1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
|
/* Lower GIMPLE_SWITCH expressions to something more efficient than
a jump table.
Copyright (C) 2006-2024 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3, or (at your option) any
later version.
GCC is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* This file handles the lowering of GIMPLE_SWITCH to an indexed
load, or a series of bit-test-and-branch expressions. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "insn-codes.h"
#include "rtl.h"
#include "tree.h"
#include "gimple.h"
#include "cfghooks.h"
#include "tree-pass.h"
#include "ssa.h"
#include "optabs-tree.h"
#include "cgraph.h"
#include "gimple-pretty-print.h"
#include "fold-const.h"
#include "varasm.h"
#include "stor-layout.h"
#include "cfganal.h"
#include "gimplify.h"
#include "gimple-iterator.h"
#include "gimplify-me.h"
#include "gimple-fold.h"
#include "tree-cfg.h"
#include "cfgloop.h"
#include "alloc-pool.h"
#include "target.h"
#include "tree-into-ssa.h"
#include "omp-general.h"
#include "gimple-range.h"
#include "tree-cfgcleanup.h"
#include "hwint.h"
#include "internal-fn.h"
/* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
type in the GIMPLE type system that is language-independent? */
#include "langhooks.h"
#include "tree-switch-conversion.h"
using namespace tree_switch_conversion;
/* Does the target have optabs needed to efficiently compute exact base two
logarithm of a variable with type TYPE?
If yes, returns TYPE. If no, returns NULL_TREE. May also return another
type. This indicates that logarithm of the variable can be computed but
only after it is converted to this type.
Also see gen_log2. */
static tree
can_log2 (tree type, optimization_type opt_type)
{
/* Check if target supports FFS for given type. */
if (direct_internal_fn_supported_p (IFN_FFS, type, opt_type))
return type;
/* Check if target supports FFS for some type we could convert to. */
int prec = TYPE_PRECISION (type);
int i_prec = TYPE_PRECISION (integer_type_node);
int li_prec = TYPE_PRECISION (long_integer_type_node);
int lli_prec = TYPE_PRECISION (long_long_integer_type_node);
tree new_type;
if (prec <= i_prec
&& direct_internal_fn_supported_p (IFN_FFS, integer_type_node, opt_type))
new_type = integer_type_node;
else if (prec <= li_prec
&& direct_internal_fn_supported_p (IFN_FFS, long_integer_type_node,
opt_type))
new_type = long_integer_type_node;
else if (prec <= lli_prec
&& direct_internal_fn_supported_p (IFN_FFS,
long_long_integer_type_node,
opt_type))
new_type = long_long_integer_type_node;
else
return NULL_TREE;
return new_type;
}
/* Assume that OP is a power of two. Build a sequence of gimple statements
efficiently computing the base two logarithm of OP using special optabs.
Return the ssa name represeting the result of the logarithm through RESULT.
Before computing the logarithm, OP may have to be converted to another type.
This should be specified in TYPE. Use can_log2 to decide what this type
should be.
Should only be used if can_log2 doesn't reject the type of OP. */
static gimple_seq
gen_log2 (tree op, location_t loc, tree *result, tree type)
{
gimple_seq stmts = NULL;
gimple_stmt_iterator gsi = gsi_last (stmts);
tree orig_type = TREE_TYPE (op);
tree tmp1;
if (type != orig_type)
tmp1 = gimple_convert (&gsi, false, GSI_NEW_STMT, loc, type, op);
else
tmp1 = op;
/* Build FFS (op) - 1. */
tree tmp2 = gimple_build (&gsi, false, GSI_NEW_STMT, loc, IFN_FFS, orig_type,
tmp1);
tree tmp3 = gimple_build (&gsi, false, GSI_NEW_STMT, loc, MINUS_EXPR,
orig_type, tmp2, build_one_cst (orig_type));
*result = tmp3;
return stmts;
}
/* Build a sequence of gimple statements checking that OP is a power of 2.
Return the result as a boolean_type_node ssa name through RESULT. Assumes
that OP's value will be non-negative. The generated check may give
arbitrary answer for negative values. */
static gimple_seq
gen_pow2p (tree op, location_t loc, tree *result)
{
gimple_seq stmts = NULL;
gimple_stmt_iterator gsi = gsi_last (stmts);
tree type = TREE_TYPE (op);
tree utype = unsigned_type_for (type);
/* Build (op ^ (op - 1)) > (op - 1). */
tree tmp1;
if (types_compatible_p (type, utype))
tmp1 = op;
else
tmp1 = gimple_convert (&gsi, false, GSI_NEW_STMT, loc, utype, op);
tree tmp2 = gimple_build (&gsi, false, GSI_NEW_STMT, loc, MINUS_EXPR, utype,
tmp1, build_one_cst (utype));
tree tmp3 = gimple_build (&gsi, false, GSI_NEW_STMT, loc, BIT_XOR_EXPR,
utype, tmp1, tmp2);
*result = gimple_build (&gsi, false, GSI_NEW_STMT, loc, GT_EXPR,
boolean_type_node, tmp3, tmp2);
return stmts;
}
/* Constructor. */
switch_conversion::switch_conversion (): m_final_bb (NULL),
m_constructors (NULL), m_default_values (NULL),
m_arr_ref_first (NULL), m_arr_ref_last (NULL),
m_reason (NULL), m_default_case_nonstandard (false), m_cfg_altered (false),
m_exp_index_transform_applied (false)
{
}
/* Collection information about SWTCH statement. */
void
switch_conversion::collect (gswitch *swtch)
{
unsigned int branch_num = gimple_switch_num_labels (swtch);
tree min_case, max_case;
unsigned int i;
edge e, e_default, e_first;
edge_iterator ei;
m_switch = swtch;
/* The gimplifier has already sorted the cases by CASE_LOW and ensured there
is a default label which is the first in the vector.
Collect the bits we can deduce from the CFG. */
m_index_expr = gimple_switch_index (swtch);
m_switch_bb = gimple_bb (swtch);
e_default = gimple_switch_default_edge (cfun, swtch);
m_default_bb = e_default->dest;
m_default_prob = e_default->probability;
/* Get upper and lower bounds of case values, and the covered range. */
min_case = gimple_switch_label (swtch, 1);
max_case = gimple_switch_label (swtch, branch_num - 1);
m_range_min = CASE_LOW (min_case);
if (CASE_HIGH (max_case) != NULL_TREE)
m_range_max = CASE_HIGH (max_case);
else
m_range_max = CASE_LOW (max_case);
m_contiguous_range = true;
tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : m_range_min;
for (i = 2; i < branch_num; i++)
{
tree elt = gimple_switch_label (swtch, i);
if (wi::to_wide (last) + 1 != wi::to_wide (CASE_LOW (elt)))
{
m_contiguous_range = false;
break;
}
last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
}
if (m_contiguous_range)
e_first = gimple_switch_edge (cfun, swtch, 1);
else
e_first = e_default;
/* See if there is one common successor block for all branch
targets. If it exists, record it in FINAL_BB.
Start with the destination of the first non-default case
if the range is contiguous and default case otherwise as
guess or its destination in case it is a forwarder block. */
if (! single_pred_p (e_first->dest))
m_final_bb = e_first->dest;
else if (single_succ_p (e_first->dest)
&& ! single_pred_p (single_succ (e_first->dest)))
m_final_bb = single_succ (e_first->dest);
/* Require that all switch destinations are either that common
FINAL_BB or a forwarder to it, except for the default
case if contiguous range. */
auto_vec<edge, 10> fw_edges;
m_uniq = 0;
if (m_final_bb)
FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
{
edge phi_e = nullptr;
if (e->dest == m_final_bb)
phi_e = e;
else if (single_pred_p (e->dest)
&& single_succ_p (e->dest)
&& single_succ (e->dest) == m_final_bb)
phi_e = single_succ_edge (e->dest);
if (phi_e)
{
if (e == e_default)
;
else if (phi_e == e || empty_block_p (e->dest))
{
/* For empty blocks consider forwarders with equal
PHI arguments in m_final_bb as unique. */
unsigned i;
for (i = 0; i < fw_edges.length (); ++i)
if (phi_alternatives_equal (m_final_bb, fw_edges[i], phi_e))
break;
if (i == fw_edges.length ())
{
/* But limit the above possibly quadratic search. */
if (fw_edges.length () < 10)
fw_edges.quick_push (phi_e);
m_uniq++;
}
}
else
m_uniq++;
continue;
}
if (e == e_default && m_contiguous_range)
{
m_default_case_nonstandard = true;
continue;
}
m_final_bb = NULL;
break;
}
/* When there's not a single common successor block conservatively
approximate the number of unique non-default targets. */
if (!m_final_bb)
m_uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
m_range_size
= int_const_binop (MINUS_EXPR, m_range_max, m_range_min);
/* Get a count of the number of case labels. Single-valued case labels
simply count as one, but a case range counts double, since it may
require two compares if it gets lowered as a branching tree. */
m_count = 0;
for (i = 1; i < branch_num; i++)
{
tree elt = gimple_switch_label (swtch, i);
m_count++;
if (CASE_HIGH (elt)
&& ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
m_count++;
}
}
/* Check that the "exponential index transform" can be applied to this switch.
See comment of the exp_index_transform function for details about this
transformation.
We want:
- This form of the switch is more efficient
- Cases are powers of 2
Expects that SWTCH has at least one case. */
bool
switch_conversion::is_exp_index_transform_viable (gswitch *swtch)
{
tree index = gimple_switch_index (swtch);
tree index_type = TREE_TYPE (index);
basic_block swtch_bb = gimple_bb (swtch);
unsigned num_labels = gimple_switch_num_labels (swtch);
optimization_type opt_type = bb_optimization_type (swtch_bb);
m_exp_index_transform_log2_type = can_log2 (index_type, opt_type);
if (!m_exp_index_transform_log2_type)
return false;
/* Check that each case label corresponds only to one value
(no case 1..3). */
unsigned i;
for (i = 1; i < num_labels; i++)
{
tree label = gimple_switch_label (swtch, i);
if (CASE_HIGH (label))
return false;
}
/* Check that each label is nonnegative and a power of 2. */
for (i = 1; i < num_labels; i++)
{
tree label = gimple_switch_label (swtch, i);
wide_int label_wi = wi::to_wide (CASE_LOW (label));
if (!wi::ge_p (label_wi, 0, TYPE_SIGN (index_type)))
return false;
if (wi::exact_log2 (label_wi) == -1)
return false;
}
if (dump_file)
fprintf (dump_file, "Exponential index transform viable\n");
return true;
}
/* Perform the "exponential index transform".
Assume that cases of SWTCH are powers of 2. The transformation replaces the
cases by their exponents (2^k -> k). It also inserts a statement that
computes the exponent of the original index variable (basically taking the
logarithm) and then sets the result as the new index variable.
The transformation also inserts a conditional statement checking that the
incoming original index variable is a power of 2 with the false edge leading
to the default case.
The exponential index transform shrinks the range of case numbers which
helps switch conversion convert switches it otherwise could not.
Consider for example:
switch (i)
{
case (1 << 0): return 0;
case (1 << 1): return 1;
case (1 << 2): return 2;
...
case (1 << 30): return 30;
default: return 31;
}
First, exponential index transform gets applied. Since each case becomes
case x: return x;, the rest of switch conversion is then able to get rid of
the switch statement.
if (i is power of 2)
return log2 (i);
else
return 31;
*/
void
switch_conversion::exp_index_transform (gswitch *swtch)
{
if (dump_file)
fprintf (dump_file, "Applying exponential index transform\n");
tree index = gimple_switch_index (swtch);
tree index_type = TREE_TYPE (index);
basic_block swtch_bb = gimple_bb (swtch);
unsigned num_labels = gimple_switch_num_labels (swtch);
/* Insert a cond stmt that checks if the index variable is a power of 2. */
gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
gsi_prev (&gsi);
gimple *foo = gsi_stmt (gsi);
edge new_edge1 = split_block (swtch_bb, foo);
swtch_bb = new_edge1->dest;
basic_block cond_bb = new_edge1->src;
new_edge1->flags |= EDGE_TRUE_VALUE;
new_edge1->flags &= ~EDGE_FALLTHRU;
new_edge1->probability = profile_probability::even ();
basic_block default_bb = gimple_switch_default_bb (cfun, swtch);
edge new_edge2 = make_edge (cond_bb, default_bb, EDGE_FALSE_VALUE);
new_edge2->probability = profile_probability::even ();
tree tmp;
gimple_seq stmts = gen_pow2p (index, UNKNOWN_LOCATION, &tmp);
gsi = gsi_last_bb (cond_bb);
gsi_insert_seq_after (&gsi, stmts, GSI_LAST_NEW_STMT);
gcond *stmt_cond = gimple_build_cond (NE_EXPR, tmp, boolean_false_node,
NULL, NULL);
gsi_insert_after (&gsi, stmt_cond, GSI_NEW_STMT);
/* We just added an edge going to default bb so fix PHI nodes in that bb:
For each PHI add new PHI arg. It will be the same arg as when comming to
the default bb from the switch bb. */
edge default_edge = find_edge (swtch_bb, default_bb);
for (gphi_iterator gsi = gsi_start_phis (default_bb);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree arg = PHI_ARG_DEF_FROM_EDGE (phi, default_edge);
location_t loc = gimple_phi_arg_location_from_edge (phi, default_edge);
add_phi_arg (phi, arg, new_edge2, loc);
}
/* Insert a sequence of stmts that takes the log of the index variable. */
stmts = gen_log2 (index, UNKNOWN_LOCATION, &tmp,
m_exp_index_transform_log2_type);
gsi = gsi_after_labels (swtch_bb);
gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
/* Use the result of the logarithm as the new index variable. */
gimple_switch_set_index (swtch, tmp);
update_stmt (swtch);
/* Replace each case number with its logarithm. */
unsigned i;
for (i = 1; i < num_labels; i++)
{
tree label = gimple_switch_label (swtch, i);
CASE_LOW (label) = build_int_cst (index_type,
tree_log2 (CASE_LOW (label)));
}
/* Fix the dominator tree, if it is available. */
if (dom_info_available_p (CDI_DOMINATORS))
{
/* Analysis of how dominators should look after we add the edge E going
from the cond block to the default block.
1 For the blocks between the switch block and the final block
(excluding the final block itself): They had the switch block as
their immediate dominator. That shouldn't change.
2 The final block may now have the switch block or the cond block as
its immediate dominator. There's no easy way of knowing (consider
two cases where in both m_default_case_nonstandard = true, in one a
path through default intersects the final block and in one all paths
through default avoid the final block but intersect a successor of the
final block).
3 Other blocks that had the switch block as their immediate dominator
should now have the cond block as their immediate dominator.
4 Immediate dominators of the rest of the blocks shouldn't change.
Reasoning for 3 and 4:
We'll only consider blocks that do not fall into 1 or 2.
Consider a block X whose original imm dom was the switch block. All
paths to X must also intersect the cond block since it's the only
pred of the switch block. The final block doesn't dominate X so at
least one path P must lead through the default block. Let P' be P but
instead of going through the switch block, take E. The switch block
doesn't dominate X so its imm dom must now be the cond block.
Consider a block X whose original imm dom was Y != the switch block.
We only added an edge so all original paths to X are still present.
So X gained no new dominators. Observe that Y still dominates X.
There would have to be a path that avoids Y otherwise. But any block
we can avoid now except for the switch block we were able to avoid
before adding E. */
redirect_immediate_dominators (CDI_DOMINATORS, swtch_bb, cond_bb);
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, swtch_bb->succs)
{
basic_block bb = e->dest;
if (bb == m_final_bb || bb == default_bb)
continue;
set_immediate_dominator (CDI_DOMINATORS, bb, swtch_bb);
}
vec<basic_block> v;
v.create (1);
v.quick_push (m_final_bb);
iterate_fix_dominators (CDI_DOMINATORS, v, true);
}
/* Update information about the switch statement. */
tree first_label = gimple_switch_label (swtch, 1);
tree last_label = gimple_switch_label (swtch, num_labels - 1);
m_range_min = CASE_LOW (first_label);
m_range_max = CASE_LOW (last_label);
m_index_expr = gimple_switch_index (swtch);
m_switch_bb = swtch_bb;
m_range_size = int_const_binop (MINUS_EXPR, m_range_max, m_range_min);
m_cfg_altered = true;
m_contiguous_range = true;
wide_int last_wi = wi::to_wide (CASE_LOW (first_label));
for (i = 2; i < num_labels; i++)
{
tree label = gimple_switch_label (swtch, i);
wide_int label_wi = wi::to_wide (CASE_LOW (label));
m_contiguous_range &= wi::eq_p (wi::add (last_wi, 1), label_wi);
last_wi = label_wi;
}
m_exp_index_transform_applied = true;
}
/* Checks whether the range given by individual case statements of the switch
switch statement isn't too big and whether the number of branches actually
satisfies the size of the new array. */
bool
switch_conversion::check_range ()
{
gcc_assert (m_range_size);
if (!tree_fits_uhwi_p (m_range_size))
{
m_reason = "index range way too large or otherwise unusable";
return false;
}
if (tree_to_uhwi (m_range_size)
> ((unsigned) m_count * param_switch_conversion_branch_ratio))
{
m_reason = "the maximum range-branch ratio exceeded";
return false;
}
return true;
}
/* Checks whether all but the final BB basic blocks are empty. */
bool
switch_conversion::check_all_empty_except_final ()
{
edge e, e_default = find_edge (m_switch_bb, m_default_bb);
edge_iterator ei;
FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
{
if (e->dest == m_final_bb)
continue;
if (!empty_block_p (e->dest))
{
if (m_contiguous_range && e == e_default)
{
m_default_case_nonstandard = true;
continue;
}
m_reason = "bad case - a non-final BB not empty";
return false;
}
}
return true;
}
/* This function checks whether all required values in phi nodes in final_bb
are constants. Required values are those that correspond to a basic block
which is a part of the examined switch statement. It returns true if the
phi nodes are OK, otherwise false. */
bool
switch_conversion::check_final_bb ()
{
gphi_iterator gsi;
m_phi_count = 0;
for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
unsigned int i;
if (virtual_operand_p (gimple_phi_result (phi)))
continue;
m_phi_count++;
for (i = 0; i < gimple_phi_num_args (phi); i++)
{
basic_block bb = gimple_phi_arg_edge (phi, i)->src;
if (bb == m_switch_bb
|| (single_pred_p (bb)
&& single_pred (bb) == m_switch_bb
&& (!m_default_case_nonstandard
|| empty_block_p (bb))))
{
tree reloc, val;
const char *reason = NULL;
val = gimple_phi_arg_def (phi, i);
if (!is_gimple_ip_invariant (val))
reason = "non-invariant value from a case";
else
{
reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
if ((flag_pic && reloc != null_pointer_node)
|| (!flag_pic && reloc == NULL_TREE))
{
if (reloc)
reason
= "value from a case would need runtime relocations";
else
reason
= "value from a case is not a valid initializer";
}
}
if (reason)
{
/* For contiguous range, we can allow non-constant
or one that needs relocation, as long as it is
only reachable from the default case. */
if (bb == m_switch_bb)
bb = m_final_bb;
if (!m_contiguous_range || bb != m_default_bb)
{
m_reason = reason;
return false;
}
unsigned int branch_num = gimple_switch_num_labels (m_switch);
for (unsigned int i = 1; i < branch_num; i++)
{
if (gimple_switch_label_bb (cfun, m_switch, i) == bb)
{
m_reason = reason;
return false;
}
}
m_default_case_nonstandard = true;
}
}
}
}
return true;
}
/* The following function allocates default_values, target_{in,out}_names and
constructors arrays. The last one is also populated with pointers to
vectors that will become constructors of new arrays. */
void
switch_conversion::create_temp_arrays ()
{
int i;
m_default_values = XCNEWVEC (tree, m_phi_count * 3);
/* ??? Macros do not support multi argument templates in their
argument list. We create a typedef to work around that problem. */
typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
m_constructors = XCNEWVEC (vec_constructor_elt_gc, m_phi_count);
m_target_inbound_names = m_default_values + m_phi_count;
m_target_outbound_names = m_target_inbound_names + m_phi_count;
for (i = 0; i < m_phi_count; i++)
vec_alloc (m_constructors[i], tree_to_uhwi (m_range_size) + 1);
}
/* Populate the array of default values in the order of phi nodes.
DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
if the range is non-contiguous or the default case has standard
structure, otherwise it is the first non-default case instead. */
void
switch_conversion::gather_default_values (tree default_case)
{
gphi_iterator gsi;
basic_block bb = label_to_block (cfun, CASE_LABEL (default_case));
edge e;
int i = 0;
gcc_assert (CASE_LOW (default_case) == NULL_TREE
|| m_default_case_nonstandard);
if (bb == m_final_bb)
e = find_edge (m_switch_bb, bb);
else
e = single_succ_edge (bb);
for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
if (virtual_operand_p (gimple_phi_result (phi)))
continue;
tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
gcc_assert (val);
m_default_values[i++] = val;
}
}
/* The following function populates the vectors in the constructors array with
future contents of the static arrays. The vectors are populated in the
order of phi nodes. */
void
switch_conversion::build_constructors ()
{
unsigned i, branch_num = gimple_switch_num_labels (m_switch);
tree pos = m_range_min;
tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
for (i = 1; i < branch_num; i++)
{
tree cs = gimple_switch_label (m_switch, i);
basic_block bb = label_to_block (cfun, CASE_LABEL (cs));
edge e;
tree high;
gphi_iterator gsi;
int j;
if (bb == m_final_bb)
e = find_edge (m_switch_bb, bb);
else
e = single_succ_edge (bb);
gcc_assert (e);
while (tree_int_cst_lt (pos, CASE_LOW (cs)))
{
int k;
for (k = 0; k < m_phi_count; k++)
{
constructor_elt elt;
elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
if (TYPE_PRECISION (TREE_TYPE (elt.index))
> TYPE_PRECISION (sizetype))
elt.index = fold_convert (sizetype, elt.index);
elt.value
= unshare_expr_without_location (m_default_values[k]);
m_constructors[k]->quick_push (elt);
}
pos = int_const_binop (PLUS_EXPR, pos, pos_one);
}
gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
j = 0;
if (CASE_HIGH (cs))
high = CASE_HIGH (cs);
else
high = CASE_LOW (cs);
for (gsi = gsi_start_phis (m_final_bb);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
if (virtual_operand_p (gimple_phi_result (phi)))
continue;
tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
tree low = CASE_LOW (cs);
pos = CASE_LOW (cs);
do
{
constructor_elt elt;
elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
if (TYPE_PRECISION (TREE_TYPE (elt.index))
> TYPE_PRECISION (sizetype))
elt.index = fold_convert (sizetype, elt.index);
elt.value = unshare_expr_without_location (val);
m_constructors[j]->quick_push (elt);
pos = int_const_binop (PLUS_EXPR, pos, pos_one);
} while (!tree_int_cst_lt (high, pos)
&& tree_int_cst_lt (low, pos));
j++;
}
}
}
/* If all values in the constructor vector are products of a linear function
a * x + b, then return true. When true, COEFF_A and COEFF_B and
coefficients of the linear function. Note that equal values are special
case of a linear function with a and b equal to zero. */
bool
switch_conversion::contains_linear_function_p (vec<constructor_elt, va_gc> *vec,
wide_int *coeff_a,
wide_int *coeff_b)
{
unsigned int i;
constructor_elt *elt;
gcc_assert (vec->length () >= 2);
/* Let's try to find any linear function a * x + y that can apply to
given values. 'a' can be calculated as follows:
a = (y2 - y1) / (x2 - x1) where x2 - x1 = 1 (consecutive case indices)
a = y2 - y1
and
b = y2 - a * x2
*/
tree elt0 = (*vec)[0].value;
tree elt1 = (*vec)[1].value;
if (TREE_CODE (elt0) != INTEGER_CST || TREE_CODE (elt1) != INTEGER_CST)
return false;
wide_int range_min
= wide_int::from (wi::to_wide (m_range_min),
TYPE_PRECISION (TREE_TYPE (elt0)),
TYPE_SIGN (TREE_TYPE (m_range_min)));
wide_int y1 = wi::to_wide (elt0);
wide_int y2 = wi::to_wide (elt1);
wide_int a = y2 - y1;
wide_int b = y2 - a * (range_min + 1);
/* Verify that all values fulfill the linear function. */
FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
{
if (TREE_CODE (elt->value) != INTEGER_CST)
return false;
wide_int value = wi::to_wide (elt->value);
if (a * range_min + b != value)
return false;
++range_min;
}
*coeff_a = a;
*coeff_b = b;
return true;
}
/* Return type which should be used for array elements, either TYPE's
main variant or, for integral types, some smaller integral type
that can still hold all the constants. */
tree
switch_conversion::array_value_type (tree type, int num)
{
unsigned int i, len = vec_safe_length (m_constructors[num]);
constructor_elt *elt;
int sign = 0;
tree smaller_type;
/* Types with alignments greater than their size can reach here, e.g. out of
SRA. We couldn't use these as an array component type so get back to the
main variant first, which, for our purposes, is fine for other types as
well. */
type = TYPE_MAIN_VARIANT (type);
if (!INTEGRAL_TYPE_P (type)
|| (TREE_CODE (type) == BITINT_TYPE
&& (TYPE_PRECISION (type) > MAX_FIXED_MODE_SIZE
|| TYPE_MODE (type) == BLKmode)))
return type;
scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
scalar_int_mode mode = get_narrowest_mode (type_mode);
if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
return type;
if (len < (optimize_bb_for_size_p (gimple_bb (m_switch)) ? 2 : 32))
return type;
FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt)
{
wide_int cst;
if (TREE_CODE (elt->value) != INTEGER_CST)
return type;
cst = wi::to_wide (elt->value);
while (1)
{
unsigned int prec = GET_MODE_BITSIZE (mode);
if (prec > HOST_BITS_PER_WIDE_INT)
return type;
if (sign >= 0 && cst == wi::zext (cst, prec))
{
if (sign == 0 && cst == wi::sext (cst, prec))
break;
sign = 1;
break;
}
if (sign <= 0 && cst == wi::sext (cst, prec))
{
sign = -1;
break;
}
if (sign == 1)
sign = 0;
if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
|| GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
return type;
}
}
if (sign == 0)
sign = TYPE_UNSIGNED (type) ? 1 : -1;
smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
if (GET_MODE_SIZE (type_mode)
<= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type)))
return type;
return smaller_type;
}
/* Create an appropriate array type and declaration and assemble a static
array variable. Also create a load statement that initializes
the variable in question with a value from the static array. SWTCH is
the switch statement being converted, NUM is the index to
arrays of constructors, default values and target SSA names
for this particular array. ARR_INDEX_TYPE is the type of the index
of the new array, PHI is the phi node of the final BB that corresponds
to the value that will be loaded from the created array. TIDX
is an ssa name of a temporary variable holding the index for loads from the
new array. */
void
switch_conversion::build_one_array (int num, tree arr_index_type,
gphi *phi, tree tidx)
{
tree name;
gimple *load;
gimple_stmt_iterator gsi = gsi_for_stmt (m_switch);
location_t loc = gimple_location (m_switch);
gcc_assert (m_default_values[num]);
name = copy_ssa_name (PHI_RESULT (phi));
m_target_inbound_names[num] = name;
vec<constructor_elt, va_gc> *constructor = m_constructors[num];
wide_int coeff_a, coeff_b;
bool linear_p = contains_linear_function_p (constructor, &coeff_a, &coeff_b);
tree type;
if (linear_p
&& (type = range_check_type (TREE_TYPE ((*constructor)[0].value))))
{
if (dump_file && coeff_a.to_uhwi () > 0)
fprintf (dump_file, "Linear transformation with A = %" PRId64
" and B = %" PRId64 "\n", coeff_a.to_shwi (),
coeff_b.to_shwi ());
/* We must use type of constructor values. */
gimple_seq seq = NULL;
tree tmp = gimple_convert (&seq, type, m_index_expr);
tree tmp2 = gimple_build (&seq, MULT_EXPR, type,
wide_int_to_tree (type, coeff_a), tmp);
tree tmp3 = gimple_build (&seq, PLUS_EXPR, type, tmp2,
wide_int_to_tree (type, coeff_b));
tree tmp4 = gimple_convert (&seq, TREE_TYPE (name), tmp3);
gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
load = gimple_build_assign (name, tmp4);
}
else
{
tree array_type, ctor, decl, value_type, fetch, default_type;
default_type = TREE_TYPE (m_default_values[num]);
value_type = array_value_type (default_type, num);
array_type = build_array_type (value_type, arr_index_type);
if (default_type != value_type)
{
unsigned int i;
constructor_elt *elt;
FOR_EACH_VEC_SAFE_ELT (constructor, i, elt)
elt->value = fold_convert (value_type, elt->value);
}
ctor = build_constructor (array_type, constructor);
TREE_CONSTANT (ctor) = true;
TREE_STATIC (ctor) = true;
decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
TREE_STATIC (decl) = 1;
DECL_INITIAL (decl) = ctor;
DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
DECL_ARTIFICIAL (decl) = 1;
DECL_IGNORED_P (decl) = 1;
TREE_CONSTANT (decl) = 1;
TREE_READONLY (decl) = 1;
DECL_IGNORED_P (decl) = 1;
if (offloading_function_p (cfun->decl))
DECL_ATTRIBUTES (decl)
= tree_cons (get_identifier ("omp declare target"), NULL_TREE,
NULL_TREE);
varpool_node::finalize_decl (decl);
fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
NULL_TREE);
if (default_type != value_type)
{
fetch = fold_convert (default_type, fetch);
fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
true, GSI_SAME_STMT);
}
load = gimple_build_assign (name, fetch);
}
gsi_insert_before (&gsi, load, GSI_SAME_STMT);
update_stmt (load);
m_arr_ref_last = load;
}
/* Builds and initializes static arrays initialized with values gathered from
the switch statement. Also creates statements that load values from
them. */
void
switch_conversion::build_arrays ()
{
tree arr_index_type;
tree tidx, sub, utype, tidxtype;
gimple *stmt;
gimple_stmt_iterator gsi;
gphi_iterator gpi;
int i;
location_t loc = gimple_location (m_switch);
gsi = gsi_for_stmt (m_switch);
/* Make sure we do not generate arithmetics in a subrange. */
utype = TREE_TYPE (m_index_expr);
if (TREE_TYPE (utype))
utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
else if (TREE_CODE (utype) == BITINT_TYPE
&& (TYPE_PRECISION (utype) > MAX_FIXED_MODE_SIZE
|| TYPE_MODE (utype) == BLKmode))
utype = unsigned_type_for (utype);
else
utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
if (TYPE_PRECISION (utype) > TYPE_PRECISION (sizetype))
tidxtype = sizetype;
else
tidxtype = utype;
arr_index_type = build_index_type (m_range_size);
tidx = make_ssa_name (tidxtype);
sub = fold_build2_loc (loc, MINUS_EXPR, utype,
fold_convert_loc (loc, utype, m_index_expr),
fold_convert_loc (loc, utype, m_range_min));
sub = fold_convert (tidxtype, sub);
sub = force_gimple_operand_gsi (&gsi, sub,
false, NULL, true, GSI_SAME_STMT);
stmt = gimple_build_assign (tidx, sub);
gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
update_stmt (stmt);
m_arr_ref_first = stmt;
for (gpi = gsi_start_phis (m_final_bb), i = 0;
!gsi_end_p (gpi); gsi_next (&gpi))
{
gphi *phi = gpi.phi ();
if (!virtual_operand_p (gimple_phi_result (phi)))
build_one_array (i++, arr_index_type, phi, tidx);
else
{
edge e;
edge_iterator ei;
FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
{
if (e->dest == m_final_bb)
break;
if (!m_default_case_nonstandard
|| e->dest != m_default_bb)
{
e = single_succ_edge (e->dest);
break;
}
}
gcc_assert (e && e->dest == m_final_bb);
m_target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
}
}
}
/* Generates and appropriately inserts loads of default values at the position
given by GSI. Returns the last inserted statement. */
gassign *
switch_conversion::gen_def_assigns (gimple_stmt_iterator *gsi)
{
int i;
gassign *assign = NULL;
for (i = 0; i < m_phi_count; i++)
{
tree name = copy_ssa_name (m_target_inbound_names[i]);
m_target_outbound_names[i] = name;
assign = gimple_build_assign (name, m_default_values[i]);
gsi_insert_before (gsi, assign, GSI_SAME_STMT);
update_stmt (assign);
}
return assign;
}
/* Deletes the unused bbs and edges that now contain the switch statement and
its empty branch bbs. BBD is the now dead BB containing
the original switch statement, FINAL is the last BB of the converted
switch statement (in terms of succession). */
void
switch_conversion::prune_bbs (basic_block bbd, basic_block final,
basic_block default_bb)
{
edge_iterator ei;
edge e;
for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
{
basic_block bb;
bb = e->dest;
remove_edge (e);
if (bb != final && bb != default_bb)
delete_basic_block (bb);
}
delete_basic_block (bbd);
}
/* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
from the basic block loading values from an array and E2F from the basic
block loading default values. BBF is the last switch basic block (see the
bbf description in the comment below). */
void
switch_conversion::fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
{
gphi_iterator gsi;
int i;
for (gsi = gsi_start_phis (bbf), i = 0;
!gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree inbound, outbound;
if (virtual_operand_p (gimple_phi_result (phi)))
inbound = outbound = m_target_vop;
else
{
inbound = m_target_inbound_names[i];
outbound = m_target_outbound_names[i++];
}
add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
if (!m_default_case_nonstandard)
add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
}
}
/* Creates a check whether the switch expression value actually falls into the
range given by all the cases. If it does not, the temporaries are loaded
with default values instead. */
void
switch_conversion::gen_inbound_check ()
{
tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
glabel *label1, *label2, *label3;
tree utype, tidx;
tree bound;
gcond *cond_stmt;
gassign *last_assign = NULL;
gimple_stmt_iterator gsi;
basic_block bb0, bb1, bb2, bbf, bbd;
edge e01 = NULL, e02, e21, e1d, e1f, e2f;
location_t loc = gimple_location (m_switch);
gcc_assert (m_default_values);
bb0 = gimple_bb (m_switch);
tidx = gimple_assign_lhs (m_arr_ref_first);
utype = TREE_TYPE (tidx);
/* (end of) block 0 */
gsi = gsi_for_stmt (m_arr_ref_first);
gsi_next (&gsi);
bound = fold_convert_loc (loc, utype, m_range_size);
cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
update_stmt (cond_stmt);
/* block 2 */
if (!m_default_case_nonstandard)
{
label2 = gimple_build_label (label_decl2);
gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
last_assign = gen_def_assigns (&gsi);
}
/* block 1 */
label1 = gimple_build_label (label_decl1);
gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
/* block F */
gsi = gsi_start_bb (m_final_bb);
label3 = gimple_build_label (label_decl3);
gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
/* cfg fix */
e02 = split_block (bb0, cond_stmt);
bb2 = e02->dest;
if (m_default_case_nonstandard)
{
bb1 = bb2;
bb2 = m_default_bb;
e01 = e02;
e01->flags = EDGE_TRUE_VALUE;
e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
edge e_default = find_edge (bb1, bb2);
for (gphi_iterator gsi = gsi_start_phis (bb2);
!gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
add_phi_arg (phi, arg, e02,
gimple_phi_arg_location_from_edge (phi, e_default));
}
/* Partially fix the dominator tree, if it is available. */
if (dom_info_available_p (CDI_DOMINATORS))
redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
}
else
{
e21 = split_block (bb2, last_assign);
bb1 = e21->dest;
remove_edge (e21);
}
e1d = split_block (bb1, m_arr_ref_last);
bbd = e1d->dest;
remove_edge (e1d);
/* Flags and profiles of the edge for in-range values. */
if (!m_default_case_nonstandard)
e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
e01->probability = m_default_prob.invert ();
/* Flags and profiles of the edge taking care of out-of-range values. */
e02->flags &= ~EDGE_FALLTHRU;
e02->flags |= EDGE_FALSE_VALUE;
e02->probability = m_default_prob;
bbf = m_final_bb;
e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
e1f->probability = profile_probability::always ();
if (m_default_case_nonstandard)
e2f = NULL;
else
{
e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
e2f->probability = profile_probability::always ();
}
/* frequencies of the new BBs */
bb1->count = e01->count ();
bb2->count = e02->count ();
if (!m_default_case_nonstandard)
bbf->count = e1f->count () + e2f->count ();
/* Tidy blocks that have become unreachable. */
bool prune_default_bb = !m_default_case_nonstandard
&& !m_exp_index_transform_applied;
prune_bbs (bbd, m_final_bb, prune_default_bb ? NULL : m_default_bb);
/* Fixup the PHI nodes in bbF. */
fix_phi_nodes (e1f, e2f, bbf);
/* Fix the dominator tree, if it is available. */
if (dom_info_available_p (CDI_DOMINATORS))
{
vec<basic_block> bbs_to_fix_dom;
set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
if (!m_default_case_nonstandard)
set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
/* If bbD was the immediate dominator ... */
set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
bbs_to_fix_dom.create (3 + (bb2 != bbf));
bbs_to_fix_dom.quick_push (bb0);
bbs_to_fix_dom.quick_push (bb1);
if (bb2 != bbf)
bbs_to_fix_dom.quick_push (bb2);
bbs_to_fix_dom.quick_push (bbf);
iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
bbs_to_fix_dom.release ();
}
}
/* The following function is invoked on every switch statement (the current
one is given in SWTCH) and runs the individual phases of switch
conversion on it one after another until one fails or the conversion
is completed. On success, NULL is in m_reason, otherwise points
to a string with the reason why the conversion failed. */
void
switch_conversion::expand (gswitch *swtch)
{
/* Group case labels so that we get the right results from the heuristics
that decide on the code generation approach for this switch. */
m_cfg_altered |= group_case_labels_stmt (swtch);
/* If this switch is now a degenerate case with only a default label,
there is nothing left for us to do. */
if (gimple_switch_num_labels (swtch) < 2)
{
m_reason = "switch is a degenerate case";
return;
}
collect (swtch);
/* No error markers should reach here (they should be filtered out
during gimplification). */
gcc_checking_assert (TREE_TYPE (m_index_expr) != error_mark_node);
/* Prefer bit test if possible. */
if (tree_fits_uhwi_p (m_range_size)
&& bit_test_cluster::can_be_handled (tree_to_uhwi (m_range_size), m_uniq)
&& bit_test_cluster::is_beneficial (m_count, m_uniq))
{
m_reason = "expanding as bit test is preferable";
return;
}
if (m_uniq <= 2)
{
/* This will be expanded as a decision tree . */
m_reason = "expanding as jumps is preferable";
return;
}
/* If there is no common successor, we cannot do the transformation. */
if (!m_final_bb)
{
m_reason = "no common successor to all case label target blocks found";
return;
}
/* Sometimes it is possible to use the "exponential index transform" to help
switch conversion convert switches which it otherwise could not convert.
However, we want to do this transform only when we know that switch
conversion will then really be able to convert the switch. So we first
check if the transformation is applicable and then maybe later do the
transformation. */
bool exp_transform_viable = is_exp_index_transform_viable (swtch);
/* Check the case label values are within reasonable range.
If we will be doing exponential index transform, the range will be always
reasonable. */
if (!exp_transform_viable && !check_range ())
{
gcc_assert (m_reason);
return;
}
/* For all the cases, see whether they are empty, the assignments they
represent constant and so on... */
if (!check_all_empty_except_final ())
{
gcc_assert (m_reason);
return;
}
if (!check_final_bb ())
{
gcc_assert (m_reason);
return;
}
/* At this point all checks have passed and we can proceed with the
transformation. */
if (exp_transform_viable)
exp_index_transform (swtch);
create_temp_arrays ();
gather_default_values (m_default_case_nonstandard
? gimple_switch_label (swtch, 1)
: gimple_switch_default_label (swtch));
build_constructors ();
build_arrays (); /* Build the static arrays and assignments. */
gen_inbound_check (); /* Build the bounds check. */
m_cfg_altered = true;
}
/* Destructor. */
switch_conversion::~switch_conversion ()
{
XDELETEVEC (m_constructors);
XDELETEVEC (m_default_values);
}
/* Constructor. */
group_cluster::group_cluster (vec<cluster *> &clusters,
unsigned start, unsigned end)
{
gcc_checking_assert (end - start + 1 >= 1);
m_prob = profile_probability::never ();
m_cases.create (end - start + 1);
for (unsigned i = start; i <= end; i++)
{
m_cases.quick_push (static_cast<simple_cluster *> (clusters[i]));
m_prob += clusters[i]->m_prob;
}
m_subtree_prob = m_prob;
}
/* Destructor. */
group_cluster::~group_cluster ()
{
for (unsigned i = 0; i < m_cases.length (); i++)
delete m_cases[i];
m_cases.release ();
}
/* Dump content of a cluster. */
void
group_cluster::dump (FILE *f, bool details)
{
unsigned total_values = 0;
for (unsigned i = 0; i < m_cases.length (); i++)
total_values += m_cases[i]->get_range (m_cases[i]->get_low (),
m_cases[i]->get_high ());
unsigned comparison_count = 0;
for (unsigned i = 0; i < m_cases.length (); i++)
{
simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
comparison_count += sc->get_comparison_count ();
}
unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
fprintf (f, "%s", get_type () == JUMP_TABLE ? "JT" : "BT");
if (details)
fprintf (f, "(values:%d comparisons:%d range:" HOST_WIDE_INT_PRINT_DEC
" density: %.2f%%)", total_values, comparison_count, range,
100.0f * comparison_count / range);
fprintf (f, ":");
PRINT_CASE (f, get_low ());
fprintf (f, "-");
PRINT_CASE (f, get_high ());
fprintf (f, " ");
}
/* Emit GIMPLE code to handle the cluster. */
void
jump_table_cluster::emit (tree index_expr, tree,
tree default_label_expr, basic_block default_bb,
location_t loc)
{
tree low = get_low ();
unsigned HOST_WIDE_INT range = get_range (low, get_high ());
unsigned HOST_WIDE_INT nondefault_range = 0;
bool bitint = false;
gimple_stmt_iterator gsi = gsi_start_bb (m_case_bb);
/* For large/huge _BitInt, subtract low from index_expr, cast to unsigned
DImode type (get_range doesn't support ranges larger than 64-bits)
and subtract low from all case values as well. */
if (TREE_CODE (TREE_TYPE (index_expr)) == BITINT_TYPE
&& TYPE_PRECISION (TREE_TYPE (index_expr)) > GET_MODE_PRECISION (DImode))
{
bitint = true;
tree this_low = low, type;
gimple *g;
gimple_seq seq = NULL;
if (!TYPE_OVERFLOW_WRAPS (TREE_TYPE (index_expr)))
{
type = unsigned_type_for (TREE_TYPE (index_expr));
index_expr = gimple_convert (&seq, type, index_expr);
this_low = fold_convert (type, this_low);
}
this_low = const_unop (NEGATE_EXPR, TREE_TYPE (this_low), this_low);
index_expr = gimple_build (&seq, PLUS_EXPR, TREE_TYPE (index_expr),
index_expr, this_low);
type = build_nonstandard_integer_type (GET_MODE_PRECISION (DImode), 1);
g = gimple_build_cond (GT_EXPR, index_expr,
fold_convert (TREE_TYPE (index_expr),
TYPE_MAX_VALUE (type)),
NULL_TREE, NULL_TREE);
gimple_seq_add_stmt (&seq, g);
gimple_seq_set_location (seq, loc);
gsi_insert_seq_after (&gsi, seq, GSI_NEW_STMT);
edge e1 = split_block (m_case_bb, g);
e1->flags = EDGE_FALSE_VALUE;
e1->probability = profile_probability::likely ();
edge e2 = make_edge (e1->src, default_bb, EDGE_TRUE_VALUE);
e2->probability = e1->probability.invert ();
gsi = gsi_start_bb (e1->dest);
seq = NULL;
index_expr = gimple_convert (&seq, type, index_expr);
gimple_seq_set_location (seq, loc);
gsi_insert_seq_after (&gsi, seq, GSI_NEW_STMT);
}
/* For jump table we just emit a new gswitch statement that will
be latter lowered to jump table. */
auto_vec <tree> labels;
labels.create (m_cases.length ());
basic_block case_bb = gsi_bb (gsi);
make_edge (case_bb, default_bb, 0);
for (unsigned i = 0; i < m_cases.length (); i++)
{
tree lab = unshare_expr (m_cases[i]->m_case_label_expr);
if (bitint)
{
CASE_LOW (lab)
= fold_convert (TREE_TYPE (index_expr),
const_binop (MINUS_EXPR,
TREE_TYPE (CASE_LOW (lab)),
CASE_LOW (lab), low));
if (CASE_HIGH (lab))
CASE_HIGH (lab)
= fold_convert (TREE_TYPE (index_expr),
const_binop (MINUS_EXPR,
TREE_TYPE (CASE_HIGH (lab)),
CASE_HIGH (lab), low));
}
labels.quick_push (lab);
make_edge (case_bb, m_cases[i]->m_case_bb, 0);
}
gswitch *s = gimple_build_switch (index_expr,
unshare_expr (default_label_expr), labels);
gimple_set_location (s, loc);
gsi_insert_after (&gsi, s, GSI_NEW_STMT);
/* Set up even probabilities for all cases. */
for (unsigned i = 0; i < m_cases.length (); i++)
{
simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
edge case_edge = find_edge (case_bb, sc->m_case_bb);
unsigned HOST_WIDE_INT case_range
= sc->get_range (sc->get_low (), sc->get_high ());
nondefault_range += case_range;
/* case_edge->aux is number of values in a jump-table that are covered
by the case_edge. */
case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + case_range);
}
edge default_edge = gimple_switch_default_edge (cfun, s);
default_edge->probability = profile_probability::never ();
for (unsigned i = 0; i < m_cases.length (); i++)
{
simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
edge case_edge = find_edge (case_bb, sc->m_case_bb);
case_edge->probability
= profile_probability::always ().apply_scale ((intptr_t)case_edge->aux,
range);
}
/* Number of non-default values is probability of default edge. */
default_edge->probability
+= profile_probability::always ().apply_scale (nondefault_range,
range).invert ();
switch_decision_tree::reset_out_edges_aux (s);
}
/* Find jump tables of given CLUSTERS, where all members of the vector
are of type simple_cluster. New clusters are returned. */
vec<cluster *>
jump_table_cluster::find_jump_tables (vec<cluster *> &clusters)
{
if (!is_enabled ())
return clusters.copy ();
unsigned l = clusters.length ();
auto_vec<min_cluster_item> min;
min.reserve (l + 1);
min.quick_push (min_cluster_item (0, 0, 0));
unsigned HOST_WIDE_INT max_ratio
= (optimize_insn_for_size_p ()
? param_jump_table_max_growth_ratio_for_size
: param_jump_table_max_growth_ratio_for_speed);
for (unsigned i = 1; i <= l; i++)
{
/* Set minimal # of clusters with i-th item to infinite. */
min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
/* Pre-calculate number of comparisons for the clusters. */
HOST_WIDE_INT comparison_count = 0;
for (unsigned k = 0; k <= i - 1; k++)
{
simple_cluster *sc = static_cast<simple_cluster *> (clusters[k]);
comparison_count += sc->get_comparison_count ();
}
for (unsigned j = 0; j < i; j++)
{
unsigned HOST_WIDE_INT s = min[j].m_non_jt_cases;
if (i - j < case_values_threshold ())
s += i - j;
/* Prefer clusters with smaller number of numbers covered. */
if ((min[j].m_count + 1 < min[i].m_count
|| (min[j].m_count + 1 == min[i].m_count
&& s < min[i].m_non_jt_cases))
&& can_be_handled (clusters, j, i - 1, max_ratio,
comparison_count))
min[i] = min_cluster_item (min[j].m_count + 1, j, s);
simple_cluster *sc = static_cast<simple_cluster *> (clusters[j]);
comparison_count -= sc->get_comparison_count ();
}
gcc_checking_assert (comparison_count == 0);
gcc_checking_assert (min[i].m_count != INT_MAX);
}
/* No result. */
if (min[l].m_count == l)
return clusters.copy ();
vec<cluster *> output;
output.create (4);
/* Find and build the clusters. */
for (unsigned int end = l;;)
{
int start = min[end].m_start;
/* Do not allow clusters with small number of cases. */
if (is_beneficial (clusters, start, end - 1))
output.safe_push (new jump_table_cluster (clusters, start, end - 1));
else
for (int i = end - 1; i >= start; i--)
output.safe_push (clusters[i]);
end = start;
if (start <= 0)
break;
}
output.reverse ();
return output;
}
/* Return true when cluster starting at START and ending at END (inclusive)
can build a jump-table. */
bool
jump_table_cluster::can_be_handled (const vec<cluster *> &clusters,
unsigned start, unsigned end,
unsigned HOST_WIDE_INT max_ratio,
unsigned HOST_WIDE_INT comparison_count)
{
/* If the switch is relatively small such that the cost of one
indirect jump on the target are higher than the cost of a
decision tree, go with the decision tree.
If range of values is much bigger than number of values,
or if it is too large to represent in a HOST_WIDE_INT,
make a sequence of conditional branches instead of a dispatch.
The definition of "much bigger" depends on whether we are
optimizing for size or for speed.
For algorithm correctness, jump table for a single case must return
true. We bail out in is_beneficial if it's called just for
a single case. */
if (start == end)
return true;
unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
clusters[end]->get_high ());
/* Check overflow. */
if (range == 0)
return false;
if (range > HOST_WIDE_INT_M1U / 100)
return false;
unsigned HOST_WIDE_INT lhs = 100 * range;
if (lhs < range)
return false;
return lhs <= max_ratio * comparison_count;
}
/* Return true if cluster starting at START and ending at END (inclusive)
is profitable transformation. */
bool
jump_table_cluster::is_beneficial (const vec<cluster *> &,
unsigned start, unsigned end)
{
/* Single case bail out. */
if (start == end)
return false;
return end - start + 1 >= case_values_threshold ();
}
/* Find bit tests of given CLUSTERS, where all members of the vector
are of type simple_cluster. MAX_C is the approx max number of cases per
label. New clusters are returned. */
vec<cluster *>
bit_test_cluster::find_bit_tests (vec<cluster *> &clusters, int max_c)
{
if (!is_enabled () || max_c == 1)
return clusters.copy ();
unsigned l = clusters.length ();
auto_vec<min_cluster_item> min;
min.reserve (l + 1);
min.quick_push (min_cluster_item (0, 0, 0));
for (unsigned i = 1; i <= l; i++)
{
/* Set minimal # of clusters with i-th item to infinite. */
min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
for (unsigned j = 0; j < i; j++)
{
if (min[j].m_count + 1 < min[i].m_count
&& can_be_handled (clusters, j, i - 1))
min[i] = min_cluster_item (min[j].m_count + 1, j, INT_MAX);
}
gcc_checking_assert (min[i].m_count != INT_MAX);
}
/* No result. */
if (min[l].m_count == l)
return clusters.copy ();
vec<cluster *> output;
output.create (4);
/* Find and build the clusters. */
for (unsigned end = l;;)
{
int start = min[end].m_start;
if (is_beneficial (clusters, start, end - 1))
{
bool entire = start == 0 && end == clusters.length ();
output.safe_push (new bit_test_cluster (clusters, start, end - 1,
entire));
}
else
for (int i = end - 1; i >= start; i--)
output.safe_push (clusters[i]);
end = start;
if (start <= 0)
break;
}
output.reverse ();
return output;
}
/* Return true when RANGE of case values with UNIQ labels
can build a bit test. */
bool
bit_test_cluster::can_be_handled (unsigned HOST_WIDE_INT range,
unsigned int uniq)
{
/* Check overflow. */
if (range == 0)
return false;
if (range >= GET_MODE_BITSIZE (word_mode))
return false;
return uniq <= m_max_case_bit_tests;
}
/* Return true when cluster starting at START and ending at END (inclusive)
can build a bit test. */
bool
bit_test_cluster::can_be_handled (const vec<cluster *> &clusters,
unsigned start, unsigned end)
{
auto_vec<int, m_max_case_bit_tests> dest_bbs;
/* For algorithm correctness, bit test for a single case must return
true. We bail out in is_beneficial if it's called just for
a single case. */
if (start == end)
return true;
unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
clusters[end]->get_high ());
/* Make a guess first. */
if (!can_be_handled (range, m_max_case_bit_tests))
return false;
for (unsigned i = start; i <= end; i++)
{
simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
/* m_max_case_bit_tests is very small integer, thus the operation
is constant. */
if (!dest_bbs.contains (sc->m_case_bb->index))
{
if (dest_bbs.length () >= m_max_case_bit_tests)
return false;
dest_bbs.quick_push (sc->m_case_bb->index);
}
}
return true;
}
/* Return true when COUNT of cases of UNIQ labels is beneficial for bit test
transformation. */
bool
bit_test_cluster::is_beneficial (unsigned count, unsigned uniq)
{
return (((uniq == 1 && count >= 3)
|| (uniq == 2 && count >= 5)
|| (uniq == 3 && count >= 6)));
}
/* Return true if cluster starting at START and ending at END (inclusive)
is profitable transformation. */
bool
bit_test_cluster::is_beneficial (const vec<cluster *> &clusters,
unsigned start, unsigned end)
{
/* Single case bail out. */
if (start == end)
return false;
auto_bitmap dest_bbs;
for (unsigned i = start; i <= end; i++)
{
simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
}
unsigned uniq = bitmap_count_bits (dest_bbs);
unsigned count = end - start + 1;
return is_beneficial (count, uniq);
}
/* Comparison function for qsort to order bit tests by decreasing
probability of execution. */
int
case_bit_test::cmp (const void *p1, const void *p2)
{
const case_bit_test *const d1 = (const case_bit_test *) p1;
const case_bit_test *const d2 = (const case_bit_test *) p2;
if (d2->bits != d1->bits)
return d2->bits - d1->bits;
/* Stabilize the sort. */
return (LABEL_DECL_UID (CASE_LABEL (d2->label))
- LABEL_DECL_UID (CASE_LABEL (d1->label)));
}
/* Expand a switch statement by a short sequence of bit-wise
comparisons. "switch(x)" is effectively converted into
"if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
integer constants.
INDEX_EXPR is the value being switched on.
MINVAL is the lowest case value of in the case nodes,
and RANGE is highest value minus MINVAL. MINVAL and RANGE
are not guaranteed to be of the same type as INDEX_EXPR
(the gimplifier doesn't change the type of case label values,
and MINVAL and RANGE are derived from those values).
MAXVAL is MINVAL + RANGE.
There *MUST* be max_case_bit_tests or less unique case
node targets. */
void
bit_test_cluster::emit (tree index_expr, tree index_type,
tree, basic_block default_bb, location_t loc)
{
case_bit_test test[m_max_case_bit_tests] = { {} };
unsigned int i, j, k;
unsigned int count;
tree unsigned_index_type = range_check_type (index_type);
gimple_stmt_iterator gsi;
gassign *shift_stmt;
tree idx, tmp, csui;
tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
tree word_mode_one = fold_convert (word_type_node, integer_one_node);
int prec = TYPE_PRECISION (word_type_node);
wide_int wone = wi::one (prec);
tree minval = get_low ();
tree maxval = get_high ();
/* Go through all case labels, and collect the case labels, profile
counts, and other information we need to build the branch tests. */
count = 0;
for (i = 0; i < m_cases.length (); i++)
{
unsigned int lo, hi;
simple_cluster *n = static_cast<simple_cluster *> (m_cases[i]);
for (k = 0; k < count; k++)
if (n->m_case_bb == test[k].target_bb)
break;
if (k == count)
{
gcc_checking_assert (count < m_max_case_bit_tests);
test[k].mask = wi::zero (prec);
test[k].target_bb = n->m_case_bb;
test[k].label = n->m_case_label_expr;
test[k].bits = 0;
test[k].prob = profile_probability::never ();
count++;
}
test[k].bits += n->get_range (n->get_low (), n->get_high ());
test[k].prob += n->m_prob;
lo = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_low (), minval));
if (n->get_high () == NULL_TREE)
hi = lo;
else
hi = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_high (),
minval));
for (j = lo; j <= hi; j++)
test[k].mask |= wi::lshift (wone, j);
}
qsort (test, count, sizeof (*test), case_bit_test::cmp);
/* If every possible relative value of the index expression is a valid shift
amount, then we can merge the entry test in the bit test. */
bool entry_test_needed;
int_range_max r;
if (TREE_CODE (index_expr) == SSA_NAME
&& get_range_query (cfun)->range_of_expr (r, index_expr)
&& !r.undefined_p ()
&& !r.varying_p ()
&& wi::leu_p (r.upper_bound () - r.lower_bound (), prec - 1))
{
wide_int min = r.lower_bound ();
wide_int max = r.upper_bound ();
tree index_type = TREE_TYPE (index_expr);
minval = fold_convert (index_type, minval);
wide_int iminval = wi::to_wide (minval);
if (wi::lt_p (min, iminval, TYPE_SIGN (index_type)))
{
minval = wide_int_to_tree (index_type, min);
for (i = 0; i < count; i++)
test[i].mask = wi::lshift (test[i].mask, iminval - min);
}
else if (wi::gt_p (min, iminval, TYPE_SIGN (index_type)))
{
minval = wide_int_to_tree (index_type, min);
for (i = 0; i < count; i++)
test[i].mask = wi::lrshift (test[i].mask, min - iminval);
}
maxval = wide_int_to_tree (index_type, max);
entry_test_needed = false;
}
else
entry_test_needed = true;
/* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
the minval subtractions, but it might make the mask constants more
expensive. So, compare the costs. */
if (compare_tree_int (minval, 0) > 0 && compare_tree_int (maxval, prec) < 0)
{
int cost_diff;
HOST_WIDE_INT m = tree_to_uhwi (minval);
rtx reg = gen_raw_REG (word_mode, 10000);
bool speed_p = optimize_insn_for_speed_p ();
cost_diff = set_src_cost (gen_rtx_PLUS (word_mode, reg,
GEN_INT (-m)),
word_mode, speed_p);
for (i = 0; i < count; i++)
{
rtx r = immed_wide_int_const (test[i].mask, word_mode);
cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
word_mode, speed_p);
r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
word_mode, speed_p);
}
if (cost_diff > 0)
{
for (i = 0; i < count; i++)
test[i].mask = wi::lshift (test[i].mask, m);
minval = build_zero_cst (TREE_TYPE (minval));
}
}
/* Now build the test-and-branch code. */
gsi = gsi_last_bb (m_case_bb);
/* idx = (unsigned)x - minval. */
idx = fold_convert_loc (loc, unsigned_index_type, index_expr);
idx = fold_build2_loc (loc, MINUS_EXPR, unsigned_index_type, idx,
fold_convert_loc (loc, unsigned_index_type, minval));
idx = force_gimple_operand_gsi (&gsi, idx,
/*simple=*/true, NULL_TREE,
/*before=*/true, GSI_SAME_STMT);
profile_probability subtree_prob = m_subtree_prob;
profile_probability default_prob = m_default_prob;
if (!default_prob.initialized_p ())
default_prob = m_subtree_prob.invert ();
if (m_handles_entire_switch && entry_test_needed)
{
tree range = int_const_binop (MINUS_EXPR, maxval, minval);
/* if (idx > range) goto default */
range
= force_gimple_operand_gsi (&gsi,
fold_convert (unsigned_index_type, range),
/*simple=*/true, NULL_TREE,
/*before=*/true, GSI_SAME_STMT);
tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
default_prob = default_prob / 2;
basic_block new_bb
= hoist_edge_and_branch_if_true (&gsi, tmp, default_bb,
default_prob, loc);
gsi = gsi_last_bb (new_bb);
}
tmp = fold_build2_loc (loc, LSHIFT_EXPR, word_type_node, word_mode_one,
fold_convert_loc (loc, word_type_node, idx));
/* csui = (1 << (word_mode) idx) */
if (count > 1)
{
csui = make_ssa_name (word_type_node);
tmp = force_gimple_operand_gsi (&gsi, tmp,
/*simple=*/false, NULL_TREE,
/*before=*/true, GSI_SAME_STMT);
shift_stmt = gimple_build_assign (csui, tmp);
gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
update_stmt (shift_stmt);
}
else
csui = tmp;
/* for each unique set of cases:
if (const & csui) goto target */
for (k = 0; k < count; k++)
{
profile_probability prob = test[k].prob / (subtree_prob + default_prob);
subtree_prob -= test[k].prob;
tmp = wide_int_to_tree (word_type_node, test[k].mask);
tmp = fold_build2_loc (loc, BIT_AND_EXPR, word_type_node, csui, tmp);
tmp = fold_build2_loc (loc, NE_EXPR, boolean_type_node,
tmp, word_mode_zero);
tmp = force_gimple_operand_gsi (&gsi, tmp,
/*simple=*/true, NULL_TREE,
/*before=*/true, GSI_SAME_STMT);
basic_block new_bb
= hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_bb,
prob, loc);
gsi = gsi_last_bb (new_bb);
}
/* We should have removed all edges now. */
gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
/* If nothing matched, go to the default label. */
edge e = make_edge (gsi_bb (gsi), default_bb, EDGE_FALLTHRU);
e->probability = profile_probability::always ();
}
/* Split the basic block at the statement pointed to by GSIP, and insert
a branch to the target basic block of E_TRUE conditional on tree
expression COND.
It is assumed that there is already an edge from the to-be-split
basic block to E_TRUE->dest block. This edge is removed, and the
profile information on the edge is re-used for the new conditional
jump.
The CFG is updated. The dominator tree will not be valid after
this transformation, but the immediate dominators are updated if
UPDATE_DOMINATORS is true.
Returns the newly created basic block. */
basic_block
bit_test_cluster::hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
tree cond, basic_block case_bb,
profile_probability prob,
location_t loc)
{
tree tmp;
gcond *cond_stmt;
edge e_false;
basic_block new_bb, split_bb = gsi_bb (*gsip);
edge e_true = make_edge (split_bb, case_bb, EDGE_TRUE_VALUE);
e_true->probability = prob;
gcc_assert (e_true->src == split_bb);
tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
/*before=*/true, GSI_SAME_STMT);
cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
gimple_set_location (cond_stmt, loc);
gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
e_false = split_block (split_bb, cond_stmt);
new_bb = e_false->dest;
redirect_edge_pred (e_true, split_bb);
e_false->flags &= ~EDGE_FALLTHRU;
e_false->flags |= EDGE_FALSE_VALUE;
e_false->probability = e_true->probability.invert ();
new_bb->count = e_false->count ();
return new_bb;
}
/* Compute the number of case labels that correspond to each outgoing edge of
switch statement. Record this information in the aux field of the edge.
Return the approx max number of cases per edge. */
int
switch_decision_tree::compute_cases_per_edge ()
{
int max_c = 0;
reset_out_edges_aux (m_switch);
int ncases = gimple_switch_num_labels (m_switch);
for (int i = ncases - 1; i >= 1; --i)
{
edge case_edge = gimple_switch_edge (cfun, m_switch, i);
case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
/* For a range case add one extra. That's enough for the bit
cluster heuristic. */
if ((intptr_t)case_edge->aux > max_c)
max_c = (intptr_t)case_edge->aux +
!!CASE_HIGH (gimple_switch_label (m_switch, i));
}
return max_c;
}
/* Analyze switch statement and return true when the statement is expanded
as decision tree. */
bool
switch_decision_tree::analyze_switch_statement ()
{
unsigned l = gimple_switch_num_labels (m_switch);
basic_block bb = gimple_bb (m_switch);
auto_vec<cluster *> clusters;
clusters.create (l - 1);
basic_block default_bb = gimple_switch_default_bb (cfun, m_switch);
m_case_bbs.reserve (l);
m_case_bbs.quick_push (default_bb);
int max_c = compute_cases_per_edge ();
for (unsigned i = 1; i < l; i++)
{
tree elt = gimple_switch_label (m_switch, i);
tree lab = CASE_LABEL (elt);
basic_block case_bb = label_to_block (cfun, lab);
edge case_edge = find_edge (bb, case_bb);
tree low = CASE_LOW (elt);
tree high = CASE_HIGH (elt);
profile_probability p
= case_edge->probability / ((intptr_t) (case_edge->aux));
clusters.quick_push (new simple_cluster (low, high, elt, case_edge->dest,
p));
m_case_bbs.quick_push (case_edge->dest);
}
reset_out_edges_aux (m_switch);
/* Find bit-test clusters. */
vec<cluster *> output = bit_test_cluster::find_bit_tests (clusters, max_c);
/* Find jump table clusters. */
vec<cluster *> output2;
auto_vec<cluster *> tmp;
output2.create (1);
tmp.create (1);
for (unsigned i = 0; i < output.length (); i++)
{
cluster *c = output[i];
if (c->get_type () != SIMPLE_CASE)
{
if (!tmp.is_empty ())
{
vec<cluster *> n = jump_table_cluster::find_jump_tables (tmp);
output2.safe_splice (n);
n.release ();
tmp.truncate (0);
}
output2.safe_push (c);
}
else
tmp.safe_push (c);
}
/* We still can have a temporary vector to test. */
if (!tmp.is_empty ())
{
vec<cluster *> n = jump_table_cluster::find_jump_tables (tmp);
output2.safe_splice (n);
n.release ();
}
if (dump_file)
{
fprintf (dump_file, ";; GIMPLE switch case clusters: ");
for (unsigned i = 0; i < output2.length (); i++)
output2[i]->dump (dump_file, dump_flags & TDF_DETAILS);
fprintf (dump_file, "\n");
}
output.release ();
bool expanded = try_switch_expansion (output2);
release_clusters (output2);
return expanded;
}
/* Attempt to expand CLUSTERS as a decision tree. Return true when
expanded. */
bool
switch_decision_tree::try_switch_expansion (vec<cluster *> &clusters)
{
tree index_expr = gimple_switch_index (m_switch);
tree index_type = TREE_TYPE (index_expr);
basic_block bb = gimple_bb (m_switch);
if (gimple_switch_num_labels (m_switch) == 1
|| range_check_type (index_type) == NULL_TREE)
return false;
/* Find the default case target label. */
edge default_edge = gimple_switch_default_edge (cfun, m_switch);
m_default_bb = default_edge->dest;
/* Do the insertion of a case label into m_case_list. The labels are
fed to us in descending order from the sorted vector of case labels used
in the tree part of the middle end. So the list we construct is
sorted in ascending order. */
for (int i = clusters.length () - 1; i >= 0; i--)
{
case_tree_node *r = m_case_list;
m_case_list = m_case_node_pool.allocate ();
m_case_list->m_right = r;
m_case_list->m_c = clusters[i];
}
record_phi_operand_mapping ();
/* Split basic block that contains the gswitch statement. */
gimple_stmt_iterator gsi = gsi_last_bb (bb);
edge e;
if (gsi_end_p (gsi))
e = split_block_after_labels (bb);
else
{
gsi_prev (&gsi);
e = split_block (bb, gsi_stmt (gsi));
}
bb = split_edge (e);
/* Create new basic blocks for non-case clusters where specific expansion
needs to happen. */
for (unsigned i = 0; i < clusters.length (); i++)
if (clusters[i]->get_type () != SIMPLE_CASE)
{
clusters[i]->m_case_bb = create_empty_bb (bb);
clusters[i]->m_case_bb->count = bb->count;
clusters[i]->m_case_bb->loop_father = bb->loop_father;
}
/* Do not do an extra work for a single cluster. */
if (clusters.length () == 1
&& clusters[0]->get_type () != SIMPLE_CASE)
{
cluster *c = clusters[0];
c->emit (index_expr, index_type,
gimple_switch_default_label (m_switch), m_default_bb,
gimple_location (m_switch));
redirect_edge_succ (single_succ_edge (bb), c->m_case_bb);
}
else
{
emit (bb, index_expr, default_edge->probability, index_type);
/* Emit cluster-specific switch handling. */
for (unsigned i = 0; i < clusters.length (); i++)
if (clusters[i]->get_type () != SIMPLE_CASE)
{
edge e = single_pred_edge (clusters[i]->m_case_bb);
e->dest->count = e->src->count.apply_probability (e->probability);
clusters[i]->emit (index_expr, index_type,
gimple_switch_default_label (m_switch),
m_default_bb, gimple_location (m_switch));
}
}
fix_phi_operands_for_edges ();
return true;
}
/* Before switch transformation, record all SSA_NAMEs defined in switch BB
and used in a label basic block. */
void
switch_decision_tree::record_phi_operand_mapping ()
{
basic_block switch_bb = gimple_bb (m_switch);
/* Record all PHI nodes that have to be fixed after conversion. */
for (unsigned i = 0; i < m_case_bbs.length (); i++)
{
gphi_iterator gsi;
basic_block bb = m_case_bbs[i];
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
{
basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
if (phi_src_bb == switch_bb)
{
tree def = gimple_phi_arg_def (phi, i);
tree result = gimple_phi_result (phi);
m_phi_mapping.put (result, def);
break;
}
}
}
}
}
/* Append new operands to PHI statements that were introduced due to
addition of new edges to case labels. */
void
switch_decision_tree::fix_phi_operands_for_edges ()
{
gphi_iterator gsi;
for (unsigned i = 0; i < m_case_bbs.length (); i++)
{
basic_block bb = m_case_bbs[i];
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gphi *phi = gsi.phi ();
for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
{
tree def = gimple_phi_arg_def (phi, j);
if (def == NULL_TREE)
{
edge e = gimple_phi_arg_edge (phi, j);
tree *definition
= m_phi_mapping.get (gimple_phi_result (phi));
gcc_assert (definition);
add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
}
}
}
}
}
/* Generate a decision tree, switching on INDEX_EXPR and jumping to
one of the labels in CASE_LIST or to the DEFAULT_LABEL.
We generate a binary decision tree to select the appropriate target
code. */
void
switch_decision_tree::emit (basic_block bb, tree index_expr,
profile_probability default_prob, tree index_type)
{
balance_case_nodes (&m_case_list, NULL);
if (dump_file)
dump_function_to_file (current_function_decl, dump_file, dump_flags);
if (dump_file && (dump_flags & TDF_DETAILS))
{
int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
gcc_assert (m_case_list != NULL);
dump_case_nodes (dump_file, m_case_list, indent_step, 0);
}
bb = emit_case_nodes (bb, index_expr, m_case_list, default_prob, index_type,
gimple_location (m_switch));
if (bb)
emit_jump (bb, m_default_bb);
/* Remove all edges and do just an edge that will reach default_bb. */
bb = gimple_bb (m_switch);
gimple_stmt_iterator gsi = gsi_last_bb (bb);
gsi_remove (&gsi, true);
delete_basic_block (bb);
}
/* Take an ordered list of case nodes
and transform them into a near optimal binary tree,
on the assumption that any target code selection value is as
likely as any other.
The transformation is performed by splitting the ordered
list into two equal sections plus a pivot. The parts are
then attached to the pivot as left and right branches. Each
branch is then transformed recursively. */
void
switch_decision_tree::balance_case_nodes (case_tree_node **head,
case_tree_node *parent)
{
case_tree_node *np;
np = *head;
if (np)
{
int i = 0;
case_tree_node **npp;
case_tree_node *left;
profile_probability prob = profile_probability::never ();
/* Count the number of entries on branch. */
while (np)
{
i++;
prob += np->m_c->m_prob;
np = np->m_right;
}
if (i > 2)
{
/* Split this list if it is long enough for that to help. */
npp = head;
left = *npp;
profile_probability pivot_prob = prob / 2;
/* Find the place in the list that bisects the list's total cost
by probability. */
while (1)
{
/* Skip nodes while their probability does not reach
that amount. */
prob -= (*npp)->m_c->m_prob;
if ((prob.initialized_p () && prob < pivot_prob)
|| ! (*npp)->m_right)
break;
npp = &(*npp)->m_right;
}
np = *npp;
*npp = 0;
*head = np;
np->m_parent = parent;
np->m_left = left == np ? NULL : left;
/* Optimize each of the two split parts. */
balance_case_nodes (&np->m_left, np);
balance_case_nodes (&np->m_right, np);
np->m_c->m_subtree_prob = np->m_c->m_prob;
if (np->m_left)
np->m_c->m_subtree_prob += np->m_left->m_c->m_subtree_prob;
if (np->m_right)
np->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
}
else
{
/* Else leave this branch as one level,
but fill in `parent' fields. */
np = *head;
np->m_parent = parent;
np->m_c->m_subtree_prob = np->m_c->m_prob;
for (; np->m_right; np = np->m_right)
{
np->m_right->m_parent = np;
(*head)->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
}
}
}
}
/* Dump ROOT, a list or tree of case nodes, to file. */
void
switch_decision_tree::dump_case_nodes (FILE *f, case_tree_node *root,
int indent_step, int indent_level)
{
if (root == 0)
return;
indent_level++;
dump_case_nodes (f, root->m_left, indent_step, indent_level);
fputs (";; ", f);
fprintf (f, "%*s", indent_step * indent_level, "");
root->m_c->dump (f);
root->m_c->m_prob.dump (f);
fputs (" subtree: ", f);
root->m_c->m_subtree_prob.dump (f);
fputs (")\n", f);
dump_case_nodes (f, root->m_right, indent_step, indent_level);
}
/* Add an unconditional jump to CASE_BB that happens in basic block BB. */
void
switch_decision_tree::emit_jump (basic_block bb, basic_block case_bb)
{
edge e = single_succ_edge (bb);
redirect_edge_succ (e, case_bb);
}
/* Generate code to compare OP0 with OP1 so that the condition codes are
set and to jump to LABEL_BB if the condition is true.
COMPARISON is the GIMPLE comparison (EQ, NE, GT, etc.).
PROB is the probability of jumping to LABEL_BB. */
basic_block
switch_decision_tree::emit_cmp_and_jump_insns (basic_block bb, tree op0,
tree op1, tree_code comparison,
basic_block label_bb,
profile_probability prob,
location_t loc)
{
// TODO: it's once called with lhs != index.
op1 = fold_convert (TREE_TYPE (op0), op1);
gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
gimple_set_location (cond, loc);
gimple_stmt_iterator gsi = gsi_last_bb (bb);
gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
gcc_assert (single_succ_p (bb));
/* Make a new basic block where false branch will take place. */
edge false_edge = split_block (bb, cond);
false_edge->flags = EDGE_FALSE_VALUE;
false_edge->probability = prob.invert ();
false_edge->dest->count = bb->count.apply_probability (prob.invert ());
edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
true_edge->probability = prob;
return false_edge->dest;
}
/* Generate code to jump to LABEL if OP0 and OP1 are equal.
PROB is the probability of jumping to LABEL_BB.
BB is a basic block where the new condition will be placed. */
basic_block
switch_decision_tree::do_jump_if_equal (basic_block bb, tree op0, tree op1,
basic_block label_bb,
profile_probability prob,
location_t loc)
{
op1 = fold_convert (TREE_TYPE (op0), op1);
gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
gimple_set_location (cond, loc);
gimple_stmt_iterator gsi = gsi_last_bb (bb);
gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
gcc_assert (single_succ_p (bb));
/* Make a new basic block where false branch will take place. */
edge false_edge = split_block (bb, cond);
false_edge->flags = EDGE_FALSE_VALUE;
false_edge->probability = prob.invert ();
false_edge->dest->count = bb->count.apply_probability (prob.invert ());
edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
true_edge->probability = prob;
return false_edge->dest;
}
/* Emit step-by-step code to select a case for the value of INDEX.
The thus generated decision tree follows the form of the
case-node binary tree NODE, whose nodes represent test conditions.
DEFAULT_PROB is probability of cases leading to default BB.
INDEX_TYPE is the type of the index of the switch. */
basic_block
switch_decision_tree::emit_case_nodes (basic_block bb, tree index,
case_tree_node *node,
profile_probability default_prob,
tree index_type, location_t loc)
{
profile_probability p;
/* If node is null, we are done. */
if (node == NULL)
return bb;
/* Single value case. */
if (node->m_c->is_single_value_p ())
{
/* Node is single valued. First see if the index expression matches
this node and then check our children, if any. */
p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
bb = do_jump_if_equal (bb, index, node->m_c->get_low (),
node->m_c->m_case_bb, p, loc);
/* Since this case is taken at this point, reduce its weight from
subtree_weight. */
node->m_c->m_subtree_prob -= node->m_c->m_prob;
if (node->m_left != NULL && node->m_right != NULL)
{
/* 1) the node has both children
If both children are single-valued cases with no
children, finish up all the work. This way, we can save
one ordered comparison. */
if (!node->m_left->has_child ()
&& node->m_left->m_c->is_single_value_p ()
&& !node->m_right->has_child ()
&& node->m_right->m_c->is_single_value_p ())
{
p = (node->m_right->m_c->m_prob
/ (node->m_c->m_subtree_prob + default_prob));
bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
node->m_right->m_c->m_case_bb, p, loc);
node->m_c->m_subtree_prob -= node->m_right->m_c->m_prob;
p = (node->m_left->m_c->m_prob
/ (node->m_c->m_subtree_prob + default_prob));
bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
node->m_left->m_c->m_case_bb, p, loc);
}
else
{
/* Branch to a label where we will handle it later. */
basic_block test_bb = split_edge (single_succ_edge (bb));
redirect_edge_succ (single_pred_edge (test_bb),
single_succ_edge (bb)->dest);
p = ((node->m_right->m_c->m_subtree_prob + default_prob / 2)
/ (node->m_c->m_subtree_prob + default_prob));
test_bb->count = bb->count.apply_probability (p);
bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
GT_EXPR, test_bb, p, loc);
default_prob /= 2;
/* Handle the left-hand subtree. */
bb = emit_case_nodes (bb, index, node->m_left,
default_prob, index_type, loc);
/* If the left-hand subtree fell through,
don't let it fall into the right-hand subtree. */
if (bb && m_default_bb)
emit_jump (bb, m_default_bb);
bb = emit_case_nodes (test_bb, index, node->m_right,
default_prob, index_type, loc);
}
}
else if (node->m_left == NULL && node->m_right != NULL)
{
/* 2) the node has only right child. */
/* Here we have a right child but no left so we issue a conditional
branch to default and process the right child.
Omit the conditional branch to default if the right child
does not have any children and is single valued; it would
cost too much space to save so little time. */
if (node->m_right->has_child ()
|| !node->m_right->m_c->is_single_value_p ())
{
p = ((default_prob / 2)
/ (node->m_c->m_subtree_prob + default_prob));
bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
LT_EXPR, m_default_bb, p, loc);
default_prob /= 2;
bb = emit_case_nodes (bb, index, node->m_right, default_prob,
index_type, loc);
}
else
{
/* We cannot process node->right normally
since we haven't ruled out the numbers less than
this node's value. So handle node->right explicitly. */
p = (node->m_right->m_c->m_subtree_prob
/ (node->m_c->m_subtree_prob + default_prob));
bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
node->m_right->m_c->m_case_bb, p, loc);
}
}
else if (node->m_left != NULL && node->m_right == NULL)
{
/* 3) just one subtree, on the left. Similar case as previous. */
if (node->m_left->has_child ()
|| !node->m_left->m_c->is_single_value_p ())
{
p = ((default_prob / 2)
/ (node->m_c->m_subtree_prob + default_prob));
bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
GT_EXPR, m_default_bb, p, loc);
default_prob /= 2;
bb = emit_case_nodes (bb, index, node->m_left, default_prob,
index_type, loc);
}
else
{
/* We cannot process node->left normally
since we haven't ruled out the numbers less than
this node's value. So handle node->left explicitly. */
p = (node->m_left->m_c->m_subtree_prob
/ (node->m_c->m_subtree_prob + default_prob));
bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
node->m_left->m_c->m_case_bb, p, loc);
}
}
}
else
{
/* Node is a range. These cases are very similar to those for a single
value, except that we do not start by testing whether this node
is the one to branch to. */
if (node->has_child () || node->m_c->get_type () != SIMPLE_CASE)
{
bool is_bt = node->m_c->get_type () == BIT_TEST;
int parts = is_bt ? 3 : 2;
/* Branch to a label where we will handle it later. */
basic_block test_bb = split_edge (single_succ_edge (bb));
redirect_edge_succ (single_pred_edge (test_bb),
single_succ_edge (bb)->dest);
profile_probability right_prob = profile_probability::never ();
if (node->m_right)
right_prob = node->m_right->m_c->m_subtree_prob;
p = ((right_prob + default_prob / parts)
/ (node->m_c->m_subtree_prob + default_prob));
test_bb->count = bb->count.apply_probability (p);
bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
GT_EXPR, test_bb, p, loc);
default_prob /= parts;
node->m_c->m_subtree_prob -= right_prob;
if (is_bt)
node->m_c->m_default_prob = default_prob;
/* Value belongs to this node or to the left-hand subtree. */
p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
GE_EXPR, node->m_c->m_case_bb, p, loc);
/* Handle the left-hand subtree. */
bb = emit_case_nodes (bb, index, node->m_left, default_prob,
index_type, loc);
/* If the left-hand subtree fell through,
don't let it fall into the right-hand subtree. */
if (bb && m_default_bb)
emit_jump (bb, m_default_bb);
bb = emit_case_nodes (test_bb, index, node->m_right, default_prob,
index_type, loc);
}
else
{
/* Node has no children so we check low and high bounds to remove
redundant tests. Only one of the bounds can exist,
since otherwise this node is bounded--a case tested already. */
tree lhs, rhs;
generate_range_test (bb, index, node->m_c->get_low (),
node->m_c->get_high (), &lhs, &rhs);
p = default_prob / (node->m_c->m_subtree_prob + default_prob);
bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR,
m_default_bb, p, loc);
emit_jump (bb, node->m_c->m_case_bb);
return NULL;
}
}
return bb;
}
/* The main function of the pass scans statements for switches and invokes
process_switch on them. */
namespace {
const pass_data pass_data_convert_switch =
{
GIMPLE_PASS, /* type */
"switchconv", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_SWITCH_CONVERSION, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa, /* todo_flags_finish */
};
class pass_convert_switch : public gimple_opt_pass
{
public:
pass_convert_switch (gcc::context *ctxt)
: gimple_opt_pass (pass_data_convert_switch, ctxt)
{}
/* opt_pass methods: */
bool gate (function *) final override
{
return flag_tree_switch_conversion != 0;
}
unsigned int execute (function *) final override;
}; // class pass_convert_switch
unsigned int
pass_convert_switch::execute (function *fun)
{
basic_block bb;
bool cfg_altered = false;
FOR_EACH_BB_FN (bb, fun)
{
if (gswitch *stmt = safe_dyn_cast <gswitch *> (*gsi_last_bb (bb)))
{
if (dump_file)
{
expanded_location loc = expand_location (gimple_location (stmt));
fprintf (dump_file, "beginning to process the following "
"SWITCH statement (%s:%d) : ------- \n",
loc.file, loc.line);
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
putc ('\n', dump_file);
}
switch_conversion sconv;
sconv.expand (stmt);
cfg_altered |= sconv.m_cfg_altered;
if (!sconv.m_reason)
{
if (dump_file)
{
fputs ("Switch converted\n", dump_file);
fputs ("--------------------------------\n", dump_file);
}
/* Make no effort to update the post-dominator tree.
It is actually not that hard for the transformations
we have performed, but it is not supported
by iterate_fix_dominators. */
free_dominance_info (CDI_POST_DOMINATORS);
}
else
{
if (dump_file)
{
fputs ("Bailing out - ", dump_file);
fputs (sconv.m_reason, dump_file);
fputs ("\n--------------------------------\n", dump_file);
}
}
}
}
return cfg_altered ? TODO_cleanup_cfg : 0;;
}
} // anon namespace
gimple_opt_pass *
make_pass_convert_switch (gcc::context *ctxt)
{
return new pass_convert_switch (ctxt);
}
/* The main function of the pass scans statements for switches and invokes
process_switch on them. */
namespace {
template <bool O0> class pass_lower_switch: public gimple_opt_pass
{
public:
pass_lower_switch (gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {}
static const pass_data data;
opt_pass *
clone () final override
{
return new pass_lower_switch<O0> (m_ctxt);
}
bool
gate (function *) final override
{
return !O0 || !optimize;
}
unsigned int execute (function *fun) final override;
}; // class pass_lower_switch
template <bool O0>
const pass_data pass_lower_switch<O0>::data = {
GIMPLE_PASS, /* type */
O0 ? "switchlower_O0" : "switchlower", /* name */
OPTGROUP_NONE, /* optinfo_flags */
TV_TREE_SWITCH_LOWERING, /* tv_id */
( PROP_cfg | PROP_ssa ), /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
};
template <bool O0>
unsigned int
pass_lower_switch<O0>::execute (function *fun)
{
basic_block bb;
bool expanded = false;
auto_vec<gimple *> switch_statements;
switch_statements.create (1);
FOR_EACH_BB_FN (bb, fun)
{
if (gswitch *swtch = safe_dyn_cast <gswitch *> (*gsi_last_bb (bb)))
{
if (!O0)
group_case_labels_stmt (swtch);
switch_statements.safe_push (swtch);
}
}
for (unsigned i = 0; i < switch_statements.length (); i++)
{
gimple *stmt = switch_statements[i];
if (dump_file)
{
expanded_location loc = expand_location (gimple_location (stmt));
fprintf (dump_file, "beginning to process the following "
"SWITCH statement (%s:%d) : ------- \n",
loc.file, loc.line);
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
putc ('\n', dump_file);
}
gswitch *swtch = dyn_cast<gswitch *> (stmt);
if (swtch)
{
switch_decision_tree dt (swtch);
expanded |= dt.analyze_switch_statement ();
}
}
if (expanded)
{
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
mark_virtual_operands_for_renaming (cfun);
}
return 0;
}
} // anon namespace
gimple_opt_pass *
make_pass_lower_switch_O0 (gcc::context *ctxt)
{
return new pass_lower_switch<true> (ctxt);
}
gimple_opt_pass *
make_pass_lower_switch (gcc::context *ctxt)
{
return new pass_lower_switch<false> (ctxt);
}
|