def0, def1, tem, op0, op1 = NULL_TREE;
/* In case of reduction chain we switch to the first stmt in the chain, but
we don't update STMT_INFO, since only the last stmt is marked as reduction
and has reduction properties. */
if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
stmt = GROUP_FIRST_ELEMENT (stmt_info);
if (nested_in_vect_loop_p (loop, stmt))
{
outer_loop = loop;
loop = loop->inner;
nested_cycle = true;
}
/* 1. Is vectorizable reduction? */
/* Not supportable if the reduction variable is used in the loop, unless
it's a reduction chain. */
if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
&& !GROUP_FIRST_ELEMENT (stmt_info))
return false;
/* Reductions that are not used even in an enclosing outer-loop,
are expected to be "live" (used out of the loop). */
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
&& !STMT_VINFO_LIVE_P (stmt_info))
return false;
/* Make sure it was already recognized as a reduction computation. */
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
&& STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
return false;
/* 2. Has this been recognized as a reduction pattern?
Check if STMT represents a pattern that has been recognized
in earlier analysis stages. For stmts that represent a pattern,
the STMT_VINFO_RELATED_STMT field records the last stmt in
the original sequence that constitutes the pattern. */
orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
if (orig_stmt)
{
orig_stmt_info = vinfo_for_stmt (orig_stmt);
gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
}
/* 3. Check the operands of the operation. The first operands are defined
inside the loop body. The last operand is the reduction variable,
which is defined by the loop-header-phi. */
gcc_assert (is_gimple_assign (stmt));
/* Flatten RHS. */
switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
{
case GIMPLE_SINGLE_RHS:
op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
if (op_type == ternary_op)
{
tree rhs = gimple_assign_rhs1 (stmt);
ops[0] = TREE_OPERAND (rhs, 0);
ops[1] = TREE_OPERAND (rhs, 1);
ops[2] = TREE_OPERAND (rhs, 2);
code = TREE_CODE (rhs);
}
else
return false;
break;
case GIMPLE_BINARY_RHS:
code = gimple_assign_rhs_code (stmt);
op_type = TREE_CODE_LENGTH (code);
gcc_assert (op_type == binary_op);
ops[0] = gimple_assign_rhs1 (stmt);
ops[1] = gimple_assign_rhs2 (stmt);
break;
case GIMPLE_TERNARY_RHS:
code = gimple_assign_rhs_code (stmt);
op_type = TREE_CODE_LENGTH (code);
gcc_assert (op_type == ternary_op);
ops[0] = gimple_assign_rhs1 (stmt);
ops[1] = gimple_assign_rhs2 (stmt);
ops[2] = gimple_assign_rhs3 (stmt);
break;
case GIMPLE_UNARY_RHS:
return false;
default:
gcc_unreachable ();
}
if (code == COND_EXPR && slp_node)
return false;
scalar_dest = gimple_assign_lhs (stmt);
scalar_type = TREE_TYPE (scalar_dest);
if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
&& !SCALAR_FLOAT_TYPE_P (scalar_type))
return false;
/* Do not try to vectorize bit-precision reductions. */
if ((TYPE_PRECISION (scalar_type)
!= GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
return false;
/* All uses but the last are expected to be defined in the loop.
The last use is the reduction variable. In case of nested cycle this
assumption is not true: we use reduc_index to record the index of the
reduction variable. */
for (i = 0; i < op_type - 1; i++)
{
/* The condition of COND_EXPR is checked in vectorizable_condition(). */
if (i == 0 && code == COND_EXPR)
continue;
is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
&def_stmt, &def, &dt, &tem);
if (!vectype_in)
vectype_in = tem;
gcc_assert (is_simple_use);
if (dt != vect_internal_def
&& dt != vect_external_def
&& dt != vect_constant_def
&& dt != vect_induction_def
&& !(dt == vect_nested_cycle && nested_cycle))
return false;
if (dt == vect_nested_cycle)
{
found_nested_cycle_def = true;
reduc_def_stmt = def_stmt;
reduc_index = i;
}
}
is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
&def_stmt, &def, &dt, &tem);
if (!vectype_in)
vectype_in = tem;
gcc_assert (is_simple_use);
if (!(dt == vect_reduction_def
|| dt == vect_nested_cycle
|| ((dt == vect_internal_def || dt == vect_external_def
|| dt == vect_constant_def || dt == vect_induction_def)
&& nested_cycle && found_nested_cycle_def)))
{
/* For pattern recognized stmts, orig_stmt might be a reduction,
but some helper statements for the pattern might not, or
might be COND_EXPRs with reduction uses in the condition. */
gcc_assert (orig_stmt);
return false;
}
if (!found_nested_cycle_def)
reduc_def_stmt = def_stmt;
gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
if (orig_stmt)
gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
reduc_def_stmt,
!nested_cycle,
&dummy));
else
{
gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
!nested_cycle, &dummy);
/* We changed STMT to be the first stmt in reduction chain, hence we
check that in this case the first element in the chain is STMT. */
gcc_assert (stmt == tmp
|| GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
}
if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
return false;
if (slp_node || PURE_SLP_STMT (stmt_info))
ncopies = 1;
else
ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
/ TYPE_VECTOR_SUBPARTS (vectype_in));
gcc_assert (ncopies >= 1);
vec_mode = TYPE_MODE (vectype_in);
if (code == COND_EXPR)
{
if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported condition in reduction");
return false;
}
}
else
{
/* 4. Supportable by target? */
if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
|| code == LROTATE_EXPR || code == RROTATE_EXPR)
{
/* Shifts and rotates are only supported by vectorizable_shifts,
not vectorizable_reduction. */
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"unsupported shift or rotation.");
return false;
}
/* 4.1. check support for the operation in the loop */
optab = optab_for_tree_code (code, vectype_in, optab_default);
if (!optab)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"no optab.");
return false;
}
if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
{
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "op not supported by target.");
if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
|| LOOP_VINFO_VECT_FACTOR (loop_vinfo)
< vect_min_worthwhile_factor (code))
return false;
if (dump_enabled_p ())
dump_printf (MSG_NOTE, "proceeding using word mode.");
}
/* Worthwhile without SIMD support? */
if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
&& LOOP_VINFO_VECT_FACTOR (loop_vinfo)
< vect_min_worthwhile_factor (code))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"not worthwhile without SIMD support.");
return false;
}
}
/* 4.2. Check support for the epilog operation.
If STMT represents a reduction pattern, then the type of the
reduction variable may be different than the type of the rest
of the arguments. For example, consider the case of accumulation
of shorts into an int accumulator; The original code:
S1: int_a = (int) short_a;
orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
was replaced with:
STMT: int_acc = widen_sum <short_a, int_acc>
This means that:
1. The tree-code that is used to create the vector operation in the
epilog code (that reduces the partial results) is not the
tree-code of STMT, but is rather the tree-code of the original
stmt from the pattern that STMT is replacing. I.e, in the example
above we want to use 'widen_sum' in the loop, but 'plus' in the
epilog.
2. The type (mode) we use to check available target support
for the vector operation to be created in the *epilog*, is
determined by the type of the reduction variable (in the example
above we'd check this: optab_handler (plus_optab, vect_int_mode])).
However the type (mode) we use to check available target support
for the vector operation to be created *inside the loop*, is
determined by the type of the other arguments to STMT (in the
example we'd check this: optab_handler (widen_sum_optab,
vect_short_mode)).
This is contrary to "regular" reductions, in which the types of all
the arguments are the same as the type of the reduction variable.
For "regular" reductions we can therefore use the same vector type
(and also the same tree-code) when generating the epilog code and
when generating the code inside the loop. */
if (orig_stmt)
{
/* This is a reduction pattern: get the vectype from the type of the
reduction variable, and get the tree-code from orig_stmt. */
orig_code = gimple_assign_rhs_code (orig_stmt);
gcc_assert (vectype_out);
vec_mode = TYPE_MODE (vectype_out);
}
else
{
/* Regular reduction: use the same vectype and tree-code as used for
the vector code inside the loop can be used for the epilog code. */
orig_code = code;
}
if (nested_cycle)
{
def_bb = gimple_bb (reduc_def_stmt);
def_stmt_loop = def_bb->loop_father;
def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
loop_preheader_edge (def_stmt_loop));
if (TREE_CODE (def_arg) == SSA_NAME
&& (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
&& gimple_code (def_arg_stmt) == GIMPLE_PHI
&& flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
&& vinfo_for_stmt (def_arg_stmt)
&& STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
== vect_double_reduction_def)
double_reduc = true;
}
epilog_reduc_code = ERROR_MARK;
if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
{
reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
optab_default);
if (!reduc_optab)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"no optab for reduction.");
epilog_reduc_code = ERROR_MARK;
}
if (reduc_optab
&& optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"reduc op not supported by target.");
epilog_reduc_code = ERROR_MARK;
}
}
else
{
if (!nested_cycle || double_reduc)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"no reduc code for scalar code.");
return false;
}
}
if (double_reduc && ncopies > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"multiple types in double reduction");
return false;
}
/* In case of widenning multiplication by a constant, we update the type
of the constant to be the type of the other operand. We check that the
constant fits the type in the pattern recognition pass. */
if (code == DOT_PROD_EXPR
&& !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
{
if (TREE_CODE (ops[0]) == INTEGER_CST)
ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
else if (TREE_CODE (ops[1]) == INTEGER_CST)
ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
else
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"invalid types in dot-prod");
return false;
}
}
if (!vec_stmt) /* transformation not required. */
{
if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
return false;
STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
return true;
}
/** Transform. **/
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.");
/* FORNOW: Multiple types are not supported for condition. */
if (code == COND_EXPR)
gcc_assert (ncopies == 1);
/* Create the destination vector */
vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
/* In case the vectorization factor (VF) is bigger than the number
of elements that we can fit in a vectype (nunits), we have to generate
more than one vector stmt - i.e - we need to "unroll" the
vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation. */
/* If the reduction is used in an outer loop we need to generate
VF intermediate results, like so (e.g. for ncopies=2):
r0 = phi (init, r0)
r1 = phi (init, r1)
r0 = x0 + r0;
r1 = x1 + r1;
(i.e. we generate VF results in 2 registers).
In this case we have a separate def-use cycle for each copy, and therefore
for each copy we get the vector def for the reduction variable from the
respective phi node created for this copy.
Otherwise (the reduction is unused in the loop nest), we can combine
together intermediate results, like so (e.g. for ncopies=2):
r = phi (init, r)
r = x0 + r;
r = x1 + r;
(i.e. we generate VF/2 results in a single register).
In this case for each copy we get the vector def for the reduction variable
from the vectorized reduction operation generated in the previous iteration.
*/
if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
{
single_defuse_cycle = true;
epilog_copies = 1;
}
else
epilog_copies = ncopies;
prev_stmt_info = NULL;
prev_phi_info = NULL;
if (slp_node)
{
vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
== TYPE_VECTOR_SUBPARTS (vectype_in));
}
else
{
vec_num = 1;
vec_oprnds0.create (1);
if (op_type == ternary_op)
vec_oprnds1.create (1);
}
phis.create (vec_num);
vect_defs.create (vec_num);
if (!slp_node)
vect_defs.quick_push (NULL_TREE);
for (j = 0; j < ncopies; j++)
{
if (j == 0 || !single_defuse_cycle)
{
for (i = 0; i < vec_num; i++)
{
/* Create the reduction-phi that defines the reduction
operand. */
new_phi = create_phi_node (vec_dest, loop->header);
set_vinfo_for_stmt (new_phi,
new_stmt_vec_info (new_phi, loop_vinfo,
NULL));
if (j == 0 || slp_node)
phis.quick_push (new_phi);
}
}
if (code == COND_EXPR)
{
gcc_assert (!slp_node);
vectorizable_condition (stmt, gsi, vec_stmt,
PHI_RESULT (phis[0]),
reduc_index, NULL);
/* Multiple types are not supported for condition. */
break;
}
/* Handle uses. */
if (j == 0)
{
op0 = ops[!reduc_index];
if (op_type == ternary_op)
{
if (reduc_index == 0)
op1 = ops[2];
else
op1 = ops[1];
}
if (slp_node)
vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
slp_node, -1);
else
{
loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
stmt, NULL);
vec_oprnds0.quick_push (loop_vec_def0);
if (op_type == ternary_op)
{
loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
NULL);
vec_oprnds1.quick_push (loop_vec_def1);
}
}
}
else
{
if (!slp_node)
{
enum vect_def_type dt;
gimple dummy_stmt;
tree dummy;
vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
&dummy_stmt, &dummy, &dt);
loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
loop_vec_def0);
vec_oprnds0[0] = loop_vec_def0;
if (op_type == ternary_op)
{
vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
&dummy, &dt);
loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
loop_vec_def1);
vec_oprnds1[0] = loop_vec_def1;
}
}
if (single_defuse_cycle)
reduc_def = gimple_assign_lhs (new_stmt);
STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
}
FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
{
if (slp_node)
reduc_def = PHI_RESULT (phis[i]);
else
{
if (!single_defuse_cycle || j == 0)
reduc_def = PHI_RESULT (new_phi);
}
def1 = ((op_type == ternary_op)
? vec_oprnds1[i] : NULL);
if (op_type == binary_op)
{
if (reduc_index == 0)
expr = build2 (code, vectype_out, reduc_def, def0);
else
expr = build2 (code, vectype_out, def0, reduc_def);
}
else
{
if (reduc_index == 0)
expr = build3 (code, vectype_out, reduc_def, def0, def1);
else
{
if (reduc_index == 1)
expr = build3 (code, vectype_out, def0, reduc_def, def1);
else
expr = build3 (code, vectype_out, def0, def1, reduc_def);
}
}
new_stmt = gimple_build_assign (vec_dest, expr);
new_temp = make_ssa_name (vec_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, new_temp);
vect_finish_stmt_generation (stmt, new_stmt, gsi);
if (slp_node)
{
SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
vect_defs.quick_push (new_temp);
}
else
vect_defs[0] = new_temp;
}
if (slp_node)
continue;
if (j == 0)
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
else
STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
prev_stmt_info = vinfo_for_stmt (new_stmt);
prev_phi_info = vinfo_for_stmt (new_phi);
}
/* Finalize the reduction-phi (set its arguments) and create the
epilog reduction code. */
if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
{
new_temp = gimple_assign_lhs (*vec_stmt);
vect_defs[0] = new_temp;
}
vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
epilog_reduc_code, phis, reduc_index,
double_reduc, slp_node);
phis.release ();
vect_defs.release ();
vec_oprnds0.release ();
vec_oprnds1.release ();
return true;
}
/* Function vect_min_worthwhile_factor.
For a loop where we could vectorize the operation indicated by CODE,
return the minimum vectorization factor that makes it worthwhile
to use generic vectors. */
int
vect_min_worthwhile_factor (enum tree_code code)
{
switch (code)
{
case PLUS_EXPR:
case MINUS_EXPR:
case NEGATE_EXPR:
return 4;
case BIT_AND_EXPR:
case BIT_IOR_EXPR:
case BIT_XOR_EXPR:
case BIT_NOT_EXPR:
return 2;
default:
return INT_MAX;
}
}
/* Function vectorizable_induction
Check if PHI performs an induction computation that can be vectorized.
If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
phi to replace it, put it in VEC_STMT, and add it to the same basic block.
Return FALSE if not a vectorizable STMT, TRUE otherwise. */
bool
vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
gimple *vec_stmt)
{
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
tree vec_def;
gcc_assert (ncopies >= 1);
/* FORNOW. These restrictions should be relaxed. */
if (nested_in_vect_loop_p (loop, phi))
{
imm_use_iterator imm_iter;
use_operand_p use_p;
gimple exit_phi;
edge latch_e;
tree loop_arg;
if (ncopies > 1)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"multiple types in nested loop.");
return false;
}
exit_phi = NULL;
latch_e = loop_latch_edge (loop->inner);
loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
{
if (!flow_bb_inside_loop_p (loop->inner,
gimple_bb (USE_STMT (use_p))))
{
exit_phi = USE_STMT (use_p);
break;
}
}
if (exit_phi)
{
stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
&& !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"inner-loop induction only used outside "
"of the outer vectorized loop.");
return false;
}
}
}
if (!STMT_VINFO_RELEVANT_P (stmt_info))
return false;
/* FORNOW: SLP not supported. */
if (STMT_SLP_TYPE (stmt_info))
return false;
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
if (gimple_code (phi) != GIMPLE_PHI)
return false;
if (!vec_stmt) /* transformation not required. */
{
STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"=== vectorizable_induction ===");
vect_model_induction_cost (stmt_info, ncopies);
return true;
}
/** Transform. **/
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.");
vec_def = get_initial_def_for_induction (phi);
*vec_stmt = SSA_NAME_DEF_STMT (vec_def);
return true;
}
/* Function vectorizable_live_operation.
STMT computes a value that is used outside the loop. Check if
it can be supported. */
bool
vectorizable_live_operation (gimple stmt,
gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
gimple *vec_stmt ATTRIBUTE_UNUSED)
{
stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int i;
int op_type;
tree op;
tree def;
gimple def_stmt;
enum vect_def_type dt;
enum tree_code code;
enum gimple_rhs_class rhs_class;
gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
return false;
if (!is_gimple_assign (stmt))
return false;
if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
return false;
/* FORNOW. CHECKME. */
if (nested_in_vect_loop_p (loop, stmt))
return false;
code = gimple_assign_rhs_code (stmt);
op_type = TREE_CODE_LENGTH (code);
rhs_class = get_gimple_rhs_class (code);
gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
/* FORNOW: support only if all uses are invariant. This means
that the scalar operations can remain in place, unvectorized.
The original last scalar value that they compute will be used. */
for (i = 0; i < op_type; i++)
{
if (rhs_class == GIMPLE_SINGLE_RHS)
op = TREE_OPERAND (gimple_op (stmt, 1), i);
else
op = gimple_op (stmt, i + 1);
if (op
&& !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
&dt))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
"use not simple.");
return false;
}
if (dt != vect_external_def && dt != vect_constant_def)
return false;
}
/* No transformation is required for the cases we currently support. */
return true;
}
/* Kill any debug uses outside LOOP of SSA names defined in STMT. */
static void
vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
{
ssa_op_iter op_iter;
imm_use_iterator imm_iter;
def_operand_p def_p;
gimple ustmt;
FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
{
FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
{
basic_block bb;
if (!is_gimple_debug (ustmt))
continue;
bb = gimple_bb (ustmt);
if (!flow_bb_inside_loop_p (loop, bb))
{
if (gimple_debug_bind_p (ustmt))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"killing debug use");
gimple_debug_bind_reset_value (ustmt);
update_stmt (ustmt);
}
else
gcc_unreachable ();
}
}
}
}
/* Function vect_transform_loop.
The analysis phase has determined that the loop is vectorizable.
Vectorize the loop - created vectorized stmts to replace the scalar
stmts in the loop, and update the loop exit condition. */
void
vect_transform_loop (loop_vec_info loop_vinfo)
{
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
int nbbs = loop->num_nodes;
gimple_stmt_iterator si;
int i;
tree ratio = NULL;
int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
bool grouped_store;
bool slp_scheduled = false;
unsigned int nunits;
gimple stmt, pattern_stmt;
gimple_seq pattern_def_seq = NULL;
gimple_stmt_iterator pattern_def_si = gsi_none ();
bool transform_pattern_stmt = false;
bool check_profitability = false;
int th;
/* Record number of iterations before we started tampering with the profile. */
gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===");
/* If profile is inprecise, we have chance to fix it up. */
if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
/* Use the more conservative vectorization threshold. If the number
of iterations is constant assume the cost check has been performed
by our caller. If the threshold makes all loops profitable that
run at least the vectorization factor number of times checking
is pointless, too. */
th = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
* LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
th = MAX (th, LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo));
if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
&& !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"Profitability threshold is %d loop iterations.", th);
check_profitability = true;
}
/* Peel the loop if there are data refs with unknown alignment.
Only one data ref with unknown store is allowed. */
if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
{
vect_do_peeling_for_alignment (loop_vinfo, th, check_profitability);
check_profitability = false;
}
if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
|| LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
{
vect_loop_versioning (loop_vinfo, th, check_profitability);
check_profitability = false;
}
/* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
compile time constant), or it is a constant that doesn't divide by the
vectorization factor, then an epilog loop needs to be created.
We therefore duplicate the loop: the original loop will be vectorized,
and will compute the first (n/VF) iterations. The second copy of the loop
will remain scalar and will compute the remaining (n%VF) iterations.
(VF is the vectorization factor). */
if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
|| (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
&& LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
|| LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
th, check_profitability);
else
ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
/* 1) Make sure the loop header has exactly two entries
2) Make sure we have a preheader basic block. */
gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
split_edge (loop_preheader_edge (loop));
/* FORNOW: the vectorizer supports only loops which body consist
of one basic block (header + empty latch). When the vectorizer will
support more involved loop forms, the order by which the BBs are
traversed need to be reconsidered. */
for (i = 0; i < nbbs; i++)
{
basic_block bb = bbs[i];
stmt_vec_info stmt_info;
gimple phi;
for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
{
phi = gsi_stmt (si);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"------>vectorizing phi: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
}
stmt_info = vinfo_for_stmt (phi);
if (!stmt_info)
continue;
if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
vect_loop_kill_debug_uses (loop, phi);
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
continue;
if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
!= (unsigned HOST_WIDE_INT) vectorization_factor)
&& dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.");
if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
{
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform phi.");
vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
}
}
pattern_stmt = NULL;
for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
{
bool is_store;
if (transform_pattern_stmt)
stmt = pattern_stmt;
else
stmt = gsi_stmt (si);
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"------>vectorizing statement: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
}
stmt_info = vinfo_for_stmt (stmt);
/* vector stmts created in the outer-loop during vectorization of
stmts in an inner-loop may not have a stmt_info, and do not
need to be vectorized. */
if (!stmt_info)
{
gsi_next (&si);
continue;
}
if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
vect_loop_kill_debug_uses (loop, stmt);
if (!STMT_VINFO_RELEVANT_P (stmt_info)
&& !STMT_VINFO_LIVE_P (stmt_info))
{
if (STMT_VINFO_IN_PATTERN_P (stmt_info)
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
{
stmt = pattern_stmt;
stmt_info = vinfo_for_stmt (stmt);
}
else
{
gsi_next (&si);
continue;
}
}
else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
&& (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
&& (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
|| STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
transform_pattern_stmt = true;
/* If pattern statement has def stmts, vectorize them too. */
if (is_pattern_stmt_p (stmt_info))
{
if (pattern_def_seq == NULL)
{
pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
pattern_def_si = gsi_start (pattern_def_seq);
}
else if (!gsi_end_p (pattern_def_si))
gsi_next (&pattern_def_si);
if (pattern_def_seq != NULL)
{
gimple pattern_def_stmt = NULL;
stmt_vec_info pattern_def_stmt_info = NULL;
while (!gsi_end_p (pattern_def_si))
{
pattern_def_stmt = gsi_stmt (pattern_def_si);
pattern_def_stmt_info
= vinfo_for_stmt (pattern_def_stmt);
if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
|| STMT_VINFO_LIVE_P (pattern_def_stmt_info))
break;
gsi_next (&pattern_def_si);
}
if (!gsi_end_p (pattern_def_si))
{
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"==> vectorizing pattern def "
"stmt: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
pattern_def_stmt, 0);
}
stmt = pattern_def_stmt;
stmt_info = pattern_def_stmt_info;
}
else
{
pattern_def_si = gsi_none ();
transform_pattern_stmt = false;
}
}
else
transform_pattern_stmt = false;
}
gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (
STMT_VINFO_VECTYPE (stmt_info));
if (!STMT_SLP_TYPE (stmt_info)
&& nunits != (unsigned int) vectorization_factor
&& dump_enabled_p ())
/* For SLP VF is set according to unrolling factor, and not to
vector size, hence for SLP this print is not valid. */
dump_printf_loc (MSG_NOTE, vect_location,
"multiple-types.");
/* SLP. Schedule all the SLP instances when the first SLP stmt is
reached. */
if (STMT_SLP_TYPE (stmt_info))
{
if (!slp_scheduled)
{
slp_scheduled = true;
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location,
"=== scheduling SLP instances ===");
vect_schedule_slp (loop_vinfo, NULL);
}
/* Hybrid SLP stmts must be vectorized in addition to SLP. */
if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
{
if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
{
pattern_def_seq = NULL;
gsi_next (&si);
}
continue;
}
}
/* -------- vectorize statement ------------ */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform statement.");
grouped_store = false;
is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
if (is_store)
{
if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
{
/* Interleaving. If IS_STORE is TRUE, the vectorization of the
interleaving chain was completed - free all the stores in
the chain. */
gsi_next (&si);
vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
continue;
}
else
{
/* Free the attached stmt_vec_info and remove the stmt. */
gimple store = gsi_stmt (si);
free_stmt_vec_info (store);
unlink_stmt_vdef (store);
gsi_remove (&si, true);
release_defs (store);
continue;
}
}
if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
{
pattern_def_seq = NULL;
gsi_next (&si);
}
} /* stmts in BB */
} /* BBs in loop */
slpeel_make_loop_iterate_ntimes (loop, ratio);
/* Reduce loop iterations by the vectorization factor. */
scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
expected_iterations / vectorization_factor);
loop->nb_iterations_upper_bound
= loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (vectorization_factor),
FLOOR_DIV_EXPR);
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
&& loop->nb_iterations_upper_bound != double_int_zero)
loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - double_int_one;
if (loop->any_estimate)
{
loop->nb_iterations_estimate
= loop->nb_iterations_estimate.udiv (double_int::from_uhwi (vectorization_factor),
FLOOR_DIV_EXPR);
if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
&& loop->nb_iterations_estimate != double_int_zero)
loop->nb_iterations_estimate = loop->nb_iterations_estimate - double_int_one;
}
if (dump_enabled_p ())
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location, "LOOP VECTORIZED.");
if (loop->inner && dump_enabled_p ())
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
"OUTER LOOP VECTORIZED.");
}
|