aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-vect-generic.cc
blob: fa5e9a54dbf9a948a258f6ae04700798c6bf50a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
/* Lower vector operations to scalar operations.
   Copyright (C) 2004-2025 Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.

GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3.  If not see
<http://www.gnu.org/licenses/>.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "expmed.h"
#include "optabs-tree.h"
#include "diagnostic.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "langhooks.h"
#include "tree-eh.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimplify.h"
#include "tree-cfg.h"
#include "tree-vector-builder.h"
#include "vec-perm-indices.h"
#include "insn-config.h"
#include "gimple-fold.h"
#include "gimple-match.h"
#include "recog.h"		/* FIXME: for insn_data */
#include "optabs-libfuncs.h"
#include "cfgloop.h"
#include "tree-vectorizer.h"


/* Build a ternary operation and gimplify it.  Emit code before GSI.
   Return the gimple_val holding the result.  */

static tree
gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
		 tree type, tree a, tree b, tree c)
{
  location_t loc = gimple_location (gsi_stmt (*gsi));
  return gimple_build (gsi, true, GSI_SAME_STMT, loc, code, type, a, b, c);
}

/* Build a binary operation and gimplify it.  Emit code before GSI.
   Return the gimple_val holding the result.  */

static tree
gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
		 tree type, tree a, tree b)
{
  location_t loc = gimple_location (gsi_stmt (*gsi));
  return gimple_build (gsi, true, GSI_SAME_STMT, loc, code, type, a, b);
}

/* Build a unary operation and gimplify it.  Emit code before GSI.
   Return the gimple_val holding the result.  */

static tree
gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
		 tree a)
{
  location_t loc = gimple_location (gsi_stmt (*gsi));
  return gimple_build (gsi, true, GSI_SAME_STMT, loc, code, type, a);
}


/* Return the number of elements in a vector type TYPE that we have
   already decided needs to be expanded piecewise.  We don't support
   this kind of expansion for variable-length vectors, since we should
   always check for target support before introducing uses of those.  */
static unsigned int
nunits_for_known_piecewise_op (const_tree type)
{
  return TYPE_VECTOR_SUBPARTS (type).to_constant ();
}

/* Return true if TYPE1 has more elements than TYPE2, where either
   type may be a vector or a scalar.  */

static inline bool
subparts_gt (tree type1, tree type2)
{
  poly_uint64 n1 = VECTOR_TYPE_P (type1) ? TYPE_VECTOR_SUBPARTS (type1) : 1;
  poly_uint64 n2 = VECTOR_TYPE_P (type2) ? TYPE_VECTOR_SUBPARTS (type2) : 1;
  return known_gt (n1, n2);
}

static GTY(()) tree vector_inner_type;
static GTY(()) tree vector_last_type;
static GTY(()) int vector_last_nunits;

/* Return a suitable vector types made of SUBPARTS units each of mode
   "word_mode" (the global variable).  */
static tree
build_word_mode_vector_type (int nunits)
{
  if (!vector_inner_type)
    vector_inner_type = lang_hooks.types.type_for_mode (word_mode, 1);
  else if (vector_last_nunits == nunits)
    {
      gcc_assert (TREE_CODE (vector_last_type) == VECTOR_TYPE);
      return vector_last_type;
    }

  vector_last_nunits = nunits;
  vector_last_type = build_vector_type (vector_inner_type, nunits);
  return vector_last_type;
}

typedef tree (*elem_op_func) (gimple_stmt_iterator *,
			      tree, tree, tree, tree, tree, enum tree_code,
			      tree);

/* Extract the vector element of type TYPE at BITPOS with BITSIZE from T
   and return it.  */

tree
tree_vec_extract (gimple_stmt_iterator *gsi, tree type,
		  tree t, tree bitsize, tree bitpos)
{
  /* We're using the resimplify API and maybe_push_res_to_seq to
     simplify the BIT_FIELD_REF but restrict the simplification to
     a single stmt while at the same time following SSA edges for
     simplification with already emitted CTORs.  */
  gimple_match_op opr;
  opr.set_op (BIT_FIELD_REF, type, t, bitsize, bitpos);
  opr.resimplify (NULL, follow_all_ssa_edges);
  gimple_seq stmts = NULL;
  tree res = maybe_push_res_to_seq (&opr, &stmts);
  if (!res)
    {
      /* This can happen if SSA_NAME_OCCURS_IN_ABNORMAL_PHI are
	 used.  Build BIT_FIELD_REF manually otherwise.  */
      t = build3 (BIT_FIELD_REF, type, t, bitsize, bitpos);
      res = make_ssa_name (type);
      gimple *g = gimple_build_assign (res, t);
      gsi_insert_before (gsi, g, GSI_SAME_STMT);
      return res;
    }
  gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
  return res;
}

static tree
do_unop (gimple_stmt_iterator *gsi, tree inner_type, tree a,
	 tree b ATTRIBUTE_UNUSED, tree bitpos, tree bitsize,
	 enum tree_code code, tree type ATTRIBUTE_UNUSED)
{
  tree rhs_type = inner_type;

  /* For ABSU_EXPR, use the signed type for the rhs if the rhs was signed. */
  if (code == ABSU_EXPR
      && ANY_INTEGRAL_TYPE_P (TREE_TYPE (a))
      && !TYPE_UNSIGNED (TREE_TYPE (a)))
    rhs_type = signed_type_for (rhs_type);

  a = tree_vec_extract (gsi, rhs_type, a, bitsize, bitpos);
  return gimplify_build1 (gsi, code, inner_type, a);
}

static tree
do_binop (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
	  tree bitpos, tree bitsize, enum tree_code code,
	  tree type ATTRIBUTE_UNUSED)
{
  if (VECTOR_TYPE_P (TREE_TYPE (a)))
    a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  if (VECTOR_TYPE_P (TREE_TYPE (b)))
    b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);
  return gimplify_build2 (gsi, code, inner_type, a, b);
}

/* Construct expression (A[BITPOS] code B[BITPOS]) ? -1 : 0

   INNER_TYPE is the type of A and B elements

   returned expression is of signed integer type with the
   size equal to the size of INNER_TYPE.  */
static tree
do_compare (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
	    tree bitpos, tree bitsize, enum tree_code code, tree type)
{
  tree stype = TREE_TYPE (type);
  tree cst_false = build_zero_cst (stype);
  tree cst_true = build_all_ones_cst (stype);
  tree cmp;

  a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);

  cmp = build2 (code, boolean_type_node, a, b);
  return gimplify_build3 (gsi, COND_EXPR, stype, cmp, cst_true, cst_false);
}

/* Expand vector addition to scalars.  This does bit twiddling
   in order to increase parallelism:

   a + b = (((int) a & 0x7f7f7f7f) + ((int) b & 0x7f7f7f7f)) ^
           (a ^ b) & 0x80808080

   a - b =  (((int) a | 0x80808080) - ((int) b & 0x7f7f7f7f)) ^
            (a ^ ~b) & 0x80808080

   -b = (0x80808080 - ((int) b & 0x7f7f7f7f)) ^ (~b & 0x80808080)

   This optimization should be done only if 4 vector items or more
   fit into a word.  */
static tree
do_plus_minus (gimple_stmt_iterator *gsi, tree word_type, tree a, tree b,
	       tree bitpos ATTRIBUTE_UNUSED, tree bitsize ATTRIBUTE_UNUSED,
	       enum tree_code code, tree type ATTRIBUTE_UNUSED)
{
  unsigned int width = vector_element_bits (TREE_TYPE (a));
  tree inner_type = TREE_TYPE (TREE_TYPE (a));
  unsigned HOST_WIDE_INT max;
  tree low_bits, high_bits, a_low, b_low, result_low, signs;

  max = GET_MODE_MASK (TYPE_MODE (inner_type));
  low_bits = build_replicated_int_cst (word_type, width, max >> 1);
  high_bits = build_replicated_int_cst (word_type, width, max & ~(max >> 1));

  a = tree_vec_extract (gsi, word_type, a, bitsize, bitpos);
  b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);

  signs = gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, a, b);
  b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
  if (code == PLUS_EXPR)
    a_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, a, low_bits);
  else
    {
      a_low = gimplify_build2 (gsi, BIT_IOR_EXPR, word_type, a, high_bits);
      signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, signs);
    }

  signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
  result_low = gimplify_build2 (gsi, code, word_type, a_low, b_low);
  return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
}

static tree
do_negate (gimple_stmt_iterator *gsi, tree word_type, tree b,
	   tree unused ATTRIBUTE_UNUSED, tree bitpos ATTRIBUTE_UNUSED,
	   tree bitsize ATTRIBUTE_UNUSED,
	   enum tree_code code ATTRIBUTE_UNUSED,
	   tree type ATTRIBUTE_UNUSED)
{
  unsigned int width = vector_element_bits (TREE_TYPE (b));
  tree inner_type = TREE_TYPE (TREE_TYPE (b));
  HOST_WIDE_INT max;
  tree low_bits, high_bits, b_low, result_low, signs;

  max = GET_MODE_MASK (TYPE_MODE (inner_type));
  low_bits = build_replicated_int_cst (word_type, width, max >> 1);
  high_bits = build_replicated_int_cst (word_type, width, max & ~(max >> 1));

  b = tree_vec_extract (gsi, word_type, b, bitsize, bitpos);

  b_low = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, b, low_bits);
  signs = gimplify_build1 (gsi, BIT_NOT_EXPR, word_type, b);
  signs = gimplify_build2 (gsi, BIT_AND_EXPR, word_type, signs, high_bits);
  result_low = gimplify_build2 (gsi, MINUS_EXPR, word_type, high_bits, b_low);
  return gimplify_build2 (gsi, BIT_XOR_EXPR, word_type, result_low, signs);
}

/* Expand a vector operation to scalars, by using many operations
   whose type is the vector type's inner type.  */
static tree
expand_vector_piecewise (gimple_stmt_iterator *gsi, elem_op_func f,
			 tree type, tree inner_type,
			 tree a, tree b, enum tree_code code,
			 bool parallel_p, tree ret_type = NULL_TREE)
{
  vec<constructor_elt, va_gc> *v;
  tree part_width = TYPE_SIZE (inner_type);
  tree index = bitsize_int (0);
  int nunits = nunits_for_known_piecewise_op (type);
  int delta = (VECTOR_TYPE_P (inner_type)
	       ? nunits_for_known_piecewise_op (inner_type) : 1);
  int i;
  location_t loc = gimple_location (gsi_stmt (*gsi));

  if (nunits == 1
      || warning_suppressed_p (gsi_stmt (*gsi),
			       OPT_Wvector_operation_performance))
    /* Do not diagnose decomposing single element vectors or when
       decomposing vectorizer produced operations.  */
    ;
  else if (ret_type || !parallel_p)
    warning_at (loc, OPT_Wvector_operation_performance,
		"vector operation will be expanded piecewise");
  else
    warning_at (loc, OPT_Wvector_operation_performance,
		"vector operation will be expanded in parallel");

  if (!ret_type)
    ret_type = type;
  vec_alloc (v, (nunits + delta - 1) / delta);
  bool constant_p = true;
  for (i = 0; i < nunits;
       i += delta, index = int_const_binop (PLUS_EXPR, index, part_width))
    {
      tree result = f (gsi, inner_type, a, b, index, part_width, code,
		       ret_type);
      if (!CONSTANT_CLASS_P (result))
	constant_p = false;
      constructor_elt ce = {NULL_TREE, result};
      v->quick_push (ce);
    }

  if (constant_p)
    return build_vector_from_ctor (ret_type, v);
  else
    return build_constructor (ret_type, v);
}

/* Expand a vector operation to scalars with the freedom to use
   a scalar integer type, or to use a different size for the items
   in the vector type.  */
static tree
expand_vector_parallel (gimple_stmt_iterator *gsi, elem_op_func f, tree type,
			tree a, tree b, enum tree_code code)
{
  tree result, compute_type;
  int n_words = tree_to_uhwi (TYPE_SIZE_UNIT (type)) / UNITS_PER_WORD;
  location_t loc = gimple_location (gsi_stmt (*gsi));

  /* We have three strategies.  If the type is already correct, just do
     the operation an element at a time.  Else, if the vector is wider than
     one word, do it a word at a time; finally, if the vector is smaller
     than one word, do it as a scalar.  */
  if (TYPE_MODE (TREE_TYPE (type)) == word_mode)
     return expand_vector_piecewise (gsi, f,
				     type, TREE_TYPE (type),
				     a, b, code, true);
  else if (n_words > 1)
    {
      tree word_type = build_word_mode_vector_type (n_words);
      result = expand_vector_piecewise (gsi, f,
				        word_type, TREE_TYPE (word_type),
					a, b, code, true);
      result = force_gimple_operand_gsi (gsi, result, true, NULL, true,
                                         GSI_SAME_STMT);
    }
  else
    {
      /* Use a single scalar operation with a mode no wider than word_mode.  */
      if (!warning_suppressed_p (gsi_stmt (*gsi),
				 OPT_Wvector_operation_performance))
	warning_at (loc, OPT_Wvector_operation_performance,
		    "vector operation will be expanded with a "
		    "single scalar operation");
      scalar_int_mode mode
	= int_mode_for_size (tree_to_uhwi (TYPE_SIZE (type)), 0).require ();
      compute_type = lang_hooks.types.type_for_mode (mode, 1);
      result = f (gsi, compute_type, a, b, bitsize_zero_node,
		  TYPE_SIZE (compute_type), code, type);
    }

  return result;
}

/* Expand a vector operation to scalars; for integer types we can use
   special bit twiddling tricks to do the sums a word at a time, using
   function F_PARALLEL instead of F.  These tricks are done only if
   they can process at least four items, that is, only if the vector
   holds at least four items and if a word can hold four items.  */
static tree
expand_vector_addition (gimple_stmt_iterator *gsi,
			elem_op_func f, elem_op_func f_parallel,
			tree type, tree a, tree b, enum tree_code code)
{
  int parts_per_word = BITS_PER_WORD / vector_element_bits (type);

  if (INTEGRAL_TYPE_P (TREE_TYPE (type))
      && parts_per_word >= 4
      && nunits_for_known_piecewise_op (type) >= 4)
    return expand_vector_parallel (gsi, f_parallel,
				   type, a, b, code);
  else
    return expand_vector_piecewise (gsi, f,
				    type, TREE_TYPE (type),
				    a, b, code, false);
}

/* Expand vector comparison expression OP0 CODE OP1 if the compare optab
   is not implemented.  */

static tree
expand_vector_comparison (gimple_stmt_iterator *gsi, tree type, tree op0,
			  tree op1, enum tree_code code)
{
  if (expand_vec_cmp_expr_p (TREE_TYPE (op0), type, code))
    return NULL_TREE;

  tree t;
  if (VECTOR_BOOLEAN_TYPE_P (type)
      && SCALAR_INT_MODE_P (TYPE_MODE (type))
      && known_lt (GET_MODE_BITSIZE (TYPE_MODE (type)),
		   TYPE_VECTOR_SUBPARTS (type)
		   * GET_MODE_BITSIZE (SCALAR_TYPE_MODE
				       (TREE_TYPE (type)))))
    {
      tree inner_type = TREE_TYPE (TREE_TYPE (op0));
      tree part_width = vector_element_bits_tree (TREE_TYPE (op0));
      tree index = bitsize_int (0);
      int nunits = nunits_for_known_piecewise_op (TREE_TYPE (op0));
      int prec = GET_MODE_PRECISION (SCALAR_TYPE_MODE (type));
      tree ret_type = build_nonstandard_integer_type (prec, 1);
      tree ret_inner_type = boolean_type_node;
      int i;
      location_t loc = gimple_location (gsi_stmt (*gsi));
      t = build_zero_cst (ret_type);

      if (TYPE_PRECISION (ret_inner_type) != 1)
	ret_inner_type = build_nonstandard_integer_type (1, 1);
      if (!warning_suppressed_p (gsi_stmt (*gsi),
				 OPT_Wvector_operation_performance))
	warning_at (loc, OPT_Wvector_operation_performance,
		    "vector operation will be expanded piecewise");
      for (i = 0; i < nunits;
	   i++, index = int_const_binop (PLUS_EXPR, index, part_width))
	{
	  tree a = tree_vec_extract (gsi, inner_type, op0, part_width,
				     index);
	  tree b = tree_vec_extract (gsi, inner_type, op1, part_width,
				     index);
	  tree result = gimplify_build2 (gsi, code, ret_inner_type, a, b);
	  t = gimplify_build3 (gsi, BIT_INSERT_EXPR, ret_type, t, result,
			       bitsize_int (i));
	}
      t = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, type, t);
    }
  else
    t = expand_vector_piecewise (gsi, do_compare, type,
				 TREE_TYPE (TREE_TYPE (op0)), op0, op1,
				 code, false);

  return t;
}

/* Helper function of expand_vector_divmod.  Gimplify a RSHIFT_EXPR in type
   of OP0 with shift counts in SHIFTCNTS array and return the temporary holding
   the result if successful, otherwise return NULL_TREE.  */
static tree
add_rshift (gimple_stmt_iterator *gsi, tree type, tree op0, int *shiftcnts)
{
  optab op;
  unsigned int i, nunits = nunits_for_known_piecewise_op (type);
  bool scalar_shift = true;

  for (i = 1; i < nunits; i++)
    {
      if (shiftcnts[i] != shiftcnts[0])
	scalar_shift = false;
    }

  if (scalar_shift && shiftcnts[0] == 0)
    return op0;

  if (scalar_shift)
    {
      op = optab_for_tree_code (RSHIFT_EXPR, type, optab_scalar);
      if (op != unknown_optab
	  && can_implement_p (op, TYPE_MODE (type)))
	return gimplify_build2 (gsi, RSHIFT_EXPR, type, op0,
				build_int_cst (NULL_TREE, shiftcnts[0]));
    }

  op = optab_for_tree_code (RSHIFT_EXPR, type, optab_vector);
  if (op != unknown_optab
      && can_implement_p (op, TYPE_MODE (type)))
    {
      tree_vector_builder vec (type, nunits, 1);
      for (i = 0; i < nunits; i++)
	vec.quick_push (build_int_cst (TREE_TYPE (type), shiftcnts[i]));
      return gimplify_build2 (gsi, RSHIFT_EXPR, type, op0, vec.build ());
    }

  return NULL_TREE;
}

/* Try to expand integer vector division by constant using
   widening multiply, shifts and additions.  */
static tree
expand_vector_divmod (gimple_stmt_iterator *gsi, tree type, tree op0,
		      tree op1, enum tree_code code)
{
  bool use_pow2 = true;
  bool has_vector_shift = true;
  bool use_abs_op1 = false;
  int mode = -1, this_mode;
  int pre_shift = -1, post_shift;
  unsigned int nunits = nunits_for_known_piecewise_op (type);
  int *shifts = XALLOCAVEC (int, nunits * 4);
  int *pre_shifts = shifts + nunits;
  int *post_shifts = pre_shifts + nunits;
  int *shift_temps = post_shifts + nunits;
  unsigned HOST_WIDE_INT *mulc = XALLOCAVEC (unsigned HOST_WIDE_INT, nunits);
  int prec = TYPE_PRECISION (TREE_TYPE (type));
  unsigned int i;
  signop sign_p = TYPE_SIGN (TREE_TYPE (type));
  unsigned HOST_WIDE_INT mask = GET_MODE_MASK (TYPE_MODE (TREE_TYPE (type)));
  tree cur_op, mulcst, tem;
  optab op;

  if (prec > HOST_BITS_PER_WIDE_INT)
    return NULL_TREE;

  op = optab_for_tree_code (RSHIFT_EXPR, type, optab_vector);
  if (op == unknown_optab
      || !can_implement_p (op, TYPE_MODE (type)))
    has_vector_shift = false;

  /* Analysis phase.  Determine if all op1 elements are either power
     of two and it is possible to expand it using shifts (or for remainder
     using masking).  Additionally compute the multiplicative constants
     and pre and post shifts if the division is to be expanded using
     widening or high part multiplication plus shifts.  */
  for (i = 0; i < nunits; i++)
    {
      tree cst = VECTOR_CST_ELT (op1, i);
      unsigned HOST_WIDE_INT ml;

      if (TREE_CODE (cst) != INTEGER_CST || integer_zerop (cst))
	return NULL_TREE;
      pre_shifts[i] = 0;
      post_shifts[i] = 0;
      mulc[i] = 0;
      if (use_pow2
	  && (!integer_pow2p (cst) || tree_int_cst_sgn (cst) != 1))
	use_pow2 = false;
      if (use_pow2)
	{
	  shifts[i] = tree_log2 (cst);
	  if (shifts[i] != shifts[0]
	      && code == TRUNC_DIV_EXPR
	      && !has_vector_shift)
	    use_pow2 = false;
	}
      if (mode == -2)
	continue;
      if (sign_p == UNSIGNED)
	{
	  unsigned HOST_WIDE_INT mh;
	  unsigned HOST_WIDE_INT d = TREE_INT_CST_LOW (cst) & mask;

	  if (d >= (HOST_WIDE_INT_1U << (prec - 1)))
	    /* FIXME: Can transform this into op0 >= op1 ? 1 : 0.  */
	    return NULL_TREE;

	  if (d <= 1)
	    {
	      mode = -2;
	      continue;
	    }

	  /* Find a suitable multiplier and right shift count instead of
	     directly dividing by D.  */
	  mh = choose_multiplier (d, prec, prec, &ml, &post_shift);

	  /* If the suggested multiplier is more than PREC bits, we can
	     do better for even divisors, using an initial right shift.  */
	  if ((mh != 0 && (d & 1) == 0)
	      || (!has_vector_shift && pre_shift != -1))
	    {
	      if (has_vector_shift)
		pre_shift = ctz_or_zero (d);
	      else if (pre_shift == -1)
		{
		  unsigned int j;
		  for (j = 0; j < nunits; j++)
		    {
		      tree cst2 = VECTOR_CST_ELT (op1, j);
		      unsigned HOST_WIDE_INT d2;
		      int this_pre_shift;

		      if (!tree_fits_uhwi_p (cst2))
			return NULL_TREE;
		      d2 = tree_to_uhwi (cst2) & mask;
		      if (d2 == 0)
			return NULL_TREE;
		      this_pre_shift = floor_log2 (d2 & -d2);
		      if (pre_shift == -1 || this_pre_shift < pre_shift)
			pre_shift = this_pre_shift;
		    }
		  if (i != 0 && pre_shift != 0)
		    {
		      /* Restart.  */
		      i = -1U;
		      mode = -1;
		      continue;
		    }
		}
	      if (pre_shift != 0)
		{
		  if ((d >> pre_shift) <= 1)
		    {
		      mode = -2;
		      continue;
		    }
		  mh = choose_multiplier (d >> pre_shift, prec,
					  prec - pre_shift,
					  &ml, &post_shift);
		  gcc_assert (!mh);
		  pre_shifts[i] = pre_shift;
		}
	    }
	  if (!mh)
	    this_mode = 0;
	  else
	    this_mode = 1;
	}
      else
	{
	  HOST_WIDE_INT d = TREE_INT_CST_LOW (cst);
	  unsigned HOST_WIDE_INT abs_d;

	  if (d == -1)
	    return NULL_TREE;

	  /* Since d might be INT_MIN, we have to cast to
	     unsigned HOST_WIDE_INT before negating to avoid
	     undefined signed overflow.  */
	  abs_d = (d >= 0
		  ? (unsigned HOST_WIDE_INT) d
		  : - (unsigned HOST_WIDE_INT) d);

	  /* n rem d = n rem -d */
	  if (code == TRUNC_MOD_EXPR && d < 0)
	    {
	      d = abs_d;
	      use_abs_op1 = true;
	    }
	  if (abs_d == HOST_WIDE_INT_1U << (prec - 1))
	    {
	      /* This case is not handled correctly below.  */
	      mode = -2;
	      continue;
	    }
	  if (abs_d <= 1)
	    {
	      mode = -2;
	      continue;
	    }

	  choose_multiplier (abs_d, prec, prec - 1, &ml,
			     &post_shift);
	  if (ml >= HOST_WIDE_INT_1U << (prec - 1))
	    {
	      this_mode = 4 + (d < 0);
	      ml |= HOST_WIDE_INT_M1U << (prec - 1);
	    }
	  else
	    this_mode = 2 + (d < 0);
	}
      mulc[i] = ml;
      post_shifts[i] = post_shift;
      if ((i && !has_vector_shift && post_shifts[0] != post_shift)
	  || post_shift >= prec
	  || pre_shifts[i] >= prec)
	this_mode = -2;

      if (i == 0)
	mode = this_mode;
      else if (mode != this_mode)
	mode = -2;
    }

  if (use_pow2)
    {
      tree addend = NULL_TREE;
      if (sign_p == SIGNED)
	{
	  tree uns_type;

	  /* Both division and remainder sequences need
	     op0 < 0 ? mask : 0 computed.  It can be either computed as
	     (type) (((uns_type) (op0 >> (prec - 1))) >> (prec - shifts[i]))
	     if none of the shifts is 0, or as the conditional.  */
	  for (i = 0; i < nunits; i++)
	    if (shifts[i] == 0)
	      break;
	  uns_type
	    = build_vector_type (build_nonstandard_integer_type (prec, 1),
				 nunits);
	  if (i == nunits && TYPE_MODE (uns_type) == TYPE_MODE (type))
	    {
	      for (i = 0; i < nunits; i++)
		shift_temps[i] = prec - 1;
	      cur_op = add_rshift (gsi, type, op0, shift_temps);
	      if (cur_op != NULL_TREE)
		{
		  cur_op = gimplify_build1 (gsi, VIEW_CONVERT_EXPR,
					    uns_type, cur_op);
		  for (i = 0; i < nunits; i++)
		    shift_temps[i] = prec - shifts[i];
		  cur_op = add_rshift (gsi, uns_type, cur_op, shift_temps);
		  if (cur_op != NULL_TREE)
		    addend = gimplify_build1 (gsi, VIEW_CONVERT_EXPR,
					      type, cur_op);
		}
	    }
	  tree mask_type = truth_type_for (type);
	  if (addend == NULL_TREE
	      && expand_vec_cmp_expr_p (type, mask_type, LT_EXPR)
	      && expand_vec_cond_expr_p (type, mask_type))
	    {
	      tree zero, cst, mask_type, mask;
	      gimple *stmt, *cond;

	      mask_type = truth_type_for (type);
	      zero = build_zero_cst (type);
	      mask = make_ssa_name (mask_type);
	      cond = gimple_build_assign (mask, LT_EXPR, op0, zero);
	      gsi_insert_before (gsi, cond, GSI_SAME_STMT);
	      tree_vector_builder vec (type, nunits, 1);
	      for (i = 0; i < nunits; i++)
		vec.quick_push (build_int_cst (TREE_TYPE (type),
					       (HOST_WIDE_INT_1U
						<< shifts[i]) - 1));
	      cst = vec.build ();
	      addend = make_ssa_name (type);
	      stmt
		= gimple_build_assign (addend, VEC_COND_EXPR, mask, cst, zero);
	      gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
	    }
	}
      if (code == TRUNC_DIV_EXPR)
	{
	  if (sign_p == UNSIGNED)
	    {
	      /* q = op0 >> shift;  */
	      cur_op = add_rshift (gsi, type, op0, shifts);
	      if (cur_op != NULL_TREE)
		return cur_op;
	    }
	  else if (addend != NULL_TREE)
	    {
	      /* t1 = op0 + addend;
		 q = t1 >> shift;  */
	      op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
	      if (op != unknown_optab
		  && can_implement_p (op, TYPE_MODE (type)))
		{
		  cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, op0, addend);
		  cur_op = add_rshift (gsi, type, cur_op, shifts);
		  if (cur_op != NULL_TREE)
		    return cur_op;
		}
	    }
	}
      else
	{
	  tree mask;
	  tree_vector_builder vec (type, nunits, 1);
	  for (i = 0; i < nunits; i++)
	    vec.quick_push (build_int_cst (TREE_TYPE (type),
					   (HOST_WIDE_INT_1U
					    << shifts[i]) - 1));
	  mask = vec.build ();
	  op = optab_for_tree_code (BIT_AND_EXPR, type, optab_default);
	  if (op != unknown_optab
	      && can_implement_p (op, TYPE_MODE (type)))
	    {
	      if (sign_p == UNSIGNED)
		/* r = op0 & mask;  */
		return gimplify_build2 (gsi, BIT_AND_EXPR, type, op0, mask);
	      else if (addend != NULL_TREE)
		{
		  /* t1 = op0 + addend;
		     t2 = t1 & mask;
		     r = t2 - addend;  */
		  op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
		  if (op != unknown_optab
		      && can_implement_p (op, TYPE_MODE (type)))
		    {
		      cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, op0,
						addend);
		      cur_op = gimplify_build2 (gsi, BIT_AND_EXPR, type,
						cur_op, mask);
		      op = optab_for_tree_code (MINUS_EXPR, type,
						optab_default);
		      if (op != unknown_optab
			  && can_implement_p (op, TYPE_MODE (type)))
			return gimplify_build2 (gsi, MINUS_EXPR, type,
						cur_op, addend);
		    }
		}
	    }
	}
    }

  if (mode == -2 || BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
    return NULL_TREE;

  if (!can_mult_highpart_p (TYPE_MODE (type), TYPE_UNSIGNED (type)))
    return NULL_TREE;

  cur_op = op0;

  switch (mode)
    {
    case 0:
      gcc_assert (sign_p == UNSIGNED);
      /* t1 = oprnd0 >> pre_shift;
	 t2 = t1 h* ml;
	 q = t2 >> post_shift;  */
      cur_op = add_rshift (gsi, type, cur_op, pre_shifts);
      if (cur_op == NULL_TREE)
	return NULL_TREE;
      break;
    case 1:
      gcc_assert (sign_p == UNSIGNED);
      for (i = 0; i < nunits; i++)
	{
	  shift_temps[i] = 1;
	  post_shifts[i]--;
	}
      break;
    case 2:
    case 3:
    case 4:
    case 5:
      gcc_assert (sign_p == SIGNED);
      for (i = 0; i < nunits; i++)
	shift_temps[i] = prec - 1;
      break;
    default:
      return NULL_TREE;
    }

  tree_vector_builder vec (type, nunits, 1);
  for (i = 0; i < nunits; i++)
    vec.quick_push (build_int_cst (TREE_TYPE (type), mulc[i]));
  mulcst = vec.build ();

  cur_op = gimplify_build2 (gsi, MULT_HIGHPART_EXPR, type, cur_op, mulcst);

  switch (mode)
    {
    case 0:
      /* t1 = oprnd0 >> pre_shift;
	 t2 = t1 h* ml;
	 q = t2 >> post_shift;  */
      cur_op = add_rshift (gsi, type, cur_op, post_shifts);
      break;
    case 1:
      /* t1 = oprnd0 h* ml;
	 t2 = oprnd0 - t1;
	 t3 = t2 >> 1;
	 t4 = t1 + t3;
	 q = t4 >> (post_shift - 1);  */
      op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
      if (op == unknown_optab
	  || !can_implement_p (op, TYPE_MODE (type)))
	return NULL_TREE;
      tem = gimplify_build2 (gsi, MINUS_EXPR, type, op0, cur_op);
      tem = add_rshift (gsi, type, tem, shift_temps);
      op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
      if (op == unknown_optab
	  || !can_implement_p (op, TYPE_MODE (type)))
	return NULL_TREE;
      tem = gimplify_build2 (gsi, PLUS_EXPR, type, cur_op, tem);
      cur_op = add_rshift (gsi, type, tem, post_shifts);
      if (cur_op == NULL_TREE)
	return NULL_TREE;
      break;
    case 2:
    case 3:
    case 4:
    case 5:
      /* t1 = oprnd0 h* ml;
	 t2 = t1; [ iff (mode & 2) != 0 ]
	 t2 = t1 + oprnd0; [ iff (mode & 2) == 0 ]
	 t3 = t2 >> post_shift;
	 t4 = oprnd0 >> (prec - 1);
	 q = t3 - t4; [ iff (mode & 1) == 0 ]
	 q = t4 - t3; [ iff (mode & 1) != 0 ]  */
      if ((mode & 2) == 0)
	{
	  op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
	  if (op == unknown_optab
	      || !can_implement_p (op, TYPE_MODE (type)))
	    return NULL_TREE;
	  cur_op = gimplify_build2 (gsi, PLUS_EXPR, type, cur_op, op0);
	}
      cur_op = add_rshift (gsi, type, cur_op, post_shifts);
      if (cur_op == NULL_TREE)
	return NULL_TREE;
      tem = add_rshift (gsi, type, op0, shift_temps);
      if (tem == NULL_TREE)
	return NULL_TREE;
      op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
      if (op == unknown_optab
	  || !can_implement_p (op, TYPE_MODE (type)))
	return NULL_TREE;
      if ((mode & 1) == 0)
	cur_op = gimplify_build2 (gsi, MINUS_EXPR, type, cur_op, tem);
      else
	cur_op = gimplify_build2 (gsi, MINUS_EXPR, type, tem, cur_op);
      break;
    default:
      gcc_unreachable ();
    }

  if (code == TRUNC_DIV_EXPR)
    return cur_op;

  /* We divided.  Now finish by:
     t1 = q * oprnd1;
     r = oprnd0 - t1;  */
  op = optab_for_tree_code (MULT_EXPR, type, optab_default);
  if (op == unknown_optab
      || !can_implement_p (op, TYPE_MODE (type)))
    return NULL_TREE;
  if (use_abs_op1)
    {
      tree_vector_builder elts;
      if (!elts.new_unary_operation (type, op1, false))
	return NULL_TREE;
      unsigned int count = elts.encoded_nelts ();
      for (unsigned int i = 0; i < count; ++i)
	{
	  tree elem1 = VECTOR_CST_ELT (op1, i);

	  tree elt = const_unop (ABS_EXPR, TREE_TYPE (elem1), elem1);
	  if (elt == NULL_TREE)
	    return NULL_TREE;
	  elts.quick_push (elt);
	}
      op1 = elts.build ();
    }
  tem = gimplify_build2 (gsi, MULT_EXPR, type, cur_op, op1);
  op = optab_for_tree_code (MINUS_EXPR, type, optab_default);
  if (op == unknown_optab
      || !can_implement_p (op, TYPE_MODE (type)))
    return NULL_TREE;
  return gimplify_build2 (gsi, MINUS_EXPR, type, op0, tem);
}

/* Expand a vector condition to scalars, by using many conditions
   on the vector's elements.  */

static bool
expand_vector_condition (gimple_stmt_iterator *gsi)
{
  gassign *stmt = as_a <gassign *> (gsi_stmt (*gsi));
  tree type = TREE_TYPE (gimple_assign_lhs (stmt));
  tree a = gimple_assign_rhs1 (stmt);
  tree a1 = a;
  tree a2 = NULL_TREE;
  bool a_is_scalar_bitmask = false;
  tree b = gimple_assign_rhs2 (stmt);
  tree c = gimple_assign_rhs3 (stmt);
  vec<constructor_elt, va_gc> *v;
  tree constr;
  tree inner_type = TREE_TYPE (type);
  tree width = vector_element_bits_tree (type);
  tree cond_type = TREE_TYPE (TREE_TYPE (a));
  tree index = bitsize_int (0);
  tree comp_width = width;
  tree comp_index = index;
  location_t loc = gimple_location (gsi_stmt (*gsi));

  gcc_assert (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (a)));

  if (expand_vec_cond_expr_p (type, TREE_TYPE (a)))
    return true;

  /* Handle vector boolean types with bitmasks.  We can transform
      vbfld_1 = tmp_6 ? vbfld_4 : vbfld_5;
     into
      tmp_7 = tmp_6 & vbfld_4;
      tmp_8 = ~tmp_6;
      tmp_9 = tmp_8 & vbfld_5;
      vbfld_1 = tmp_7 | tmp_9;  */
  if (VECTOR_BOOLEAN_TYPE_P (type)
      && SCALAR_INT_MODE_P (TYPE_MODE (type))
      && useless_type_conversion_p (type, TREE_TYPE (a)))
    {
      a1 = gimplify_build2 (gsi, BIT_AND_EXPR, type, a, b);
      a2 = gimplify_build1 (gsi, BIT_NOT_EXPR, type, a);
      a2 = gimplify_build2 (gsi, BIT_AND_EXPR, type, a2, c);
      a = gimplify_build2 (gsi, BIT_IOR_EXPR, type, a1, a2);
      gimple_assign_set_rhs_from_tree (gsi, a);
      update_stmt (gsi_stmt (*gsi));
      return true;
    }

  /* TODO: try and find a smaller vector type.  */

  if (!warning_suppressed_p (stmt, OPT_Wvector_operation_performance))
    warning_at (loc, OPT_Wvector_operation_performance,
		"vector condition will be expanded piecewise");

  if (SCALAR_INT_MODE_P (TYPE_MODE (TREE_TYPE (a)))
      && known_lt (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (a))),
		   TYPE_VECTOR_SUBPARTS (TREE_TYPE (a))
		   * GET_MODE_BITSIZE (SCALAR_TYPE_MODE
						(TREE_TYPE (TREE_TYPE (a))))))
    {
      a_is_scalar_bitmask = true;
      int prec = GET_MODE_PRECISION (SCALAR_TYPE_MODE (TREE_TYPE (a)));
      tree atype = build_nonstandard_integer_type (prec, 1);
      a = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, atype, a);
    }
  else
    comp_width = vector_element_bits_tree (TREE_TYPE (a));

  int nunits = nunits_for_known_piecewise_op (type);
  vec_alloc (v, nunits);
  bool constant_p = true;
  for (int i = 0; i < nunits; i++)
    {
      tree aa, result;
      tree bb = tree_vec_extract (gsi, inner_type, b, width, index);
      tree cc = tree_vec_extract (gsi, inner_type, c, width, index);
      if (a_is_scalar_bitmask)
	{
	  wide_int w = wi::set_bit_in_zero (i, TYPE_PRECISION (TREE_TYPE (a)));
	  result = gimplify_build2 (gsi, BIT_AND_EXPR, TREE_TYPE (a),
				    a, wide_int_to_tree (TREE_TYPE (a), w));
	  aa = gimplify_build2 (gsi, NE_EXPR, boolean_type_node, result,
				build_zero_cst (TREE_TYPE (a)));
	}
      else
	{
	  result = tree_vec_extract (gsi, cond_type, a, comp_width, comp_index);
	  aa = gimplify_build2 (gsi, NE_EXPR, boolean_type_node, result,
				build_zero_cst (cond_type));
	}
      result = gimplify_build3 (gsi, COND_EXPR, inner_type, aa, bb, cc);
      if (!CONSTANT_CLASS_P (result))
	constant_p = false;
      constructor_elt ce = {NULL_TREE, result};
      v->quick_push (ce);
      index = int_const_binop (PLUS_EXPR, index, width);
      if (width == comp_width)
	comp_index = index;
      else
	comp_index = int_const_binop (PLUS_EXPR, comp_index, comp_width);
    }

  if (constant_p)
    constr = build_vector_from_ctor (type, v);
  else
    constr = build_constructor (type, v);
  gimple_assign_set_rhs_from_tree (gsi, constr);
  update_stmt (gsi_stmt (*gsi));

  return false;
}

static tree
expand_vector_operation (gimple_stmt_iterator *gsi, tree type, tree compute_type,
			 gassign *assign, enum tree_code code)
{
  machine_mode compute_mode = TYPE_MODE (compute_type);

  /* If the compute mode is not a vector mode (hence we are not decomposing
     a BLKmode vector to smaller, hardware-supported vectors), we may want
     to expand the operations in parallel.  */
  if (!VECTOR_MODE_P (compute_mode))
    switch (code)
      {
      case PLUS_EXPR:
      case MINUS_EXPR:
        if (ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_TRAPS (type))
	  return expand_vector_addition (gsi, do_binop, do_plus_minus, type,
					 gimple_assign_rhs1 (assign),
					 gimple_assign_rhs2 (assign), code);
	break;

      case NEGATE_EXPR:
        if (ANY_INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_TRAPS (type))
          return expand_vector_addition (gsi, do_unop, do_negate, type,
		      		         gimple_assign_rhs1 (assign),
					 NULL_TREE, code);
	break;

      case BIT_AND_EXPR:
      case BIT_IOR_EXPR:
      case BIT_XOR_EXPR:
        return expand_vector_parallel (gsi, do_binop, type,
		      		       gimple_assign_rhs1 (assign),
				       gimple_assign_rhs2 (assign), code);

      case BIT_NOT_EXPR:
        return expand_vector_parallel (gsi, do_unop, type,
		      		       gimple_assign_rhs1 (assign),
        			       NULL_TREE, code);
      case EQ_EXPR:
      case NE_EXPR:
      case GT_EXPR:
      case LT_EXPR:
      case GE_EXPR:
      case LE_EXPR:
      case UNEQ_EXPR:
      case UNGT_EXPR:
      case UNLT_EXPR:
      case UNGE_EXPR:
      case UNLE_EXPR:
      case LTGT_EXPR:
      case ORDERED_EXPR:
      case UNORDERED_EXPR:
	{
	  tree rhs1 = gimple_assign_rhs1 (assign);
	  tree rhs2 = gimple_assign_rhs2 (assign);

	  return expand_vector_comparison (gsi, type, rhs1, rhs2, code);
	}

      case TRUNC_DIV_EXPR:
      case TRUNC_MOD_EXPR:
	{
	  tree rhs1 = gimple_assign_rhs1 (assign);
	  tree rhs2 = gimple_assign_rhs2 (assign);
	  tree ret;

	  if (!optimize
	      || !VECTOR_INTEGER_TYPE_P (type)
	      || TREE_CODE (rhs2) != VECTOR_CST
	      || !VECTOR_MODE_P (TYPE_MODE (type)))
	    break;

	  ret = expand_vector_divmod (gsi, type, rhs1, rhs2, code);
	  if (ret != NULL_TREE)
	    return ret;
	  break;
	}

      default:
	break;
      }

  if (TREE_CODE_CLASS (code) == tcc_unary)
    return expand_vector_piecewise (gsi, do_unop, type, compute_type,
				    gimple_assign_rhs1 (assign),
				    NULL_TREE, code, false);
  else
    return expand_vector_piecewise (gsi, do_binop, type, compute_type,
				    gimple_assign_rhs1 (assign),
				    gimple_assign_rhs2 (assign), code, false);
}

/* Try to optimize
   a_5 = { b_7, b_7 + 3, b_7 + 6, b_7 + 9 };
   style stmts into:
   _9 = { b_7, b_7, b_7, b_7 };
   a_5 = _9 + { 0, 3, 6, 9 };
   because vector splat operation is usually more efficient
   than piecewise initialization of the vector.  */

static void
optimize_vector_constructor (gimple_stmt_iterator *gsi)
{
  gassign *stmt = as_a <gassign *> (gsi_stmt (*gsi));
  tree lhs = gimple_assign_lhs (stmt);
  tree rhs = gimple_assign_rhs1 (stmt);
  tree type = TREE_TYPE (rhs);
  unsigned int i, j;
  unsigned HOST_WIDE_INT nelts;
  bool all_same = true;
  constructor_elt *elt;
  gimple *g;
  tree base = NULL_TREE;
  optab op;

  if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts)
      || nelts <= 2
      || CONSTRUCTOR_NELTS (rhs) != nelts)
    return;
  op = optab_for_tree_code (PLUS_EXPR, type, optab_default);
  if (op == unknown_optab
      || !can_implement_p (op, TYPE_MODE (type)))
    return;
  FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (rhs), i, elt)
    if (TREE_CODE (elt->value) != SSA_NAME
	|| TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
      return;
    else
      {
	tree this_base = elt->value;
	if (this_base != CONSTRUCTOR_ELT (rhs, 0)->value)
	  all_same = false;
	for (j = 0; j < nelts + 1; j++)
	  {
	    g = SSA_NAME_DEF_STMT (this_base);
	    if (is_gimple_assign (g)
		&& gimple_assign_rhs_code (g) == PLUS_EXPR
		&& TREE_CODE (gimple_assign_rhs2 (g)) == INTEGER_CST
		&& TREE_CODE (gimple_assign_rhs1 (g)) == SSA_NAME
		&& !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_assign_rhs1 (g)))
	      this_base = gimple_assign_rhs1 (g);
	    else
	      break;
	  }
	if (i == 0)
	  base = this_base;
	else if (this_base != base)
	  return;
      }
  if (all_same)
    return;
  tree_vector_builder cst (type, nelts, 1);
  for (i = 0; i < nelts; i++)
    {
      tree this_base = CONSTRUCTOR_ELT (rhs, i)->value;
      tree elt = build_zero_cst (TREE_TYPE (base));
      while (this_base != base)
	{
	  g = SSA_NAME_DEF_STMT (this_base);
	  elt = fold_binary (PLUS_EXPR, TREE_TYPE (base),
			     elt, gimple_assign_rhs2 (g));
	  if (elt == NULL_TREE
	      || TREE_CODE (elt) != INTEGER_CST
	      || TREE_OVERFLOW (elt))
	    return;
	  this_base = gimple_assign_rhs1 (g);
	}
      cst.quick_push (elt);
    }
  for (i = 0; i < nelts; i++)
    CONSTRUCTOR_ELT (rhs, i)->value = base;
  g = gimple_build_assign (make_ssa_name (type), rhs);
  gsi_insert_before (gsi, g, GSI_SAME_STMT);
  g = gimple_build_assign (lhs, PLUS_EXPR, gimple_assign_lhs (g),
			   cst.build ());
  gsi_replace (gsi, g, false);
}

/* Return a type for the widest vector mode with the same element type as
   type ORIGINAL_VECTOR_TYPE, with at most the same number of elements as type
   ORIGINAL_VECTOR_TYPE and that is supported by the target for an operation
   with optab OP, or return NULL_TREE if none is found.  */

static tree
type_for_widest_vector_mode (tree original_vector_type, optab op)
{
  gcc_assert (VECTOR_TYPE_P (original_vector_type));
  tree type = TREE_TYPE (original_vector_type);
  machine_mode inner_mode = TYPE_MODE (type);
  machine_mode best_mode = VOIDmode, mode;
  poly_int64 best_nunits = 0;

  if (SCALAR_FLOAT_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_FLOAT;
  else if (SCALAR_FRACT_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_FRACT;
  else if (SCALAR_UFRACT_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_UFRACT;
  else if (SCALAR_ACCUM_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_ACCUM;
  else if (SCALAR_UACCUM_MODE_P (inner_mode))
    mode = MIN_MODE_VECTOR_UACCUM;
  else if (inner_mode == BImode)
    mode = MIN_MODE_VECTOR_BOOL;
  else
    mode = MIN_MODE_VECTOR_INT;

  FOR_EACH_MODE_FROM (mode, mode)
    if (GET_MODE_INNER (mode) == inner_mode
	&& maybe_gt (GET_MODE_NUNITS (mode), best_nunits)
	&& can_implement_p (op, mode)
	&& known_le (GET_MODE_NUNITS (mode),
		     TYPE_VECTOR_SUBPARTS (original_vector_type)))
      best_mode = mode, best_nunits = GET_MODE_NUNITS (mode);

  if (best_mode == VOIDmode)
    return NULL_TREE;
  else
    return build_vector_type_for_mode (type, best_mode);
}


/* Build a reference to the element of the vector VECT.  Function
   returns either the element itself, either BIT_FIELD_REF, or an
   ARRAY_REF expression.

   GSI is required to insert temporary variables while building a
   refernece to the element of the vector VECT.

   PTMPVEC is a pointer to the temporary variable for caching
   purposes.  In case when PTMPVEC is NULL new temporary variable
   will be created.  */
static tree
vector_element (gimple_stmt_iterator *gsi, tree vect, tree idx, tree *ptmpvec)
{
  tree vect_type, vect_elt_type;
  gimple *asgn;
  tree tmpvec;
  tree arraytype;
  bool need_asgn = true;
  unsigned int elements;

  vect_type = TREE_TYPE (vect);
  vect_elt_type = TREE_TYPE (vect_type);
  elements = nunits_for_known_piecewise_op (vect_type);

  if (TREE_CODE (idx) == INTEGER_CST)
    {
      unsigned HOST_WIDE_INT index;

      /* Given that we're about to compute a binary modulus,
	 we don't care about the high bits of the value.  */
      index = TREE_INT_CST_LOW (idx);
      if (!tree_fits_uhwi_p (idx) || index >= elements)
	{
	  index &= elements - 1;
	  idx = build_int_cst (TREE_TYPE (idx), index);
	}

      /* When lowering a vector statement sequence do some easy
         simplification by looking through intermediate vector results.  */
      if (TREE_CODE (vect) == SSA_NAME)
	{
	  gimple *def_stmt = SSA_NAME_DEF_STMT (vect);
	  if (is_gimple_assign (def_stmt)
	      && (gimple_assign_rhs_code (def_stmt) == VECTOR_CST
		  || gimple_assign_rhs_code (def_stmt) == CONSTRUCTOR))
	    vect = gimple_assign_rhs1 (def_stmt);
	}

      if (TREE_CODE (vect) == VECTOR_CST)
	return VECTOR_CST_ELT (vect, index);
      else if (TREE_CODE (vect) == CONSTRUCTOR
	       && (CONSTRUCTOR_NELTS (vect) == 0
		   || TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (vect, 0)->value))
		      != VECTOR_TYPE))
        {
	  if (index < CONSTRUCTOR_NELTS (vect))
	    return CONSTRUCTOR_ELT (vect, index)->value;
          return build_zero_cst (vect_elt_type);
        }
      else
        {
	  tree size = vector_element_bits_tree (vect_type);
	  tree pos = fold_build2 (MULT_EXPR, bitsizetype, bitsize_int (index),
				  size);
	  return fold_build3 (BIT_FIELD_REF, vect_elt_type, vect, size, pos);
        }
    }

  if (!ptmpvec)
    tmpvec = create_tmp_var (vect_type, "vectmp");
  else if (!*ptmpvec)
    tmpvec = *ptmpvec = create_tmp_var (vect_type, "vectmp");
  else
    {
      tmpvec = *ptmpvec;
      need_asgn = false;
    }

  if (need_asgn)
    {
      TREE_ADDRESSABLE (tmpvec) = 1;
      asgn = gimple_build_assign (tmpvec, vect);
      gsi_insert_before (gsi, asgn, GSI_SAME_STMT);
    }

  arraytype = build_array_type_nelts (vect_elt_type, elements);
  return build4 (ARRAY_REF, vect_elt_type,
                 build1 (VIEW_CONVERT_EXPR, arraytype, tmpvec),
                 idx, NULL_TREE, NULL_TREE);
}

/* Check if VEC_PERM_EXPR within the given setting is supported
   by hardware, or lower it piecewise.

   When VEC_PERM_EXPR has the same first and second operands:
   VEC_PERM_EXPR <v0, v0, mask> the lowered version would be
   {v0[mask[0]], v0[mask[1]], ...}
   MASK and V0 must have the same number of elements.

   Otherwise VEC_PERM_EXPR <v0, v1, mask> is lowered to
   {mask[0] < len(v0) ? v0[mask[0]] : v1[mask[0]], ...}
   V0 and V1 must have the same type.  MASK, V0, V1 must have the
   same number of arguments.  */

static void
lower_vec_perm (gimple_stmt_iterator *gsi)
{
  gassign *stmt = as_a <gassign *> (gsi_stmt (*gsi));
  tree mask = gimple_assign_rhs3 (stmt);
  tree vec0 = gimple_assign_rhs1 (stmt);
  tree vec1 = gimple_assign_rhs2 (stmt);
  tree res_vect_type = TREE_TYPE (gimple_assign_lhs (stmt));
  tree vect_type = TREE_TYPE (vec0);
  tree mask_type = TREE_TYPE (mask);
  tree vect_elt_type = TREE_TYPE (vect_type);
  tree mask_elt_type = TREE_TYPE (mask_type);
  unsigned HOST_WIDE_INT elements;
  vec<constructor_elt, va_gc> *v;
  tree constr, t, si, i_val;
  tree vec0tmp = NULL_TREE, vec1tmp = NULL_TREE, masktmp = NULL_TREE;
  bool two_operand_p = !operand_equal_p (vec0, vec1, 0);
  location_t loc = gimple_location (gsi_stmt (*gsi));
  unsigned i;

  if (!TYPE_VECTOR_SUBPARTS (res_vect_type).is_constant (&elements))
    return;

  if (TREE_CODE (mask) == SSA_NAME)
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (mask);
      if (is_gimple_assign (def_stmt)
	  && gimple_assign_rhs_code (def_stmt) == VECTOR_CST)
	mask = gimple_assign_rhs1 (def_stmt);
    }

  vec_perm_builder sel_int;

  if (TREE_CODE (mask) == VECTOR_CST
      && tree_to_vec_perm_builder (&sel_int, mask))
    {
      vec_perm_indices indices (sel_int, 2, elements);
      machine_mode vmode = TYPE_MODE (vect_type);
      tree lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
      machine_mode lhs_mode = TYPE_MODE (lhs_type);
      if (can_vec_perm_const_p (lhs_mode, vmode, indices))
	{
	  gimple_assign_set_rhs3 (stmt, mask);
	  update_stmt (stmt);
	  return;
	}
      /* Also detect vec_shr pattern - VEC_PERM_EXPR with zero
	 vector as VEC1 and a right element shift MASK.  */
      if (can_implement_p (vec_shr_optab, TYPE_MODE (vect_type))
	  && TREE_CODE (vec1) == VECTOR_CST
	  && initializer_zerop (vec1)
	  && maybe_ne (indices[0], 0)
	  && known_lt (poly_uint64 (indices[0]), elements))
	{
	  bool ok_p = indices.series_p (0, 1, indices[0], 1);
	  if (!ok_p)
	    {
	      for (i = 1; i < elements; ++i)
		{
		  poly_uint64 actual = indices[i];
		  poly_uint64 expected = i + indices[0];
		  /* Indices into the second vector are all equivalent.  */
		  if (maybe_lt (actual, elements)
		      ? maybe_ne (actual, expected)
		      : maybe_lt (expected, elements))
		    break;
		}
	      ok_p = i == elements;
	    }
	  if (ok_p)
	    {
	      gimple_assign_set_rhs3 (stmt, mask);
	      update_stmt (stmt);
	      return;
	    }
	}
      /* And similarly vec_shl pattern.  */
      if (can_implement_p (vec_shl_optab, TYPE_MODE (vect_type))
	  && TREE_CODE (vec0) == VECTOR_CST
	  && initializer_zerop (vec0))
	{
	  unsigned int first = 0;
	  for (i = 0; i < elements; ++i)
	    if (known_eq (poly_uint64 (indices[i]), elements))
	      {
		if (i == 0 || first)
		  break;
		first = i;
	      }
	    else if (first
		     ? maybe_ne (poly_uint64 (indices[i]),
					      elements + i - first)
		     : maybe_ge (poly_uint64 (indices[i]), elements))
	      break;
	  if (first && i == elements)
	    {
	      gimple_assign_set_rhs3 (stmt, mask);
	      update_stmt (stmt);
	      return;
	    }
	}
    }
  else if (can_vec_perm_var_p (TYPE_MODE (vect_type)))
    return;

  if (!warning_suppressed_p (stmt, OPT_Wvector_operation_performance))
    warning_at (loc, OPT_Wvector_operation_performance,
		"vector shuffling operation will be expanded piecewise");

  vec_alloc (v, elements);
  bool constant_p = true;
  for (i = 0; i < elements; i++)
    {
      si = size_int (i);
      i_val = vector_element (gsi, mask, si, &masktmp);

      if (TREE_CODE (i_val) == INTEGER_CST)
        {
	  unsigned HOST_WIDE_INT index;

	  index = TREE_INT_CST_LOW (i_val);
	  if (!tree_fits_uhwi_p (i_val) || index >= elements)
	    i_val = build_int_cst (mask_elt_type, index & (elements - 1));

          if (two_operand_p && (index & elements) != 0)
	    t = vector_element (gsi, vec1, i_val, &vec1tmp);
	  else
	    t = vector_element (gsi, vec0, i_val, &vec0tmp);

          t = force_gimple_operand_gsi (gsi, t, true, NULL_TREE,
					true, GSI_SAME_STMT);
        }
      else
        {
	  tree cond = NULL_TREE, v0_val;

	  if (two_operand_p)
	    {
	      cond = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
			          build_int_cst (mask_elt_type, elements));
	      cond = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
					       true, GSI_SAME_STMT);
	    }

	  i_val = fold_build2 (BIT_AND_EXPR, mask_elt_type, i_val,
			       build_int_cst (mask_elt_type, elements - 1));
	  i_val = force_gimple_operand_gsi (gsi, i_val, true, NULL_TREE,
					    true, GSI_SAME_STMT);

	  v0_val = vector_element (gsi, vec0, i_val, &vec0tmp);
	  v0_val = force_gimple_operand_gsi (gsi, v0_val, true, NULL_TREE,
					     true, GSI_SAME_STMT);

	  if (two_operand_p)
	    {
	      tree v1_val;

	      v1_val = vector_element (gsi, vec1, i_val, &vec1tmp);
	      v1_val = force_gimple_operand_gsi (gsi, v1_val, true, NULL_TREE,
						 true, GSI_SAME_STMT);

	      cond = fold_build2 (EQ_EXPR, boolean_type_node,
				  cond, build_zero_cst (mask_elt_type));
	      cond = fold_build3 (COND_EXPR, vect_elt_type,
				  cond, v0_val, v1_val);
              t = force_gimple_operand_gsi (gsi, cond, true, NULL_TREE,
					    true, GSI_SAME_STMT);
            }
	  else
	    t = v0_val;
        }

      if (!CONSTANT_CLASS_P (t))
	constant_p = false;
      CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, t);
    }

  if (constant_p)
    constr = build_vector_from_ctor (res_vect_type, v);
  else
    constr = build_constructor (res_vect_type, v);
  gimple_assign_set_rhs_from_tree (gsi, constr);
  update_stmt (gsi_stmt (*gsi));
}

/* If OP is a uniform vector return the element it is a splat from.  */

static tree
ssa_uniform_vector_p (tree op)
{
  if (TREE_CODE (op) == VECTOR_CST
      || TREE_CODE (op) == VEC_DUPLICATE_EXPR
      || TREE_CODE (op) == CONSTRUCTOR)
    return uniform_vector_p (op);
  if (TREE_CODE (op) == SSA_NAME)
    {
      gimple *def_stmt = SSA_NAME_DEF_STMT (op);
      if (gimple_assign_single_p (def_stmt))
	return uniform_vector_p (gimple_assign_rhs1 (def_stmt));
    }
  return NULL_TREE;
}

/* Return the type that should be used to implement OP on type TYPE.
   This is TYPE itself if the target can do the operation directly,
   otherwise it is a scalar type or a smaller vector type.  */

static tree
get_compute_type (optab op, tree type)
{
  if (op)
    {
      if (VECTOR_MODE_P (TYPE_MODE (type))
	  && can_implement_p (op, TYPE_MODE (type)))
	return type;

      /* For very wide vectors, try using a smaller vector mode.  */
      tree vector_compute_type = type_for_widest_vector_mode (type, op);
      if (vector_compute_type != NULL_TREE
	  && maybe_ne (TYPE_VECTOR_SUBPARTS (vector_compute_type), 1U)
	  && can_implement_p (op, TYPE_MODE (vector_compute_type)))
	return vector_compute_type;
    }

  /* There is no operation in hardware, so fall back to scalars.  */
  return TREE_TYPE (type);
}

static tree
do_cond (gimple_stmt_iterator *gsi, tree inner_type, tree a, tree b,
	 tree bitpos, tree bitsize, enum tree_code code,
	 tree type ATTRIBUTE_UNUSED)
{
  if (VECTOR_TYPE_P (TREE_TYPE (a)))
    a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  if (VECTOR_TYPE_P (TREE_TYPE (b)))
    b = tree_vec_extract (gsi, inner_type, b, bitsize, bitpos);
  tree cond = gimple_assign_rhs1 (gsi_stmt (*gsi));
  return gimplify_build3 (gsi, code, inner_type, unshare_expr (cond), a, b);
}

/* Expand a vector COND_EXPR to scalars, piecewise.  */
static void
expand_vector_scalar_condition (gimple_stmt_iterator *gsi)
{
  gassign *stmt = as_a <gassign *> (gsi_stmt (*gsi));
  tree lhs = gimple_assign_lhs (stmt);
  tree type = TREE_TYPE (lhs);
  tree compute_type = get_compute_type (mov_optab, type);
  machine_mode compute_mode = TYPE_MODE (compute_type);
  gcc_assert (compute_mode != BLKmode);
  tree rhs2 = gimple_assign_rhs2 (stmt);
  tree rhs3 = gimple_assign_rhs3 (stmt);
  tree new_rhs;

  /* If the compute mode is not a vector mode (hence we are not decomposing
     a BLKmode vector to smaller, hardware-supported vectors), we may want
     to expand the operations in parallel.  */
  if (!VECTOR_MODE_P (compute_mode))
    new_rhs = expand_vector_parallel (gsi, do_cond, type, rhs2, rhs3,
				      COND_EXPR);
  else
    new_rhs = expand_vector_piecewise (gsi, do_cond, type, compute_type,
				       rhs2, rhs3, COND_EXPR, false);
  if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs)))
    new_rhs = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
			       new_rhs);

  /* NOTE:  We should avoid using gimple_assign_set_rhs_from_tree. One
     way to do it is change expand_vector_operation and its callees to
     return a tree_code, RHS1 and RHS2 instead of a tree. */
  gimple_assign_set_rhs_from_tree (gsi, new_rhs);
  update_stmt (gsi_stmt (*gsi));
}

/* Callback for expand_vector_piecewise to do VEC_CONVERT ifn call
   lowering.  If INNER_TYPE is not a vector type, this is a scalar
   fallback.  */

static tree
do_vec_conversion (gimple_stmt_iterator *gsi, tree inner_type, tree a,
		   tree decl, tree bitpos, tree bitsize,
		   enum tree_code code, tree type)
{
  a = tree_vec_extract (gsi, inner_type, a, bitsize, bitpos);
  if (!VECTOR_TYPE_P (inner_type))
    return gimplify_build1 (gsi, code, TREE_TYPE (type), a);
  if (code == CALL_EXPR)
    {
      gimple *g = gimple_build_call (decl, 1, a);
      tree lhs = make_ssa_name (TREE_TYPE (TREE_TYPE (decl)));
      gimple_call_set_lhs (g, lhs);
      gsi_insert_before (gsi, g, GSI_SAME_STMT);
      return lhs;
    }
  else
    {
      tree outer_type = build_vector_type (TREE_TYPE (type),
					   TYPE_VECTOR_SUBPARTS (inner_type));
      return gimplify_build1 (gsi, code, outer_type, a);
    }
}

/* Similarly, but for narrowing conversion.  */

static tree
do_vec_narrow_conversion (gimple_stmt_iterator *gsi, tree inner_type, tree a,
			  tree, tree bitpos, tree, enum tree_code code,
			  tree type)
{
  tree itype = build_vector_type (TREE_TYPE (inner_type),
				  exact_div (TYPE_VECTOR_SUBPARTS (inner_type),
					     2));
  tree b = tree_vec_extract (gsi, itype, a, TYPE_SIZE (itype), bitpos);
  tree c = tree_vec_extract (gsi, itype, a, TYPE_SIZE (itype),
			     int_const_binop (PLUS_EXPR, bitpos,
					      TYPE_SIZE (itype)));
  tree outer_type = build_vector_type (TREE_TYPE (type),
				       TYPE_VECTOR_SUBPARTS (inner_type));
  return gimplify_build2 (gsi, code, outer_type, b, c);
}

/* Expand VEC_CONVERT ifn call.  */

static void
expand_vector_conversion (gimple_stmt_iterator *gsi)
{
  gimple *stmt = gsi_stmt (*gsi);
  gimple *g;
  tree lhs = gimple_call_lhs (stmt);
  if (lhs == NULL_TREE)
    {
      g = gimple_build_nop ();
      gsi_replace (gsi, g, false);
      return;
    }
  tree arg = gimple_call_arg (stmt, 0);
  tree ret_type = TREE_TYPE (lhs);
  tree arg_type = TREE_TYPE (arg);
  tree new_rhs, new_lhs, compute_type = TREE_TYPE (arg_type);
  enum tree_code code = NOP_EXPR;
  enum tree_code code1 = ERROR_MARK;
  enum { NARROW, NONE, WIDEN } modifier = NONE;
  optab optab1 = unknown_optab;

  gcc_checking_assert (VECTOR_TYPE_P (ret_type) && VECTOR_TYPE_P (arg_type));
  if (INTEGRAL_TYPE_P (TREE_TYPE (ret_type))
      && SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg_type)))
    code = FIX_TRUNC_EXPR;
  else if (INTEGRAL_TYPE_P (TREE_TYPE (arg_type))
	   && SCALAR_FLOAT_TYPE_P (TREE_TYPE (ret_type)))
    code = FLOAT_EXPR;
  unsigned int ret_elt_bits = vector_element_bits (ret_type);
  unsigned int arg_elt_bits = vector_element_bits (arg_type);
  if (ret_elt_bits < arg_elt_bits)
    modifier = NARROW;
  else if (ret_elt_bits > arg_elt_bits)
    modifier = WIDEN;

  auto_vec<std::pair<tree, tree_code> > converts;
  if (supportable_indirect_convert_operation (code,
					      ret_type, arg_type,
					      &converts,
					      arg))
    {
      new_rhs = arg;
      for (unsigned int i = 0; i < converts.length () - 1; i++)
	{
	  new_lhs = make_ssa_name (converts[i].first);
	  g = gimple_build_assign (new_lhs, converts[i].second, new_rhs);
	  new_rhs = new_lhs;
	  gsi_insert_before (gsi, g, GSI_SAME_STMT);
	}
      g = gimple_build_assign (lhs,
			       converts[converts.length() - 1].second,
			       new_rhs);
      gsi_replace (gsi, g, false);
      return;
    }

  if (modifier == NONE && (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR))
    {
      /* Can't use get_compute_type here, as supportable_convert_operation
	 doesn't necessarily use an optab and needs two arguments.  */
      tree vec_compute_type
	= type_for_widest_vector_mode (arg_type, mov_optab);
      if (vec_compute_type
	  && VECTOR_MODE_P (TYPE_MODE (vec_compute_type)))
	{
	  unsigned HOST_WIDE_INT nelts
	    = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_compute_type));
	  while (nelts > 1)
	    {
	      tree ret1_type = build_vector_type (TREE_TYPE (ret_type), nelts);
	      tree arg1_type = build_vector_type (TREE_TYPE (arg_type), nelts);
	      if (supportable_convert_operation (code, ret1_type, arg1_type,
						 &code1))
		{
		  new_rhs = expand_vector_piecewise (gsi, do_vec_conversion,
						     ret_type, arg1_type, arg,
						     NULL_TREE, code1, false);
		  g = gimple_build_assign (lhs, new_rhs);
		  gsi_replace (gsi, g, false);
		  return;
		}
	      nelts = nelts / 2;
	    }
	}
    }
  else if (modifier == NARROW)
    {
      switch (code)
	{
	CASE_CONVERT:
	  code1 = VEC_PACK_TRUNC_EXPR;
	  optab1 = optab_for_tree_code (code1, arg_type, optab_default);
	  break;
	case FIX_TRUNC_EXPR:
	  code1 = VEC_PACK_FIX_TRUNC_EXPR;
	  /* The signedness is determined from output operand.  */
	  optab1 = optab_for_tree_code (code1, ret_type, optab_default);
	  break;
	case FLOAT_EXPR:
	  code1 = VEC_PACK_FLOAT_EXPR;
	  optab1 = optab_for_tree_code (code1, arg_type, optab_default);
	  break;
	default:
	  gcc_unreachable ();
	}

      if (optab1)
	compute_type = get_compute_type (optab1, arg_type);
      enum insn_code icode1;
      if (VECTOR_TYPE_P (compute_type)
	  && ((icode1 = optab_handler (optab1, TYPE_MODE (compute_type)))
	      != CODE_FOR_nothing)
	  && VECTOR_MODE_P (insn_data[icode1].operand[0].mode))
	{
	  tree cretd_type
	    = build_vector_type (TREE_TYPE (ret_type),
				 TYPE_VECTOR_SUBPARTS (compute_type) * 2);
	  if (insn_data[icode1].operand[0].mode == TYPE_MODE (cretd_type))
	    {
	      if (compute_type == arg_type)
		{
		  new_rhs = gimplify_build2 (gsi, code1, cretd_type,
					     arg, build_zero_cst (arg_type));
		  new_rhs = tree_vec_extract (gsi, ret_type, new_rhs,
					      TYPE_SIZE (ret_type),
					      bitsize_int (0));
		  g = gimple_build_assign (lhs, new_rhs);
		  gsi_replace (gsi, g, false);
		  return;
		}
	      tree dcompute_type
		= build_vector_type (TREE_TYPE (compute_type),
				     TYPE_VECTOR_SUBPARTS (compute_type) * 2);
	      if (TYPE_MAIN_VARIANT (dcompute_type)
		  == TYPE_MAIN_VARIANT (arg_type))
		new_rhs = do_vec_narrow_conversion (gsi, dcompute_type, arg,
						    NULL_TREE, bitsize_int (0),
						    NULL_TREE, code1,
						    ret_type);
	      else
		new_rhs = expand_vector_piecewise (gsi,
						   do_vec_narrow_conversion,
						   arg_type, dcompute_type,
						   arg, NULL_TREE, code1,
						   false, ret_type);
	      g = gimple_build_assign (lhs, new_rhs);
	      gsi_replace (gsi, g, false);
	      return;
	    }
	}
    }
  else if (modifier == WIDEN)
    {
      enum tree_code code2 = ERROR_MARK;
      optab optab2 = unknown_optab;
      switch (code)
	{
	CASE_CONVERT:
	  code1 = VEC_UNPACK_LO_EXPR;
          code2 = VEC_UNPACK_HI_EXPR;
	  break;
	case FIX_TRUNC_EXPR:
	  code1 = VEC_UNPACK_FIX_TRUNC_LO_EXPR;
	  code2 = VEC_UNPACK_FIX_TRUNC_HI_EXPR;
	  break;
	case FLOAT_EXPR:
	  code1 = VEC_UNPACK_FLOAT_LO_EXPR;
	  code2 = VEC_UNPACK_FLOAT_HI_EXPR;
	  break;
	default:
	  gcc_unreachable ();
	}
      if (BYTES_BIG_ENDIAN)
	std::swap (code1, code2);

      if (code == FIX_TRUNC_EXPR)
	{
	  /* The signedness is determined from output operand.  */
	  optab1 = optab_for_tree_code (code1, ret_type, optab_default);
	  optab2 = optab_for_tree_code (code2, ret_type, optab_default);
	}
      else
	{
	  optab1 = optab_for_tree_code (code1, arg_type, optab_default);
	  optab2 = optab_for_tree_code (code2, arg_type, optab_default);
	}

      if (optab1 && optab2)
	compute_type = get_compute_type (optab1, arg_type);

      enum insn_code icode1, icode2;
      if (VECTOR_TYPE_P (compute_type)
	  && ((icode1 = optab_handler (optab1, TYPE_MODE (compute_type)))
	      != CODE_FOR_nothing)
	  && ((icode2 = optab_handler (optab2, TYPE_MODE (compute_type)))
	      != CODE_FOR_nothing)
	  && VECTOR_MODE_P (insn_data[icode1].operand[0].mode)
	  && (insn_data[icode1].operand[0].mode
	      == insn_data[icode2].operand[0].mode))
	{
	  poly_uint64 nunits
	    = exact_div (TYPE_VECTOR_SUBPARTS (compute_type), 2);
	  tree cretd_type = build_vector_type (TREE_TYPE (ret_type), nunits);
	  if (insn_data[icode1].operand[0].mode == TYPE_MODE (cretd_type))
	    {
	      vec<constructor_elt, va_gc> *v;
	      tree part_width = TYPE_SIZE (compute_type);
	      tree index = bitsize_int (0);
	      int nunits = nunits_for_known_piecewise_op (arg_type);
	      int delta = tree_to_uhwi (part_width) / arg_elt_bits;
	      int i;
	      location_t loc = gimple_location (gsi_stmt (*gsi));

	      if (compute_type != arg_type)
		{
		  if (!warning_suppressed_p (gsi_stmt (*gsi),
					     OPT_Wvector_operation_performance))
		    warning_at (loc, OPT_Wvector_operation_performance,
				"vector operation will be expanded piecewise");
		}
	      else
		{
		  nunits = 1;
		  delta = 1;
		}

	      vec_alloc (v, (nunits + delta - 1) / delta * 2);
	      bool constant_p = true;
	      for (i = 0; i < nunits;
		   i += delta, index = int_const_binop (PLUS_EXPR, index,
							part_width))
		{
		  tree a = arg;
		  if (compute_type != arg_type)
		    a = tree_vec_extract (gsi, compute_type, a, part_width,
					  index);
		  tree result = gimplify_build1 (gsi, code1, cretd_type, a);
		  constructor_elt ce = { NULL_TREE, result };
		  if (!CONSTANT_CLASS_P (ce.value))
		    constant_p = false;
		  v->quick_push (ce);
		  ce.value = gimplify_build1 (gsi, code2, cretd_type, a);
		  if (!CONSTANT_CLASS_P (ce.value))
		    constant_p = false;
		  v->quick_push (ce);
		}

	      if (constant_p)
		new_rhs = build_vector_from_ctor (ret_type, v);
	      else
		new_rhs = build_constructor (ret_type, v);
	      g = gimple_build_assign (lhs, new_rhs);
	      gsi_replace (gsi, g, false);
	      return;
	    }
	}
    }

  new_rhs = expand_vector_piecewise (gsi, do_vec_conversion, arg_type,
				     TREE_TYPE (arg_type), arg,
				     NULL_TREE, code, false, ret_type);
  g = gimple_build_assign (lhs, new_rhs);
  gsi_replace (gsi, g, false);
}

/* Process one statement.  If we identify a vector operation, expand it.  */

static void
expand_vector_operations_1 (gimple_stmt_iterator *gsi)
{
  tree lhs, rhs1, rhs2 = NULL, type, compute_type = NULL_TREE;
  enum tree_code code;
  optab op = unknown_optab;
  enum gimple_rhs_class rhs_class;
  tree new_rhs;

  /* Only consider code == GIMPLE_ASSIGN. */
  gassign *stmt = dyn_cast <gassign *> (gsi_stmt (*gsi));
  if (!stmt)
    {
      if (gimple_call_internal_p (gsi_stmt (*gsi), IFN_VEC_CONVERT))
	expand_vector_conversion (gsi);
      return;
    }

  code = gimple_assign_rhs_code (stmt);
  rhs_class = get_gimple_rhs_class (code);
  lhs = gimple_assign_lhs (stmt);

  if (code == VEC_PERM_EXPR)
    {
      lower_vec_perm (gsi);
      return;
    }

  if (code == VEC_COND_EXPR)
    {
      expand_vector_condition (gsi);
      return;
    }

  if (code == COND_EXPR
      && TREE_CODE (TREE_TYPE (gimple_assign_lhs (stmt))) == VECTOR_TYPE
      && TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt))) == BLKmode)
    {
      expand_vector_scalar_condition (gsi);
      return;
    }

  if (code == CONSTRUCTOR
      && TREE_CODE (lhs) == SSA_NAME
      && VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (lhs)))
      && !gimple_clobber_p (stmt)
      && optimize)
    {
      optimize_vector_constructor (gsi);
      return;
    }

  if (rhs_class != GIMPLE_UNARY_RHS && rhs_class != GIMPLE_BINARY_RHS)
    return;

  rhs1 = gimple_assign_rhs1 (stmt);
  if (rhs_class == GIMPLE_BINARY_RHS)
    rhs2 = gimple_assign_rhs2 (stmt);

  type = TREE_TYPE (lhs);
  if (!VECTOR_TYPE_P (type)
      || !VECTOR_TYPE_P (TREE_TYPE (rhs1)))
    return;

  /* A scalar operation pretending to be a vector one.  */
  if (VECTOR_BOOLEAN_TYPE_P (type)
      && !VECTOR_MODE_P (TYPE_MODE (type))
      && TYPE_MODE (type) != BLKmode
      && (TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) != tcc_comparison
	  || (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (rhs1))
	      && !VECTOR_MODE_P (TYPE_MODE (TREE_TYPE (rhs1)))
	      && TYPE_MODE (TREE_TYPE (rhs1)) != BLKmode)))
    return;

  /* If the vector operation is operating on all same vector elements
     implement it with a scalar operation and a splat if the target
     supports the scalar operation.  */
  tree srhs1, srhs2 = NULL_TREE;
  if ((srhs1 = ssa_uniform_vector_p (rhs1)) != NULL_TREE
      && (rhs2 == NULL_TREE
	  || (! VECTOR_TYPE_P (TREE_TYPE (rhs2))
	      && (srhs2 = rhs2))
	  || (srhs2 = ssa_uniform_vector_p (rhs2)) != NULL_TREE)
      /* As we query direct optabs restrict to non-convert operations.  */
      && TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (TREE_TYPE (srhs1)))
    {
      op = optab_for_tree_code (code, TREE_TYPE (type), optab_scalar);
      if (op >= FIRST_NORM_OPTAB && op <= LAST_NORM_OPTAB
	  && can_implement_p (op, TYPE_MODE (TREE_TYPE (type))))
	{
	  tree stype = TREE_TYPE (TREE_TYPE (lhs));
	  tree slhs = (rhs2 != NULL_TREE)
		      ? gimplify_build2 (gsi, code, stype, srhs1, srhs2)
		      : gimplify_build1 (gsi, code, stype, srhs1);
	  gimple_assign_set_rhs_from_tree (gsi,
					   build_vector_from_val (type, slhs));
	  update_stmt (stmt);
	  return;
	}
    }

  /* Plain moves do not need lowering.  */
  if (code == SSA_NAME
      || code == VIEW_CONVERT_EXPR
      || code == PAREN_EXPR)
    return;

  if (CONVERT_EXPR_CODE_P (code)
      || code == FLOAT_EXPR
      || code == FIX_TRUNC_EXPR)
    return;

  /* The signedness is determined from input argument.  */
  if (code == VEC_UNPACK_FLOAT_HI_EXPR
      || code == VEC_UNPACK_FLOAT_LO_EXPR
      || code == VEC_PACK_FLOAT_EXPR)
    {
      /* We do not know how to scalarize those.  */
      return;
    }

  /* For widening/narrowing vector operations, the relevant type is of the
     arguments, not the widened result.  VEC_UNPACK_FLOAT_*_EXPR is
     calculated in the same way above.  */
  if (code == WIDEN_SUM_EXPR
      || code == VEC_WIDEN_MULT_HI_EXPR
      || code == VEC_WIDEN_MULT_LO_EXPR
      || code == VEC_WIDEN_MULT_EVEN_EXPR
      || code == VEC_WIDEN_MULT_ODD_EXPR
      || code == VEC_UNPACK_HI_EXPR
      || code == VEC_UNPACK_LO_EXPR
      || code == VEC_UNPACK_FIX_TRUNC_HI_EXPR
      || code == VEC_UNPACK_FIX_TRUNC_LO_EXPR
      || code == VEC_PACK_TRUNC_EXPR
      || code == VEC_PACK_SAT_EXPR
      || code == VEC_PACK_FIX_TRUNC_EXPR
      || code == VEC_WIDEN_LSHIFT_HI_EXPR
      || code == VEC_WIDEN_LSHIFT_LO_EXPR)
    {
      /* We do not know how to scalarize those.  */
      return;
    }

  /* Choose between vector shift/rotate by vector and vector shift/rotate by
     scalar */
  if (code == LSHIFT_EXPR
      || code == RSHIFT_EXPR
      || code == LROTATE_EXPR
      || code == RROTATE_EXPR)
    {
      optab opv;

      /* Check whether we have vector <op> {x,x,x,x} where x
         could be a scalar variable or a constant.  Transform
         vector <op> {x,x,x,x} ==> vector <op> scalar.  */
      if (VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
        {
          tree first;

          if ((first = ssa_uniform_vector_p (rhs2)) != NULL_TREE)
            {
              gimple_assign_set_rhs2 (stmt, first);
              update_stmt (stmt);
              rhs2 = first;
            }
        }

      opv = optab_for_tree_code (code, type, optab_vector);
      if (VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
	op = opv;
      else
	{
          op = optab_for_tree_code (code, type, optab_scalar);

	  compute_type = get_compute_type (op, type);
	  if (compute_type == type)
	    return;
	  /* The rtl expander will expand vector/scalar as vector/vector
	     if necessary.  Pick one with wider vector type.  */
	  tree compute_vtype = get_compute_type (opv, type);
	  if (subparts_gt (compute_vtype, compute_type))
	    {
	      compute_type = compute_vtype;
	      op = opv;
	    }
	}

      if (code == LROTATE_EXPR || code == RROTATE_EXPR)
	{
	  if (compute_type == NULL_TREE)
	    compute_type = get_compute_type (op, type);
	  if (compute_type == type)
	    return;
	  /* Before splitting vector rotates into scalar rotates,
	     see if we can't use vector shifts and BIT_IOR_EXPR
	     instead.  For vector by vector rotates we'd also
	     need to check BIT_AND_EXPR and NEGATE_EXPR, punt there
	     for now, fold doesn't seem to create such rotates anyway.  */
	  if (compute_type == TREE_TYPE (type)
	      && !VECTOR_INTEGER_TYPE_P (TREE_TYPE (rhs2)))
	    {
	      optab oplv = vashl_optab, opl = ashl_optab;
	      optab oprv = vlshr_optab, opr = lshr_optab, opo = ior_optab;
	      tree compute_lvtype = get_compute_type (oplv, type);
	      tree compute_rvtype = get_compute_type (oprv, type);
	      tree compute_otype = get_compute_type (opo, type);
	      tree compute_ltype = get_compute_type (opl, type);
	      tree compute_rtype = get_compute_type (opr, type);
	      /* The rtl expander will expand vector/scalar as vector/vector
		 if necessary.  Pick one with wider vector type.  */
	      if (subparts_gt (compute_lvtype, compute_ltype))
		{
		  compute_ltype = compute_lvtype;
		  opl = oplv;
		}
	      if (subparts_gt (compute_rvtype, compute_rtype))
		{
		  compute_rtype = compute_rvtype;
		  opr = oprv;
		}
	      /* Pick the narrowest type from LSHIFT_EXPR, RSHIFT_EXPR and
		 BIT_IOR_EXPR.  */
	      compute_type = compute_ltype;
	      if (subparts_gt (compute_type, compute_rtype))
		compute_type = compute_rtype;
	      if (subparts_gt (compute_type, compute_otype))
		compute_type = compute_otype;
	      /* Verify all 3 operations can be performed in that type.  */
	      if (compute_type != TREE_TYPE (type))
		{
		  if (!can_implement_p (opl, TYPE_MODE (compute_type))
		      || !can_implement_p (opr, TYPE_MODE (compute_type))
		      || !can_implement_p (opo, TYPE_MODE (compute_type)))
		    compute_type = TREE_TYPE (type);
		}
	    }
	}
    }
  else
    op = optab_for_tree_code (code, type, optab_default);

  /* Optabs will try converting a negation into a subtraction, so
     look for it as well.  TODO: negation of floating-point vectors
     might be turned into an exclusive OR toggling the sign bit.  */
  if (op == unknown_optab
      && code == NEGATE_EXPR
      && INTEGRAL_TYPE_P (TREE_TYPE (type)))
    op = optab_for_tree_code (MINUS_EXPR, type, optab_default);

  if (compute_type == NULL_TREE)
    compute_type = get_compute_type (op, type);
  if (compute_type == type)
    return;

  new_rhs = expand_vector_operation (gsi, type, compute_type, stmt, code);

  /* Leave expression untouched for later expansion.  */
  if (new_rhs == NULL_TREE)
    return;

  if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs)))
    new_rhs = gimplify_build1 (gsi, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
                               new_rhs);

  /* NOTE:  We should avoid using gimple_assign_set_rhs_from_tree. One
     way to do it is change expand_vector_operation and its callees to
     return a tree_code, RHS1 and RHS2 instead of a tree. */
  gimple_assign_set_rhs_from_tree (gsi, new_rhs);
  update_stmt (gsi_stmt (*gsi));
}

/* Use this to lower vector operations introduced by the vectorizer,
   if it may need the bit-twiddling tricks implemented in this file.  */

static unsigned int
expand_vector_operations (void)
{
  gimple_stmt_iterator gsi;
  basic_block bb;
  bool cfg_changed = false;

  FOR_EACH_BB_FN (bb, cfun)
    {
      for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
	{
	  expand_vector_operations_1 (&gsi);
	  /* ???  If we do not cleanup EH then we will ICE in
	     verification.  But in reality we have created wrong-code
	     as we did not properly transition EH info and edges to
	     the piecewise computations.  */
	  if (maybe_clean_eh_stmt (gsi_stmt (gsi))
	      && gimple_purge_dead_eh_edges (bb))
	    cfg_changed = true;
	  /* If a .LOOP_DIST_ALIAS call prevailed loops got elided
	     before vectorization got a chance to get at them.  Simply
	     fold as if loop distribution wasn't performed.  */
	  if (gimple_call_internal_p (gsi_stmt (gsi), IFN_LOOP_DIST_ALIAS))
	    {
	      fold_loop_internal_call (gsi_stmt (gsi), boolean_false_node);
	      cfg_changed = true;
	    }
	}
    }

  return cfg_changed ? TODO_cleanup_cfg : 0;
}

namespace {

const pass_data pass_data_lower_vector =
{
  GIMPLE_PASS, /* type */
  "veclower", /* name */
  OPTGROUP_VEC, /* optinfo_flags */
  TV_NONE, /* tv_id */
  PROP_cfg, /* properties_required */
  PROP_gimple_lvec, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  TODO_update_ssa, /* todo_flags_finish */
};

class pass_lower_vector : public gimple_opt_pass
{
public:
  pass_lower_vector (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_lower_vector, ctxt)
  {}

  /* opt_pass methods: */
  bool gate (function *fun) final override
    {
      return !(fun->curr_properties & PROP_gimple_lvec);
    }

  unsigned int execute (function *) final override
    {
      return expand_vector_operations ();
    }

}; // class pass_lower_vector

} // anon namespace

gimple_opt_pass *
make_pass_lower_vector (gcc::context *ctxt)
{
  return new pass_lower_vector (ctxt);
}

namespace {

const pass_data pass_data_lower_vector_ssa =
{
  GIMPLE_PASS, /* type */
  "veclower2", /* name */
  OPTGROUP_VEC, /* optinfo_flags */
  TV_NONE, /* tv_id */
  PROP_cfg, /* properties_required */
  PROP_gimple_lvec, /* properties_provided */
  0, /* properties_destroyed */
  0, /* todo_flags_start */
  ( TODO_update_ssa
    | TODO_cleanup_cfg ), /* todo_flags_finish */
};

class pass_lower_vector_ssa : public gimple_opt_pass
{
public:
  pass_lower_vector_ssa (gcc::context *ctxt)
    : gimple_opt_pass (pass_data_lower_vector_ssa, ctxt)
  {}

  /* opt_pass methods: */
  opt_pass * clone () final override
  {
    return new pass_lower_vector_ssa (m_ctxt);
  }
  unsigned int execute (function *) final override
    {
      return expand_vector_operations ();
    }

}; // class pass_lower_vector_ssa

} // anon namespace

gimple_opt_pass *
make_pass_lower_vector_ssa (gcc::context *ctxt)
{
  return new pass_lower_vector_ssa (ctxt);
}

#include "gt-tree-vect-generic.h"
wa">else if (!STRICT_ALIGNMENT) { srctype = build_aligned_type (TYPE_MAIN_VARIANT (desttype), src_align); srcvar = fold_build2 (MEM_REF, srctype, srcvar, off0); } else srcvar = NULL_TREE; } else srcvar = NULL_TREE; if (srcvar == NULL_TREE && destvar == NULL_TREE) return false; if (srcvar == NULL_TREE) { STRIP_NOPS (src); if (src_align >= TYPE_ALIGN (desttype)) srcvar = fold_build2 (MEM_REF, desttype, src, off0); else { if (STRICT_ALIGNMENT) return false; srctype = build_aligned_type (TYPE_MAIN_VARIANT (desttype), src_align); srcvar = fold_build2 (MEM_REF, srctype, src, off0); } } else if (destvar == NULL_TREE) { STRIP_NOPS (dest); if (dest_align >= TYPE_ALIGN (srctype)) destvar = fold_build2 (MEM_REF, srctype, dest, off0); else { if (STRICT_ALIGNMENT) return false; desttype = build_aligned_type (TYPE_MAIN_VARIANT (srctype), dest_align); destvar = fold_build2 (MEM_REF, desttype, dest, off0); } } gimple *new_stmt; if (is_gimple_reg_type (TREE_TYPE (srcvar))) { tree tem = fold_const_aggregate_ref (srcvar); if (tem) srcvar = tem; if (! is_gimple_min_invariant (srcvar)) { new_stmt = gimple_build_assign (NULL_TREE, srcvar); srcvar = create_tmp_reg_or_ssa_name (TREE_TYPE (srcvar), new_stmt); gimple_assign_set_lhs (new_stmt, srcvar); gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); } } new_stmt = gimple_build_assign (destvar, srcvar); gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gimple_set_vdef (new_stmt, gimple_vdef (stmt)); if (gimple_vdef (new_stmt) && TREE_CODE (gimple_vdef (new_stmt)) == SSA_NAME) SSA_NAME_DEF_STMT (gimple_vdef (new_stmt)) = new_stmt; if (!lhs) { gsi_replace (gsi, new_stmt, false); return true; } gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); } done: gimple_seq stmts = NULL; if (endp == 0 || endp == 3) len = NULL_TREE; else if (endp == 2) len = gimple_build (&stmts, loc, MINUS_EXPR, TREE_TYPE (len), len, ssize_int (1)); if (endp == 2 || endp == 1) { len = gimple_convert_to_ptrofftype (&stmts, loc, len); dest = gimple_build (&stmts, loc, POINTER_PLUS_EXPR, TREE_TYPE (dest), dest, len); } gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); gimple *repl = gimple_build_assign (lhs, dest); gsi_replace (gsi, repl, false); return true; } /* Fold function call to builtin memset or bzero at *GSI setting the memory of size LEN to VAL. Return whether a simplification was made. */ static bool gimple_fold_builtin_memset (gimple_stmt_iterator *gsi, tree c, tree len) { gimple *stmt = gsi_stmt (*gsi); tree etype; unsigned HOST_WIDE_INT length, cval; /* If the LEN parameter is zero, return DEST. */ if (integer_zerop (len)) { replace_call_with_value (gsi, gimple_call_arg (stmt, 0)); return true; } if (! tree_fits_uhwi_p (len)) return false; if (TREE_CODE (c) != INTEGER_CST) return false; tree dest = gimple_call_arg (stmt, 0); tree var = dest; if (TREE_CODE (var) != ADDR_EXPR) return false; var = TREE_OPERAND (var, 0); if (TREE_THIS_VOLATILE (var)) return false; etype = TREE_TYPE (var); if (TREE_CODE (etype) == ARRAY_TYPE) etype = TREE_TYPE (etype); if (!INTEGRAL_TYPE_P (etype) && !POINTER_TYPE_P (etype)) return NULL_TREE; if (! var_decl_component_p (var)) return NULL_TREE; length = tree_to_uhwi (len); if (GET_MODE_SIZE (TYPE_MODE (etype)) != length || get_pointer_alignment (dest) / BITS_PER_UNIT < length) return NULL_TREE; if (length > HOST_BITS_PER_WIDE_INT / BITS_PER_UNIT) return NULL_TREE; if (integer_zerop (c)) cval = 0; else { if (CHAR_BIT != 8 || BITS_PER_UNIT != 8 || HOST_BITS_PER_WIDE_INT > 64) return NULL_TREE; cval = TREE_INT_CST_LOW (c); cval &= 0xff; cval |= cval << 8; cval |= cval << 16; cval |= (cval << 31) << 1; } var = fold_build2 (MEM_REF, etype, dest, build_int_cst (ptr_type_node, 0)); gimple *store = gimple_build_assign (var, build_int_cst_type (etype, cval)); gimple_set_vuse (store, gimple_vuse (stmt)); tree vdef = gimple_vdef (stmt); if (vdef && TREE_CODE (vdef) == SSA_NAME) { gimple_set_vdef (store, gimple_vdef (stmt)); SSA_NAME_DEF_STMT (gimple_vdef (stmt)) = store; } gsi_insert_before (gsi, store, GSI_SAME_STMT); if (gimple_call_lhs (stmt)) { gimple *asgn = gimple_build_assign (gimple_call_lhs (stmt), dest); gsi_replace (gsi, asgn, false); } else { gimple_stmt_iterator gsi2 = *gsi; gsi_prev (gsi); gsi_remove (&gsi2, true); } return true; } /* Obtain the minimum and maximum string length or minimum and maximum value of ARG in LENGTH[0] and LENGTH[1], respectively. If ARG is an SSA name variable, follow its use-def chains. When TYPE == 0, if LENGTH[1] is not equal to the length we determine or if we are unable to determine the length or value, return False. VISITED is a bitmap of visited variables. TYPE is 0 if string length should be obtained, 1 for maximum string length and 2 for maximum value ARG can have. When FUZZY is set and the length of a string cannot be determined, the function instead considers as the maximum possible length the size of a character array it may refer to. Set *FLEXP to true if the range of the string lengths has been obtained from the upper bound of an array at the end of a struct. Such an array may hold a string that's longer than its upper bound due to it being used as a poor-man's flexible array member. */ static bool get_range_strlen (tree arg, tree length[2], bitmap *visited, int type, bool fuzzy, bool *flexp) { tree var, val; gimple *def_stmt; /* The minimum and maximum length. The MAXLEN pointer stays unchanged but MINLEN may be cleared during the execution of the function. */ tree *minlen = length; tree *const maxlen = length + 1; if (TREE_CODE (arg) != SSA_NAME) { /* We can end up with &(*iftmp_1)[0] here as well, so handle it. */ if (TREE_CODE (arg) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF && integer_zerop (TREE_OPERAND (TREE_OPERAND (arg, 0), 1))) { tree aop0 = TREE_OPERAND (TREE_OPERAND (arg, 0), 0); if (TREE_CODE (aop0) == INDIRECT_REF && TREE_CODE (TREE_OPERAND (aop0, 0)) == SSA_NAME) return get_range_strlen (TREE_OPERAND (aop0, 0), length, visited, type, fuzzy, flexp); } if (type == 2) { val = arg; if (TREE_CODE (val) != INTEGER_CST || tree_int_cst_sgn (val) < 0) return false; } else val = c_strlen (arg, 1); if (!val && fuzzy) { if (TREE_CODE (arg) == ADDR_EXPR) return get_range_strlen (TREE_OPERAND (arg, 0), length, visited, type, fuzzy, flexp); if (TREE_CODE (arg) == COMPONENT_REF && TREE_CODE (TREE_TYPE (TREE_OPERAND (arg, 1))) == ARRAY_TYPE) { /* Use the type of the member array to determine the upper bound on the length of the array. This may be overly optimistic if the array itself isn't NUL-terminated and the caller relies on the subsequent member to contain the NUL. Set *FLEXP to true if the array whose bound is being used is at the end of a struct. */ if (array_at_struct_end_p (arg, true)) *flexp = true; arg = TREE_OPERAND (arg, 1); val = TYPE_SIZE_UNIT (TREE_TYPE (arg)); if (!val || integer_zerop (val)) return false; val = fold_build2 (MINUS_EXPR, TREE_TYPE (val), val, integer_one_node); /* Set the minimum size to zero since the string in the array could have zero length. */ *minlen = ssize_int (0); } } if (!val) return false; if (minlen && (!*minlen || (type > 0 && TREE_CODE (*minlen) == INTEGER_CST && TREE_CODE (val) == INTEGER_CST && tree_int_cst_lt (val, *minlen)))) *minlen = val; if (*maxlen) { if (type > 0) { if (TREE_CODE (*maxlen) != INTEGER_CST || TREE_CODE (val) != INTEGER_CST) return false; if (tree_int_cst_lt (*maxlen, val)) *maxlen = val; return true; } else if (simple_cst_equal (val, *maxlen) != 1) return false; } *maxlen = val; return true; } /* If ARG is registered for SSA update we cannot look at its defining statement. */ if (name_registered_for_update_p (arg)) return false; /* If we were already here, break the infinite cycle. */ if (!*visited) *visited = BITMAP_ALLOC (NULL); if (!bitmap_set_bit (*visited, SSA_NAME_VERSION (arg))) return true; var = arg; def_stmt = SSA_NAME_DEF_STMT (var); switch (gimple_code (def_stmt)) { case GIMPLE_ASSIGN: /* The RHS of the statement defining VAR must either have a constant length or come from another SSA_NAME with a constant length. */ if (gimple_assign_single_p (def_stmt) || gimple_assign_unary_nop_p (def_stmt)) { tree rhs = gimple_assign_rhs1 (def_stmt); return get_range_strlen (rhs, length, visited, type, fuzzy, flexp); } else if (gimple_assign_rhs_code (def_stmt) == COND_EXPR) { tree op2 = gimple_assign_rhs2 (def_stmt); tree op3 = gimple_assign_rhs3 (def_stmt); return get_range_strlen (op2, length, visited, type, fuzzy, flexp) && get_range_strlen (op3, length, visited, type, fuzzy, flexp); } return false; case GIMPLE_PHI: { /* All the arguments of the PHI node must have the same constant length. */ unsigned i; for (i = 0; i < gimple_phi_num_args (def_stmt); i++) { tree arg = gimple_phi_arg (def_stmt, i)->def; /* If this PHI has itself as an argument, we cannot determine the string length of this argument. However, if we can find a constant string length for the other PHI args then we can still be sure that this is a constant string length. So be optimistic and just continue with the next argument. */ if (arg == gimple_phi_result (def_stmt)) continue; if (!get_range_strlen (arg, length, visited, type, fuzzy, flexp)) { if (fuzzy) *maxlen = build_all_ones_cst (size_type_node); else return false; } } } return true; default: return false; } } /* Determine the minimum and maximum value or string length that ARG refers to and store each in the first two elements of MINMAXLEN. For expressions that point to strings of unknown lengths that are character arrays, use the upper bound of the array as the maximum length. For example, given an expression like 'x ? array : "xyz"' and array declared as 'char array[8]', MINMAXLEN[0] will be set to 3 and MINMAXLEN[1] to 7, the longest string that could be stored in array. Return true if the range of the string lengths has been obtained from the upper bound of an array at the end of a struct. Such an array may hold a string that's longer than its upper bound due to it being used as a poor-man's flexible array member. */ bool get_range_strlen (tree arg, tree minmaxlen[2]) { bitmap visited = NULL; minmaxlen[0] = NULL_TREE; minmaxlen[1] = NULL_TREE; bool flexarray = false; get_range_strlen (arg, minmaxlen, &visited, 1, true, &flexarray); if (visited) BITMAP_FREE (visited); return flexarray; } tree get_maxval_strlen (tree arg, int type) { bitmap visited = NULL; tree len[2] = { NULL_TREE, NULL_TREE }; bool dummy; if (!get_range_strlen (arg, len, &visited, type, false, &dummy)) len[1] = NULL_TREE; if (visited) BITMAP_FREE (visited); return len[1]; } /* Fold function call to builtin strcpy with arguments DEST and SRC. If LEN is not NULL, it represents the length of the string to be copied. Return NULL_TREE if no simplification can be made. */ static bool gimple_fold_builtin_strcpy (gimple_stmt_iterator *gsi, tree dest, tree src) { location_t loc = gimple_location (gsi_stmt (*gsi)); tree fn; /* If SRC and DEST are the same (and not volatile), return DEST. */ if (operand_equal_p (src, dest, 0)) { replace_call_with_value (gsi, dest); return true; } if (optimize_function_for_size_p (cfun)) return false; fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return false; tree len = get_maxval_strlen (src, 0); if (!len) return false; len = fold_convert_loc (loc, size_type_node, len); len = size_binop_loc (loc, PLUS_EXPR, len, build_int_cst (size_type_node, 1)); len = force_gimple_operand_gsi (gsi, len, true, NULL_TREE, true, GSI_SAME_STMT); gimple *repl = gimple_build_call (fn, 3, dest, src, len); replace_call_with_call_and_fold (gsi, repl); return true; } /* Fold function call to builtin strncpy with arguments DEST, SRC, and LEN. If SLEN is not NULL, it represents the length of the source string. Return NULL_TREE if no simplification can be made. */ static bool gimple_fold_builtin_strncpy (gimple_stmt_iterator *gsi, tree dest, tree src, tree len) { location_t loc = gimple_location (gsi_stmt (*gsi)); tree fn; /* If the LEN parameter is zero, return DEST. */ if (integer_zerop (len)) { replace_call_with_value (gsi, dest); return true; } /* We can't compare slen with len as constants below if len is not a constant. */ if (TREE_CODE (len) != INTEGER_CST) return false; /* Now, we must be passed a constant src ptr parameter. */ tree slen = get_maxval_strlen (src, 0); if (!slen || TREE_CODE (slen) != INTEGER_CST) return false; slen = size_binop_loc (loc, PLUS_EXPR, slen, ssize_int (1)); /* We do not support simplification of this case, though we do support it when expanding trees into RTL. */ /* FIXME: generate a call to __builtin_memset. */ if (tree_int_cst_lt (slen, len)) return false; /* OK transform into builtin memcpy. */ fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return false; len = fold_convert_loc (loc, size_type_node, len); len = force_gimple_operand_gsi (gsi, len, true, NULL_TREE, true, GSI_SAME_STMT); gimple *repl = gimple_build_call (fn, 3, dest, src, len); replace_call_with_call_and_fold (gsi, repl); return true; } /* Fold function call to builtin strchr or strrchr. If both arguments are constant, evaluate and fold the result, otherwise simplify str(r)chr (str, 0) into str + strlen (str). In general strlen is significantly faster than strchr due to being a simpler operation. */ static bool gimple_fold_builtin_strchr (gimple_stmt_iterator *gsi, bool is_strrchr) { gimple *stmt = gsi_stmt (*gsi); tree str = gimple_call_arg (stmt, 0); tree c = gimple_call_arg (stmt, 1); location_t loc = gimple_location (stmt); const char *p; char ch; if (!gimple_call_lhs (stmt)) return false; if ((p = c_getstr (str)) && target_char_cst_p (c, &ch)) { const char *p1 = is_strrchr ? strrchr (p, ch) : strchr (p, ch); if (p1 == NULL) { replace_call_with_value (gsi, integer_zero_node); return true; } tree len = build_int_cst (size_type_node, p1 - p); gimple_seq stmts = NULL; gimple *new_stmt = gimple_build_assign (gimple_call_lhs (stmt), POINTER_PLUS_EXPR, str, len); gimple_seq_add_stmt_without_update (&stmts, new_stmt); gsi_replace_with_seq_vops (gsi, stmts); return true; } if (!integer_zerop (c)) return false; /* Transform strrchr (s, 0) to strchr (s, 0) when optimizing for size. */ if (is_strrchr && optimize_function_for_size_p (cfun)) { tree strchr_fn = builtin_decl_implicit (BUILT_IN_STRCHR); if (strchr_fn) { gimple *repl = gimple_build_call (strchr_fn, 2, str, c); replace_call_with_call_and_fold (gsi, repl); return true; } return false; } tree len; tree strlen_fn = builtin_decl_implicit (BUILT_IN_STRLEN); if (!strlen_fn) return false; /* Create newstr = strlen (str). */ gimple_seq stmts = NULL; gimple *new_stmt = gimple_build_call (strlen_fn, 1, str); gimple_set_location (new_stmt, loc); len = create_tmp_reg_or_ssa_name (size_type_node); gimple_call_set_lhs (new_stmt, len); gimple_seq_add_stmt_without_update (&stmts, new_stmt); /* Create (str p+ strlen (str)). */ new_stmt = gimple_build_assign (gimple_call_lhs (stmt), POINTER_PLUS_EXPR, str, len); gimple_seq_add_stmt_without_update (&stmts, new_stmt); gsi_replace_with_seq_vops (gsi, stmts); /* gsi now points at the assignment to the lhs, get a stmt iterator to the strlen. ??? We can't use gsi_for_stmt as that doesn't work when the CFG isn't built yet. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); return true; } /* Fold function call to builtin strstr. If both arguments are constant, evaluate and fold the result, additionally fold strstr (x, "") into x and strstr (x, "c") into strchr (x, 'c'). */ static bool gimple_fold_builtin_strstr (gimple_stmt_iterator *gsi) { gimple *stmt = gsi_stmt (*gsi); tree haystack = gimple_call_arg (stmt, 0); tree needle = gimple_call_arg (stmt, 1); const char *p, *q; if (!gimple_call_lhs (stmt)) return false; q = c_getstr (needle); if (q == NULL) return false; if ((p = c_getstr (haystack))) { const char *r = strstr (p, q); if (r == NULL) { replace_call_with_value (gsi, integer_zero_node); return true; } tree len = build_int_cst (size_type_node, r - p); gimple_seq stmts = NULL; gimple *new_stmt = gimple_build_assign (gimple_call_lhs (stmt), POINTER_PLUS_EXPR, haystack, len); gimple_seq_add_stmt_without_update (&stmts, new_stmt); gsi_replace_with_seq_vops (gsi, stmts); return true; } /* For strstr (x, "") return x. */ if (q[0] == '\0') { replace_call_with_value (gsi, haystack); return true; } /* Transform strstr (x, "c") into strchr (x, 'c'). */ if (q[1] == '\0') { tree strchr_fn = builtin_decl_implicit (BUILT_IN_STRCHR); if (strchr_fn) { tree c = build_int_cst (integer_type_node, q[0]); gimple *repl = gimple_build_call (strchr_fn, 2, haystack, c); replace_call_with_call_and_fold (gsi, repl); return true; } } return false; } /* Simplify a call to the strcat builtin. DST and SRC are the arguments to the call. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. The simplified form may be a constant or other expression which computes the same value, but in a more efficient manner (including calls to other builtin functions). The call may contain arguments which need to be evaluated, but which are not useful to determine the result of the call. In this case we return a chain of COMPOUND_EXPRs. The LHS of each COMPOUND_EXPR will be an argument which must be evaluated. COMPOUND_EXPRs are chained through their RHS. The RHS of the last COMPOUND_EXPR in the chain will contain the tree for the simplified form of the builtin function call. */ static bool gimple_fold_builtin_strcat (gimple_stmt_iterator *gsi, tree dst, tree src) { gimple *stmt = gsi_stmt (*gsi); location_t loc = gimple_location (stmt); const char *p = c_getstr (src); /* If the string length is zero, return the dst parameter. */ if (p && *p == '\0') { replace_call_with_value (gsi, dst); return true; } if (!optimize_bb_for_speed_p (gimple_bb (stmt))) return false; /* See if we can store by pieces into (dst + strlen(dst)). */ tree newdst; tree strlen_fn = builtin_decl_implicit (BUILT_IN_STRLEN); tree memcpy_fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!strlen_fn || !memcpy_fn) return false; /* If the length of the source string isn't computable don't split strcat into strlen and memcpy. */ tree len = get_maxval_strlen (src, 0); if (! len) return false; /* Create strlen (dst). */ gimple_seq stmts = NULL, stmts2; gimple *repl = gimple_build_call (strlen_fn, 1, dst); gimple_set_location (repl, loc); newdst = create_tmp_reg_or_ssa_name (size_type_node); gimple_call_set_lhs (repl, newdst); gimple_seq_add_stmt_without_update (&stmts, repl); /* Create (dst p+ strlen (dst)). */ newdst = fold_build_pointer_plus_loc (loc, dst, newdst); newdst = force_gimple_operand (newdst, &stmts2, true, NULL_TREE); gimple_seq_add_seq_without_update (&stmts, stmts2); len = fold_convert_loc (loc, size_type_node, len); len = size_binop_loc (loc, PLUS_EXPR, len, build_int_cst (size_type_node, 1)); len = force_gimple_operand (len, &stmts2, true, NULL_TREE); gimple_seq_add_seq_without_update (&stmts, stmts2); repl = gimple_build_call (memcpy_fn, 3, newdst, src, len); gimple_seq_add_stmt_without_update (&stmts, repl); if (gimple_call_lhs (stmt)) { repl = gimple_build_assign (gimple_call_lhs (stmt), dst); gimple_seq_add_stmt_without_update (&stmts, repl); gsi_replace_with_seq_vops (gsi, stmts); /* gsi now points at the assignment to the lhs, get a stmt iterator to the memcpy call. ??? We can't use gsi_for_stmt as that doesn't work when the CFG isn't built yet. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); } else { gsi_replace_with_seq_vops (gsi, stmts); fold_stmt (gsi); } return true; } /* Fold a call to the __strcat_chk builtin FNDECL. DEST, SRC, and SIZE are the arguments to the call. */ static bool gimple_fold_builtin_strcat_chk (gimple_stmt_iterator *gsi) { gimple *stmt = gsi_stmt (*gsi); tree dest = gimple_call_arg (stmt, 0); tree src = gimple_call_arg (stmt, 1); tree size = gimple_call_arg (stmt, 2); tree fn; const char *p; p = c_getstr (src); /* If the SRC parameter is "", return DEST. */ if (p && *p == '\0') { replace_call_with_value (gsi, dest); return true; } if (! tree_fits_uhwi_p (size) || ! integer_all_onesp (size)) return false; /* If __builtin_strcat_chk is used, assume strcat is available. */ fn = builtin_decl_explicit (BUILT_IN_STRCAT); if (!fn) return false; gimple *repl = gimple_build_call (fn, 2, dest, src); replace_call_with_call_and_fold (gsi, repl); return true; } /* Simplify a call to the strncat builtin. */ static bool gimple_fold_builtin_strncat (gimple_stmt_iterator *gsi) { gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi)); tree dst = gimple_call_arg (stmt, 0); tree src = gimple_call_arg (stmt, 1); tree len = gimple_call_arg (stmt, 2); const char *p = c_getstr (src); /* If the requested length is zero, or the src parameter string length is zero, return the dst parameter. */ if (integer_zerop (len) || (p && *p == '\0')) { replace_call_with_value (gsi, dst); return true; } /* If the requested len is greater than or equal to the string length, call strcat. */ if (TREE_CODE (len) == INTEGER_CST && p && compare_tree_int (len, strlen (p)) >= 0) { tree fn = builtin_decl_implicit (BUILT_IN_STRCAT); /* If the replacement _DECL isn't initialized, don't do the transformation. */ if (!fn) return false; gcall *repl = gimple_build_call (fn, 2, dst, src); replace_call_with_call_and_fold (gsi, repl); return true; } return false; } /* Fold a call to the __strncat_chk builtin with arguments DEST, SRC, LEN, and SIZE. */ static bool gimple_fold_builtin_strncat_chk (gimple_stmt_iterator *gsi) { gimple *stmt = gsi_stmt (*gsi); tree dest = gimple_call_arg (stmt, 0); tree src = gimple_call_arg (stmt, 1); tree len = gimple_call_arg (stmt, 2); tree size = gimple_call_arg (stmt, 3); tree fn; const char *p; p = c_getstr (src); /* If the SRC parameter is "" or if LEN is 0, return DEST. */ if ((p && *p == '\0') || integer_zerop (len)) { replace_call_with_value (gsi, dest); return true; } if (! tree_fits_uhwi_p (size)) return false; if (! integer_all_onesp (size)) { tree src_len = c_strlen (src, 1); if (src_len && tree_fits_uhwi_p (src_len) && tree_fits_uhwi_p (len) && ! tree_int_cst_lt (len, src_len)) { /* If LEN >= strlen (SRC), optimize into __strcat_chk. */ fn = builtin_decl_explicit (BUILT_IN_STRCAT_CHK); if (!fn) return false; gimple *repl = gimple_build_call (fn, 3, dest, src, size); replace_call_with_call_and_fold (gsi, repl); return true; } return false; } /* If __builtin_strncat_chk is used, assume strncat is available. */ fn = builtin_decl_explicit (BUILT_IN_STRNCAT); if (!fn) return false; gimple *repl = gimple_build_call (fn, 3, dest, src, len); replace_call_with_call_and_fold (gsi, repl); return true; } /* Build and append gimple statements to STMTS that would load a first character of a memory location identified by STR. LOC is location of the statement. */ static tree gimple_load_first_char (location_t loc, tree str, gimple_seq *stmts) { tree var; tree cst_uchar_node = build_type_variant (unsigned_char_type_node, 1, 0); tree cst_uchar_ptr_node = build_pointer_type_for_mode (cst_uchar_node, ptr_mode, true); tree off0 = build_int_cst (cst_uchar_ptr_node, 0); tree temp = fold_build2_loc (loc, MEM_REF, cst_uchar_node, str, off0); gassign *stmt = gimple_build_assign (NULL_TREE, temp); var = create_tmp_reg_or_ssa_name (cst_uchar_node, stmt); gimple_assign_set_lhs (stmt, var); gimple_seq_add_stmt_without_update (stmts, stmt); return var; } /* Fold a call to the str{n}{case}cmp builtin pointed by GSI iterator. FCODE is the name of the builtin. */ static bool gimple_fold_builtin_string_compare (gimple_stmt_iterator *gsi) { gimple *stmt = gsi_stmt (*gsi); tree callee = gimple_call_fndecl (stmt); enum built_in_function fcode = DECL_FUNCTION_CODE (callee); tree type = integer_type_node; tree str1 = gimple_call_arg (stmt, 0); tree str2 = gimple_call_arg (stmt, 1); tree lhs = gimple_call_lhs (stmt); HOST_WIDE_INT length = -1; /* Handle strncmp and strncasecmp functions. */ if (gimple_call_num_args (stmt) == 3) { tree len = gimple_call_arg (stmt, 2); if (tree_fits_uhwi_p (len)) length = tree_to_uhwi (len); } /* If the LEN parameter is zero, return zero. */ if (length == 0) { replace_call_with_value (gsi, integer_zero_node); return true; } /* If ARG1 and ARG2 are the same (and not volatile), return zero. */ if (operand_equal_p (str1, str2, 0)) { replace_call_with_value (gsi, integer_zero_node); return true; } const char *p1 = c_getstr (str1); const char *p2 = c_getstr (str2); /* For known strings, return an immediate value. */ if (p1 && p2) { int r = 0; bool known_result = false; switch (fcode) { case BUILT_IN_STRCMP: { r = strcmp (p1, p2); known_result = true; break; } case BUILT_IN_STRNCMP: { if (length == -1) break; r = strncmp (p1, p2, length); known_result = true; break; } /* Only handleable situation is where the string are equal (result 0), which is already handled by operand_equal_p case. */ case BUILT_IN_STRCASECMP: break; case BUILT_IN_STRNCASECMP: { if (length == -1) break; r = strncmp (p1, p2, length); if (r == 0) known_result = true; break;; } default: gcc_unreachable (); } if (known_result) { replace_call_with_value (gsi, build_cmp_result (type, r)); return true; } } bool nonzero_length = length >= 1 || fcode == BUILT_IN_STRCMP || fcode == BUILT_IN_STRCASECMP; location_t loc = gimple_location (stmt); /* If the second arg is "", return *(const unsigned char*)arg1. */ if (p2 && *p2 == '\0' && nonzero_length) { gimple_seq stmts = NULL; tree var = gimple_load_first_char (loc, str1, &stmts); if (lhs) { stmt = gimple_build_assign (lhs, NOP_EXPR, var); gimple_seq_add_stmt_without_update (&stmts, stmt); } gsi_replace_with_seq_vops (gsi, stmts); return true; } /* If the first arg is "", return -*(const unsigned char*)arg2. */ if (p1 && *p1 == '\0' && nonzero_length) { gimple_seq stmts = NULL; tree var = gimple_load_first_char (loc, str2, &stmts); if (lhs) { tree c = create_tmp_reg_or_ssa_name (integer_type_node); stmt = gimple_build_assign (c, NOP_EXPR, var); gimple_seq_add_stmt_without_update (&stmts, stmt); stmt = gimple_build_assign (lhs, NEGATE_EXPR, c); gimple_seq_add_stmt_without_update (&stmts, stmt); } gsi_replace_with_seq_vops (gsi, stmts); return true; } /* If len parameter is one, return an expression corresponding to (*(const unsigned char*)arg2 - *(const unsigned char*)arg1). */ if (fcode == BUILT_IN_STRNCMP && length == 1) { gimple_seq stmts = NULL; tree temp1 = gimple_load_first_char (loc, str1, &stmts); tree temp2 = gimple_load_first_char (loc, str2, &stmts); if (lhs) { tree c1 = create_tmp_reg_or_ssa_name (integer_type_node); gassign *convert1 = gimple_build_assign (c1, NOP_EXPR, temp1); gimple_seq_add_stmt_without_update (&stmts, convert1); tree c2 = create_tmp_reg_or_ssa_name (integer_type_node); gassign *convert2 = gimple_build_assign (c2, NOP_EXPR, temp2); gimple_seq_add_stmt_without_update (&stmts, convert2); stmt = gimple_build_assign (lhs, MINUS_EXPR, c1, c2); gimple_seq_add_stmt_without_update (&stmts, stmt); } gsi_replace_with_seq_vops (gsi, stmts); return true; } return false; } /* Fold a call to the memchr pointed by GSI iterator. */ static bool gimple_fold_builtin_memchr (gimple_stmt_iterator *gsi) { gimple *stmt = gsi_stmt (*gsi); tree lhs = gimple_call_lhs (stmt); tree arg1 = gimple_call_arg (stmt, 0); tree arg2 = gimple_call_arg (stmt, 1); tree len = gimple_call_arg (stmt, 2); /* If the LEN parameter is zero, return zero. */ if (integer_zerop (len)) { replace_call_with_value (gsi, build_int_cst (ptr_type_node, 0)); return true; } char c; if (TREE_CODE (arg2) != INTEGER_CST || !tree_fits_uhwi_p (len) || !target_char_cst_p (arg2, &c)) return false; unsigned HOST_WIDE_INT length = tree_to_uhwi (len); unsigned HOST_WIDE_INT string_length; const char *p1 = c_getstr (arg1, &string_length); if (p1) { const char *r = (const char *)memchr (p1, c, MIN (length, string_length)); if (r == NULL) { if (length <= string_length) { replace_call_with_value (gsi, build_int_cst (ptr_type_node, 0)); return true; } } else { unsigned HOST_WIDE_INT offset = r - p1; gimple_seq stmts = NULL; if (lhs != NULL_TREE) { tree offset_cst = build_int_cst (TREE_TYPE (len), offset); gassign *stmt = gimple_build_assign (lhs, POINTER_PLUS_EXPR, arg1, offset_cst); gimple_seq_add_stmt_without_update (&stmts, stmt); } else gimple_seq_add_stmt_without_update (&stmts, gimple_build_nop ()); gsi_replace_with_seq_vops (gsi, stmts); return true; } } return false; } /* Fold a call to the fputs builtin. ARG0 and ARG1 are the arguments to the call. IGNORE is true if the value returned by the builtin will be ignored. UNLOCKED is true is true if this actually a call to fputs_unlocked. If LEN in non-NULL, it represents the known length of the string. Return NULL_TREE if no simplification was possible. */ static bool gimple_fold_builtin_fputs (gimple_stmt_iterator *gsi, tree arg0, tree arg1, bool unlocked) { gimple *stmt = gsi_stmt (*gsi); /* If we're using an unlocked function, assume the other unlocked functions exist explicitly. */ tree const fn_fputc = (unlocked ? builtin_decl_explicit (BUILT_IN_FPUTC_UNLOCKED) : builtin_decl_implicit (BUILT_IN_FPUTC)); tree const fn_fwrite = (unlocked ? builtin_decl_explicit (BUILT_IN_FWRITE_UNLOCKED) : builtin_decl_implicit (BUILT_IN_FWRITE)); /* If the return value is used, don't do the transformation. */ if (gimple_call_lhs (stmt)) return false; /* Get the length of the string passed to fputs. If the length can't be determined, punt. */ tree len = get_maxval_strlen (arg0, 0); if (!len || TREE_CODE (len) != INTEGER_CST) return false; switch (compare_tree_int (len, 1)) { case -1: /* length is 0, delete the call entirely . */ replace_call_with_value (gsi, integer_zero_node); return true; case 0: /* length is 1, call fputc. */ { const char *p = c_getstr (arg0); if (p != NULL) { if (!fn_fputc) return false; gimple *repl = gimple_build_call (fn_fputc, 2, build_int_cst (integer_type_node, p[0]), arg1); replace_call_with_call_and_fold (gsi, repl); return true; } } /* FALLTHROUGH */ case 1: /* length is greater than 1, call fwrite. */ { /* If optimizing for size keep fputs. */ if (optimize_function_for_size_p (cfun)) return false; /* New argument list transforming fputs(string, stream) to fwrite(string, 1, len, stream). */ if (!fn_fwrite) return false; gimple *repl = gimple_build_call (fn_fwrite, 4, arg0, size_one_node, len, arg1); replace_call_with_call_and_fold (gsi, repl); return true; } default: gcc_unreachable (); } return false; } /* Fold a call to the __mem{cpy,pcpy,move,set}_chk builtin. DEST, SRC, LEN, and SIZE are the arguments to the call. IGNORE is true, if return value can be ignored. FCODE is the BUILT_IN_* code of the builtin. If MAXLEN is not NULL, it is maximum length passed as third argument. */ static bool gimple_fold_builtin_memory_chk (gimple_stmt_iterator *gsi, tree dest, tree src, tree len, tree size, enum built_in_function fcode) { gimple *stmt = gsi_stmt (*gsi); location_t loc = gimple_location (stmt); bool ignore = gimple_call_lhs (stmt) == NULL_TREE; tree fn; /* If SRC and DEST are the same (and not volatile), return DEST (resp. DEST+LEN for __mempcpy_chk). */ if (fcode != BUILT_IN_MEMSET_CHK && operand_equal_p (src, dest, 0)) { if (fcode != BUILT_IN_MEMPCPY_CHK) { replace_call_with_value (gsi, dest); return true; } else { gimple_seq stmts = NULL; len = gimple_convert_to_ptrofftype (&stmts, loc, len); tree temp = gimple_build (&stmts, loc, POINTER_PLUS_EXPR, TREE_TYPE (dest), dest, len); gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); replace_call_with_value (gsi, temp); return true; } } if (! tree_fits_uhwi_p (size)) return false; tree maxlen = get_maxval_strlen (len, 2); if (! integer_all_onesp (size)) { if (! tree_fits_uhwi_p (len)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen)) { if (fcode == BUILT_IN_MEMPCPY_CHK && ignore) { /* (void) __mempcpy_chk () can be optimized into (void) __memcpy_chk (). */ fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK); if (!fn) return false; gimple *repl = gimple_build_call (fn, 4, dest, src, len, size); replace_call_with_call_and_fold (gsi, repl); return true; } return false; } } else maxlen = len; if (tree_int_cst_lt (size, maxlen)) return false; } fn = NULL_TREE; /* If __builtin_mem{cpy,pcpy,move,set}_chk is used, assume mem{cpy,pcpy,move,set} is available. */ switch (fcode) { case BUILT_IN_MEMCPY_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMCPY); break; case BUILT_IN_MEMPCPY_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMPCPY); break; case BUILT_IN_MEMMOVE_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMMOVE); break; case BUILT_IN_MEMSET_CHK: fn = builtin_decl_explicit (BUILT_IN_MEMSET); break; default: break; } if (!fn) return false; gimple *repl = gimple_build_call (fn, 3, dest, src, len); replace_call_with_call_and_fold (gsi, repl); return true; } /* Fold a call to the __st[rp]cpy_chk builtin. DEST, SRC, and SIZE are the arguments to the call. IGNORE is true if return value can be ignored. FCODE is the BUILT_IN_* code of the builtin. If MAXLEN is not NULL, it is maximum length of strings passed as second argument. */ static bool gimple_fold_builtin_stxcpy_chk (gimple_stmt_iterator *gsi, tree dest, tree src, tree size, enum built_in_function fcode) { gimple *stmt = gsi_stmt (*gsi); location_t loc = gimple_location (stmt); bool ignore = gimple_call_lhs (stmt) == NULL_TREE; tree len, fn; /* If SRC and DEST are the same (and not volatile), return DEST. */ if (fcode == BUILT_IN_STRCPY_CHK && operand_equal_p (src, dest, 0)) { replace_call_with_value (gsi, dest); return true; } if (! tree_fits_uhwi_p (size)) return false; tree maxlen = get_maxval_strlen (src, 1); if (! integer_all_onesp (size)) { len = c_strlen (src, 1); if (! len || ! tree_fits_uhwi_p (len)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen)) { if (fcode == BUILT_IN_STPCPY_CHK) { if (! ignore) return false; /* If return value of __stpcpy_chk is ignored, optimize into __strcpy_chk. */ fn = builtin_decl_explicit (BUILT_IN_STRCPY_CHK); if (!fn) return false; gimple *repl = gimple_build_call (fn, 3, dest, src, size); replace_call_with_call_and_fold (gsi, repl); return true; } if (! len || TREE_SIDE_EFFECTS (len)) return false; /* If c_strlen returned something, but not a constant, transform __strcpy_chk into __memcpy_chk. */ fn = builtin_decl_explicit (BUILT_IN_MEMCPY_CHK); if (!fn) return false; gimple_seq stmts = NULL; len = gimple_convert (&stmts, loc, size_type_node, len); len = gimple_build (&stmts, loc, PLUS_EXPR, size_type_node, len, build_int_cst (size_type_node, 1)); gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); gimple *repl = gimple_build_call (fn, 4, dest, src, len, size); replace_call_with_call_and_fold (gsi, repl); return true; } } else maxlen = len; if (! tree_int_cst_lt (maxlen, size)) return false; } /* If __builtin_st{r,p}cpy_chk is used, assume st{r,p}cpy is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_STPCPY_CHK ? BUILT_IN_STPCPY : BUILT_IN_STRCPY); if (!fn) return false; gimple *repl = gimple_build_call (fn, 2, dest, src); replace_call_with_call_and_fold (gsi, repl); return true; } /* Fold a call to the __st{r,p}ncpy_chk builtin. DEST, SRC, LEN, and SIZE are the arguments to the call. If MAXLEN is not NULL, it is maximum length passed as third argument. IGNORE is true if return value can be ignored. FCODE is the BUILT_IN_* code of the builtin. */ static bool gimple_fold_builtin_stxncpy_chk (gimple_stmt_iterator *gsi, tree dest, tree src, tree len, tree size, enum built_in_function fcode) { gimple *stmt = gsi_stmt (*gsi); bool ignore = gimple_call_lhs (stmt) == NULL_TREE; tree fn; if (fcode == BUILT_IN_STPNCPY_CHK && ignore) { /* If return value of __stpncpy_chk is ignored, optimize into __strncpy_chk. */ fn = builtin_decl_explicit (BUILT_IN_STRNCPY_CHK); if (fn) { gimple *repl = gimple_build_call (fn, 4, dest, src, len, size); replace_call_with_call_and_fold (gsi, repl); return true; } } if (! tree_fits_uhwi_p (size)) return false; tree maxlen = get_maxval_strlen (len, 2); if (! integer_all_onesp (size)) { if (! tree_fits_uhwi_p (len)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen)) return false; } else maxlen = len; if (tree_int_cst_lt (size, maxlen)) return false; } /* If __builtin_st{r,p}ncpy_chk is used, assume st{r,p}ncpy is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_STPNCPY_CHK ? BUILT_IN_STPNCPY : BUILT_IN_STRNCPY); if (!fn) return false; gimple *repl = gimple_build_call (fn, 3, dest, src, len); replace_call_with_call_and_fold (gsi, repl); return true; } /* Fold function call to builtin stpcpy with arguments DEST and SRC. Return NULL_TREE if no simplification can be made. */ static bool gimple_fold_builtin_stpcpy (gimple_stmt_iterator *gsi) { gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi)); location_t loc = gimple_location (stmt); tree dest = gimple_call_arg (stmt, 0); tree src = gimple_call_arg (stmt, 1); tree fn, len, lenp1; /* If the result is unused, replace stpcpy with strcpy. */ if (gimple_call_lhs (stmt) == NULL_TREE) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) return false; gimple_call_set_fndecl (stmt, fn); fold_stmt (gsi); return true; } len = c_strlen (src, 1); if (!len || TREE_CODE (len) != INTEGER_CST) return false; if (optimize_function_for_size_p (cfun) /* If length is zero it's small enough. */ && !integer_zerop (len)) return false; /* If the source has a known length replace stpcpy with memcpy. */ fn = builtin_decl_implicit (BUILT_IN_MEMCPY); if (!fn) return false; gimple_seq stmts = NULL; tree tem = gimple_convert (&stmts, loc, size_type_node, len); lenp1 = gimple_build (&stmts, loc, PLUS_EXPR, size_type_node, tem, build_int_cst (size_type_node, 1)); gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); gcall *repl = gimple_build_call (fn, 3, dest, src, lenp1); gimple_set_vuse (repl, gimple_vuse (stmt)); gimple_set_vdef (repl, gimple_vdef (stmt)); if (gimple_vdef (repl) && TREE_CODE (gimple_vdef (repl)) == SSA_NAME) SSA_NAME_DEF_STMT (gimple_vdef (repl)) = repl; gsi_insert_before (gsi, repl, GSI_SAME_STMT); /* Replace the result with dest + len. */ stmts = NULL; tem = gimple_convert (&stmts, loc, sizetype, len); gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT); gassign *ret = gimple_build_assign (gimple_call_lhs (stmt), POINTER_PLUS_EXPR, dest, tem); gsi_replace (gsi, ret, false); /* Finally fold the memcpy call. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); return true; } /* Fold a call EXP to {,v}snprintf having NARGS passed as ARGS. Return NULL_TREE if a normal call should be emitted rather than expanding the function inline. FCODE is either BUILT_IN_SNPRINTF_CHK or BUILT_IN_VSNPRINTF_CHK. If MAXLEN is not NULL, it is maximum length passed as second argument. */ static bool gimple_fold_builtin_snprintf_chk (gimple_stmt_iterator *gsi, enum built_in_function fcode) { gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi)); tree dest, size, len, fn, fmt, flag; const char *fmt_str; /* Verify the required arguments in the original call. */ if (gimple_call_num_args (stmt) < 5) return false; dest = gimple_call_arg (stmt, 0); len = gimple_call_arg (stmt, 1); flag = gimple_call_arg (stmt, 2); size = gimple_call_arg (stmt, 3); fmt = gimple_call_arg (stmt, 4); if (! tree_fits_uhwi_p (size)) return false; if (! integer_all_onesp (size)) { tree maxlen = get_maxval_strlen (len, 2); if (! tree_fits_uhwi_p (len)) { /* If LEN is not constant, try MAXLEN too. For MAXLEN only allow optimizing into non-_ocs function if SIZE is >= MAXLEN, never convert to __ocs_fail (). */ if (maxlen == NULL_TREE || ! tree_fits_uhwi_p (maxlen)) return false; } else maxlen = len; if (tree_int_cst_lt (size, maxlen)) return false; } if (!init_target_chars ()) return false; /* Only convert __{,v}snprintf_chk to {,v}snprintf if flag is 0 or if format doesn't contain % chars or is "%s". */ if (! integer_zerop (flag)) { fmt_str = c_getstr (fmt); if (fmt_str == NULL) return false; if (strchr (fmt_str, target_percent) != NULL && strcmp (fmt_str, target_percent_s)) return false; } /* If __builtin_{,v}snprintf_chk is used, assume {,v}snprintf is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_VSNPRINTF_CHK ? BUILT_IN_VSNPRINTF : BUILT_IN_SNPRINTF); if (!fn) return false; /* Replace the called function and the first 5 argument by 3 retaining trailing varargs. */ gimple_call_set_fndecl (stmt, fn); gimple_call_set_fntype (stmt, TREE_TYPE (fn)); gimple_call_set_arg (stmt, 0, dest); gimple_call_set_arg (stmt, 1, len); gimple_call_set_arg (stmt, 2, fmt); for (unsigned i = 3; i < gimple_call_num_args (stmt) - 2; ++i) gimple_call_set_arg (stmt, i, gimple_call_arg (stmt, i + 2)); gimple_set_num_ops (stmt, gimple_num_ops (stmt) - 2); fold_stmt (gsi); return true; } /* Fold a call EXP to __{,v}sprintf_chk having NARGS passed as ARGS. Return NULL_TREE if a normal call should be emitted rather than expanding the function inline. FCODE is either BUILT_IN_SPRINTF_CHK or BUILT_IN_VSPRINTF_CHK. */ static bool gimple_fold_builtin_sprintf_chk (gimple_stmt_iterator *gsi, enum built_in_function fcode) { gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi)); tree dest, size, len, fn, fmt, flag; const char *fmt_str; unsigned nargs = gimple_call_num_args (stmt); /* Verify the required arguments in the original call. */ if (nargs < 4) return false; dest = gimple_call_arg (stmt, 0); flag = gimple_call_arg (stmt, 1); size = gimple_call_arg (stmt, 2); fmt = gimple_call_arg (stmt, 3); if (! tree_fits_uhwi_p (size)) return false; len = NULL_TREE; if (!init_target_chars ()) return false; /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str != NULL) { /* If the format doesn't contain % args or %%, we know the size. */ if (strchr (fmt_str, target_percent) == 0) { if (fcode != BUILT_IN_SPRINTF_CHK || nargs == 4) len = build_int_cstu (size_type_node, strlen (fmt_str)); } /* If the format is "%s" and first ... argument is a string literal, we know the size too. */ else if (fcode == BUILT_IN_SPRINTF_CHK && strcmp (fmt_str, target_percent_s) == 0) { tree arg; if (nargs == 5) { arg = gimple_call_arg (stmt, 4); if (POINTER_TYPE_P (TREE_TYPE (arg))) { len = c_strlen (arg, 1); if (! len || ! tree_fits_uhwi_p (len)) len = NULL_TREE; } } } } if (! integer_all_onesp (size)) { if (! len || ! tree_int_cst_lt (len, size)) return false; } /* Only convert __{,v}sprintf_chk to {,v}sprintf if flag is 0 or if format doesn't contain % chars or is "%s". */ if (! integer_zerop (flag)) { if (fmt_str == NULL) return false; if (strchr (fmt_str, target_percent) != NULL && strcmp (fmt_str, target_percent_s)) return false; } /* If __builtin_{,v}sprintf_chk is used, assume {,v}sprintf is available. */ fn = builtin_decl_explicit (fcode == BUILT_IN_VSPRINTF_CHK ? BUILT_IN_VSPRINTF : BUILT_IN_SPRINTF); if (!fn) return false; /* Replace the called function and the first 4 argument by 2 retaining trailing varargs. */ gimple_call_set_fndecl (stmt, fn); gimple_call_set_fntype (stmt, TREE_TYPE (fn)); gimple_call_set_arg (stmt, 0, dest); gimple_call_set_arg (stmt, 1, fmt); for (unsigned i = 2; i < gimple_call_num_args (stmt) - 2; ++i) gimple_call_set_arg (stmt, i, gimple_call_arg (stmt, i + 2)); gimple_set_num_ops (stmt, gimple_num_ops (stmt) - 2); fold_stmt (gsi); return true; } /* Simplify a call to the sprintf builtin with arguments DEST, FMT, and ORIG. ORIG may be null if this is a 2-argument call. We don't attempt to simplify calls with more than 3 arguments. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. If IGNORED is true, it means that the caller does not use the returned value of the function. */ static bool gimple_fold_builtin_sprintf (gimple_stmt_iterator *gsi) { gimple *stmt = gsi_stmt (*gsi); tree dest = gimple_call_arg (stmt, 0); tree fmt = gimple_call_arg (stmt, 1); tree orig = NULL_TREE; const char *fmt_str = NULL; /* Verify the required arguments in the original call. We deal with two types of sprintf() calls: 'sprintf (str, fmt)' and 'sprintf (dest, "%s", orig)'. */ if (gimple_call_num_args (stmt) > 3) return false; if (gimple_call_num_args (stmt) == 3) orig = gimple_call_arg (stmt, 2); /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str == NULL) return false; if (!init_target_chars ()) return false; /* If the format doesn't contain % args or %%, use strcpy. */ if (strchr (fmt_str, target_percent) == NULL) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) return false; /* Don't optimize sprintf (buf, "abc", ptr++). */ if (orig) return false; /* Convert sprintf (str, fmt) into strcpy (str, fmt) when 'format' is known to contain no % formats. */ gimple_seq stmts = NULL; gimple *repl = gimple_build_call (fn, 2, dest, fmt); gimple_seq_add_stmt_without_update (&stmts, repl); if (gimple_call_lhs (stmt)) { repl = gimple_build_assign (gimple_call_lhs (stmt), build_int_cst (integer_type_node, strlen (fmt_str))); gimple_seq_add_stmt_without_update (&stmts, repl); gsi_replace_with_seq_vops (gsi, stmts); /* gsi now points at the assignment to the lhs, get a stmt iterator to the memcpy call. ??? We can't use gsi_for_stmt as that doesn't work when the CFG isn't built yet. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); } else { gsi_replace_with_seq_vops (gsi, stmts); fold_stmt (gsi); } return true; } /* If the format is "%s", use strcpy if the result isn't used. */ else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0) { tree fn; fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) return false; /* Don't crash on sprintf (str1, "%s"). */ if (!orig) return false; tree orig_len = NULL_TREE; if (gimple_call_lhs (stmt)) { orig_len = get_maxval_strlen (orig, 0); if (!orig_len) return false; } /* Convert sprintf (str1, "%s", str2) into strcpy (str1, str2). */ gimple_seq stmts = NULL; gimple *repl = gimple_build_call (fn, 2, dest, orig); gimple_seq_add_stmt_without_update (&stmts, repl); if (gimple_call_lhs (stmt)) { if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (orig_len))) orig_len = fold_convert (integer_type_node, orig_len); repl = gimple_build_assign (gimple_call_lhs (stmt), orig_len); gimple_seq_add_stmt_without_update (&stmts, repl); gsi_replace_with_seq_vops (gsi, stmts); /* gsi now points at the assignment to the lhs, get a stmt iterator to the memcpy call. ??? We can't use gsi_for_stmt as that doesn't work when the CFG isn't built yet. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); } else { gsi_replace_with_seq_vops (gsi, stmts); fold_stmt (gsi); } return true; } return false; } /* Simplify a call to the snprintf builtin with arguments DEST, DESTSIZE, FMT, and ORIG. ORIG may be null if this is a 3-argument call. We don't attempt to simplify calls with more than 4 arguments. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. If IGNORED is true, it means that the caller does not use the returned value of the function. */ static bool gimple_fold_builtin_snprintf (gimple_stmt_iterator *gsi) { gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi)); tree dest = gimple_call_arg (stmt, 0); tree destsize = gimple_call_arg (stmt, 1); tree fmt = gimple_call_arg (stmt, 2); tree orig = NULL_TREE; const char *fmt_str = NULL; if (gimple_call_num_args (stmt) > 4) return false; if (gimple_call_num_args (stmt) == 4) orig = gimple_call_arg (stmt, 3); if (!tree_fits_uhwi_p (destsize)) return false; unsigned HOST_WIDE_INT destlen = tree_to_uhwi (destsize); /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str == NULL) return false; if (!init_target_chars ()) return false; /* If the format doesn't contain % args or %%, use strcpy. */ if (strchr (fmt_str, target_percent) == NULL) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) return false; /* Don't optimize snprintf (buf, 4, "abc", ptr++). */ if (orig) return false; /* We could expand this as memcpy (str, fmt, cst - 1); str[cst - 1] = '\0'; or to memcpy (str, fmt_with_nul_at_cstm1, cst); but in the former case that might increase code size and in the latter case grow .rodata section too much. So punt for now. */ size_t len = strlen (fmt_str); if (len >= destlen) return false; gimple_seq stmts = NULL; gimple *repl = gimple_build_call (fn, 2, dest, fmt); gimple_seq_add_stmt_without_update (&stmts, repl); if (gimple_call_lhs (stmt)) { repl = gimple_build_assign (gimple_call_lhs (stmt), build_int_cst (integer_type_node, len)); gimple_seq_add_stmt_without_update (&stmts, repl); gsi_replace_with_seq_vops (gsi, stmts); /* gsi now points at the assignment to the lhs, get a stmt iterator to the memcpy call. ??? We can't use gsi_for_stmt as that doesn't work when the CFG isn't built yet. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); } else { gsi_replace_with_seq_vops (gsi, stmts); fold_stmt (gsi); } return true; } /* If the format is "%s", use strcpy if the result isn't used. */ else if (fmt_str && strcmp (fmt_str, target_percent_s) == 0) { tree fn = builtin_decl_implicit (BUILT_IN_STRCPY); if (!fn) return false; /* Don't crash on snprintf (str1, cst, "%s"). */ if (!orig) return false; tree orig_len = get_maxval_strlen (orig, 0); if (!orig_len || TREE_CODE (orig_len) != INTEGER_CST) return false; /* We could expand this as memcpy (str1, str2, cst - 1); str1[cst - 1] = '\0'; or to memcpy (str1, str2_with_nul_at_cstm1, cst); but in the former case that might increase code size and in the latter case grow .rodata section too much. So punt for now. */ if (compare_tree_int (orig_len, destlen) >= 0) return false; /* Convert snprintf (str1, cst, "%s", str2) into strcpy (str1, str2) if strlen (str2) < cst. */ gimple_seq stmts = NULL; gimple *repl = gimple_build_call (fn, 2, dest, orig); gimple_seq_add_stmt_without_update (&stmts, repl); if (gimple_call_lhs (stmt)) { if (!useless_type_conversion_p (integer_type_node, TREE_TYPE (orig_len))) orig_len = fold_convert (integer_type_node, orig_len); repl = gimple_build_assign (gimple_call_lhs (stmt), orig_len); gimple_seq_add_stmt_without_update (&stmts, repl); gsi_replace_with_seq_vops (gsi, stmts); /* gsi now points at the assignment to the lhs, get a stmt iterator to the memcpy call. ??? We can't use gsi_for_stmt as that doesn't work when the CFG isn't built yet. */ gimple_stmt_iterator gsi2 = *gsi; gsi_prev (&gsi2); fold_stmt (&gsi2); } else { gsi_replace_with_seq_vops (gsi, stmts); fold_stmt (gsi); } return true; } return false; } /* Fold a call to the {,v}fprintf{,_unlocked} and __{,v}printf_chk builtins. FP, FMT, and ARG are the arguments to the call. We don't fold calls with more than 3 arguments, and ARG may be null in the 2-argument case. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. FCODE is the BUILT_IN_* code of the function to be simplified. */ static bool gimple_fold_builtin_fprintf (gimple_stmt_iterator *gsi, tree fp, tree fmt, tree arg, enum built_in_function fcode) { gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi)); tree fn_fputc, fn_fputs; const char *fmt_str = NULL; /* If the return value is used, don't do the transformation. */ if (gimple_call_lhs (stmt) != NULL_TREE) return false; /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str == NULL) return false; if (fcode == BUILT_IN_FPRINTF_UNLOCKED) { /* If we're using an unlocked function, assume the other unlocked functions exist explicitly. */ fn_fputc = builtin_decl_explicit (BUILT_IN_FPUTC_UNLOCKED); fn_fputs = builtin_decl_explicit (BUILT_IN_FPUTS_UNLOCKED); } else { fn_fputc = builtin_decl_implicit (BUILT_IN_FPUTC); fn_fputs = builtin_decl_implicit (BUILT_IN_FPUTS); } if (!init_target_chars ()) return false; /* If the format doesn't contain % args or %%, use strcpy. */ if (strchr (fmt_str, target_percent) == NULL) { if (fcode != BUILT_IN_VFPRINTF && fcode != BUILT_IN_VFPRINTF_CHK && arg) return false; /* If the format specifier was "", fprintf does nothing. */ if (fmt_str[0] == '\0') { replace_call_with_value (gsi, NULL_TREE); return true; } /* When "string" doesn't contain %, replace all cases of fprintf (fp, string) with fputs (string, fp). The fputs builtin will take care of special cases like length == 1. */ if (fn_fputs) { gcall *repl = gimple_build_call (fn_fputs, 2, fmt, fp); replace_call_with_call_and_fold (gsi, repl); return true; } } /* The other optimizations can be done only on the non-va_list variants. */ else if (fcode == BUILT_IN_VFPRINTF || fcode == BUILT_IN_VFPRINTF_CHK) return false; /* If the format specifier was "%s", call __builtin_fputs (arg, fp). */ else if (strcmp (fmt_str, target_percent_s) == 0) { if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg))) return false; if (fn_fputs) { gcall *repl = gimple_build_call (fn_fputs, 2, arg, fp); replace_call_with_call_and_fold (gsi, repl); return true; } } /* If the format specifier was "%c", call __builtin_fputc (arg, fp). */ else if (strcmp (fmt_str, target_percent_c) == 0) { if (!arg || ! useless_type_conversion_p (integer_type_node, TREE_TYPE (arg))) return false; if (fn_fputc) { gcall *repl = gimple_build_call (fn_fputc, 2, arg, fp); replace_call_with_call_and_fold (gsi, repl); return true; } } return false; } /* Fold a call to the {,v}printf{,_unlocked} and __{,v}printf_chk builtins. FMT and ARG are the arguments to the call; we don't fold cases with more than 2 arguments, and ARG may be null if this is a 1-argument case. Return NULL_TREE if no simplification was possible, otherwise return the simplified form of the call as a tree. FCODE is the BUILT_IN_* code of the function to be simplified. */ static bool gimple_fold_builtin_printf (gimple_stmt_iterator *gsi, tree fmt, tree arg, enum built_in_function fcode) { gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi)); tree fn_putchar, fn_puts, newarg; const char *fmt_str = NULL; /* If the return value is used, don't do the transformation. */ if (gimple_call_lhs (stmt) != NULL_TREE) return false; /* Check whether the format is a literal string constant. */ fmt_str = c_getstr (fmt); if (fmt_str == NULL) return false; if (fcode == BUILT_IN_PRINTF_UNLOCKED) { /* If we're using an unlocked function, assume the other unlocked functions exist explicitly. */ fn_putchar = builtin_decl_explicit (BUILT_IN_PUTCHAR_UNLOCKED); fn_puts = builtin_decl_explicit (BUILT_IN_PUTS_UNLOCKED); } else { fn_putchar = builtin_decl_implicit (BUILT_IN_PUTCHAR); fn_puts = builtin_decl_implicit (BUILT_IN_PUTS); } if (!init_target_chars ()) return false; if (strcmp (fmt_str, target_percent_s) == 0 || strchr (fmt_str, target_percent) == NULL) { const char *str; if (strcmp (fmt_str, target_percent_s) == 0) { if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK) return false; if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg))) return false; str = c_getstr (arg); if (str == NULL) return false; } else { /* The format specifier doesn't contain any '%' characters. */ if (fcode != BUILT_IN_VPRINTF && fcode != BUILT_IN_VPRINTF_CHK && arg) return false; str = fmt_str; } /* If the string was "", printf does nothing. */ if (str[0] == '\0') { replace_call_with_value (gsi, NULL_TREE); return true; } /* If the string has length of 1, call putchar. */ if (str[1] == '\0') { /* Given printf("c"), (where c is any one character,) convert "c"[0] to an int and pass that to the replacement function. */ newarg = build_int_cst (integer_type_node, str[0]); if (fn_putchar) { gcall *repl = gimple_build_call (fn_putchar, 1, newarg); replace_call_with_call_and_fold (gsi, repl); return true; } } else { /* If the string was "string\n", call puts("string"). */ size_t len = strlen (str); if ((unsigned char)str[len - 1] == target_newline && (size_t) (int) len == len && (int) len > 0) { char *newstr; tree offset_node, string_cst; /* Create a NUL-terminated string that's one char shorter than the original, stripping off the trailing '\n'. */ newarg = build_string_literal (len, str); string_cst = string_constant (newarg, &offset_node); gcc_checking_assert (string_cst && (TREE_STRING_LENGTH (string_cst) == (int) len) && integer_zerop (offset_node) && (unsigned char) TREE_STRING_POINTER (string_cst)[len - 1] == target_newline); /* build_string_literal creates a new STRING_CST, modify it in place to avoid double copying. */ newstr = CONST_CAST (char *, TREE_STRING_POINTER (string_cst)); newstr[len - 1] = '\0'; if (fn_puts) { gcall *repl = gimple_build_call (fn_puts, 1, newarg); replace_call_with_call_and_fold (gsi, repl); return true; } } else /* We'd like to arrange to call fputs(string,stdout) here, but we need stdout and don't have a way to get it yet. */ return false; } } /* The other optimizations can be done only on the non-va_list variants. */ else if (fcode == BUILT_IN_VPRINTF || fcode == BUILT_IN_VPRINTF_CHK) return false; /* If the format specifier was "%s\n", call __builtin_puts(arg). */ else if (strcmp (fmt_str, target_percent_s_newline) == 0) { if (!arg || ! POINTER_TYPE_P (TREE_TYPE (arg))) return false; if (fn_puts) { gcall *repl = gimple_build_call (fn_puts, 1, arg); replace_call_with_call_and_fold (gsi, repl); return true; } } /* If the format specifier was "%c", call __builtin_putchar(arg). */ else if (strcmp (fmt_str, target_percent_c) == 0) { if (!arg || ! useless_type_conversion_p (integer_type_node, TREE_TYPE (arg))) return false; if (fn_putchar) { gcall *repl = gimple_build_call (fn_putchar, 1, arg); replace_call_with_call_and_fold (gsi, repl); return true; } } return false; } /* Fold a call to __builtin_strlen with known length LEN. */ static bool gimple_fold_builtin_strlen (gimple_stmt_iterator *gsi) { gimple *stmt = gsi_stmt (*gsi); tree len = get_maxval_strlen (gimple_call_arg (stmt, 0), 0); if (!len) return false; len = force_gimple_operand_gsi (gsi, len, true, NULL, true, GSI_SAME_STMT); replace_call_with_value (gsi, len); return true; } /* Fold a call to __builtin_acc_on_device. */ static bool gimple_fold_builtin_acc_on_device (gimple_stmt_iterator *gsi, tree arg0) { /* Defer folding until we know which compiler we're in. */ if (symtab->state != EXPANSION) return false; unsigned val_host = GOMP_DEVICE_HOST; unsigned val_dev = GOMP_DEVICE_NONE; #ifdef ACCEL_COMPILER val_host = GOMP_DEVICE_NOT_HOST; val_dev = ACCEL_COMPILER_acc_device; #endif location_t loc = gimple_location (gsi_stmt (*gsi)); tree host_eq = make_ssa_name (boolean_type_node); gimple *host_ass = gimple_build_assign (host_eq, EQ_EXPR, arg0, build_int_cst (TREE_TYPE (arg0), val_host)); gimple_set_location (host_ass, loc); gsi_insert_before (gsi, host_ass, GSI_SAME_STMT); tree dev_eq = make_ssa_name (boolean_type_node); gimple *dev_ass = gimple_build_assign (dev_eq, EQ_EXPR, arg0, build_int_cst (TREE_TYPE (arg0), val_dev)); gimple_set_location (dev_ass, loc); gsi_insert_before (gsi, dev_ass, GSI_SAME_STMT); tree result = make_ssa_name (boolean_type_node); gimple *result_ass = gimple_build_assign (result, BIT_IOR_EXPR, host_eq, dev_eq); gimple_set_location (result_ass, loc); gsi_insert_before (gsi, result_ass, GSI_SAME_STMT); replace_call_with_value (gsi, result); return true; } /* Fold the non-target builtin at *GSI and return whether any simplification was made. */ static bool gimple_fold_builtin (gimple_stmt_iterator *gsi) { gcall *stmt = as_a <gcall *>(gsi_stmt (*gsi)); tree callee = gimple_call_fndecl (stmt); /* Give up for always_inline inline builtins until they are inlined. */ if (avoid_folding_inline_builtin (callee)) return false; unsigned n = gimple_call_num_args (stmt); enum built_in_function fcode = DECL_FUNCTION_CODE (callee); switch (fcode) { case BUILT_IN_BZERO: return gimple_fold_builtin_memset (gsi, integer_zero_node, gimple_call_arg (stmt, 1)); case BUILT_IN_MEMSET: return gimple_fold_builtin_memset (gsi, gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2)); case BUILT_IN_BCOPY: return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 0), 3); case BUILT_IN_MEMCPY: return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), 0); case BUILT_IN_MEMPCPY: return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), 1); case BUILT_IN_MEMMOVE: return gimple_fold_builtin_memory_op (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), 3); case BUILT_IN_SPRINTF_CHK: case BUILT_IN_VSPRINTF_CHK: return gimple_fold_builtin_sprintf_chk (gsi, fcode); case BUILT_IN_STRCAT_CHK: return gimple_fold_builtin_strcat_chk (gsi); case BUILT_IN_STRNCAT_CHK: return gimple_fold_builtin_strncat_chk (gsi); case BUILT_IN_STRLEN: return gimple_fold_builtin_strlen (gsi); case BUILT_IN_STRCPY: return gimple_fold_builtin_strcpy (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1)); case BUILT_IN_STRNCPY: return gimple_fold_builtin_strncpy (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2)); case BUILT_IN_STRCAT: return gimple_fold_builtin_strcat (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1)); case BUILT_IN_STRNCAT: return gimple_fold_builtin_strncat (gsi); case BUILT_IN_INDEX: case BUILT_IN_STRCHR: return gimple_fold_builtin_strchr (gsi, false); case BUILT_IN_RINDEX: case BUILT_IN_STRRCHR: return gimple_fold_builtin_strchr (gsi, true); case BUILT_IN_STRSTR: return gimple_fold_builtin_strstr (gsi); case BUILT_IN_STRCMP: case BUILT_IN_STRCASECMP: case BUILT_IN_STRNCMP: case BUILT_IN_STRNCASECMP: return gimple_fold_builtin_string_compare (gsi); case BUILT_IN_MEMCHR: return gimple_fold_builtin_memchr (gsi); case BUILT_IN_FPUTS: return gimple_fold_builtin_fputs (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), false); case BUILT_IN_FPUTS_UNLOCKED: return gimple_fold_builtin_fputs (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), true); case BUILT_IN_MEMCPY_CHK: case BUILT_IN_MEMPCPY_CHK: case BUILT_IN_MEMMOVE_CHK: case BUILT_IN_MEMSET_CHK: return gimple_fold_builtin_memory_chk (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), gimple_call_arg (stmt, 3), fcode); case BUILT_IN_STPCPY: return gimple_fold_builtin_stpcpy (gsi); case BUILT_IN_STRCPY_CHK: case BUILT_IN_STPCPY_CHK: return gimple_fold_builtin_stxcpy_chk (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), fcode); case BUILT_IN_STRNCPY_CHK: case BUILT_IN_STPNCPY_CHK: return gimple_fold_builtin_stxncpy_chk (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2), gimple_call_arg (stmt, 3), fcode); case BUILT_IN_SNPRINTF_CHK: case BUILT_IN_VSNPRINTF_CHK: return gimple_fold_builtin_snprintf_chk (gsi, fcode); case BUILT_IN_SNPRINTF: return gimple_fold_builtin_snprintf (gsi); case BUILT_IN_SPRINTF: return gimple_fold_builtin_sprintf (gsi); case BUILT_IN_FPRINTF: case BUILT_IN_FPRINTF_UNLOCKED: case BUILT_IN_VFPRINTF: if (n == 2 || n == 3) return gimple_fold_builtin_fprintf (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), n == 3 ? gimple_call_arg (stmt, 2) : NULL_TREE, fcode); break; case BUILT_IN_FPRINTF_CHK: case BUILT_IN_VFPRINTF_CHK: if (n == 3 || n == 4) return gimple_fold_builtin_fprintf (gsi, gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 2), n == 4 ? gimple_call_arg (stmt, 3) : NULL_TREE, fcode); break; case BUILT_IN_PRINTF: case BUILT_IN_PRINTF_UNLOCKED: case BUILT_IN_VPRINTF: if (n == 1 || n == 2) return gimple_fold_builtin_printf (gsi, gimple_call_arg (stmt, 0), n == 2 ? gimple_call_arg (stmt, 1) : NULL_TREE, fcode); break; case BUILT_IN_PRINTF_CHK: case BUILT_IN_VPRINTF_CHK: if (n == 2 || n == 3) return gimple_fold_builtin_printf (gsi, gimple_call_arg (stmt, 1), n == 3 ? gimple_call_arg (stmt, 2) : NULL_TREE, fcode); break; case BUILT_IN_ACC_ON_DEVICE: return gimple_fold_builtin_acc_on_device (gsi, gimple_call_arg (stmt, 0)); default:; } /* Try the generic builtin folder. */ bool ignore = (gimple_call_lhs (stmt) == NULL); tree result = fold_call_stmt (stmt, ignore); if (result) { if (ignore) STRIP_NOPS (result); else result = fold_convert (gimple_call_return_type (stmt), result); if (!update_call_from_tree (gsi, result)) gimplify_and_update_call_from_tree (gsi, result); return true; } return false; } /* Transform IFN_GOACC_DIM_SIZE and IFN_GOACC_DIM_POS internal function calls to constants, where possible. */ static tree fold_internal_goacc_dim (const gimple *call) { int axis = oacc_get_ifn_dim_arg (call); int size = oacc_get_fn_dim_size (current_function_decl, axis); bool is_pos = gimple_call_internal_fn (call) == IFN_GOACC_DIM_POS; tree result = NULL_TREE; /* If the size is 1, or we only want the size and it is not dynamic, we know the answer. */ if (size == 1 || (!is_pos && size)) { tree type = TREE_TYPE (gimple_call_lhs (call)); result = build_int_cst (type, size - is_pos); } return result; } /* Return true if stmt is __atomic_compare_exchange_N call which is suitable for conversion into ATOMIC_COMPARE_EXCHANGE if the second argument is &var where var is only addressable because of such calls. */ bool optimize_atomic_compare_exchange_p (gimple *stmt) { if (gimple_call_num_args (stmt) != 6 || !flag_inline_atomics || !optimize || (flag_sanitize & (SANITIZE_THREAD | SANITIZE_ADDRESS)) != 0 || !gimple_call_builtin_p (stmt, BUILT_IN_NORMAL) || !gimple_vdef (stmt) || !gimple_vuse (stmt)) return false; tree fndecl = gimple_call_fndecl (stmt); switch (DECL_FUNCTION_CODE (fndecl)) { case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1: case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2: case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4: case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8: case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16: break; default: return false; } tree expected = gimple_call_arg (stmt, 1); if (TREE_CODE (expected) != ADDR_EXPR || !SSA_VAR_P (TREE_OPERAND (expected, 0))) return false; tree etype = TREE_TYPE (TREE_OPERAND (expected, 0)); if (!is_gimple_reg_type (etype) || !auto_var_in_fn_p (TREE_OPERAND (expected, 0), current_function_decl) || TREE_THIS_VOLATILE (etype) || VECTOR_TYPE_P (etype) || TREE_CODE (etype) == COMPLEX_TYPE /* Don't optimize floating point expected vars, VIEW_CONVERT_EXPRs might not preserve all the bits. See PR71716. */ || SCALAR_FLOAT_TYPE_P (etype) || TYPE_PRECISION (etype) != GET_MODE_BITSIZE (TYPE_MODE (etype))) return false; tree weak = gimple_call_arg (stmt, 3); if (!integer_zerop (weak) && !integer_onep (weak)) return false; tree parmt = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); tree itype = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (parmt))); machine_mode mode = TYPE_MODE (itype); if (direct_optab_handler (atomic_compare_and_swap_optab, mode) == CODE_FOR_nothing && optab_handler (sync_compare_and_swap_optab, mode) == CODE_FOR_nothing) return false; if (int_size_in_bytes (etype) != GET_MODE_SIZE (mode)) return false; return true; } /* Fold r = __atomic_compare_exchange_N (p, &e, d, w, s, f); into _Complex uintN_t t = ATOMIC_COMPARE_EXCHANGE (p, e, d, w * 256 + N, s, f); i = IMAGPART_EXPR <t>; r = (_Bool) i; e = REALPART_EXPR <t>; */ void fold_builtin_atomic_compare_exchange (gimple_stmt_iterator *gsi) { gimple *stmt = gsi_stmt (*gsi); tree fndecl = gimple_call_fndecl (stmt); tree parmt = TYPE_ARG_TYPES (TREE_TYPE (fndecl)); tree itype = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (parmt))); tree ctype = build_complex_type (itype); tree expected = TREE_OPERAND (gimple_call_arg (stmt, 1), 0); gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (expected)), expected); gsi_insert_before (gsi, g, GSI_SAME_STMT); gimple_stmt_iterator gsiret = gsi_for_stmt (g); if (!useless_type_conversion_p (itype, TREE_TYPE (expected))) { g = gimple_build_assign (make_ssa_name (itype), VIEW_CONVERT_EXPR, build1 (VIEW_CONVERT_EXPR, itype, gimple_assign_lhs (g))); gsi_insert_before (gsi, g, GSI_SAME_STMT); } int flag = (integer_onep (gimple_call_arg (stmt, 3)) ? 256 : 0) + int_size_in_bytes (itype); g = gimple_build_call_internal (IFN_ATOMIC_COMPARE_EXCHANGE, 6, gimple_call_arg (stmt, 0), gimple_assign_lhs (g), gimple_call_arg (stmt, 2), build_int_cst (integer_type_node, flag), gimple_call_arg (stmt, 4), gimple_call_arg (stmt, 5)); tree lhs = make_ssa_name (ctype); gimple_call_set_lhs (g, lhs); gimple_set_vdef (g, gimple_vdef (stmt)); gimple_set_vuse (g, gimple_vuse (stmt)); SSA_NAME_DEF_STMT (gimple_vdef (g)) = g; if (gimple_call_lhs (stmt)) { gsi_insert_before (gsi, g, GSI_SAME_STMT); g = gimple_build_assign (make_ssa_name (itype), IMAGPART_EXPR, build1 (IMAGPART_EXPR, itype, lhs)); gsi_insert_before (gsi, g, GSI_SAME_STMT); g = gimple_build_assign (gimple_call_lhs (stmt), NOP_EXPR, gimple_assign_lhs (g)); } gsi_replace (gsi, g, true); g = gimple_build_assign (make_ssa_name (itype), REALPART_EXPR, build1 (REALPART_EXPR, itype, lhs)); gsi_insert_after (gsi, g, GSI_NEW_STMT); if (!useless_type_conversion_p (TREE_TYPE (expected), itype)) { g = gimple_build_assign (make_ssa_name (TREE_TYPE (expected)), VIEW_CONVERT_EXPR, build1 (VIEW_CONVERT_EXPR, TREE_TYPE (expected), gimple_assign_lhs (g))); gsi_insert_after (gsi, g, GSI_NEW_STMT); } g = gimple_build_assign (expected, SSA_NAME, gimple_assign_lhs (g)); gsi_insert_after (gsi, g, GSI_NEW_STMT); *gsi = gsiret; } /* Return true if ARG0 CODE ARG1 in infinite signed precision operation doesn't fit into TYPE. The test for overflow should be regardless of -fwrapv, and even for unsigned types. */ bool arith_overflowed_p (enum tree_code code, const_tree type, const_tree arg0, const_tree arg1) { typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) widest2_int; typedef generic_wide_int <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > widest2_int_cst; widest2_int warg0 = widest2_int_cst (arg0); widest2_int warg1 = widest2_int_cst (arg1); widest2_int wres; switch (code) { case PLUS_EXPR: wres = wi::add (warg0, warg1); break; case MINUS_EXPR: wres = wi::sub (warg0, warg1); break; case MULT_EXPR: wres = wi::mul (warg0, warg1); break; default: gcc_unreachable (); } signop sign = TYPE_SIGN (type); if (sign == UNSIGNED && wi::neg_p (wres)) return true; return wi::min_precision (wres, sign) > TYPE_PRECISION (type); } /* Attempt to fold a call statement referenced by the statement iterator GSI. The statement may be replaced by another statement, e.g., if the call simplifies to a constant value. Return true if any changes were made. It is assumed that the operands have been previously folded. */ static bool gimple_fold_call (gimple_stmt_iterator *gsi, bool inplace) { gcall *stmt = as_a <gcall *> (gsi_stmt (*gsi)); tree callee; bool changed = false; unsigned i; /* Fold *& in call arguments. */ for (i = 0; i < gimple_call_num_args (stmt); ++i) if (REFERENCE_CLASS_P (gimple_call_arg (stmt, i))) { tree tmp = maybe_fold_reference (gimple_call_arg (stmt, i), false); if (tmp) { gimple_call_set_arg (stmt, i, tmp); changed = true; } } /* Check for virtual calls that became direct calls. */ callee = gimple_call_fn (stmt); if (callee && TREE_CODE (callee) == OBJ_TYPE_REF) { if (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee)) != NULL_TREE) { if (dump_file && virtual_method_call_p (callee) && !possible_polymorphic_call_target_p (callee, stmt, cgraph_node::get (gimple_call_addr_fndecl (OBJ_TYPE_REF_EXPR (callee))))) { fprintf (dump_file, "Type inheritance inconsistent devirtualization of "); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); fprintf (dump_file, " to "); print_generic_expr (dump_file, callee, TDF_SLIM); fprintf (dump_file, "\n"); } gimple_call_set_fn (stmt, OBJ_TYPE_REF_EXPR (callee)); changed = true; } else if (flag_devirtualize && !inplace && virtual_method_call_p (callee)) { bool final; vec <cgraph_node *>targets = possible_polymorphic_call_targets (callee, stmt, &final); if (final && targets.length () <= 1 && dbg_cnt (devirt)) { tree lhs = gimple_call_lhs (stmt); if (dump_enabled_p ()) { location_t loc = gimple_location_safe (stmt); dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, loc, "folding virtual function call to %s\n", targets.length () == 1 ? targets[0]->name () : "__builtin_unreachable"); } if (targets.length () == 1) { tree fndecl = targets[0]->decl; gimple_call_set_fndecl (stmt, fndecl); changed = true; /* If changing the call to __cxa_pure_virtual or similar noreturn function, adjust gimple_call_fntype too. */ if (gimple_call_noreturn_p (stmt) && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fndecl))) && TYPE_ARG_TYPES (TREE_TYPE (fndecl)) && (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (fndecl))) == void_type_node)) gimple_call_set_fntype (stmt, TREE_TYPE (fndecl)); /* If the call becomes noreturn, remove the lhs. */ if (lhs && gimple_call_noreturn_p (stmt) && (VOID_TYPE_P (TREE_TYPE (gimple_call_fntype (stmt))) || should_remove_lhs_p (lhs))) { if (TREE_CODE (lhs) == SSA_NAME) { tree var = create_tmp_var (TREE_TYPE (lhs)); tree def = get_or_create_ssa_default_def (cfun, var); gimple *new_stmt = gimple_build_assign (lhs, def); gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT); } gimple_call_set_lhs (stmt, NULL_TREE); } maybe_remove_unused_call_args (cfun, stmt); } else { tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE); gimple *new_stmt = gimple_build_call (fndecl, 0); gimple_set_location (new_stmt, gimple_location (stmt)); if (lhs && TREE_CODE (lhs) == SSA_NAME) { tree var = create_tmp_var (TREE_TYPE (lhs)); tree def = get_or_create_ssa_default_def (cfun, var); /* To satisfy condition for cgraph_update_edges_for_call_stmt_node, we need to preserve GIMPLE_CALL statement at position of GSI iterator. */ update_call_from_tree (gsi, def); gsi_insert_before (gsi, new_stmt, GSI_NEW_STMT); } else { gimple_set_vuse (new_stmt, gimple_vuse (stmt)); gimple_set_vdef (new_stmt, gimple_vdef (stmt)); gsi_replace (gsi, new_stmt, false); } return true; } } } } /* Check for indirect calls that became direct calls, and then no longer require a static chain. */ if (gimple_call_chain (stmt)) { tree fn = gimple_call_fndecl (stmt); if (fn && !DECL_STATIC_CHAIN (fn)) { gimple_call_set_chain (stmt, NULL); changed = true; } else { tree tmp = maybe_fold_reference (gimple_call_chain (stmt), false); if (tmp) { gimple_call_set_chain (stmt, tmp); changed = true; } } } if (inplace) return changed; /* Check for builtins that CCP can handle using information not available in the generic fold routines. */ if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)) { if (gimple_fold_builtin (gsi)) changed = true; } else if (gimple_call_builtin_p (stmt, BUILT_IN_MD)) { changed |= targetm.gimple_fold_builtin (gsi); } else if (gimple_call_internal_p (stmt)) { enum tree_code subcode = ERROR_MARK; tree result = NULL_TREE; bool cplx_result = false; tree overflow = NULL_TREE; switch (gimple_call_internal_fn (stmt)) { case IFN_BUILTIN_EXPECT: result = fold_builtin_expect (gimple_location (stmt), gimple_call_arg (stmt, 0), gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2)); break; case IFN_UBSAN_OBJECT_SIZE: if (integer_all_onesp (gimple_call_arg (stmt, 2)) || (TREE_CODE (gimple_call_arg (stmt, 1)) == INTEGER_CST && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST && tree_int_cst_le (gimple_call_arg (stmt, 1), gimple_call_arg (stmt, 2)))) { gsi_replace (gsi, gimple_build_nop (), false); unlink_stmt_vdef (stmt); release_defs (stmt); return true; } break; case IFN_GOACC_DIM_SIZE: case IFN_GOACC_DIM_POS: result = fold_internal_goacc_dim (stmt); break; case IFN_UBSAN_CHECK_ADD: subcode = PLUS_EXPR; break; case IFN_UBSAN_CHECK_SUB: subcode = MINUS_EXPR; break; case IFN_UBSAN_CHECK_MUL: subcode = MULT_EXPR; break; case IFN_ADD_OVERFLOW: subcode = PLUS_EXPR; cplx_result = true; break; case IFN_SUB_OVERFLOW: subcode = MINUS_EXPR; cplx_result = true; break; case IFN_MUL_OVERFLOW: subcode = MULT_EXPR; cplx_result = true; break; default: break; } if (subcode != ERROR_MARK) { tree arg0 = gimple_call_arg (stmt, 0); tree arg1 = gimple_call_arg (stmt, 1); tree type = TREE_TYPE (arg0); if (cplx_result) { tree lhs = gimple_call_lhs (stmt); if (lhs == NULL_TREE) type = NULL_TREE; else type = TREE_TYPE (TREE_TYPE (lhs)); } if (type == NULL_TREE) ; /* x = y + 0; x = y - 0; x = y * 0; */ else if (integer_zerop (arg1)) result = subcode == MULT_EXPR ? integer_zero_node : arg0; /* x = 0 + y; x = 0 * y; */ else if (subcode != MINUS_EXPR && integer_zerop (arg0)) result = subcode == MULT_EXPR ? integer_zero_node : arg1; /* x = y - y; */ else if (subcode == MINUS_EXPR && operand_equal_p (arg0, arg1, 0)) result = integer_zero_node; /* x = y * 1; x = 1 * y; */ else if (subcode == MULT_EXPR && integer_onep (arg1)) result = arg0; else if (subcode == MULT_EXPR && integer_onep (arg0)) result = arg1; else if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST) { if (cplx_result) result = int_const_binop (subcode, fold_convert (type, arg0), fold_convert (type, arg1)); else result = int_const_binop (subcode, arg0, arg1); if (result && arith_overflowed_p (subcode, type, arg0, arg1)) { if (cplx_result) overflow = build_one_cst (type); else result = NULL_TREE; } } if (result) { if (result == integer_zero_node) result = build_zero_cst (type); else if (cplx_result && TREE_TYPE (result) != type) { if (TREE_CODE (result) == INTEGER_CST) { if (arith_overflowed_p (PLUS_EXPR, type, result, integer_zero_node)) overflow = build_one_cst (type); } else if ((!TYPE_UNSIGNED (TREE_TYPE (result)) && TYPE_UNSIGNED (type)) || (TYPE_PRECISION (type) < (TYPE_PRECISION (TREE_TYPE (result)) + (TYPE_UNSIGNED (TREE_TYPE (result)) && !TYPE_UNSIGNED (type))))) result = NULL_TREE; if (result) result = fold_convert (type, result); } } } if (result) { if (TREE_CODE (result) == INTEGER_CST && TREE_OVERFLOW (result)) result = drop_tree_overflow (result); if (cplx_result) { if (overflow == NULL_TREE) overflow = build_zero_cst (TREE_TYPE (result)); tree ctype = build_complex_type (TREE_TYPE (result)); if (TREE_CODE (result) == INTEGER_CST && TREE_CODE (overflow) == INTEGER_CST) result = build_complex (ctype, result, overflow); else result = build2_loc (gimple_location (stmt), COMPLEX_EXPR, ctype, result, overflow); } if (!update_call_from_tree (gsi, result)) gimplify_and_update_call_from_tree (gsi, result); changed = true; } } return changed; } /* Return true whether NAME has a use on STMT. */ static bool has_use_on_stmt (tree name, gimple *stmt) { imm_use_iterator iter; use_operand_p use_p; FOR_EACH_IMM_USE_FAST (use_p, iter, name) if (USE_STMT (use_p) == stmt) return true; return false; } /* Worker for fold_stmt_1 dispatch to pattern based folding with gimple_simplify. Replaces *GSI with the simplification result in RCODE and OPS and the associated statements in *SEQ. Does the replacement according to INPLACE and returns true if the operation succeeded. */ static bool replace_stmt_with_simplification (gimple_stmt_iterator *gsi, code_helper rcode, tree *ops, gimple_seq *seq, bool inplace) { gimple *stmt = gsi_stmt (*gsi); /* Play safe and do not allow abnormals to be mentioned in newly created statements. See also maybe_push_res_to_seq. As an exception allow such uses if there was a use of the same SSA name on the old stmt. */ if ((TREE_CODE (ops[0]) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[0]) && !has_use_on_stmt (ops[0], stmt)) || (ops[1] && TREE_CODE (ops[1]) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[1]) && !has_use_on_stmt (ops[1], stmt)) || (ops[2] && TREE_CODE (ops[2]) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ops[2]) && !has_use_on_stmt (ops[2], stmt)) || (COMPARISON_CLASS_P (ops[0]) && ((TREE_CODE (TREE_OPERAND (ops[0], 0)) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (TREE_OPERAND (ops[0], 0)) && !has_use_on_stmt (TREE_OPERAND (ops[0], 0), stmt)) || (TREE_CODE (TREE_OPERAND (ops[0], 1)) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (TREE_OPERAND (ops[0], 1)) && !has_use_on_stmt (TREE_OPERAND (ops[0], 1), stmt))))) return false; /* Don't insert new statements when INPLACE is true, even if we could reuse STMT for the final statement. */ if (inplace && !gimple_seq_empty_p (*seq)) return false; if (gcond *cond_stmt = dyn_cast <gcond *> (stmt)) { gcc_assert (rcode.is_tree_code ()); if (TREE_CODE_CLASS ((enum tree_code)rcode) == tcc_comparison /* GIMPLE_CONDs condition may not throw. */ && (!flag_exceptions || !cfun->can_throw_non_call_exceptions || !operation_could_trap_p (rcode, FLOAT_TYPE_P (TREE_TYPE (ops[0])), false, NULL_TREE))) gimple_cond_set_condition (cond_stmt, rcode, ops[0], ops[1]); else if (rcode == SSA_NAME) gimple_cond_set_condition (cond_stmt, NE_EXPR, ops[0], build_zero_cst (TREE_TYPE (ops[0]))); else if (rcode == INTEGER_CST) { if (integer_zerop (ops[0])) gimple_cond_make_false (cond_stmt); else gimple_cond_make_true (cond_stmt); } else if (!inplace) { tree res = maybe_push_res_to_seq (rcode, boolean_type_node, ops, seq); if (!res) return false; gimple_cond_set_condition (cond_stmt, NE_EXPR, res, build_zero_cst (TREE_TYPE (res))); } else return false; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "gimple_simplified to "); if (!gimple_seq_empty_p (*seq)) print_gimple_seq (dump_file, *seq, 0, TDF_SLIM); print_gimple_stmt (dump_file, gsi_stmt (*gsi), 0, TDF_SLIM); } gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT); return true; } else if (is_gimple_assign (stmt) && rcode.is_tree_code ()) { if (!inplace || gimple_num_ops (stmt) > get_gimple_rhs_num_ops (rcode)) { maybe_build_generic_op (rcode, TREE_TYPE (gimple_assign_lhs (stmt)), ops); gimple_assign_set_rhs_with_ops (gsi, rcode, ops[0], ops[1], ops[2]); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "gimple_simplified to "); if (!gimple_seq_empty_p (*seq)) print_gimple_seq (dump_file, *seq, 0, TDF_SLIM); print_gimple_stmt (dump_file, gsi_stmt (*gsi), 0, TDF_SLIM); } gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT); return true; } } else if (rcode.is_fn_code () && gimple_call_combined_fn (stmt) == rcode) { unsigned i; for (i = 0; i < gimple_call_num_args (stmt); ++i) { gcc_assert (ops[i] != NULL_TREE); gimple_call_set_arg (stmt, i, ops[i]); } if (i < 3) gcc_assert (ops[i] == NULL_TREE); if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "gimple_simplified to "); if (!gimple_seq_empty_p (*seq)) print_gimple_seq (dump_file, *seq, 0, TDF_SLIM); print_gimple_stmt (dump_file, gsi_stmt (*gsi), 0, TDF_SLIM); } gsi_insert_seq_before (gsi, *seq, GSI_SAME_STMT); return true; } else if (!inplace) { if (gimple_has_lhs (stmt)) { tree lhs = gimple_get_lhs (stmt); if (!maybe_push_res_to_seq (rcode, TREE_TYPE (lhs), ops, seq, lhs)) return false; if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "gimple_simplified to "); print_gimple_seq (dump_file, *seq, 0, TDF_SLIM); } gsi_replace_with_seq_vops (gsi, *seq); return true; } else gcc_unreachable (); } return false; } /* Canonicalize MEM_REFs invariant address operand after propagation. */ static bool maybe_canonicalize_mem_ref_addr (tree *t) { bool res = false; if (TREE_CODE (*t) == ADDR_EXPR) t = &TREE_OPERAND (*t, 0); /* The C and C++ frontends use an ARRAY_REF for indexing with their generic vector extension. The actual vector referenced is view-converted to an array type for this purpose. If the index is constant the canonical representation in the middle-end is a BIT_FIELD_REF so re-write the former to the latter here. */ if (TREE_CODE (*t) == ARRAY_REF && TREE_CODE (TREE_OPERAND (*t, 0)) == VIEW_CONVERT_EXPR && TREE_CODE (TREE_OPERAND (*t, 1)) == INTEGER_CST && VECTOR_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0)))) { tree vtype = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (*t, 0), 0)); if (VECTOR_TYPE_P (vtype)) { tree low = array_ref_low_bound (*t); if (TREE_CODE (low) == INTEGER_CST) { if (tree_int_cst_le (low, TREE_OPERAND (*t, 1))) { widest_int idx = wi::sub (wi::to_widest (TREE_OPERAND (*t, 1)), wi::to_widest (low)); idx = wi::mul (idx, wi::to_widest (TYPE_SIZE (TREE_TYPE (*t)))); widest_int ext = wi::add (idx, wi::to_widest (TYPE_SIZE (TREE_TYPE (*t)))); if (wi::les_p (ext, wi::to_widest (TYPE_SIZE (vtype)))) { *t = build3_loc (EXPR_LOCATION (*t), BIT_FIELD_REF, TREE_TYPE (*t), TREE_OPERAND (TREE_OPERAND (*t, 0), 0), TYPE_SIZE (TREE_TYPE (*t)), wide_int_to_tree (sizetype, idx)); res = true; } } } } } while (handled_component_p (*t)) t = &TREE_OPERAND (*t, 0); /* Canonicalize MEM [&foo.bar, 0] which appears after propagating of invariant addresses into a SSA name MEM_REF address. */ if (TREE_CODE (*t) == MEM_REF || TREE_CODE (*t) == TARGET_MEM_REF) { tree addr = TREE_OPERAND (*t, 0); if (TREE_CODE (addr) == ADDR_EXPR && (TREE_CODE (TREE_OPERAND (addr, 0)) == MEM_REF || handled_component_p (TREE_OPERAND (addr, 0)))) { tree base; HOST_WIDE_INT coffset; base = get_addr_base_and_unit_offset (TREE_OPERAND (addr, 0), &coffset); if (!base) gcc_unreachable (); TREE_OPERAND (*t, 0) = build_fold_addr_expr (base); TREE_OPERAND (*t, 1) = int_const_binop (PLUS_EXPR, TREE_OPERAND (*t, 1), size_int (coffset)); res = true; } gcc_checking_assert (TREE_CODE (TREE_OPERAND (*t, 0)) == DEBUG_EXPR_DECL || is_gimple_mem_ref_addr (TREE_OPERAND (*t, 0))); } /* Canonicalize back MEM_REFs to plain reference trees if the object accessed is a decl that has the same access semantics as the MEM_REF. */ if (TREE_CODE (*t) == MEM_REF && TREE_CODE (TREE_OPERAND (*t, 0)) == ADDR_EXPR && integer_zerop (TREE_OPERAND (*t, 1)) && MR_DEPENDENCE_CLIQUE (*t) == 0) { tree decl = TREE_OPERAND (TREE_OPERAND (*t, 0), 0); tree alias_type = TREE_TYPE (TREE_OPERAND (*t, 1)); if (/* Same volatile qualification. */ TREE_THIS_VOLATILE (*t) == TREE_THIS_VOLATILE (decl) /* Same TBAA behavior with -fstrict-aliasing. */ && !TYPE_REF_CAN_ALIAS_ALL (alias_type) && (TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TYPE_MAIN_VARIANT (TREE_TYPE (alias_type))) /* Same alignment. */ && TYPE_ALIGN (TREE_TYPE (decl)) == TYPE_ALIGN (TREE_TYPE (*t)) /* We have to look out here to not drop a required conversion from the rhs to the lhs if *t appears on the lhs or vice-versa if it appears on the rhs. Thus require strict type compatibility. */ && types_compatible_p (TREE_TYPE (*t), TREE_TYPE (decl))) { *t = TREE_OPERAND (TREE_OPERAND (*t, 0), 0); res = true; } } /* Canonicalize TARGET_MEM_REF in particular with respect to the indexes becoming constant. */ else if (TREE_CODE (*t) == TARGET_MEM_REF) { tree tem = maybe_fold_tmr (*t); if (tem) { *t = tem; res = true; } } return res; } /* Worker for both fold_stmt and fold_stmt_inplace. The INPLACE argument distinguishes both cases. */ static bool fold_stmt_1 (gimple_stmt_iterator *gsi, bool inplace, tree (*valueize) (tree)) { bool changed = false; gimple *stmt = gsi_stmt (*gsi); bool nowarning = gimple_no_warning_p (stmt); unsigned i; fold_defer_overflow_warnings (); /* First do required canonicalization of [TARGET_]MEM_REF addresses after propagation. ??? This shouldn't be done in generic folding but in the propagation helpers which also know whether an address was propagated. Also canonicalize operand order. */ switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: if (gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS) { tree *rhs = gimple_assign_rhs1_ptr (stmt); if ((REFERENCE_CLASS_P (*rhs) || TREE_CODE (*rhs) == ADDR_EXPR) && maybe_canonicalize_mem_ref_addr (rhs)) changed = true; tree *lhs = gimple_assign_lhs_ptr (stmt); if (REFERENCE_CLASS_P (*lhs) && maybe_canonicalize_mem_ref_addr (lhs)) changed = true; } else { /* Canonicalize operand order. */ enum tree_code code = gimple_assign_rhs_code (stmt); if (TREE_CODE_CLASS (code) == tcc_comparison || commutative_tree_code (code) || commutative_ternary_tree_code (code)) { tree rhs1 = gimple_assign_rhs1 (stmt); tree rhs2 = gimple_assign_rhs2 (stmt); if (tree_swap_operands_p (rhs1, rhs2)) { gimple_assign_set_rhs1 (stmt, rhs2); gimple_assign_set_rhs2 (stmt, rhs1); if (TREE_CODE_CLASS (code) == tcc_comparison) gimple_assign_set_rhs_code (stmt, swap_tree_comparison (code)); changed = true; } } } break; case GIMPLE_CALL: { for (i = 0; i < gimple_call_num_args (stmt); ++i) { tree *arg = gimple_call_arg_ptr (stmt, i); if (REFERENCE_CLASS_P (*arg) && maybe_canonicalize_mem_ref_addr (arg)) changed = true; } tree *lhs = gimple_call_lhs_ptr (stmt); if (*lhs && REFERENCE_CLASS_P (*lhs) && maybe_canonicalize_mem_ref_addr (lhs)) changed = true; break; } case GIMPLE_ASM: { gasm *asm_stmt = as_a <gasm *> (stmt); for (i = 0; i < gimple_asm_noutputs (asm_stmt); ++i) { tree link = gimple_asm_output_op (asm_stmt, i); tree op = TREE_VALUE (link); if (REFERENCE_CLASS_P (op) && maybe_canonicalize_mem_ref_addr (&TREE_VALUE (link))) changed = true; } for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i) { tree link = gimple_asm_input_op (asm_stmt, i); tree op = TREE_VALUE (link); if ((REFERENCE_CLASS_P (op) || TREE_CODE (op) == ADDR_EXPR) && maybe_canonicalize_mem_ref_addr (&TREE_VALUE (link))) changed = true; } } break; case GIMPLE_DEBUG: if (gimple_debug_bind_p (stmt)) { tree *val = gimple_debug_bind_get_value_ptr (stmt); if (*val && (REFERENCE_CLASS_P (*val) || TREE_CODE (*val) == ADDR_EXPR) && maybe_canonicalize_mem_ref_addr (val)) changed = true; } break; case GIMPLE_COND: { /* Canonicalize operand order. */ tree lhs = gimple_cond_lhs (stmt); tree rhs = gimple_cond_rhs (stmt); if (tree_swap_operands_p (lhs, rhs)) { gcond *gc = as_a <gcond *> (stmt); gimple_cond_set_lhs (gc, rhs); gimple_cond_set_rhs (gc, lhs); gimple_cond_set_code (gc, swap_tree_comparison (gimple_cond_code (gc))); changed = true; } } default:; } /* Dispatch to pattern-based folding. */ if (!inplace || is_gimple_assign (stmt) || gimple_code (stmt) == GIMPLE_COND) { gimple_seq seq = NULL; code_helper rcode; tree ops[3] = {}; if (gimple_simplify (stmt, &rcode, ops, inplace ? NULL : &seq, valueize, valueize)) { if (replace_stmt_with_simplification (gsi, rcode, ops, &seq, inplace)) changed = true; else gimple_seq_discard (seq); } } stmt = gsi_stmt (*gsi); /* Fold the main computation performed by the statement. */ switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { /* Try to canonicalize for boolean-typed X the comparisons X == 0, X == 1, X != 0, and X != 1. */ if (gimple_assign_rhs_code (stmt) == EQ_EXPR || gimple_assign_rhs_code (stmt) == NE_EXPR) { tree lhs = gimple_assign_lhs (stmt); tree op1 = gimple_assign_rhs1 (stmt); tree op2 = gimple_assign_rhs2 (stmt); tree type = TREE_TYPE (op1); /* Check whether the comparison operands are of the same boolean type as the result type is. Check that second operand is an integer-constant with value one or zero. */ if (TREE_CODE (op2) == INTEGER_CST && (integer_zerop (op2) || integer_onep (op2)) && useless_type_conversion_p (TREE_TYPE (lhs), type)) { enum tree_code cmp_code = gimple_assign_rhs_code (stmt); bool is_logical_not = false; /* X == 0 and X != 1 is a logical-not.of X X == 1 and X != 0 is X */ if ((cmp_code == EQ_EXPR && integer_zerop (op2)) || (cmp_code == NE_EXPR && integer_onep (op2))) is_logical_not = true; if (is_logical_not == false) gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op1), op1); /* Only for one-bit precision typed X the transformation !X -> ~X is valied. */ else if (TYPE_PRECISION (type) == 1) gimple_assign_set_rhs_with_ops (gsi, BIT_NOT_EXPR, op1); /* Otherwise we use !X -> X ^ 1. */ else gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op1, build_int_cst (type, 1)); changed = true; break; } } unsigned old_num_ops = gimple_num_ops (stmt); tree lhs = gimple_assign_lhs (stmt); tree new_rhs = fold_gimple_assign (gsi); if (new_rhs && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (new_rhs))) new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs); if (new_rhs && (!inplace || get_gimple_rhs_num_ops (TREE_CODE (new_rhs)) < old_num_ops)) { gimple_assign_set_rhs_from_tree (gsi, new_rhs); changed = true; } break; } case GIMPLE_CALL: changed |= gimple_fold_call (gsi, inplace); break; case GIMPLE_ASM: /* Fold *& in asm operands. */ { gasm *asm_stmt = as_a <gasm *> (stmt); size_t noutputs; const char **oconstraints; const char *constraint; bool allows_mem, allows_reg; noutputs = gimple_asm_noutputs (asm_stmt); oconstraints = XALLOCAVEC (const char *, noutputs); for (i = 0; i < gimple_asm_noutputs (asm_stmt); ++i) { tree link = gimple_asm_output_op (asm_stmt, i); tree op = TREE_VALUE (link); oconstraints[i] = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); if (REFERENCE_CLASS_P (op) && (op = maybe_fold_reference (op, true)) != NULL_TREE) { TREE_VALUE (link) = op; changed = true; } } for (i = 0; i < gimple_asm_ninputs (asm_stmt); ++i) { tree link = gimple_asm_input_op (asm_stmt, i); tree op = TREE_VALUE (link); constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link))); parse_input_constraint (&constraint, 0, 0, noutputs, 0, oconstraints, &allows_mem, &allows_reg); if (REFERENCE_CLASS_P (op) && (op = maybe_fold_reference (op, !allows_reg && allows_mem)) != NULL_TREE) { TREE_VALUE (link) = op; changed = true; } } } break; case GIMPLE_DEBUG: if (gimple_debug_bind_p (stmt)) { tree val = gimple_debug_bind_get_value (stmt); if (val && REFERENCE_CLASS_P (val)) { tree tem = maybe_fold_reference (val, false); if (tem) { gimple_debug_bind_set_value (stmt, tem); changed = true; } } else if (val && TREE_CODE (val) == ADDR_EXPR) { tree ref = TREE_OPERAND (val, 0); tree tem = maybe_fold_reference (ref, false); if (tem) { tem = build_fold_addr_expr_with_type (tem, TREE_TYPE (val)); gimple_debug_bind_set_value (stmt, tem); changed = true; } } } break; case GIMPLE_RETURN: { greturn *ret_stmt = as_a<greturn *> (stmt); tree ret = gimple_return_retval(ret_stmt); if (ret && TREE_CODE (ret) == SSA_NAME && valueize) { tree val = valueize (ret); if (val && val != ret && may_propagate_copy (ret, val)) { gimple_return_set_retval (ret_stmt, val); changed = true; } } } break; default:; } stmt = gsi_stmt (*gsi); /* Fold *& on the lhs. */ if (gimple_has_lhs (stmt)) { tree lhs = gimple_get_lhs (stmt); if (lhs && REFERENCE_CLASS_P (lhs)) { tree new_lhs = maybe_fold_reference (lhs, true); if (new_lhs) { gimple_set_lhs (stmt, new_lhs); changed = true; } } } fold_undefer_overflow_warnings (changed && !nowarning, stmt, 0); return changed; } /* Valueziation callback that ends up not following SSA edges. */ tree no_follow_ssa_edges (tree) { return NULL_TREE; } /* Valueization callback that ends up following single-use SSA edges only. */ tree follow_single_use_edges (tree val) { if (TREE_CODE (val) == SSA_NAME && !has_single_use (val)) return NULL_TREE; return val; } /* Fold the statement pointed to by GSI. In some cases, this function may replace the whole statement with a new one. Returns true iff folding makes any changes. The statement pointed to by GSI should be in valid gimple form but may be in unfolded state as resulting from for example constant propagation which can produce *&x = 0. */ bool fold_stmt (gimple_stmt_iterator *gsi) { return fold_stmt_1 (gsi, false, no_follow_ssa_edges); } bool fold_stmt (gimple_stmt_iterator *gsi, tree (*valueize) (tree)) { return fold_stmt_1 (gsi, false, valueize); } /* Perform the minimal folding on statement *GSI. Only operations like *&x created by constant propagation are handled. The statement cannot be replaced with a new one. Return true if the statement was changed, false otherwise. The statement *GSI should be in valid gimple form but may be in unfolded state as resulting from for example constant propagation which can produce *&x = 0. */ bool fold_stmt_inplace (gimple_stmt_iterator *gsi) { gimple *stmt = gsi_stmt (*gsi); bool changed = fold_stmt_1 (gsi, true, no_follow_ssa_edges); gcc_assert (gsi_stmt (*gsi) == stmt); return changed; } /* Canonicalize and possibly invert the boolean EXPR; return NULL_TREE if EXPR is null or we don't know how. If non-null, the result always has boolean type. */ static tree canonicalize_bool (tree expr, bool invert) { if (!expr) return NULL_TREE; else if (invert) { if (integer_nonzerop (expr)) return boolean_false_node; else if (integer_zerop (expr)) return boolean_true_node; else if (TREE_CODE (expr) == SSA_NAME) return fold_build2 (EQ_EXPR, boolean_type_node, expr, build_int_cst (TREE_TYPE (expr), 0)); else if (COMPARISON_CLASS_P (expr)) return fold_build2 (invert_tree_comparison (TREE_CODE (expr), false), boolean_type_node, TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1)); else return NULL_TREE; } else { if (TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE) return expr; if (integer_nonzerop (expr)) return boolean_true_node; else if (integer_zerop (expr)) return boolean_false_node; else if (TREE_CODE (expr) == SSA_NAME) return fold_build2 (NE_EXPR, boolean_type_node, expr, build_int_cst (TREE_TYPE (expr), 0)); else if (COMPARISON_CLASS_P (expr)) return fold_build2 (TREE_CODE (expr), boolean_type_node, TREE_OPERAND (expr, 0), TREE_OPERAND (expr, 1)); else return NULL_TREE; } } /* Check to see if a boolean expression EXPR is logically equivalent to the comparison (OP1 CODE OP2). Check for various identities involving SSA_NAMEs. */ static bool same_bool_comparison_p (const_tree expr, enum tree_code code, const_tree op1, const_tree op2) { gimple *s; /* The obvious case. */ if (TREE_CODE (expr) == code && operand_equal_p (TREE_OPERAND (expr, 0), op1, 0) && operand_equal_p (TREE_OPERAND (expr, 1), op2, 0)) return true; /* Check for comparing (name, name != 0) and the case where expr is an SSA_NAME with a definition matching the comparison. */ if (TREE_CODE (expr) == SSA_NAME && TREE_CODE (TREE_TYPE (expr)) == BOOLEAN_TYPE) { if (operand_equal_p (expr, op1, 0)) return ((code == NE_EXPR && integer_zerop (op2)) || (code == EQ_EXPR && integer_nonzerop (op2))); s = SSA_NAME_DEF_STMT (expr); if (is_gimple_assign (s) && gimple_assign_rhs_code (s) == code && operand_equal_p (gimple_assign_rhs1 (s), op1, 0) && operand_equal_p (gimple_assign_rhs2 (s), op2, 0)) return true; } /* If op1 is of the form (name != 0) or (name == 0), and the definition of name is a comparison, recurse. */ if (TREE_CODE (op1) == SSA_NAME && TREE_CODE (TREE_TYPE (op1)) == BOOLEAN_TYPE) { s = SSA_NAME_DEF_STMT (op1); if (is_gimple_assign (s) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison) { enum tree_code c = gimple_assign_rhs_code (s); if ((c == NE_EXPR && integer_zerop (op2)) || (c == EQ_EXPR && integer_nonzerop (op2))) return same_bool_comparison_p (expr, c, gimple_assign_rhs1 (s), gimple_assign_rhs2 (s)); if ((c == EQ_EXPR && integer_zerop (op2)) || (c == NE_EXPR && integer_nonzerop (op2))) return same_bool_comparison_p (expr, invert_tree_comparison (c, false), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s)); } } return false; } /* Check to see if two boolean expressions OP1 and OP2 are logically equivalent. */ static bool same_bool_result_p (const_tree op1, const_tree op2) { /* Simple cases first. */ if (operand_equal_p (op1, op2, 0)) return true; /* Check the cases where at least one of the operands is a comparison. These are a bit smarter than operand_equal_p in that they apply some identifies on SSA_NAMEs. */ if (COMPARISON_CLASS_P (op2) && same_bool_comparison_p (op1, TREE_CODE (op2), TREE_OPERAND (op2, 0), TREE_OPERAND (op2, 1))) return true; if (COMPARISON_CLASS_P (op1) && same_bool_comparison_p (op2, TREE_CODE (op1), TREE_OPERAND (op1, 0), TREE_OPERAND (op1, 1))) return true; /* Default case. */ return false; } /* Forward declarations for some mutually recursive functions. */ static tree and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b); static tree and_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b); static tree and_var_with_comparison_1 (gimple *stmt, enum tree_code code2, tree op2a, tree op2b); static tree or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b); static tree or_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b); static tree or_var_with_comparison_1 (gimple *stmt, enum tree_code code2, tree op2a, tree op2b); /* Helper function for and_comparisons_1: try to simplify the AND of the ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B). If INVERT is true, invert the value of the VAR before doing the AND. Return NULL_EXPR if we can't simplify this to a single expression. */ static tree and_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b) { tree t; gimple *stmt = SSA_NAME_DEF_STMT (var); /* We can only deal with variables whose definitions are assignments. */ if (!is_gimple_assign (stmt)) return NULL_TREE; /* If we have an inverted comparison, apply DeMorgan's law and rewrite !var AND (op2a code2 op2b) => !(var OR !(op2a code2 op2b)) Then we only have to consider the simpler non-inverted cases. */ if (invert) t = or_var_with_comparison_1 (stmt, invert_tree_comparison (code2, false), op2a, op2b); else t = and_var_with_comparison_1 (stmt, code2, op2a, op2b); return canonicalize_bool (t, invert); } /* Try to simplify the AND of the ssa variable defined by the assignment STMT with the comparison specified by (OP2A CODE2 OP2B). Return NULL_EXPR if we can't simplify this to a single expression. */ static tree and_var_with_comparison_1 (gimple *stmt, enum tree_code code2, tree op2a, tree op2b) { tree var = gimple_assign_lhs (stmt); tree true_test_var = NULL_TREE; tree false_test_var = NULL_TREE; enum tree_code innercode = gimple_assign_rhs_code (stmt); /* Check for identities like (var AND (var == 0)) => false. */ if (TREE_CODE (op2a) == SSA_NAME && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE) { if ((code2 == NE_EXPR && integer_zerop (op2b)) || (code2 == EQ_EXPR && integer_nonzerop (op2b))) { true_test_var = op2a; if (var == true_test_var) return var; } else if ((code2 == EQ_EXPR && integer_zerop (op2b)) || (code2 == NE_EXPR && integer_nonzerop (op2b))) { false_test_var = op2a; if (var == false_test_var) return boolean_false_node; } } /* If the definition is a comparison, recurse on it. */ if (TREE_CODE_CLASS (innercode) == tcc_comparison) { tree t = and_comparisons_1 (innercode, gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), code2, op2a, op2b); if (t) return t; } /* If the definition is an AND or OR expression, we may be able to simplify by reassociating. */ if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR)) { tree inner1 = gimple_assign_rhs1 (stmt); tree inner2 = gimple_assign_rhs2 (stmt); gimple *s; tree t; tree partial = NULL_TREE; bool is_and = (innercode == BIT_AND_EXPR); /* Check for boolean identities that don't require recursive examination of inner1/inner2: inner1 AND (inner1 AND inner2) => inner1 AND inner2 => var inner1 AND (inner1 OR inner2) => inner1 !inner1 AND (inner1 AND inner2) => false !inner1 AND (inner1 OR inner2) => !inner1 AND inner2 Likewise for similar cases involving inner2. */ if (inner1 == true_test_var) return (is_and ? var : inner1); else if (inner2 == true_test_var) return (is_and ? var : inner2); else if (inner1 == false_test_var) return (is_and ? boolean_false_node : and_var_with_comparison (inner2, false, code2, op2a, op2b)); else if (inner2 == false_test_var) return (is_and ? boolean_false_node : and_var_with_comparison (inner1, false, code2, op2a, op2b)); /* Next, redistribute/reassociate the AND across the inner tests. Compute the first partial result, (inner1 AND (op2a code op2b)) */ if (TREE_CODE (inner1) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the AND case, where we are reassociating: (inner1 AND inner2) AND (op2a code2 op2b) => (t AND inner2) If the partial result t is a constant, we win. Otherwise continue on to try reassociating with the other inner test. */ if (is_and) { if (integer_onep (t)) return inner2; else if (integer_zerop (t)) return boolean_false_node; } /* Handle the OR case, where we are redistributing: (inner1 OR inner2) AND (op2a code2 op2b) => (t OR (inner2 AND (op2a code2 op2b))) */ else if (integer_onep (t)) return boolean_true_node; /* Save partial result for later. */ partial = t; } /* Compute the second partial result, (inner2 AND (op2a code op2b)) */ if (TREE_CODE (inner2) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_and_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the AND case, where we are reassociating: (inner1 AND inner2) AND (op2a code2 op2b) => (inner1 AND t) */ if (is_and) { if (integer_onep (t)) return inner1; else if (integer_zerop (t)) return boolean_false_node; /* If both are the same, we can apply the identity (x AND x) == x. */ else if (partial && same_bool_result_p (t, partial)) return t; } /* Handle the OR case. where we are redistributing: (inner1 OR inner2) AND (op2a code2 op2b) => (t OR (inner1 AND (op2a code2 op2b))) => (t OR partial) */ else { if (integer_onep (t)) return boolean_true_node; else if (partial) { /* We already got a simplification for the other operand to the redistributed OR expression. The interesting case is when at least one is false. Or, if both are the same, we can apply the identity (x OR x) == x. */ if (integer_zerop (partial)) return t; else if (integer_zerop (t)) return partial; else if (same_bool_result_p (t, partial)) return t; } } } } return NULL_TREE; } /* Try to simplify the AND of two comparisons defined by (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively. If this can be done without constructing an intermediate value, return the resulting tree; otherwise NULL_TREE is returned. This function is deliberately asymmetric as it recurses on SSA_DEFs in the first comparison but not the second. */ static tree and_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { tree truth_type = truth_type_for (TREE_TYPE (op1a)); /* First check for ((x CODE1 y) AND (x CODE2 y)). */ if (operand_equal_p (op1a, op2a, 0) && operand_equal_p (op1b, op2b, 0)) { /* Result will be either NULL_TREE, or a combined comparison. */ tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ANDIF_EXPR, code1, code2, truth_type, op1a, op1b); if (t) return t; } /* Likewise the swapped case of the above. */ if (operand_equal_p (op1a, op2b, 0) && operand_equal_p (op1b, op2a, 0)) { /* Result will be either NULL_TREE, or a combined comparison. */ tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ANDIF_EXPR, code1, swap_tree_comparison (code2), truth_type, op1a, op1b); if (t) return t; } /* If both comparisons are of the same value against constants, we might be able to merge them. */ if (operand_equal_p (op1a, op2a, 0) && TREE_CODE (op1b) == INTEGER_CST && TREE_CODE (op2b) == INTEGER_CST) { int cmp = tree_int_cst_compare (op1b, op2b); /* If we have (op1a == op1b), we should either be able to return that or FALSE, depending on whether the constant op1b also satisfies the other comparison against op2b. */ if (code1 == EQ_EXPR) { bool done = true; bool val; switch (code2) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp < 0); break; case GT_EXPR: val = (cmp > 0); break; case LE_EXPR: val = (cmp <= 0); break; case GE_EXPR: val = (cmp >= 0); break; default: done = false; } if (done) { if (val) return fold_build2 (code1, boolean_type_node, op1a, op1b); else return boolean_false_node; } } /* Likewise if the second comparison is an == comparison. */ else if (code2 == EQ_EXPR) { bool done = true; bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp > 0); break; case GT_EXPR: val = (cmp < 0); break; case LE_EXPR: val = (cmp >= 0); break; case GE_EXPR: val = (cmp <= 0); break; default: done = false; } if (done) { if (val) return fold_build2 (code2, boolean_type_node, op2a, op2b); else return boolean_false_node; } } /* Same business with inequality tests. */ else if (code1 == NE_EXPR) { bool val; switch (code2) { case EQ_EXPR: val = (cmp != 0); break; case NE_EXPR: val = (cmp == 0); break; case LT_EXPR: val = (cmp >= 0); break; case GT_EXPR: val = (cmp <= 0); break; case LE_EXPR: val = (cmp > 0); break; case GE_EXPR: val = (cmp < 0); break; default: val = false; } if (val) return fold_build2 (code2, boolean_type_node, op2a, op2b); } else if (code2 == NE_EXPR) { bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp <= 0); break; case GT_EXPR: val = (cmp >= 0); break; case LE_EXPR: val = (cmp < 0); break; case GE_EXPR: val = (cmp > 0); break; default: val = false; } if (val) return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Chose the more restrictive of two < or <= comparisons. */ else if ((code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) { if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) return fold_build2 (code1, boolean_type_node, op1a, op1b); else return fold_build2 (code2, boolean_type_node, op2a, op2b); } /* Likewise chose the more restrictive of two > or >= comparisons. */ else if ((code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) { if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) return fold_build2 (code1, boolean_type_node, op1a, op1b); else return fold_build2 (code2, boolean_type_node, op2a, op2b); } /* Check for singleton ranges. */ else if (cmp == 0 && ((code1 == LE_EXPR && code2 == GE_EXPR) || (code1 == GE_EXPR && code2 == LE_EXPR))) return fold_build2 (EQ_EXPR, boolean_type_node, op1a, op2b); /* Check for disjoint ranges. */ else if (cmp <= 0 && (code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) return boolean_false_node; else if (cmp >= 0 && (code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) return boolean_false_node; } /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where NAME's definition is a truth value. See if there are any simplifications that can be done against the NAME's definition. */ if (TREE_CODE (op1a) == SSA_NAME && (code1 == NE_EXPR || code1 == EQ_EXPR) && (integer_zerop (op1b) || integer_onep (op1b))) { bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b)) || (code1 == NE_EXPR && integer_onep (op1b))); gimple *stmt = SSA_NAME_DEF_STMT (op1a); switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: /* Try to simplify by copy-propagating the definition. */ return and_var_with_comparison (op1a, invert, code2, op2a, op2b); case GIMPLE_PHI: /* If every argument to the PHI produces the same result when ANDed with the second comparison, we win. Do not do this unless the type is bool since we need a bool result here anyway. */ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE) { tree result = NULL_TREE; unsigned i; for (i = 0; i < gimple_phi_num_args (stmt); i++) { tree arg = gimple_phi_arg_def (stmt, i); /* If this PHI has itself as an argument, ignore it. If all the other args produce the same result, we're still OK. */ if (arg == gimple_phi_result (stmt)) continue; else if (TREE_CODE (arg) == INTEGER_CST) { if (invert ? integer_nonzerop (arg) : integer_zerop (arg)) { if (!result) result = boolean_false_node; else if (!integer_zerop (result)) return NULL_TREE; } else if (!result) result = fold_build2 (code2, boolean_type_node, op2a, op2b); else if (!same_bool_comparison_p (result, code2, op2a, op2b)) return NULL_TREE; } else if (TREE_CODE (arg) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (arg)) { tree temp; gimple *def_stmt = SSA_NAME_DEF_STMT (arg); /* In simple cases we can look through PHI nodes, but we have to be careful with loops. See PR49073. */ if (! dom_info_available_p (CDI_DOMINATORS) || gimple_bb (def_stmt) == gimple_bb (stmt) || dominated_by_p (CDI_DOMINATORS, gimple_bb (def_stmt), gimple_bb (stmt))) return NULL_TREE; temp = and_var_with_comparison (arg, invert, code2, op2a, op2b); if (!temp) return NULL_TREE; else if (!result) result = temp; else if (!same_bool_result_p (result, temp)) return NULL_TREE; } else return NULL_TREE; } return result; } default: break; } } return NULL_TREE; } /* Try to simplify the AND of two comparisons, specified by (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively. If this can be simplified to a single expression (without requiring introducing more SSA variables to hold intermediate values), return the resulting tree. Otherwise return NULL_TREE. If the result expression is non-null, it has boolean type. */ tree maybe_fold_and_comparisons (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { tree t = and_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b); if (t) return t; else return and_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b); } /* Helper function for or_comparisons_1: try to simplify the OR of the ssa variable VAR with the comparison specified by (OP2A CODE2 OP2B). If INVERT is true, invert the value of VAR before doing the OR. Return NULL_EXPR if we can't simplify this to a single expression. */ static tree or_var_with_comparison (tree var, bool invert, enum tree_code code2, tree op2a, tree op2b) { tree t; gimple *stmt = SSA_NAME_DEF_STMT (var); /* We can only deal with variables whose definitions are assignments. */ if (!is_gimple_assign (stmt)) return NULL_TREE; /* If we have an inverted comparison, apply DeMorgan's law and rewrite !var OR (op2a code2 op2b) => !(var AND !(op2a code2 op2b)) Then we only have to consider the simpler non-inverted cases. */ if (invert) t = and_var_with_comparison_1 (stmt, invert_tree_comparison (code2, false), op2a, op2b); else t = or_var_with_comparison_1 (stmt, code2, op2a, op2b); return canonicalize_bool (t, invert); } /* Try to simplify the OR of the ssa variable defined by the assignment STMT with the comparison specified by (OP2A CODE2 OP2B). Return NULL_EXPR if we can't simplify this to a single expression. */ static tree or_var_with_comparison_1 (gimple *stmt, enum tree_code code2, tree op2a, tree op2b) { tree var = gimple_assign_lhs (stmt); tree true_test_var = NULL_TREE; tree false_test_var = NULL_TREE; enum tree_code innercode = gimple_assign_rhs_code (stmt); /* Check for identities like (var OR (var != 0)) => true . */ if (TREE_CODE (op2a) == SSA_NAME && TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE) { if ((code2 == NE_EXPR && integer_zerop (op2b)) || (code2 == EQ_EXPR && integer_nonzerop (op2b))) { true_test_var = op2a; if (var == true_test_var) return var; } else if ((code2 == EQ_EXPR && integer_zerop (op2b)) || (code2 == NE_EXPR && integer_nonzerop (op2b))) { false_test_var = op2a; if (var == false_test_var) return boolean_true_node; } } /* If the definition is a comparison, recurse on it. */ if (TREE_CODE_CLASS (innercode) == tcc_comparison) { tree t = or_comparisons_1 (innercode, gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), code2, op2a, op2b); if (t) return t; } /* If the definition is an AND or OR expression, we may be able to simplify by reassociating. */ if (TREE_CODE (TREE_TYPE (var)) == BOOLEAN_TYPE && (innercode == BIT_AND_EXPR || innercode == BIT_IOR_EXPR)) { tree inner1 = gimple_assign_rhs1 (stmt); tree inner2 = gimple_assign_rhs2 (stmt); gimple *s; tree t; tree partial = NULL_TREE; bool is_or = (innercode == BIT_IOR_EXPR); /* Check for boolean identities that don't require recursive examination of inner1/inner2: inner1 OR (inner1 OR inner2) => inner1 OR inner2 => var inner1 OR (inner1 AND inner2) => inner1 !inner1 OR (inner1 OR inner2) => true !inner1 OR (inner1 AND inner2) => !inner1 OR inner2 */ if (inner1 == true_test_var) return (is_or ? var : inner1); else if (inner2 == true_test_var) return (is_or ? var : inner2); else if (inner1 == false_test_var) return (is_or ? boolean_true_node : or_var_with_comparison (inner2, false, code2, op2a, op2b)); else if (inner2 == false_test_var) return (is_or ? boolean_true_node : or_var_with_comparison (inner1, false, code2, op2a, op2b)); /* Next, redistribute/reassociate the OR across the inner tests. Compute the first partial result, (inner1 OR (op2a code op2b)) */ if (TREE_CODE (inner1) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner1)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the OR case, where we are reassociating: (inner1 OR inner2) OR (op2a code2 op2b) => (t OR inner2) If the partial result t is a constant, we win. Otherwise continue on to try reassociating with the other inner test. */ if (is_or) { if (integer_onep (t)) return boolean_true_node; else if (integer_zerop (t)) return inner2; } /* Handle the AND case, where we are redistributing: (inner1 AND inner2) OR (op2a code2 op2b) => (t AND (inner2 OR (op2a code op2b))) */ else if (integer_zerop (t)) return boolean_false_node; /* Save partial result for later. */ partial = t; } /* Compute the second partial result, (inner2 OR (op2a code op2b)) */ if (TREE_CODE (inner2) == SSA_NAME && is_gimple_assign (s = SSA_NAME_DEF_STMT (inner2)) && TREE_CODE_CLASS (gimple_assign_rhs_code (s)) == tcc_comparison && (t = maybe_fold_or_comparisons (gimple_assign_rhs_code (s), gimple_assign_rhs1 (s), gimple_assign_rhs2 (s), code2, op2a, op2b))) { /* Handle the OR case, where we are reassociating: (inner1 OR inner2) OR (op2a code2 op2b) => (inner1 OR t) => (t OR partial) */ if (is_or) { if (integer_zerop (t)) return inner1; else if (integer_onep (t)) return boolean_true_node; /* If both are the same, we can apply the identity (x OR x) == x. */ else if (partial && same_bool_result_p (t, partial)) return t; } /* Handle the AND case, where we are redistributing: (inner1 AND inner2) OR (op2a code2 op2b) => (t AND (inner1 OR (op2a code2 op2b))) => (t AND partial) */ else { if (integer_zerop (t)) return boolean_false_node; else if (partial) { /* We already got a simplification for the other operand to the redistributed AND expression. The interesting case is when at least one is true. Or, if both are the same, we can apply the identity (x AND x) == x. */ if (integer_onep (partial)) return t; else if (integer_onep (t)) return partial; else if (same_bool_result_p (t, partial)) return t; } } } } return NULL_TREE; } /* Try to simplify the OR of two comparisons defined by (OP1A CODE1 OP1B) and (OP2A CODE2 OP2B), respectively. If this can be done without constructing an intermediate value, return the resulting tree; otherwise NULL_TREE is returned. This function is deliberately asymmetric as it recurses on SSA_DEFs in the first comparison but not the second. */ static tree or_comparisons_1 (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { tree truth_type = truth_type_for (TREE_TYPE (op1a)); /* First check for ((x CODE1 y) OR (x CODE2 y)). */ if (operand_equal_p (op1a, op2a, 0) && operand_equal_p (op1b, op2b, 0)) { /* Result will be either NULL_TREE, or a combined comparison. */ tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ORIF_EXPR, code1, code2, truth_type, op1a, op1b); if (t) return t; } /* Likewise the swapped case of the above. */ if (operand_equal_p (op1a, op2b, 0) && operand_equal_p (op1b, op2a, 0)) { /* Result will be either NULL_TREE, or a combined comparison. */ tree t = combine_comparisons (UNKNOWN_LOCATION, TRUTH_ORIF_EXPR, code1, swap_tree_comparison (code2), truth_type, op1a, op1b); if (t) return t; } /* If both comparisons are of the same value against constants, we might be able to merge them. */ if (operand_equal_p (op1a, op2a, 0) && TREE_CODE (op1b) == INTEGER_CST && TREE_CODE (op2b) == INTEGER_CST) { int cmp = tree_int_cst_compare (op1b, op2b); /* If we have (op1a != op1b), we should either be able to return that or TRUE, depending on whether the constant op1b also satisfies the other comparison against op2b. */ if (code1 == NE_EXPR) { bool done = true; bool val; switch (code2) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp < 0); break; case GT_EXPR: val = (cmp > 0); break; case LE_EXPR: val = (cmp <= 0); break; case GE_EXPR: val = (cmp >= 0); break; default: done = false; } if (done) { if (val) return boolean_true_node; else return fold_build2 (code1, boolean_type_node, op1a, op1b); } } /* Likewise if the second comparison is a != comparison. */ else if (code2 == NE_EXPR) { bool done = true; bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp > 0); break; case GT_EXPR: val = (cmp < 0); break; case LE_EXPR: val = (cmp >= 0); break; case GE_EXPR: val = (cmp <= 0); break; default: done = false; } if (done) { if (val) return boolean_true_node; else return fold_build2 (code2, boolean_type_node, op2a, op2b); } } /* See if an equality test is redundant with the other comparison. */ else if (code1 == EQ_EXPR) { bool val; switch (code2) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp < 0); break; case GT_EXPR: val = (cmp > 0); break; case LE_EXPR: val = (cmp <= 0); break; case GE_EXPR: val = (cmp >= 0); break; default: val = false; } if (val) return fold_build2 (code2, boolean_type_node, op2a, op2b); } else if (code2 == EQ_EXPR) { bool val; switch (code1) { case EQ_EXPR: val = (cmp == 0); break; case NE_EXPR: val = (cmp != 0); break; case LT_EXPR: val = (cmp > 0); break; case GT_EXPR: val = (cmp < 0); break; case LE_EXPR: val = (cmp >= 0); break; case GE_EXPR: val = (cmp <= 0); break; default: val = false; } if (val) return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Chose the less restrictive of two < or <= comparisons. */ else if ((code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) { if ((cmp < 0) || (cmp == 0 && code1 == LT_EXPR)) return fold_build2 (code2, boolean_type_node, op2a, op2b); else return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Likewise chose the less restrictive of two > or >= comparisons. */ else if ((code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) { if ((cmp > 0) || (cmp == 0 && code1 == GT_EXPR)) return fold_build2 (code2, boolean_type_node, op2a, op2b); else return fold_build2 (code1, boolean_type_node, op1a, op1b); } /* Check for singleton ranges. */ else if (cmp == 0 && ((code1 == LT_EXPR && code2 == GT_EXPR) || (code1 == GT_EXPR && code2 == LT_EXPR))) return fold_build2 (NE_EXPR, boolean_type_node, op1a, op2b); /* Check for less/greater pairs that don't restrict the range at all. */ else if (cmp >= 0 && (code1 == LT_EXPR || code1 == LE_EXPR) && (code2 == GT_EXPR || code2 == GE_EXPR)) return boolean_true_node; else if (cmp <= 0 && (code1 == GT_EXPR || code1 == GE_EXPR) && (code2 == LT_EXPR || code2 == LE_EXPR)) return boolean_true_node; } /* Perhaps the first comparison is (NAME != 0) or (NAME == 1) where NAME's definition is a truth value. See if there are any simplifications that can be done against the NAME's definition. */ if (TREE_CODE (op1a) == SSA_NAME && (code1 == NE_EXPR || code1 == EQ_EXPR) && (integer_zerop (op1b) || integer_onep (op1b))) { bool invert = ((code1 == EQ_EXPR && integer_zerop (op1b)) || (code1 == NE_EXPR && integer_onep (op1b))); gimple *stmt = SSA_NAME_DEF_STMT (op1a); switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: /* Try to simplify by copy-propagating the definition. */ return or_var_with_comparison (op1a, invert, code2, op2a, op2b); case GIMPLE_PHI: /* If every argument to the PHI produces the same result when ORed with the second comparison, we win. Do not do this unless the type is bool since we need a bool result here anyway. */ if (TREE_CODE (TREE_TYPE (op1a)) == BOOLEAN_TYPE) { tree result = NULL_TREE; unsigned i; for (i = 0; i < gimple_phi_num_args (stmt); i++) { tree arg = gimple_phi_arg_def (stmt, i); /* If this PHI has itself as an argument, ignore it. If all the other args produce the same result, we're still OK. */ if (arg == gimple_phi_result (stmt)) continue; else if (TREE_CODE (arg) == INTEGER_CST) { if (invert ? integer_zerop (arg) : integer_nonzerop (arg)) { if (!result) result = boolean_true_node; else if (!integer_onep (result)) return NULL_TREE; } else if (!result) result = fold_build2 (code2, boolean_type_node, op2a, op2b); else if (!same_bool_comparison_p (result, code2, op2a, op2b)) return NULL_TREE; } else if (TREE_CODE (arg) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (arg)) { tree temp; gimple *def_stmt = SSA_NAME_DEF_STMT (arg); /* In simple cases we can look through PHI nodes, but we have to be careful with loops. See PR49073. */ if (! dom_info_available_p (CDI_DOMINATORS) || gimple_bb (def_stmt) == gimple_bb (stmt) || dominated_by_p (CDI_DOMINATORS, gimple_bb (def_stmt), gimple_bb (stmt))) return NULL_TREE; temp = or_var_with_comparison (arg, invert, code2, op2a, op2b); if (!temp) return NULL_TREE; else if (!result) result = temp; else if (!same_bool_result_p (result, temp)) return NULL_TREE; } else return NULL_TREE; } return result; } default: break; } } return NULL_TREE; } /* Try to simplify the OR of two comparisons, specified by (OP1A CODE1 OP1B) and (OP2B CODE2 OP2B), respectively. If this can be simplified to a single expression (without requiring introducing more SSA variables to hold intermediate values), return the resulting tree. Otherwise return NULL_TREE. If the result expression is non-null, it has boolean type. */ tree maybe_fold_or_comparisons (enum tree_code code1, tree op1a, tree op1b, enum tree_code code2, tree op2a, tree op2b) { tree t = or_comparisons_1 (code1, op1a, op1b, code2, op2a, op2b); if (t) return t; else return or_comparisons_1 (code2, op2a, op2b, code1, op1a, op1b); } /* Fold STMT to a constant using VALUEIZE to valueize SSA names. Either NULL_TREE, a simplified but non-constant or a constant is returned. ??? This should go into a gimple-fold-inline.h file to be eventually privatized with the single valueize function used in the various TUs to avoid the indirect function call overhead. */ tree gimple_fold_stmt_to_constant_1 (gimple *stmt, tree (*valueize) (tree), tree (*gvalueize) (tree)) { code_helper rcode; tree ops[3] = {}; /* ??? The SSA propagators do not correctly deal with following SSA use-def edges if there are intermediate VARYING defs. For this reason do not follow SSA edges here even though SCCVN can technically just deal fine with that. */ if (gimple_simplify (stmt, &rcode, ops, NULL, gvalueize, valueize)) { tree res = NULL_TREE; if (gimple_simplified_result_is_gimple_val (rcode, ops)) res = ops[0]; else if (mprts_hook) res = mprts_hook (rcode, gimple_expr_type (stmt), ops); if (res) { if (dump_file && dump_flags & TDF_DETAILS) { fprintf (dump_file, "Match-and-simplified "); print_gimple_expr (dump_file, stmt, 0, TDF_SLIM); fprintf (dump_file, " to "); print_generic_expr (dump_file, res, 0); fprintf (dump_file, "\n"); } return res; } } location_t loc = gimple_location (stmt); switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: { enum tree_code subcode = gimple_assign_rhs_code (stmt); switch (get_gimple_rhs_class (subcode)) { case GIMPLE_SINGLE_RHS: { tree rhs = gimple_assign_rhs1 (stmt); enum tree_code_class kind = TREE_CODE_CLASS (subcode); if (TREE_CODE (rhs) == SSA_NAME) { /* If the RHS is an SSA_NAME, return its known constant value, if any. */ return (*valueize) (rhs); } /* Handle propagating invariant addresses into address operations. */ else if (TREE_CODE (rhs) == ADDR_EXPR && !is_gimple_min_invariant (rhs)) { HOST_WIDE_INT offset = 0; tree base; base = get_addr_base_and_unit_offset_1 (TREE_OPERAND (rhs, 0), &offset, valueize); if (base && (CONSTANT_CLASS_P (base) || decl_address_invariant_p (base))) return build_invariant_address (TREE_TYPE (rhs), base, offset); } else if (TREE_CODE (rhs) == CONSTRUCTOR && TREE_CODE (TREE_TYPE (rhs)) == VECTOR_TYPE && (CONSTRUCTOR_NELTS (rhs) == TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs)))) { unsigned i; tree val, *vec; vec = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (TREE_TYPE (rhs))); FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (rhs), i, val) { val = (*valueize) (val); if (TREE_CODE (val) == INTEGER_CST || TREE_CODE (val) == REAL_CST || TREE_CODE (val) == FIXED_CST) vec[i] = val; else return NULL_TREE; } return build_vector (TREE_TYPE (rhs), vec); } if (subcode == OBJ_TYPE_REF) { tree val = (*valueize) (OBJ_TYPE_REF_EXPR (rhs)); /* If callee is constant, we can fold away the wrapper. */ if (is_gimple_min_invariant (val)) return val; } if (kind == tcc_reference) { if ((TREE_CODE (rhs) == VIEW_CONVERT_EXPR || TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (rhs) == IMAGPART_EXPR) && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) { tree val = (*valueize) (TREE_OPERAND (rhs, 0)); return fold_unary_loc (EXPR_LOCATION (rhs), TREE_CODE (rhs), TREE_TYPE (rhs), val); } else if (TREE_CODE (rhs) == BIT_FIELD_REF && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) { tree val = (*valueize) (TREE_OPERAND (rhs, 0)); return fold_ternary_loc (EXPR_LOCATION (rhs), TREE_CODE (rhs), TREE_TYPE (rhs), val, TREE_OPERAND (rhs, 1), TREE_OPERAND (rhs, 2)); } else if (TREE_CODE (rhs) == MEM_REF && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME) { tree val = (*valueize) (TREE_OPERAND (rhs, 0)); if (TREE_CODE (val) == ADDR_EXPR && is_gimple_min_invariant (val)) { tree tem = fold_build2 (MEM_REF, TREE_TYPE (rhs), unshare_expr (val), TREE_OPERAND (rhs, 1)); if (tem) rhs = tem; } } return fold_const_aggregate_ref_1 (rhs, valueize); } else if (kind == tcc_declaration) return get_symbol_constant_value (rhs); return rhs; } case GIMPLE_UNARY_RHS: return NULL_TREE; case GIMPLE_BINARY_RHS: /* Translate &x + CST into an invariant form suitable for further propagation. */ if (subcode == POINTER_PLUS_EXPR) { tree op0 = (*valueize) (gimple_assign_rhs1 (stmt)); tree op1 = (*valueize) (gimple_assign_rhs2 (stmt)); if (TREE_CODE (op0) == ADDR_EXPR && TREE_CODE (op1) == INTEGER_CST) { tree off = fold_convert (ptr_type_node, op1); return build_fold_addr_expr_loc (loc, fold_build2 (MEM_REF, TREE_TYPE (TREE_TYPE (op0)), unshare_expr (op0), off)); } } /* Canonicalize bool != 0 and bool == 0 appearing after valueization. While gimple_simplify handles this it can get confused by the ~X == 1 -> X == 0 transform which we cant reduce to a SSA name or a constant (and we have no way to tell gimple_simplify to not consider those transforms in the first place). */ else if (subcode == EQ_EXPR || subcode == NE_EXPR) { tree lhs = gimple_assign_lhs (stmt); tree op0 = gimple_assign_rhs1 (stmt); if (useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0))) { tree op1 = (*valueize) (gimple_assign_rhs2 (stmt)); op0 = (*valueize) (op0); if (TREE_CODE (op0) == INTEGER_CST) std::swap (op0, op1); if (TREE_CODE (op1) == INTEGER_CST && ((subcode == NE_EXPR && integer_zerop (op1)) || (subcode == EQ_EXPR && integer_onep (op1)))) return op0; } } return NULL_TREE; case GIMPLE_TERNARY_RHS: { /* Handle ternary operators that can appear in GIMPLE form. */ tree op0 = (*valueize) (gimple_assign_rhs1 (stmt)); tree op1 = (*valueize) (gimple_assign_rhs2 (stmt)); tree op2 = (*valueize) (gimple_assign_rhs3 (stmt)); return fold_ternary_loc (loc, subcode, gimple_expr_type (stmt), op0, op1, op2); } default: gcc_unreachable (); } } case GIMPLE_CALL: { tree fn; gcall *call_stmt = as_a <gcall *> (stmt); if (gimple_call_internal_p (stmt)) { enum tree_code subcode = ERROR_MARK; switch (gimple_call_internal_fn (stmt)) { case IFN_UBSAN_CHECK_ADD: subcode = PLUS_EXPR; break; case IFN_UBSAN_CHECK_SUB: subcode = MINUS_EXPR; break; case IFN_UBSAN_CHECK_MUL: subcode = MULT_EXPR; break; case IFN_BUILTIN_EXPECT: { tree arg0 = gimple_call_arg (stmt, 0); tree op0 = (*valueize) (arg0); if (TREE_CODE (op0) == INTEGER_CST) return op0; return NULL_TREE; } default: return NULL_TREE; } tree arg0 = gimple_call_arg (stmt, 0); tree arg1 = gimple_call_arg (stmt, 1); tree op0 = (*valueize) (arg0); tree op1 = (*valueize) (arg1); if (TREE_CODE (op0) != INTEGER_CST || TREE_CODE (op1) != INTEGER_CST) { switch (subcode) { case MULT_EXPR: /* x * 0 = 0 * x = 0 without overflow. */ if (integer_zerop (op0) || integer_zerop (op1)) return build_zero_cst (TREE_TYPE (arg0)); break; case MINUS_EXPR: /* y - y = 0 without overflow. */ if (operand_equal_p (op0, op1, 0)) return build_zero_cst (TREE_TYPE (arg0)); break; default: break; } } tree res = fold_binary_loc (loc, subcode, TREE_TYPE (arg0), op0, op1); if (res && TREE_CODE (res) == INTEGER_CST && !TREE_OVERFLOW (res)) return res; return NULL_TREE; } fn = (*valueize) (gimple_call_fn (stmt)); if (TREE_CODE (fn) == ADDR_EXPR && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL && DECL_BUILT_IN (TREE_OPERAND (fn, 0)) && gimple_builtin_call_types_compatible_p (stmt, TREE_OPERAND (fn, 0))) { tree *args = XALLOCAVEC (tree, gimple_call_num_args (stmt)); tree retval; unsigned i; for (i = 0; i < gimple_call_num_args (stmt); ++i) args[i] = (*valueize) (gimple_call_arg (stmt, i)); retval = fold_builtin_call_array (loc, gimple_call_return_type (call_stmt), fn, gimple_call_num_args (stmt), args); if (retval) { /* fold_call_expr wraps the result inside a NOP_EXPR. */ STRIP_NOPS (retval); retval = fold_convert (gimple_call_return_type (call_stmt), retval); } return retval; } return NULL_TREE; } default: return NULL_TREE; } } /* Fold STMT to a constant using VALUEIZE to valueize SSA names. Returns NULL_TREE if folding to a constant is not possible, otherwise returns a constant according to is_gimple_min_invariant. */ tree gimple_fold_stmt_to_constant (gimple *stmt, tree (*valueize) (tree)) { tree res = gimple_fold_stmt_to_constant_1 (stmt, valueize); if (res && is_gimple_min_invariant (res)) return res; return NULL_TREE; } /* The following set of functions are supposed to fold references using their constant initializers. */ /* See if we can find constructor defining value of BASE. When we know the consructor with constant offset (such as base is array[40] and we do know constructor of array), then BIT_OFFSET is adjusted accordingly. As a special case, return error_mark_node when constructor is not explicitly available, but it is known to be zero such as 'static const int a;'. */ static tree get_base_constructor (tree base, HOST_WIDE_INT *bit_offset, tree (*valueize)(tree)) { HOST_WIDE_INT bit_offset2, size, max_size; bool reverse; if (TREE_CODE (base) == MEM_REF) { if (!integer_zerop (TREE_OPERAND (base, 1))) { if (!tree_fits_shwi_p (TREE_OPERAND (base, 1))) return NULL_TREE; *bit_offset += (mem_ref_offset (base).to_short_addr () * BITS_PER_UNIT); } if (valueize && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME) base = valueize (TREE_OPERAND (base, 0)); if (!base || TREE_CODE (base) != ADDR_EXPR) return NULL_TREE; base = TREE_OPERAND (base, 0); } else if (valueize && TREE_CODE (base) == SSA_NAME) base = valueize (base); /* Get a CONSTRUCTOR. If BASE is a VAR_DECL, get its DECL_INITIAL. If BASE is a nested reference into another ARRAY_REF or COMPONENT_REF, make a recursive call to resolve the inner reference. */ switch (TREE_CODE (base)) { case VAR_DECL: case CONST_DECL: { tree init = ctor_for_folding (base); /* Our semantic is exact opposite of ctor_for_folding; NULL means unknown, while error_mark_node is 0. */ if (init == error_mark_node) return NULL_TREE; if (!init) return error_mark_node; return init; } case VIEW_CONVERT_EXPR: return get_base_constructor (TREE_OPERAND (base, 0), bit_offset, valueize); case ARRAY_REF: case COMPONENT_REF: base = get_ref_base_and_extent (base, &bit_offset2, &size, &max_size, &reverse); if (max_size == -1 || size != max_size) return NULL_TREE; *bit_offset += bit_offset2; return get_base_constructor (base, bit_offset, valueize); case CONSTRUCTOR: return base; default: if (CONSTANT_CLASS_P (base)) return base; return NULL_TREE; } } /* CTOR is CONSTRUCTOR of an array type. Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ static tree fold_array_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, tree from_decl) { offset_int low_bound; offset_int elt_size; offset_int access_index; tree domain_type = NULL_TREE; HOST_WIDE_INT inner_offset; /* Compute low bound and elt size. */ if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE) domain_type = TYPE_DOMAIN (TREE_TYPE (ctor)); if (domain_type && TYPE_MIN_VALUE (domain_type)) { /* Static constructors for variably sized objects makes no sense. */ if (TREE_CODE (TYPE_MIN_VALUE (domain_type)) != INTEGER_CST) return NULL_TREE; low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type)); } else low_bound = 0; /* Static constructors for variably sized objects makes no sense. */ if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor)))) != INTEGER_CST) return NULL_TREE; elt_size = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (ctor)))); /* We can handle only constantly sized accesses that are known to not be larger than size of array element. */ if (!TYPE_SIZE_UNIT (type) || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST || elt_size < wi::to_offset (TYPE_SIZE_UNIT (type)) || elt_size == 0) return NULL_TREE; /* Compute the array index we look for. */ access_index = wi::udiv_trunc (offset_int (offset / BITS_PER_UNIT), elt_size); access_index += low_bound; /* And offset within the access. */ inner_offset = offset % (elt_size.to_uhwi () * BITS_PER_UNIT); /* See if the array field is large enough to span whole access. We do not care to fold accesses spanning multiple array indexes. */ if (inner_offset + size > elt_size.to_uhwi () * BITS_PER_UNIT) return NULL_TREE; if (tree val = get_array_ctor_element_at_index (ctor, access_index)) return fold_ctor_reference (type, val, inner_offset, size, from_decl); /* When memory is not explicitely mentioned in constructor, it is 0 (or out of range). */ return build_zero_cst (type); } /* CTOR is CONSTRUCTOR of an aggregate or vector. Fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ static tree fold_nonarray_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, tree from_decl) { unsigned HOST_WIDE_INT cnt; tree cfield, cval; FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval) { tree byte_offset = DECL_FIELD_OFFSET (cfield); tree field_offset = DECL_FIELD_BIT_OFFSET (cfield); tree field_size = DECL_SIZE (cfield); offset_int bitoffset; offset_int bitoffset_end, access_end; /* Variable sized objects in static constructors makes no sense, but field_size can be NULL for flexible array members. */ gcc_assert (TREE_CODE (field_offset) == INTEGER_CST && TREE_CODE (byte_offset) == INTEGER_CST && (field_size != NULL_TREE ? TREE_CODE (field_size) == INTEGER_CST : TREE_CODE (TREE_TYPE (cfield)) == ARRAY_TYPE)); /* Compute bit offset of the field. */ bitoffset = (wi::to_offset (field_offset) + (wi::to_offset (byte_offset) << LOG2_BITS_PER_UNIT)); /* Compute bit offset where the field ends. */ if (field_size != NULL_TREE) bitoffset_end = bitoffset + wi::to_offset (field_size); else bitoffset_end = 0; access_end = offset_int (offset) + size; /* Is there any overlap between [OFFSET, OFFSET+SIZE) and [BITOFFSET, BITOFFSET_END)? */ if (wi::cmps (access_end, bitoffset) > 0 && (field_size == NULL_TREE || wi::lts_p (offset, bitoffset_end))) { offset_int inner_offset = offset_int (offset) - bitoffset; /* We do have overlap. Now see if field is large enough to cover the access. Give up for accesses spanning multiple fields. */ if (wi::cmps (access_end, bitoffset_end) > 0) return NULL_TREE; if (offset < bitoffset) return NULL_TREE; return fold_ctor_reference (type, cval, inner_offset.to_uhwi (), size, from_decl); } } /* When memory is not explicitely mentioned in constructor, it is 0. */ return build_zero_cst (type); } /* CTOR is value initializing memory, fold reference of type TYPE and size SIZE to the memory at bit OFFSET. */ tree fold_ctor_reference (tree type, tree ctor, unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size, tree from_decl) { tree ret; /* We found the field with exact match. */ if (useless_type_conversion_p (type, TREE_TYPE (ctor)) && !offset) return canonicalize_constructor_val (unshare_expr (ctor), from_decl); /* We are at the end of walk, see if we can view convert the result. */ if (!AGGREGATE_TYPE_P (TREE_TYPE (ctor)) && !offset /* VIEW_CONVERT_EXPR is defined only for matching sizes. */ && !compare_tree_int (TYPE_SIZE (type), size) && !compare_tree_int (TYPE_SIZE (TREE_TYPE (ctor)), size)) { ret = canonicalize_constructor_val (unshare_expr (ctor), from_decl); ret = fold_unary (VIEW_CONVERT_EXPR, type, ret); if (ret) STRIP_USELESS_TYPE_CONVERSION (ret); return ret; } /* For constants and byte-aligned/sized reads try to go through native_encode/interpret. */ if (CONSTANT_CLASS_P (ctor) && BITS_PER_UNIT == 8 && offset % BITS_PER_UNIT == 0 && size % BITS_PER_UNIT == 0 && size <= MAX_BITSIZE_MODE_ANY_MODE) { unsigned char buf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT]; int len = native_encode_expr (ctor, buf, size / BITS_PER_UNIT, offset / BITS_PER_UNIT); if (len > 0) return native_interpret_expr (type, buf, len); } if (TREE_CODE (ctor) == CONSTRUCTOR) { if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE || TREE_CODE (TREE_TYPE (ctor)) == VECTOR_TYPE) return fold_array_ctor_reference (type, ctor, offset, size, from_decl); else return fold_nonarray_ctor_reference (type, ctor, offset, size, from_decl); } return NULL_TREE; } /* Return the tree representing the element referenced by T if T is an ARRAY_REF or COMPONENT_REF into constant aggregates valuezing SSA names using VALUEIZE. Return NULL_TREE otherwise. */ tree fold_const_aggregate_ref_1 (tree t, tree (*valueize) (tree)) { tree ctor, idx, base; HOST_WIDE_INT offset, size, max_size; tree tem; bool reverse; if (TREE_THIS_VOLATILE (t)) return NULL_TREE; if (DECL_P (t)) return get_symbol_constant_value (t); tem = fold_read_from_constant_string (t); if (tem) return tem; switch (TREE_CODE (t)) { case ARRAY_REF: case ARRAY_RANGE_REF: /* Constant indexes are handled well by get_base_constructor. Only special case variable offsets. FIXME: This code can't handle nested references with variable indexes (they will be handled only by iteration of ccp). Perhaps we can bring get_ref_base_and_extent here and make it use a valueize callback. */ if (TREE_CODE (TREE_OPERAND (t, 1)) == SSA_NAME && valueize && (idx = (*valueize) (TREE_OPERAND (t, 1))) && TREE_CODE (idx) == INTEGER_CST) { tree low_bound, unit_size; /* If the resulting bit-offset is constant, track it. */ if ((low_bound = array_ref_low_bound (t), TREE_CODE (low_bound) == INTEGER_CST) && (unit_size = array_ref_element_size (t), tree_fits_uhwi_p (unit_size))) { offset_int woffset = wi::sext (wi::to_offset (idx) - wi::to_offset (low_bound), TYPE_PRECISION (TREE_TYPE (idx))); if (wi::fits_shwi_p (woffset)) { offset = woffset.to_shwi (); /* TODO: This code seems wrong, multiply then check to see if it fits. */ offset *= tree_to_uhwi (unit_size); offset *= BITS_PER_UNIT; base = TREE_OPERAND (t, 0); ctor = get_base_constructor (base, &offset, valueize); /* Empty constructor. Always fold to 0. */ if (ctor == error_mark_node) return build_zero_cst (TREE_TYPE (t)); /* Out of bound array access. Value is undefined, but don't fold. */ if (offset < 0) return NULL_TREE; /* We can not determine ctor. */ if (!ctor) return NULL_TREE; return fold_ctor_reference (TREE_TYPE (t), ctor, offset, tree_to_uhwi (unit_size) * BITS_PER_UNIT, base); } } } /* Fallthru. */ case COMPONENT_REF: case BIT_FIELD_REF: case TARGET_MEM_REF: case MEM_REF: base = get_ref_base_and_extent (t, &offset, &size, &max_size, &reverse); ctor = get_base_constructor (base, &offset, valueize); /* Empty constructor. Always fold to 0. */ if (ctor == error_mark_node) return build_zero_cst (TREE_TYPE (t)); /* We do not know precise address. */ if (max_size == -1 || max_size != size) return NULL_TREE; /* We can not determine ctor. */ if (!ctor) return NULL_TREE; /* Out of bound array access. Value is undefined, but don't fold. */ if (offset < 0) return NULL_TREE; return fold_ctor_reference (TREE_TYPE (t), ctor, offset, size, base); case REALPART_EXPR: case IMAGPART_EXPR: { tree c = fold_const_aggregate_ref_1 (TREE_OPERAND (t, 0), valueize); if (c && TREE_CODE (c) == COMPLEX_CST) return fold_build1_loc (EXPR_LOCATION (t), TREE_CODE (t), TREE_TYPE (t), c); break; } default: break; } return NULL_TREE; } tree fold_const_aggregate_ref (tree t) { return fold_const_aggregate_ref_1 (t, NULL); } /* Lookup virtual method with index TOKEN in a virtual table V at OFFSET. Set CAN_REFER if non-NULL to false if method is not referable or if the virtual table is ill-formed (such as rewriten by non-C++ produced symbol). Otherwise just return NULL in that calse. */ tree gimple_get_virt_method_for_vtable (HOST_WIDE_INT token, tree v, unsigned HOST_WIDE_INT offset, bool *can_refer) { tree vtable = v, init, fn; unsigned HOST_WIDE_INT size; unsigned HOST_WIDE_INT elt_size, access_index; tree domain_type; if (can_refer) *can_refer = true; /* First of all double check we have virtual table. */ if (!VAR_P (v) || !DECL_VIRTUAL_P (v)) { /* Pass down that we lost track of the target. */ if (can_refer) *can_refer = false; return NULL_TREE; } init = ctor_for_folding (v); /* The virtual tables should always be born with constructors and we always should assume that they are avaialble for folding. At the moment we do not stream them in all cases, but it should never happen that ctor seem unreachable. */ gcc_assert (init); if (init == error_mark_node) { gcc_assert (in_lto_p); /* Pass down that we lost track of the target. */ if (can_refer) *can_refer = false; return NULL_TREE; } gcc_checking_assert (TREE_CODE (TREE_TYPE (v)) == ARRAY_TYPE); size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (v)))); offset *= BITS_PER_UNIT; offset += token * size; /* Lookup the value in the constructor that is assumed to be array. This is equivalent to fn = fold_ctor_reference (TREE_TYPE (TREE_TYPE (v)), init, offset, size, NULL); but in a constant time. We expect that frontend produced a simple array without indexed initializers. */ gcc_checking_assert (TREE_CODE (TREE_TYPE (init)) == ARRAY_TYPE); domain_type = TYPE_DOMAIN (TREE_TYPE (init)); gcc_checking_assert (integer_zerop (TYPE_MIN_VALUE (domain_type))); elt_size = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (init)))); access_index = offset / BITS_PER_UNIT / elt_size; gcc_checking_assert (offset % (elt_size * BITS_PER_UNIT) == 0); /* This code makes an assumption that there are no indexed fileds produced by C++ FE, so we can directly index the array. */ if (access_index < CONSTRUCTOR_NELTS (init)) { fn = CONSTRUCTOR_ELT (init, access_index)->value; gcc_checking_assert (!CONSTRUCTOR_ELT (init, access_index)->index); STRIP_NOPS (fn); } else fn = NULL; /* For type inconsistent program we may end up looking up virtual method in virtual table that does not contain TOKEN entries. We may overrun the virtual table and pick up a constant or RTTI info pointer. In any case the call is undefined. */ if (!fn || (TREE_CODE (fn) != ADDR_EXPR && TREE_CODE (fn) != FDESC_EXPR) || TREE_CODE (TREE_OPERAND (fn, 0)) != FUNCTION_DECL) fn = builtin_decl_implicit (BUILT_IN_UNREACHABLE); else { fn = TREE_OPERAND (fn, 0); /* When cgraph node is missing and function is not public, we cannot devirtualize. This can happen in WHOPR when the actual method ends up in other partition, because we found devirtualization possibility too late. */ if (!can_refer_decl_in_current_unit_p (fn, vtable)) { if (can_refer) { *can_refer = false; return fn; } return NULL_TREE; } } /* Make sure we create a cgraph node for functions we'll reference. They can be non-existent if the reference comes from an entry of an external vtable for example. */ cgraph_node::get_create (fn); return fn; } /* Return a declaration of a function which an OBJ_TYPE_REF references. TOKEN is integer form of OBJ_TYPE_REF_TOKEN of the reference expression. KNOWN_BINFO carries the binfo describing the true type of OBJ_TYPE_REF_OBJECT(REF). Set CAN_REFER if non-NULL to false if method is not referable or if the virtual table is ill-formed (such as rewriten by non-C++ produced symbol). Otherwise just return NULL in that calse. */ tree gimple_get_virt_method_for_binfo (HOST_WIDE_INT token, tree known_binfo, bool *can_refer) { unsigned HOST_WIDE_INT offset; tree v; v = BINFO_VTABLE (known_binfo); /* If there is no virtual methods table, leave the OBJ_TYPE_REF alone. */ if (!v) return NULL_TREE; if (!vtable_pointer_value_to_vtable (v, &v, &offset)) { if (can_refer) *can_refer = false; return NULL_TREE; } return gimple_get_virt_method_for_vtable (token, v, offset, can_refer); } /* Given a pointer value OP0, return a simplified version of an indirection through OP0, or NULL_TREE if no simplification is possible. Note that the resulting type may be different from the type pointed to in the sense that it is still compatible from the langhooks point of view. */ tree gimple_fold_indirect_ref (tree t) { tree ptype = TREE_TYPE (t), type = TREE_TYPE (ptype); tree sub = t; tree subtype; STRIP_NOPS (sub); subtype = TREE_TYPE (sub); if (!POINTER_TYPE_P (subtype)) return NULL_TREE; if (TREE_CODE (sub) == ADDR_EXPR) { tree op = TREE_OPERAND (sub, 0); tree optype = TREE_TYPE (op); /* *&p => p */ if (useless_type_conversion_p (type, optype)) return op; /* *(foo *)&fooarray => fooarray[0] */ if (TREE_CODE (optype) == ARRAY_TYPE && TREE_CODE (TYPE_SIZE (TREE_TYPE (optype))) == INTEGER_CST && useless_type_conversion_p (type, TREE_TYPE (optype))) { tree type_domain = TYPE_DOMAIN (optype); tree min_val = size_zero_node; if (type_domain && TYPE_MIN_VALUE (type_domain)) min_val = TYPE_MIN_VALUE (type_domain); if (TREE_CODE (min_val) == INTEGER_CST) return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE); } /* *(foo *)&complexfoo => __real__ complexfoo */ else if (TREE_CODE (optype) == COMPLEX_TYPE && useless_type_conversion_p (type, TREE_TYPE (optype))) return fold_build1 (REALPART_EXPR, type, op); /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */ else if (TREE_CODE (optype) == VECTOR_TYPE && useless_type_conversion_p (type, TREE_TYPE (optype))) { tree part_width = TYPE_SIZE (type); tree index = bitsize_int (0); return fold_build3 (BIT_FIELD_REF, type, op, part_width, index); } } /* *(p + CST) -> ... */ if (TREE_CODE (sub) == POINTER_PLUS_EXPR && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST) { tree addr = TREE_OPERAND (sub, 0); tree off = TREE_OPERAND (sub, 1); tree addrtype; STRIP_NOPS (addr); addrtype = TREE_TYPE (addr); /* ((foo*)&vectorfoo)[1] -> BIT_FIELD_REF<vectorfoo,...> */ if (TREE_CODE (addr) == ADDR_EXPR && TREE_CODE (TREE_TYPE (addrtype)) == VECTOR_TYPE && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype))) && tree_fits_uhwi_p (off)) { unsigned HOST_WIDE_INT offset = tree_to_uhwi (off); tree part_width = TYPE_SIZE (type); unsigned HOST_WIDE_INT part_widthi = tree_to_shwi (part_width) / BITS_PER_UNIT; unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT; tree index = bitsize_int (indexi); if (offset / part_widthi < TYPE_VECTOR_SUBPARTS (TREE_TYPE (addrtype))) return fold_build3 (BIT_FIELD_REF, type, TREE_OPERAND (addr, 0), part_width, index); } /* ((foo*)&complexfoo)[1] -> __imag__ complexfoo */ if (TREE_CODE (addr) == ADDR_EXPR && TREE_CODE (TREE_TYPE (addrtype)) == COMPLEX_TYPE && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (addrtype)))) { tree size = TYPE_SIZE_UNIT (type); if (tree_int_cst_equal (size, off)) return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (addr, 0)); } /* *(p + CST) -> MEM_REF <p, CST>. */ if (TREE_CODE (addr) != ADDR_EXPR || DECL_P (TREE_OPERAND (addr, 0))) return fold_build2 (MEM_REF, type, addr, wide_int_to_tree (ptype, off)); } /* *(foo *)fooarrptr => (*fooarrptr)[0] */ if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE && TREE_CODE (TYPE_SIZE (TREE_TYPE (TREE_TYPE (subtype)))) == INTEGER_CST && useless_type_conversion_p (type, TREE_TYPE (TREE_TYPE (subtype)))) { tree type_domain; tree min_val = size_zero_node; tree osub = sub; sub = gimple_fold_indirect_ref (sub); if (! sub) sub = build1 (INDIRECT_REF, TREE_TYPE (subtype), osub); type_domain = TYPE_DOMAIN (TREE_TYPE (sub)); if (type_domain && TYPE_MIN_VALUE (type_domain)) min_val = TYPE_MIN_VALUE (type_domain); if (TREE_CODE (min_val) == INTEGER_CST) return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE); } return NULL_TREE; } /* Return true if CODE is an operation that when operating on signed integer types involves undefined behavior on overflow and the operation can be expressed with unsigned arithmetic. */ bool arith_code_with_undefined_signed_overflow (tree_code code) { switch (code) { case PLUS_EXPR: case MINUS_EXPR: case MULT_EXPR: case NEGATE_EXPR: case POINTER_PLUS_EXPR: return true; default: return false; } } /* Rewrite STMT, an assignment with a signed integer or pointer arithmetic operation that can be transformed to unsigned arithmetic by converting its operand, carrying out the operation in the corresponding unsigned type and converting the result back to the original type. Returns a sequence of statements that replace STMT and also contain a modified form of STMT itself. */ gimple_seq rewrite_to_defined_overflow (gimple *stmt) { if (dump_file && (dump_flags & TDF_DETAILS)) { fprintf (dump_file, "rewriting stmt with undefined signed " "overflow "); print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); } tree lhs = gimple_assign_lhs (stmt); tree type = unsigned_type_for (TREE_TYPE (lhs)); gimple_seq stmts = NULL; for (unsigned i = 1; i < gimple_num_ops (stmt); ++i) { tree op = gimple_op (stmt, i); op = gimple_convert (&stmts, type, op); gimple_set_op (stmt, i, op); } gimple_assign_set_lhs (stmt, make_ssa_name (type, stmt)); if (gimple_assign_rhs_code (stmt) == POINTER_PLUS_EXPR) gimple_assign_set_rhs_code (stmt, PLUS_EXPR); gimple_seq_add_stmt (&stmts, stmt); gimple *cvt = gimple_build_assign (lhs, NOP_EXPR, gimple_assign_lhs (stmt)); gimple_seq_add_stmt (&stmts, cvt); return stmts; } /* The valueization hook we use for the gimple_build API simplification. This makes us match fold_buildN behavior by only combining with statements in the sequence(s) we are currently building. */ static tree gimple_build_valueize (tree op) { if (gimple_bb (SSA_NAME_DEF_STMT (op)) == NULL) return op; return NULL_TREE; } /* Build the expression CODE OP0 of type TYPE with location LOC, simplifying it first if possible. Returns the built expression value and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum tree_code code, tree type, tree op0) { tree res = gimple_simplify (code, type, op0, seq, gimple_build_valueize); if (!res) { res = create_tmp_reg_or_ssa_name (type); gimple *stmt; if (code == REALPART_EXPR || code == IMAGPART_EXPR || code == VIEW_CONVERT_EXPR) stmt = gimple_build_assign (res, code, build1 (code, type, op0)); else stmt = gimple_build_assign (res, code, op0); gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the expression OP0 CODE OP1 of type TYPE with location LOC, simplifying it first if possible. Returns the built expression value and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum tree_code code, tree type, tree op0, tree op1) { tree res = gimple_simplify (code, type, op0, op1, seq, gimple_build_valueize); if (!res) { res = create_tmp_reg_or_ssa_name (type); gimple *stmt = gimple_build_assign (res, code, op0, op1); gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the expression (CODE OP0 OP1 OP2) of type TYPE with location LOC, simplifying it first if possible. Returns the built expression value and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum tree_code code, tree type, tree op0, tree op1, tree op2) { tree res = gimple_simplify (code, type, op0, op1, op2, seq, gimple_build_valueize); if (!res) { res = create_tmp_reg_or_ssa_name (type); gimple *stmt; if (code == BIT_FIELD_REF) stmt = gimple_build_assign (res, code, build3 (code, type, op0, op1, op2)); else stmt = gimple_build_assign (res, code, op0, op1, op2); gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the call FN (ARG0) with a result of type TYPE (or no result if TYPE is void) with location LOC, simplifying it first if possible. Returns the built expression value (or NULL_TREE if TYPE is void) and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum built_in_function fn, tree type, tree arg0) { tree res = gimple_simplify (fn, type, arg0, seq, gimple_build_valueize); if (!res) { tree decl = builtin_decl_implicit (fn); gimple *stmt = gimple_build_call (decl, 1, arg0); if (!VOID_TYPE_P (type)) { res = create_tmp_reg_or_ssa_name (type); gimple_call_set_lhs (stmt, res); } gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the call FN (ARG0, ARG1) with a result of type TYPE (or no result if TYPE is void) with location LOC, simplifying it first if possible. Returns the built expression value (or NULL_TREE if TYPE is void) and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum built_in_function fn, tree type, tree arg0, tree arg1) { tree res = gimple_simplify (fn, type, arg0, arg1, seq, gimple_build_valueize); if (!res) { tree decl = builtin_decl_implicit (fn); gimple *stmt = gimple_build_call (decl, 2, arg0, arg1); if (!VOID_TYPE_P (type)) { res = create_tmp_reg_or_ssa_name (type); gimple_call_set_lhs (stmt, res); } gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the call FN (ARG0, ARG1, ARG2) with a result of type TYPE (or no result if TYPE is void) with location LOC, simplifying it first if possible. Returns the built expression value (or NULL_TREE if TYPE is void) and appends statements possibly defining it to SEQ. */ tree gimple_build (gimple_seq *seq, location_t loc, enum built_in_function fn, tree type, tree arg0, tree arg1, tree arg2) { tree res = gimple_simplify (fn, type, arg0, arg1, arg2, seq, gimple_build_valueize); if (!res) { tree decl = builtin_decl_implicit (fn); gimple *stmt = gimple_build_call (decl, 3, arg0, arg1, arg2); if (!VOID_TYPE_P (type)) { res = create_tmp_reg_or_ssa_name (type); gimple_call_set_lhs (stmt, res); } gimple_set_location (stmt, loc); gimple_seq_add_stmt_without_update (seq, stmt); } return res; } /* Build the conversion (TYPE) OP with a result of type TYPE with location LOC if such conversion is neccesary in GIMPLE, simplifying it first. Returns the built expression value and appends statements possibly defining it to SEQ. */ tree gimple_convert (gimple_seq *seq, location_t loc, tree type, tree op) { if (useless_type_conversion_p (type, TREE_TYPE (op))) return op; return gimple_build (seq, loc, NOP_EXPR, type, op); } /* Build the conversion (ptrofftype) OP with a result of a type compatible with ptrofftype with location LOC if such conversion is neccesary in GIMPLE, simplifying it first. Returns the built expression value and appends statements possibly defining it to SEQ. */ tree gimple_convert_to_ptrofftype (gimple_seq *seq, location_t loc, tree op) { if (ptrofftype_p (TREE_TYPE (op))) return op; return gimple_convert (seq, loc, sizetype, op); } /* Return true if the result of assignment STMT is known to be non-negative. If the return value is based on the assumption that signed overflow is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ static bool gimple_assign_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p, int depth) { enum tree_code code = gimple_assign_rhs_code (stmt); switch (get_gimple_rhs_class (code)) { case GIMPLE_UNARY_RHS: return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt), gimple_expr_type (stmt), gimple_assign_rhs1 (stmt), strict_overflow_p, depth); case GIMPLE_BINARY_RHS: return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt), gimple_expr_type (stmt), gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), strict_overflow_p, depth); case GIMPLE_TERNARY_RHS: return false; case GIMPLE_SINGLE_RHS: return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt), strict_overflow_p, depth); case GIMPLE_INVALID_RHS: break; } gcc_unreachable (); } /* Return true if return value of call STMT is known to be non-negative. If the return value is based on the assumption that signed overflow is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ static bool gimple_call_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p, int depth) { tree arg0 = gimple_call_num_args (stmt) > 0 ? gimple_call_arg (stmt, 0) : NULL_TREE; tree arg1 = gimple_call_num_args (stmt) > 1 ? gimple_call_arg (stmt, 1) : NULL_TREE; return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt), gimple_call_combined_fn (stmt), arg0, arg1, strict_overflow_p, depth); } /* Return true if return value of call STMT is known to be non-negative. If the return value is based on the assumption that signed overflow is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ static bool gimple_phi_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p, int depth) { for (unsigned i = 0; i < gimple_phi_num_args (stmt); ++i) { tree arg = gimple_phi_arg_def (stmt, i); if (!tree_single_nonnegative_warnv_p (arg, strict_overflow_p, depth + 1)) return false; } return true; } /* Return true if STMT is known to compute a non-negative value. If the return value is based on the assumption that signed overflow is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ bool gimple_stmt_nonnegative_warnv_p (gimple *stmt, bool *strict_overflow_p, int depth) { switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p, depth); case GIMPLE_CALL: return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p, depth); case GIMPLE_PHI: return gimple_phi_nonnegative_warnv_p (stmt, strict_overflow_p, depth); default: return false; } } /* Return true if the floating-point value computed by assignment STMT is known to have an integer value. We also allow +Inf, -Inf and NaN to be considered integer values. Return false for signaling NaN. DEPTH is the current nesting depth of the query. */ static bool gimple_assign_integer_valued_real_p (gimple *stmt, int depth) { enum tree_code code = gimple_assign_rhs_code (stmt); switch (get_gimple_rhs_class (code)) { case GIMPLE_UNARY_RHS: return integer_valued_real_unary_p (gimple_assign_rhs_code (stmt), gimple_assign_rhs1 (stmt), depth); case GIMPLE_BINARY_RHS: return integer_valued_real_binary_p (gimple_assign_rhs_code (stmt), gimple_assign_rhs1 (stmt), gimple_assign_rhs2 (stmt), depth); case GIMPLE_TERNARY_RHS: return false; case GIMPLE_SINGLE_RHS: return integer_valued_real_single_p (gimple_assign_rhs1 (stmt), depth); case GIMPLE_INVALID_RHS: break; } gcc_unreachable (); } /* Return true if the floating-point value computed by call STMT is known to have an integer value. We also allow +Inf, -Inf and NaN to be considered integer values. Return false for signaling NaN. DEPTH is the current nesting depth of the query. */ static bool gimple_call_integer_valued_real_p (gimple *stmt, int depth) { tree arg0 = (gimple_call_num_args (stmt) > 0 ? gimple_call_arg (stmt, 0) : NULL_TREE); tree arg1 = (gimple_call_num_args (stmt) > 1 ? gimple_call_arg (stmt, 1) : NULL_TREE); return integer_valued_real_call_p (gimple_call_combined_fn (stmt), arg0, arg1, depth); } /* Return true if the floating-point result of phi STMT is known to have an integer value. We also allow +Inf, -Inf and NaN to be considered integer values. Return false for signaling NaN. DEPTH is the current nesting depth of the query. */ static bool gimple_phi_integer_valued_real_p (gimple *stmt, int depth) { for (unsigned i = 0; i < gimple_phi_num_args (stmt); ++i) { tree arg = gimple_phi_arg_def (stmt, i); if (!integer_valued_real_single_p (arg, depth + 1)) return false; } return true; } /* Return true if the floating-point value computed by STMT is known to have an integer value. We also allow +Inf, -Inf and NaN to be considered integer values. Return false for signaling NaN. DEPTH is the current nesting depth of the query. */ bool gimple_stmt_integer_valued_real_p (gimple *stmt, int depth) { switch (gimple_code (stmt)) { case GIMPLE_ASSIGN: return gimple_assign_integer_valued_real_p (stmt, depth); case GIMPLE_CALL: return gimple_call_integer_valued_real_p (stmt, depth); case GIMPLE_PHI: return gimple_phi_integer_valued_real_p (stmt, depth); default: return false; } }